
REVISED EDITION

CHEMISTRY OF THE

CARBONYL GROUP

A STEP-BY-STEP APPROACH TO UNDERSTANDING ORGANIC REACTION MECHANISMS

TIMOTHY K. DICKENS STUART WARREN

WILEY

CHEMISTRY OF THE CARBONYL GROUP

CHEMISTRY OF THE CARBONYL GROUP

A step-by-step approach to understanding Organic Reaction Mechanisms

Revised Edition

Timothy K. Dickens

Fellow and Director of Studies in Chemistry Peterhouse, Cambridge

Stuart Warren

Retired Fellow Churchill College, Cambridge

This edition first published 2018 © 2018 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Timothy K. Dickens and Stuart Warren to be identified as the authors of this work has been asserted in accordance with law.

Registered Office(s)

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Dickens, Timothy K., 1957- author. | Warren, Stuart, author. Title: Chemistry of the carbonyl group: a step by step approach to understanding organic reaction mechanisms / Timothy K. Dickens, Stuart Warren.

Description: Revised edition | Hoboken, NJ: John Wiley & Sons, 2018. | Includes bibliographical references and index. |

Identifiers: LCCN 2017058810 (print) | LCCN 2018007079 (ebook) | ISBN 9781119459538 (pdf) | ISBN 9781119459552 (epub) | ISBN 9781119459569 (pbk.)

Subjects: LCSH: Carbonyl compounds. | Organic reaction mechanisms.

Classification: LCC QD305.A6 (ebook) | LCC QD305.A6 D53 2018 (print) | DDC 547/.43–dc23

LC record available at https://lccn.loc.gov/2017058810

Cover Design: Wiley

Cover Image: Courtesy of Timothy K. Dickens

Set in 10/12pt TimesNewRomanMTStd by SPi Global, Chennai, India 10 9 8 7 6 5 4 3 2 1

To Sophie Jackson and Chris Lester

CONTENTS

PREFACE	xi
ACKNOWLEDGEMENTS	xiii
SOME HELP THAT YOU MAY NEED	χv
WHAT DO YOU NEED TO KNOW BEFORE YOU START	Γ? xvii
INTRODUCTION	xix
1 Nucleophilic Addition to the Carbonyl Group	1
Nucleophilic addition: what it is and how it	
happens	3
Alcohols as nucleophiles: acetal formation	6
Some carbon-carbon bond-forming reactions	;
with carbon nucleophiles: cyanide ion,	
acetylide ion and Grignard reagents	10
Hydride ion and its derivatives LiAlH₄ and	
NaBH ₄ . Reduction of aldehydes and ketones	17
Meerwein-Ponndorf reduction and Oppenaue	r
oxidation, with a branch program on how to	
draw transition states	19
Two general revision problems	25

viii CONTENTS

2	Nucleophilic Substitution	29
	Substitution: how it happens	31
	LiAlH ₄ reduction of esters	33
	Reaction of Grignard reagents with esters	34
	Alkaline hydrolysis of esters	38
	Acid hydrolysis of amides	39
	Summary of acid and base catalysis	41
	Reaction between carboxylic acids and thionyl	
	chloride	41
	Synthesis of esters and anhydrides from	40
	carboxylic acids	43
	Review questions	45
3	Nucleophilic Subsitution at the Carbonyl Group with	
	Complete Removal of Carbonyl Oxygen	49
	Imine formation from aldehydes and ketones	51
	Oxime formation and the structure of oximes	53
	Hydrazone and semicarbazone formation	54
	Reduction of C=O to CH ₂	56
	Conversion of C=O to CCl ₂	60
	DDT synthesis	64
	Chloromethylation of aromatic compounds	65
	Review questions	66
4	Carbanions and Enolisation	69
	Carbanions	71
	Tautomerism	72
	Equilibration and racemisation of ketones by	
	enolisation	73
	Halogenation of ketones	78
	Formation of bromo-acid derivatives	83
	Organo-zinc derivatives and their use	
	in synthesis	85
	Review questions	87

5	Building Organic Molecules from Carbonyl Compounds	89
	Using enols as nucleophiles to attack other carbonyl groups	92
	The aldol reaction	92
	The Claisen ester condensation	93
	Acid catalysed condensation of acetone	94
	Self-condensation reactions	96
	Elaboration of a skeleton in synthesis	97
	Cross-condensations with molecules which	51
	cannot enolise	98
	Mannich reaction	103
	Perkin reaction	105
	Stable enols from β-dicarbonyl compounds	108
	Knoevenagel reaction	110
	Alkylation of β-dicarbonyl compounds	113
	Michael reaction	116
	Decarboxylation	125
	Base cleavage of β-dicarbonyl compounds	131
	Cyclisation reactions: the Dieckmann	
	condensation	134
	Cyclisation of diketones	136
	The dimedone synthesis	137
	Ring opening by base cleavage of β-dicarbonyl	
	compounds	141
	Revision questions	142
	Examples of syntheses: two steroid syntheses	145
	Stork's cedrene synthesis	150
INE	DEX	155

PREFACE

Understanding the movement of electrons as a reaction takes place is perhaps the hardest general concept in Organic Chemistry. This is often referred to as 'pushing curly arrows'. Once this concept has been grasped, it becomes possible to rationalise what is happening in a chemical reaction and predictions can start to be made. In *Chemistry of the Carbonyl Group*, five chemical reactions are explored. These are nucleophilic addition, nucleophilic substitution, nucleophilic substitution with complete removal of carbonyl oxygen, carbanions and enolisation. With these reactions, it is possible to design and build organic molecules from carbonyl compounds. The last section of the book covers this. This understanding of the processes behind reactions by extrapolation can be used to rationalise organic reactions involving heteroatoms such as nitrogen, phosphorus and sulphur. Other types of chemical reactions, such as electrophilic substitution and addition, become easy to comprehend.

It is the authors' firm belief that the most effective way to learn is by practice and interaction. With this in mind, the reader is asked to predict what would happen under a specific set of reaction conditions. The book is divided into frames. These frames pose a question and invite the reader to predict what will happen. Subsequent frames give the solution but then pose more questions to develop a theme further. Therefore, the book should be worked though with pen and paper.

The reactions of the carbonyl group are some of the first reactions that a student studying Chemistry at university will encounter. As such, this book should be tackled just before, or when, a student is starting Organic Chemistry. Indeed, at Peterhouse, first year Natural Science students taking Chemistry are encouraged to work through this book during the Christmas break. Students who do this make substantially faster progress with the Cambridge Organic Chemistry course during the Lent term. The book could also be used by gifted or curious sixth-form students who are keen to broaden their knowledge of Organic Chemistry beyond the A-level syllabus.

This book was first published in 1974. After some discussion, it was decided not to change the text substantially. The motivation was very much to improve the layout of the book; hence *all* the diagrams have been redrawn using ChemDraw and the text formatted using the text mark-up language LATEX. One area that it might have been appropriate to develop is a discussion of the frontier orbitals; this would lead to an understanding of why the "magic angle" of attack in nucleophilic addition^{1–3} is 107°. However, this could be seen as an unnecessary distraction, depending on what other Chemistry topics the reader is already familiar with.

Timothy K. Dickens, Cambridge February 2018

¹I. Fleming. *Molecular Orbitals and Organic Chemical Reactions – Reference Edition* Wiley, (2010). ISBN: 978-0-470-74658-5, section 5.1.3, page 214.

²J. Clayden, N. Greeves and S. Warren. *Organic Chemistry*. 2nd Ed. OUP, (2012). ISBN: 978-0-19-927029-3, page 130.

³D. Klein. *Organic Chemistry*. 2nd Ed. Wiley, (2015). ISBN: 978-1-118-45228-8, page 937.

ACKNOWLEDGEMENTS

This edition has largely been developed by T.K.D. As the revising author, he is indebted to a number of people, including his son, Alex, who first drew T.K.D.'s attention to it whilst he was assigned this book as a Christmas break exercise when studying Chemistry at New College, Oxford. T.K.D. wishes to express his gratitude to Dr Peter Wothers (Teaching Fellow at the Department of Chemistry at Cambridge) for general advice, to Professor Jonathan Clayden for the discussion on the representation of tetrahedral angles and charges on atoms, to Jenny Cossham, the publisher of this book at Wiley, for her warm encouragement and discussion on layout and presentation of material in this revised edition, to Dr James Keeler (Director of Teaching at the Department of Chemistry) who got the author started with using LaTeX and especially to Dr Russell Currie who provided much detailed technical help with the package and for meticulously proof reading drafts of this edition. T.K.D. is indebted

XIV ACKNOWLEDGEMENTS

to Dr Roger Mallion for the thoroughness with which he checked the manuscript for grammatical and chemical errors. However, the two people whom he would chiefly like to thank are Dr Stuart Warren for all his wonderful help, insight, support and ever helpful encouragement and Catherine, his wife, for her patience every time he disappeared into his study to work on this volume.

SOME HELP THAT YOU MAY NEED

Throughout this book, several references are made to consulting an advisor. An advisor is someone who can guide the reader if a concept is not fully understood or more detail is required. An advisor could be a college tutor or supervisor, lecturer, graduate student or even a student in a later year who has a passion for chemistry. If the book is being tackled by a sixth former, then perhaps his or her chemistry teacher could act in the role of an advisor.

Books that you might find useful:

General Organic Chemistry Textbooks:

- J. Clayden, N. Greeves and S. Warren. *Organic Chemistry*. 2nd Ed. OUP, (2012). ISBN: 978-0-19-927029-3.
- D. Klein. *Organic Chemistry*. Wiley, (2015). ISBN: 978-1-118-45228-8.

The solutions to the problems posed in these books can be found in:

- J. Clayden and S. Warren. *Solutions Manual to Accompany Organic Chemistry*. OUP, (2013). ISBN: 978-0-19-966334-7.
- D. Klein. Student Study Guide and Solutions Manual for Organic Chemistry. 2nd Ed. Wiley, (2015). ISBN: 978-1-118-64795-0.

For those who wish to gain a better grasp of using Molecular Orbitals to describe reactions in Organic Chemistry see:

I. Fleming. *Molecular Orbitals and Organic Chemical Reactions* – *Reference Edition*, Wiley (2010). ISBN: 978-0-470-74658-5.