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Preface

The ability to navigate has been an essential skill for
survival throughout human history. As navigation has
advanced, it has become almost inseparable from the ability
to tell time. Today, position, navigation, and timing (PNT)
technologies play an essential role in our modern society.
Much of our reliance on PNT is the result of the availability
of the Global Positioning System (GPS) and the growing
family of Global Navigation Satellite Systems (GNSSs). Sat-
ellite-based navigation and other PNT technologies are
being used in the many fast-growing, widespread, civilian
applications worldwide. A report sponsored by the US
National Institute of Standards and Technology (NIST)
on the economic benefits of GPS indicated that GPS alone
has generated a $1.4 trillion economic benefit in the private
sector by 2019, and that the loss of GPS service would have a
$1 billion per-day negative impact.1 PNT has become a
pillar of our modern society. Knowledge and education
are essential for the continued advancement of PNT
technologies to meet the increasing demand from society.
That is the rationale that led to the creation of this book.
While there are many publications and several outstand-

ing books on satellite navigation technologies and related
subjects, this two-volume set offers a uniquely comprehen-
sive coverage of the latest developments in the broad field of
PNT and has been written by world-renowned experts in
each chapter’s subject area. It is written for researchers,
engineers, scientists, and students who are interested in
learning about the latest developments in satellite-based
PNT technologies and civilian applications. It also exam-
ines alternative navigation technologies based on other sig-
nals and sensors and offers a comprehensive treatment of
integrated PNT systems for consumer and commercial
applications.
The two-volume set contains 64 chapters organized into

six parts. Each volume contains three parts. Volume 1
focuses on satellite navigation systems, technologies, and

applications. It starts with a historical perspective of GPS
and other related PNT developments. Part A consists of
12 chapters that describe the fundamental principles and
latest developments of all global and regional navigation
satellite systems (GNSSs and RNSSs), design strategies that
enable their coexistence and mutual benefits, their signal
quality monitoring, satellite orbit and time synchroniza-
tion, and satellite- and ground-based systems that provide
augmentation information to improve the accuracy of
navigation solutions. Part B contains 13 chapters. These
provide a comprehensive review of recent progress in satel-
lite navigation receiver technologies such as receiver archi-
tecture, signal tracking, vector processing, assisted and
high-sensitivity GNSS, precise point positioning and real-
time kinematic (RTK) systems, direct position estimation
techniques, and GNSS antennas and array signal processing.
Also covered are topics on the challenges of multipath-rich
urban environments, in handling spoofing and interference,
and in ensuring PNT integrity. Part C finishes the volume
with 8 chapters on satellite navigation for engineering and
scientific applications. A review of global geodesy and refer-
ence frames sets the stage for discussions on the broad field
of geodetic sciences, followed by a chapter on the important
subject of GNSS-based time and frequency distribution.
GNSS signals have provided a popular passive sensing tool
for troposphere, ionosphere, and Earth surface monitoring.
Three chapters are dedicated to severe weather, ionospheric
effects, and hazardous event monitoring. Finally, a compre-
hensive treatment of GNSS radio occultation and reflectom-
etry is provided.
The three parts in Volume 2 address PNT using alterna-

tive signals and sensors and integrated PNT technologies
for consumer and commercial applications. An overview
chapter provides the motivation and organization of the
volume, followed by a chapter on nonlinear estimation
methods which are often employed in navigation system
modeling and sensor integration. Part D devotes 7 chapters
to using various radio signals transmitted from sources on
the ground, from aircraft, or from low Earth orbit (LEO)
satellites for PNT purposes. Many of these signals were

1 RTI International Final Report, Sponsored by the US National
Institute of Standards and Technology, “Economic Benefits of the
Global Positioning System (GPS),” June 2019.
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intended for other functions, such as broadcasting, net-
working, and imaging and surveillance. In Part E, there
are 8 chapters covering a broad range of non-radio fre-
quency sensors operating in both passive and active modes
to produce navigation solutions, including MEMS inertial
sensors, advances in clock technologies, magnetometers,
imaging, LiDAR, digital photogrammetry, and signals
received from celestial bodies. A tutorial-style chapter on
multiple approaches to GNSS/INS integration methods
is included in Part E. Also included in Part E are chapters
on the neuroscience of navigation and animal navigation.
Finally, Part F presents a collection of work on contem-
porary PNT applications such as surveying and mobile
mapping, precision agriculture, wearable systems, auto-
mated driving, train control, commercial unmanned air-
craft systems, aviation, satellite orbit determination and
formation flying, and navigation in the unique Arctic
environment.
The chapters in this book were written by 131 authors

from 18 countries over a period of 5 years. Because of the
diverse nature of the authorship and the topics covered
in the two volumes, the chapters were written in a variety
of styles. Some are presented as high-level reviews of prog-
ress in specific subject areas, while others are tutorials with
detailed quantitative analysis. A few chapters include links
to MATLAB or Python example code as well as test data for
those readers who desire to have hands-on practice. The
collective goal is to appeal to industry professionals,
researchers, and academics involved with the science, engi-
neering, and application of PNT technologies. A website,
pnt21book.com, provides chapter summaries; downloada-
ble code examples, data, worked homework examples,
select high-resolution figures, errata, and a way for readers
to provide feedback.
A comprehensive project of this scale would not be pos-

sible without the collective efforts of the GNSS and PNT
community. We appreciate the leading experts in the field
taking time from their busy schedules to answer the call in
contributing to this book. Some of the authors also

provided valuable input and comments to other chapters
in the book. We also sought input from graduate students
and postdocs in the field as they will be the primary users
and represent the future of the field. We want to acknowl-
edge the following individuals who have supported or
encouraged the effort and/or helped to improve the con-
tents of the set: Michael Armatys, Penina Axelrad, John
Betz, Rebecca Bishop, Michael Brassch, Brian Breitsch,
Phil Brunner, Russell Carpenter, Charles Carrano, Ian
Collett, Anthea Coster, Mark Crews, Patricia Doherty,
Chip Eschenfelder, Hugo Fruehauf, Gaylord Green,
Richard Greenspan, Yu Jiao, Kyle Kauffman, Tom
Langenstein, Gerard Lachapelle, Richard Langley, Robert
Lutwak, Jake Mashburn, James J. Miller, Mikel Miller,
Pratap Misra, Oliver Montenbruck, Sam Pullen, Stuart
Riley, Chuck Schue, Logan Scott, Steve Taylor, Peter Teu-
nissen, Jim Torley, A. J. van Dierendonck, Eric Vinande,
Jun Wang, Pai Wang, Yang Wang, Phil Ward, Dongyang
Xu, Rong Yang, and Zhe Yang. The Wiley-IEEE Press
team has demonstrated great patience and flexibility
throughout the five-year gestation period of this project.
And our families have shown great understanding, gener-
ously allowing us to spend a seemingly endless amount of
time to complete the set.
This project was the brainchild of Dr. James Spilker, Jr. He

remained a fervent supporter until his passing in October
2019. A pioneer of GPS civil signal structure and receiver
technologies, Dr. Spilker was truly the inspiration behind
this effort. During the writing of this book set, several pio-
neers in the field of GNSS and PNT, including Ronald Beard,
Per Enge, Ronald Hatch, David Last, and James Tsui also
passed away. This set is dedicated to these heroes and all
those who laid the foundation for the field of PNT.

Jade Morton
Frank van Diggelen
Bradford Parkinson

Sherman Lo
Grace Gao
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35

Overview of Volume 2: Integrated PNT Technologies and Applications
John F. Raquet

Integrated Solutions for Systems, United States

There is little doubt that global navigation satellite systems
(GNSS) have changed the way that we think about and use
navigation systems. Prior to GPS and other GNSSs, the use
of systems which could automatically (without human
intervention) determine their own position was generally
limited to large, expensive platforms such as aircraft or
ships, and even these types of vehicles often required
human navigators to assist in the task of navigation. This
has all changed with the advent of GNSS, however.
Thanks to GNSS, most people have now become accus-

tomed to their smartphone or vehicle knowing exactly
where it is as a part of their everyday lives, and this capa-
bility has been built into our expectations. Just as we expect
the lights to come on when we turn on a light switch, we
also expect a GNSS position fix whenever we turn on a
smartphone or other navigation device. This reliance on
GNSS goes well beyond obvious navigation devices – we
very much depend on many systems which heavily use
GNSS for timing purposes, such as banking, communica-
tions, and our power grid.
Some have said that navigation is addictive – no matter

how much accuracy or availability you have, you always
want more. The extreme success of GNSS has, ironically,
led to a desire to complement GNSS with other types of sen-
sors for situations in which GNSS is not available, in order
to guarantee (as much as is possible) the ability to deter-
mine time or position.
Volume 2 focuses in on many of these complementary

navigation systems and methods and how they are inte-
grated together to obtain the desired performance. Before
diving into the details, it can be helpful to step back and
look at the big picture of what is really happening within
navigation systems, in order to better understand how
the various approaches relate to each other. To do this, it
is helpful to develop a “navigation framework.”

35.1 Generalized Navigation
Framework

Fundamentally, virtually every navigation system oper-
ates the same way. This can be expressed as a predict–
observe–compare cycle, as shown in Figure 35.1. The
“Navigation State” at the lower right represents the user’s
current navigation state, or all of the information about
the user’s position, velocity, and so on, as well as esti-
mates of that information’s quality. This can be thought
of as the system’s best guess of the user’s position as well
as how accurate the system thinks the guess is. As
depicted in the “Sensor” box on the left, the system takes
a measurement or makes an observation which gives
some insight into the user’s navigation state. For GPS,
perhaps the system observes the range to a satellite.
The system also uses a model of the real world, depicted
with the “WorldModel” box in the upper right. In the case
of GPS, the world model might consist of the locations
(orbits) of the GPS satellites.
During the predict phase, the prediction algorithm deter-

mines what the system expects to observe based upon the
world model and the current navigation state, annotated
as the “Prediction Algorithm” box in Figure 35.1. During
the observe phase, the system receives a noise-corrupted
measurement from the real world. During the compare
phase, the predicted measurement is compared to the actual
measurement. Any discrepancies are used to improve the
navigation state and possibly the model of the world.
Consider a simplified example in which a user attempts

to determine the distance to a wall. Perhaps the user pre-
dicts the distance to the wall is about 30 feet based upon
mere eyesight to judge the distance. (The navigation state
is 30 feet with much uncertainty.) Then, suppose a precise
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laser range finder is used to measure, or observe, the dis-
tance as 31.2 feet. Next, the prediction is compared to the
observation. The user quickly dismisses the prediction
and trusts the observation, because the user observation
was viewed as being a more reliable estimate of distance
than the prediction. Likewise, examples could be drawn
which highlight the prediction heavily outweighing an
observation.
The most interesting applications involve a blending of

the prediction with the observation. Typical GPS applica-
tions use a Kalman filter to perform the predict–observe–
compare cycle. The world model consists of GPS satellite
locations. Based upon some prior information, the receiver
predicts the user’s location. The observations might consist
of ranges to each satellite in view. These observations are
compared to a prediction of what the ranges should be
based upon the receiver’s estimate of position (and assumed
knowledge of the world). The system conducts a blended
comparison based upon the relative quality of the predicted
navigation state and the observations.
In Figure 35.1, the arrow labeled “world model updates”

indicates that the world model can be changed based upon
the measurements that have been taken. Some navigation
systems, particularly those which are designed and
deployed specifically for navigation, do not require the
end user of the system to be involved in this part of the
process. For example, in GPS, the world model consists
of information about the satellite orbits (ephemeris), the
satellite clock errors, and details that are given in the sig-
nal specification (frequency, chipping rate, etc.). The GPS
system uses its own receiver network on the ground to
estimate satellite orbits and clock errors and to monitor
the signals coming from space, and measurements from
this network are used to continually update the GPS world

model. As a result, the user simply obtains the most recent
ephemeris and satellite clock terms and uses them for
positioning. In this way, the user is completely uninvolved
in the updating of the world model, which is helpful,
because it greatly reduces the complexity of the system
for the user.
Unlike man-made signals, natural signals do not gener-

ally have a dedicated part of the system that is continually
updating a concise world model which describes how
sensed measurements relate to the real world. As a result,
the challenge with such systems is often to determine a usa-
ble world model. For example, it is very easy to obtain
images of the nearby environment using a camera. How-
ever, in order to determine position and/or attitude from
this kind of measurement, the user must have knowledge
of what the world looks like as a function of position and
attitude (the world model).

35.1.1 What Is a Navigation Sensor?

The physical sensor, depicted as the yellow block in
Figure 35.1, is a critical part of any navigation system,
and selection of the right sensor or combination of sensors
is one of the most important decisions a navigation system
designer can make. What comprises a navigation sensor?
At a basic level, any physical sensor that measures some-

thing which changes when the sensor is moved is a poten-
tial navigation sensor. Additionally, since clocks are an
integral part of many navigation systems, we also consider
clocks in this section as well. In contrast to a navigation sen-
sor‚whichmeasures something that changes when the sen-
sor is moved in some way, a clock is a sensor that measures
how time “moves.” A summary of the major sensors cov-
ered in Volume 2 is given in Table 35.1.

The Real world
World Model

Sensor

Data/

Information Information

NavState Correction
Goodness of fit,

Likelihood,

Residuals,etc.

Comparison

World Model Updates

“Predicted”

Data/
“Prediction”

Algorithm

Navigation
State

Figure 35.1 General navigation framework.
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35.2 Summary of Content of Volume 2

Volume 2 begins with an overview of nonlinear estimation
techniques (Chapter 36), which are often required when
integrating complementary navigation sensors. This chap-
ter also lays the groundwork for the estimation strategies
that are described in subsequent chapters.
The next group of chapters covers a variety of RF-based

complementary navigation techniques. Many of the princi-
ples and algorithmic approaches for indoor navigation are
summarized in Chapter 37, as well as a survey of different
types of indoor navigation sensors and phenomenologies.
This is followed by several chapters which describe in detail
a variety of RF signals, including cellular (Chapter 38), ter-
restrial navigation beacons (Chapter 39), digital television

(Chapter 40), low-frequency systems (Chapter 41), radar (-
Chapter 42), and RF signals from low-Earth orbiting (LEO)
satellites (Chapter 43).
There are two chapters that describe inertial technology:

a general introduction to INS (Chapter 44) andMEMS iner-
tial systems (Chapter 45). The introduction chapter pro-
vides an overview of inertial systems. It describes the
fundamental mechanisms of various accelerometers and
gyroscopes that are the building blocks of INS, their error
characteristics and performances, and outlook of technol-
ogy advancement. The focus of MEMS inertial sensors is
to reduce the cost, size, weight, and power when compared
to existing inertial sensors. Doing so would expand the
applications in which it is feasible to leverage inertial
technology.

Table 35.1 Sensors covered in Volume 2

Sensor Sensed phenomenon World model required Other considerations

Cellular RF
receiver

Cellular phone RF
signals

Positions of cell towers, signal timing Example of signal of opportunity (SoOP),
reference receiver sometimes required

Terrestrial beacon
receiver

Navigation signals
from terrestrial
beacons

Beacon locations, signal structure,
signal timing

Requires dedicated infrastructure, more design
flexibility than SoOP

Digital TV
receiver

Digital TV signals Transmitter locations, signal timing Example of SoOP, reference receiver sometimes
required

Low-frequency
receiver

Low-frequency RF
signals

Transmitter location or direction of
arrival, local distortion effects

Susceptible to local distortions, generally less
accurate than higher frequency/wider
bandwidth signals

Radar RF signals Locations of identifiable RF reflectors
for absolute positioning

Generally larger/higher power than receiver-
based systems

Low-Earth orbit
(LEO) satellite
receiver

Signals from LEO
satellites

LEO satellite position/velocity, signal
timing (in some cases), atmospheric
models

Greater geometric/signal diversity and higher
received power than GNSS

Inertial Rotation and
specific force

Gravitational field Dead-reckoning only – drift normally requires
update

GNSS RF signals from
satellites

Satellite ephemeris and clock errors,
atmospheric models

Ideal for updating inertial

Magnetometer Magnetic field
(including
variations)

Magnetic field map Local (vehicle) effects calibration may be
required

LiDAR Range and intensity
of laser returns

Shape/location of objects being sensed Can be used in dead-reckoning or absolute
modes

Cameras Intensity of light as
a function of
direction

Map of image features or three-
dimensional image model for absolute
positioning

Can be used in dead-reckoning or absolute
modes

X-ray detector X-ray signals
coming from
pulsars

Knowledge of pulsar directions and
signal characteristics (including
timing)

Positioning is based on signal time of arrival

Clock Varies by clock type Perhaps calibration parameters Measures rate of time passage (frequency), and
if initialized and integrated, absolute time
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It is important to recognize that inertial systems cannot
operate without aiding from additional sensors, other than
for short time periods. The primary reason for this is that
inertial systems are unstable in the vertical channel, so at
a minimum they need some sort of aiding of the vertical
channel (such as a barometric altimeter or terrain height
aiding). Even if the vertical channel is aided, the horizontal
directions will drift in an inertial system, with the rate of
drift determined by the quality of the system and the accu-
racy of the initialization of the attitude and position of the
system. (Even if an INS had perfect gyroscopes and acceler-
ometers, there would still be growing error due to imperfec-
tions in our knowledge of gravity).
Probably the most common sensor used to aid an inertial

is a GNSS receiver. Chapter 46 describes classic approaches
for integrating GPSwith INS, including loose and tight inte-
gration. It also describes a different way of thinking about
the GPS/INS integration problem, in which there is more
emphasis on using carrier-phase measurements to provide
velocity-like updates to the INS, with additional correction
from the pseudorange measurements.
Clock has been an essential sensor for navigation since

ancient times. The accuracy and stability of clocks continue
the improve in recent decades. Chapter 47 provides an
overview of recent technology development in atomic
clocks for GNSS.
Anapproachforusingknowledgeof thevariation inEarth’s

magnetic field for absolute positioning using amagnetometer
is described in Chapter 48. This method works indoors, on a
ground vehicle, and in an aircraft, and this chapter describes
the differences between these different environments and
shows examples of working systems in each case.
Next, the use of LiDAR for navigation is described in

Chapter 49. Various types of LiDARs are considered, as well
as different ways in which LiDAR data can be leveraged for
navigation purposes. This chapter also describes features
that can be identified using LiDAR data, and how those fea-
tures can be incorporated into an integrated navigation sys-
tem. Both dead-reckoning and absolute positioning/
attitude approaches are considered.
Chapter 50 describes the many ways in which cameras

can be used for navigation. Initially, a mathematical model
of a camera is provided, as well as methods for camera cal-
ibration. Image features are described as well as algorithms
for using these features to relate camera images to position
and rotation of the camera. Several methods for image nav-
igation are described, and as with LiDAR, both dead-
reckoning and absolute positioning/attitude approaches
are considered. Another chapter (51) is dedicated to the
topic of photogrammetry, which also uses a camera, but
lays more emphasis on using the camera in order to develop
knowledge about the scene that is viewed by one or more

cameras. The vision navigation and photogrammetry chap-
ters can be thought of as opposite sides of the same coin.
With vision navigation, the desire is to figure out where
the camera is, based on some knowledge of the scene. With
photogrammetry, the desire is to figure out information
about the scene, based on some knowledge of the camera
position (and perhaps orientation).
As mentioned earlier in this introductory chapter, any

measurement that changes when the sensor position
changes can potentially be used as a navigation source.
A good example of this is X-ray pulsar-based navigation
which is described in Chapter 52, along with other variable
celestial sources for navigation. The fundamental premise
here is that if we can accurately measure the time of arrive
of the periodic signal coming from several X-ray-emitting
pulsars, we can use this information to determine our loca-
tion. Additionally, methods for performing X-ray pulsar-
based attitude determination are given.
In contrast to all of the technology-based approaches

describe thus far, Chapter 53 focuses on brain neural pro-
cessing in order to perform various navigation tasks. While
these neurological approaches are quite difference from the
approaches that engineers normally take to develop naviga-
tion systems, the way in which navigation is done by the
brain suggest possibilities that we can attempt to imple-
ment with various forms of computing. Chapter 54 further
describes various ways in which animals are able to navi-
gate and orient without the use of the modern sensors
described elsewhere in this volume.
Volume 2 then concludes with several chapters that

describe specific applications that make heavy use of nav-
igation systems. Many of these applications did not exist
prior to the arrival of GNSS, and those that did exist have
seen large increases in capabilities by leveraging both GNSS
and complementary navigation approaches.
The applications covered include survey and mobile map-

ping (Chapter 55), precision agriculture (Chapter 56), wear-
able navigation technology (Chapter 57), driverless vehicles
(Chapter 58), train control (Chapter 59), unmanned aerial
systems (Chapter 60), aviation (Chapter 61), spacecraft nav-
igation and orbit determination (Chapter 62), spacecraft for-
mation flying and rendezvous (Chapter 63), and finally
Arctic navigation (Chapter 64).
Taken together, Volume 2 shows the incredible value of

navigation systems and the variety of approaches that are
available in cases where GNSS is not sufficient. Whether
we realize it or not, our day-to-day lives are heavily depend-
ent on the ability of many systems that interact with (or that
are behind the scenes) to determine time and position, and
there is an increasing number of creative options and
opportunities for precise navigation and time that can meet
the needs of current and future applications.
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36

Nonlinear Recursive Estimation for Integrated Navigation Systems
Michael J. Veth

Veth Research Associates, United States

36.1 Introduction

Almost immediately following its introduction in 1960,
the Kalman filter and the extended Kalman filter have
served as the primary algorithms used to solve navigation
problems [1–3]. The optimal, recursive, and online charac-
teristics of the algorithm are perfectly suited to serve a
wide range of applications requiring real-time navigation
solutions.
The traditional Kalman filter and extended Kalman filter

are based on the following assumptions:

• Linear (or nearly linear) system dynamics and obser-
vations.

• All noise and error sources are Gaussian.

While these assumptions are valid in many cases, there is
increasing interest in incorporating sensors and systems
that are non-Gaussian, nonlinear, or both. Because these
characteristics inherently violate the fundamental assump-
tions of the Kalman filter, when Kalman filters are used,
performance suffers. More specifically, this can result in fil-
ter estimates that are inaccurate, inconsistent, or unstable.
To address this limitation, researchers have developed a
number of algorithms designed to provide improved perfor-
mance for nonlinear and non-Gaussian problems [4–6].
In this chapter, we provide an overview of some of the

most common and useful classes of nonlinear recursive
estimators. The goal is to introduce the fundamental the-
ories supporting the algorithms, identify their associated
performance characteristics, and finally present their
respective applicability from a navigation perspective.
The chapter is organized as follows. First, an overview of

the notation and essential concepts related to estimation
and probability theory are presented as a foundation for
nonlinear filtering development. Some of the concepts

include recursive estimation frameworks, the implicit
assumptions and limitations of traditional estimators, and
the deleterious effects on performance when these assump-
tions are not satisfied. Next an overview of nonlinear esti-
mation theory is presented with the goal of demonstrating
and deriving three main classes of nonlinear recursive
estimators. These include Gaussian sum filters, grid particle
filters, and sampling particle filters. Each of these classes
of nonlinear recursive estimators is demonstrated and eval-
uated using a simple navigation example. The chapter is
concluded with a discussion regarding the strengths and
weaknesses of the approaches discussed with an emphasis
on helping navigation engineers decide which estimation
algorithm to apply to a given problem of interest.

36.1.1 Notation

The following notation is used in this chapter:

• State vector: The state vector at time k is represented by
the vector xk.

• State estimate: An estimated quantity is represented
using the hat operator. For example, the estimated state
vector at time k is xk .

• A priori/a posteriori estimates: A priori and a posteriori
estimates are represented using the + and – superscript
notation. For example, the a priori state estimate at time
k is x−

k , and the a posteriori state estimate at time k is x +
k .

• State error covariance estimates: The state error covari-
ance matrix is represented using the matrix Pwith super-
scripts and subscripts as required. For example, the a
priori state error covariance matrix at time k is given
by P−

k .

• State transition matrix: The state transition matrix from

time k – 1 to k is given byΦk
k− 1. Note that the time indices

may be omitted when they are explained contextually.
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• Process noise vector and covariance: The process noise
vector at time k is wk. The process noise covariance
matrix at time k is Qk.

• Observation vector: The observation vector at time k is
given by zk.

• Observation influence matrix: The observation influence
matrix at time k is given by Hk. Note that the time index
may be omitted when contextually unnecessary.

• Measurement noise vector and covariance: The measure-
ment noise vector at time k is represented by vk. The
measurement noise covariance is represented by Rk.

• Probability density function: Probability density func-
tions are expressed as p( ).

36.2 Linear Estimation Foundations

The goal of any estimator is to estimate one (or more) para-
meters of interest based on a model of the system, observa-
tions from sensors, or both. Because the parameters are, by
definition, random vectors, they can be completely charac-
terized by their associated probability density function
(pdf ). If we define our parameter vector and observation
vectors at time k as xk and zk, respectively, the overarching
objective of a recursive estimator is to estimate the pdf of
all of the previous state vector epochs, conditioned on all
observations received up to the current epoch. Mathemat-
ically, this is expressed as the following pdf:

p Xk Zk 36 1

where

Xk ≜ x0, x1, , xk 36 2

and

Zk ≜ z0, z1, , zk 36 3

While this is the most general case, it should be noted
that most online algorithms would only be concerned with
the conditional state estimate at the current epoch. For this
situation, Eq. 36.1 would be represented as

p xk Zk 36 4

In the next section, we will present the typical recursive
estimation framework which will serve as the foundations
for developing the forthcoming nonlinear recursive estima-
tion strategies to follow.

36.2.1 Typical Recursive Estimation Framework

In a typical recursive estimation framework, the system
is represented using a process model and one (or more)

observation models. The process model represents the
internal dynamics of the system and can be expressed as
a nonlinear, stochastic difference equation of the form

xk = f xk− 1,wk− 1 36 5

where xk is the state vector at time k N, and wk − 1 is the
process noise random vector at time k – 1. External obser-
vations regarding the system state are represented by an
observation model. The generalized observation model is
a function of both the system state and a random vector
representing the observation errors:

zk = h xk , vk 36 6

In the above equation, zk is the observation at time k, and
vk is the random observation error vector at time k. The
objective of the recursive estimator is to estimate the poste-
rior pdf of the state vector, conditioned on the observations

p xk Zk 36 7

where Zk is the collection of observations up to, and includ-
ing, time k. This is accomplished by performing two types of
transformations on the state pdf, propagation and updates.
The result is a filter cycle given by

p xk−1 Zk−1
propagate

p xk Zk−1
update

p xk Zk

36 8

Note the introduction of the a priori pdf given by

p xk Zk− 1 36 9

Further examination of the propagation and update cycle
in Eq. 36.8 provides insights into how our system knowl-
edge and observations are incorporated into our under-
standing of the state vector. To begin, we consider the
propagation step from epoch k – 1 to k. Time propagation
begins with the posterior pdf p(xk − 1|Zk − 1). The process
model defined in Eq. 36.5 is used to define the transition pdf
p(xk| xk − 1), which can then be used to calculate the a priori
pdf at time k via the Chapman–Kolmogorov equation [2]:

p xk Zk− 1 = p xk xk− 1,Zk− 1 p xk− 1 Zk− 1 dxk− 1

36 10

Examination of the process model (Eq. 36.5) shows that
the propagated state vector is a first-order Gauss–Markov
random process and is dependent only on the previous state
vector and the process noise vector. As a result, we can
express the transition probability, which is independent
of the prior observation, as

p xk xk− 1,Zk− 1 = p xk xk− 1 36 11
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Substituting Eqs. 36.11 into 36.10 results in the propaga-
tion relationship

p xk Zk− 1 = p xk xk− 1 p xk− 1 Zk− 1 dxk− 1

36 12

An observation at time k can be incorporated by consid-
ering the posterior pdf p(xk|Zk), which, given the definition
of our observation sequence in Eq. 36.3, can be expressed
equivalently as

p xk Zk = p xk zk,Zk− 1 36 13

Applying Bayes’ rule to Eq. 36.13 yields

p xk Zk =
p zk xk,Zk− 1 p xk Zk− 1

p zk Zk− 1
36 14

Observing the form of the previously defined observation,
Eq. 36.6 shows that zk is independent of Zk − 1, and thus
Eq. 36.14 can be simplified to

p xk Zk =
p zk xk p xk Zk− 1

p zk Zk− 1
36 15

As a final note, we observe that the normalizing term in
the denominator, known as the evidence, can be expressed
in a more directly obvious form by de-marginalizing about
the state vector as follows:

p xk Zk =
p zk xk p xk Zk− 1

p zk xk p xk Zk− 1 dxk
36 16

Thus, we have presented the mathematical form of both
the propagation (Eq. 36.12) and update (Eq. 36.16) actions
on the pdf representing the state random vector.
For a specific class of problems (e.g. linear Gaussian sys-

tems), the above equations can be solved in closed form. In
this case, the generalized process model (Eq. 36.5) simpli-
fies to

xk = Φk
k− 1xk− 1 + wk− 1 36 17

whereΦk
k− 1 is the state transition matrix from time k− 1 to

k, and wk − 1 is a zero-mean, white Gaussian sequence
with covariance Qk. Similarly, the generalized observation
model 36.6 simplifies to

zk = Hkxk + vk 36 18

whereHk is the observation influence matrix at time k, and
vk is a zero-mean, white Gaussian sequence with covari-
ance Rk.
Thus, both the a priori and posterior pdfs can be repre-

sented as the following Gaussian densities, respectively:

p xk Zk− 1 ≜ x−
k ,P−

k 36 19

p xk Zk ≜ x +
k ,P +

k 36 20

where μ,Λ represents a Gaussian density with μ mean
and Λ covariance. In addition, the plus and minus super-
scripts are used to express an a priori or a posteriori quan-
tity, respectively. Substituting the linear process model
(Eq. 36.17) into our propagation relationship (Eq. 36.12)
results in the linear Kalman filter propagation equations

x−
k = Φk

k− 1x
+
k− 1 36 21

P−
k = Φk

k− 1P
+
k− 1 Φk

k− 1
T
+ Qk− 1 36 22

Furthermore, substituting the linear observation model
(Eq. 36.18) into our update relationship (Eq. 36.16) results
in the linear Kalman filter update equations:

x +
k = x−

k + Kk zk −Hkx
−
k 36 23

P +
k = P−

k −KkHkP−
k 36 24

where zk is the realized measurement observation‚ and Kk

is the Kalman gain at time k:

Kk = P−
k HT

k S
− 1
k 36 25

and Sk is the residual covariance matrix, given by

Sk = HP−
k HT + Rk 36 26

In many cases, systems can be accurately represented by
linear Gaussian models. Unfortunately, there are a number
of systems where these models are not adequate. This moti-
vates the development of various algorithms that attempt to
solve these equations for various classes of problems.
In the next section, we will present the fundamental con-

cepts which will be used to derive various recursive nonlin-
ear estimators.

36.3 Nonlinear Filtering Concepts

In the previous sections (Section 36.2.1), we have developed
the generalized theory for recursive estimation problems.
The theory is based on the fundamental need to determine
the pdf of the state vector at an epoch of interest, condi-
tioned on the observations up to, and including, the current
epoch. Complete knowledge of the conditional state pdf
represents maximum possible knowledge of the system.
This is, in fact, the normal state of affairs for Gaussian sys-
tems, as the pdf can be completely described by a mean and
covariance.

36.3.1 Effects of Nonlinear Operations on
Random Processes – Breaking Up with Gauss

Consider a Gaussian random vector x with mean and
covariance xand Px, respectively. As mentioned previously,
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for Gaussian densities, these two parameters are sufficient
to completely describe the full pdf of the random vector.
Next consider a linear transformation from x to y which

is governed by the transformation matrix H. The resulting
equation for y is given by

y = Hx 36 27

In this case, the transformed random vector, y, can be
shown to be a Gaussian random vector with mean and
covariance

y = Hx 36 28

Py = HPxHT 36 29

This preservation of Gaussian nature when transformed
via linear operations is an important property of Gaussian
densities that makes the linear Kalman filter relatively sim-
ple to implement.
Now consider a generalized nonlinear transformation

y = h x 36 30

In this case, the density of y can become difficult to cal-
culate exactly. While we will address this issue in more
detail later in the chapter, generally speaking, the resulting
density function is clearly non-Gaussian, thus limiting
the performance of the linear Kalman filter algorithm.
Nonlinear estimators attempt to maintain a higher-fidelity
estimate of the overall density function as it transforms
over time.
In the next section, we present our first class of estimators

designed to support systems with non-Gaussian pdfs.

36.3.2 Gaussian Sum Filters

One approach for modeling systems with non-Gaussian
pdfs is the use of composite random variables expressed
as a sum of Gaussian random variables. The generalized
Gaussian sum can be expressed as

x =
J

j = 1

w j y j 36 31

where w[j] is a scalar weighting factor, yj is a Gaussian
random variable with mean y j, and covariance Py j

. These

individually weighted Gaussian random variables can rep-
resent the overall distribution of the state vector. An exam-
ple of a density function created using a sum of Gaussian
random variables is shown in Figure 36.1.

36.3.2.1 Multiple Model Adaptive Estimation

One implementation of the Gaussian sum filtering
approach is known as multiple model adaptive estimation
(MMAE). The MMAE filter uses a weighted Gaussian sum

to address the situation where unknown or uncertain para-
meters exist within the system model. Some examples of
these types of situations include modeling discrete failure
modes, unknown structural parameters, or processes
with multiple discrete modes of operation (e.g. “jump”
processes).
Consider our standard linear Gaussian process and

observation models, repeated from Eqs. 36.17 and 36.18
for clarity:

xk = Φk
k− 1xk− 1 + wk− 1 36 32

zk = Hkxk + vk 36 33

In the previous development, it was assumed that the

systemmodel parameters (i.e.Φk
k− 1, Qk− 1, Hk , Rk) were

known. Let us now consider the situation where some of
the system model parameters are unknown.
To address this situation, we can define a vector of the

unknown system parameters, a, and jointly estimate these
parameters along with the state vector. In other words, we
must now solve for the following density:

p xk, a Zk 36 34

which, after applying Bayes’ rule, can be expressed as

p xk, a Zk = p xk a,Zk p a Zk 36 35

It is important to note that this expression is the product
of the “known-system model” pdf, p(xk| a,Zk), and a new
density function, p(a|Zk), which is the pdf of the unknown
system parameters, conditioned on the observation set.
Assuming a Rn, the parameter density can be written as

p a Zk = p a zk ,Zk− 1 36 36
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Figure 36.1 Gaussian sum illustration. The random variable xsum
is represented by a weighted sum of three individual Gaussian
densities. In this example, xsum = 0.25x1 + 0.5x2 + 0.25x3.
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Applying Bayes’ rule yields

p a Zk =
p zk a,Zk− 1 p a Zk− 1

p zk Zk− 1
36 37

Marginalizing the denominator about the parameter vec-
tor results in a more familiar form:

p a Zk =
p zk a,Zk− 1 p a Zk− 1

p zk a,Zk− 1 p a Zk− 1 da
36 38

where p(zk| a,Zk−1) is the measurement prediction density,
which, given our linear observation model, is expressed as
the following normal distribution:

p zk a,Zk− 1 = Hkx
−
k , Sk 36 39

Unfortunately, the integral in the denominator is intrac-
table in general, which requires an additional constraint.
If the system parameters can be chosen from a finite set
(e.g. a {a[1], a[2], , a[j]}), the parameter density can be
expressed as the sum of the individual probabilities of the
finite set. This results in a system parameter pdf defined as

p a Zk− 1 =
J

j = 1

w j
k− 1δ a− a j 36 40

where w j
k− 1 is the probability of the j-th parameter vector at

time k-1, and δ( ) is the delta function. It can be observed
that the sum of the weights must be unity in order to rep-
resent a probability density. Substituting Eq. 36.40 into
Eq. 36.38:

p a Zk =

p zk a,Zk− 1

J

j = 1
w j
k− 1δ a− a j

p zk a,Zk− 1

J

n = 1
w n
k− 1δ a− a n da

36 41

Moving the position of the summation operators and
parameter weight vector:

p a Zk =

J

j = 1
w j
k− 1p zk a,Zk− 1 δ a− a j

J

n = 1
w n
k− 1 p zk a,Zk− 1 δ a− a n da

36 42

The properties of the delta function can be exploited
to rewrite the numerator and eliminate the integral from
the denominator:

p a Zk =
J

j = 1

p zk a j ,Zk− 1

J

n = 1
w n
k− 1p zk a n ,Zk− 1

w j
k− 1δ a− a j

36 43

At this point, we have established the posterior pdf of
the parameter vector as a finite weighted set. Revisiting
our system parameter pdf, now defined at time k

p a Zk =
J

j = 1

w j
k δ a− a j 36 44

and substituting into Eq. 36.43 yields the parameter density
update relationship

J

j = 1
w j
k δ a− a j

=
J

j = 1

p zk a j ,Zk− 1

J

n = 1
w n
k− 1p zk a n ,Zk− 1

w j
k− 1δ a− a j

36 45

In the above equation, the predicted measurement pdf,
p(zk| a

[j],Zk − 1), is evaluated at the measurement realiza-
tion at time k, which yields the likelihood of realizing
the current measurement, conditioned on the parameter
set j. As mentioned previously, these likelihood values
are based on the following evaluation of a normal density
function:

p zk = zk a j ,Zk− 1 ≔ zk;Hkx̂
− j
k , S j

k

36 46

where zk is the measurement realization at time k.
This likelihood is equivalent to the likelihood of the
residual from a Kalman filter tuned to the j-th parameter
vector, a[j].
Practically speaking, the parameter pdf consists of the

discrete (fixed) parameter set and the associated weights
(likelihood) at each epoch. The parameter density update
shown in Eq. 36.45 shows the evolution of each parameter
weight as a function of time, which can be rewritten as

w j
k =

p zk = zk a j ,Zk− 1

J

n = 1
w n
k− 1p zk = zk a n ,Zk− 1

w j
k− 1 j

1, 2, , J

36 47

Our final task is to determine the overall posterior joint
pdf of the system. Substituting Eq. 36.44 into Eq. 36.35,
we obtain

p xk , a Zk = p xk a,Zk

J

j = 1

w j
k δ a− a j

36 48
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which, when combined with knowledge of the delta func-
tion and implementing a straightforward rearrangement
of terms produces the joint posterior density function

p xk, a Zk =
J

j = 1

w j
k p xk a j ,Zk δ a− a j

36 49

This pdf is clearly a weighted sum of Gaussian densities,
each of these densities corresponding to the posterior state
estimate of an individual Kalman filter, tuned to the param-
eter vector a[j]. The blended posterior state estimate and
covariance are given by

x +
k =

J

j = 1

w j
k x + j

k 36 50

P +
k =

J

j = 1

w j
k x + j

k − x +
k x + j

k − x +
k

T
+ P + j

k

36 51

TheMMAE filter can be visualized in block diagram form
in Figure 36.2.
Additional forms that are very similar conceptually to the

MMAE filter are known as interactive mixture model
(IMM) estimators [8] and Rao-Blackwellized particle filters
(RB-PFs) [9, 10], to name a few.
In the next section, we present a simple example to

illustrate a potential application for Gaussian sum filters
derived in this section.

36.3.3 MMAE Example – Integer Ambiguity
Resolution

The benefits of the Gaussian sum filter can be illustrated
using a simple example. Consider the following one-
dimensional navigation scenario. A radio transmitter broad-
casts a ranging signal from a fixed location, xt. A ranging
receiver is mounted on a vehicle that is free to move in
the x-direction. The vehicle motion can be represented using
a first-order Gauss–Markov velocity model [2] with uncer-
tainty σv and time constant τv. The resulting state vector is
given by

xk =
pk
vk

36 52

where pk and vk are the position and velocity of the vehicle
at time k. The dynamics of the vehicle are given by

xk + 1 = Φk + 1
k xk + wk 36 53

where

Φk + 1
k =

1 Δt
0 exp −Δt τv

36 54

and wk is a zero-mean Gaussian random vector with

E w jw
T
k =

0 0

0 σ2v 1− exp − 2Δt τv
δjk

36 55

The ranging signal consists of both a noise-corrupted
measurement of the true range along with a measurement
of the integrated carrier phase. The integrated carrier phase

Kalman Filter

Based on a[1]

X

X

X

+Kalman Filter

Based on a[2]

Kalman Filter

Based on a[J ]

Zk

xkˆ +[1]

xkˆ +

xkˆ +[J]

rk
[J]

xkˆ +[2]

rk
[2]

rk
[1]

wk
[1]

wk
[2]

wk
[J]

Conditional probability

computation

Figure 36.2 MMAE filter implementation. The MMAE filter constructs the state estimate by combining results from individual Kalman
filters tuned to a parameter realization [7].
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is a high-precision measurement, but is corrupted by an
unknown integer ambiguity. The observation model is

ρk = xk − xt + vρk 36 56

ϕk = λ− 1 xk − xt + N + vϕk
36 57

where λ is the carrier wavelength, andN is the integer ambi-
guity. Both observations are corrupted by zero-mean white
Gaussian noise sequences with

E vρ j
vρk = σ2ρδjk 36 58

E vϕ j
vϕk

= σ2ϕδjk 36 59

E vρ j
vϕk

= 0 36 60

Our goal is to use the MMAE estimator to accurately rep-
resent the (non-Gaussian) posterior pdf, thus maintaining a
consistent overall state estimate and uncertainty, while
incorporating all available information.
In this example, the integer ambiguity is the unknown

parameter set, which in the previous development we
designated as the vector a. We choose a range of J plausible
integers based upon any a priori knowledge or even the ini-
tial range observation itself, which results in the following
unknown parameter vector:

a = N 1 ,N 2 , ,N J 36 61

with overall joint probability density

p xk , a Zk =
J

j = 1

w j
k p xk a j ,Zk δ a− a j

36 62

From this point forward, the implementation proceeds as
outlined in the previous section. A total of J weighted Kal-
man filters are constructed, each with the assumption that
N[j] is the correct integer ambiguity. The joint posterior den-
sity is given by

p xk , a Zk =
J

j = 1

w j
k p xk a j ,Zk δ a− a j

36 63

In order to demonstrate the performance of the Gaussian
sum filter, the above scenario was implemented in a simu-
lation environment. A trajectory and measurement set is
randomly generated using the parameters specified in
Table 36.1.
Note the carrier phase wavelength is 0.2 m, and the car-

rier phase measurement uncertainty is 0.1 cycles, which
results in a measurement precision of 0.02 m, which is
an improvement of 50 times over the pseudorange meas-
urement errors.

The resulting trajectory, range observations, and phase
observations are shown in Figure 36.3.
The MMAE global state estimate and density function

of position after one observation (t = 1 s) are shown in
Figure 36.4. The probability density function is clearly
multi-modal, which accurately represents the range of solu-
tions associated with the phase observation. As expected,
the peaks are located at integer multiples of the carrier
wavelength which corresponds to the most likely values
of the unknown integer ambiguity. These peaks indirectly
indicate the relative likelihood of the associated ambiguity
being correct by exhibiting influence on the overall position
density.
After 22 cycles, the position density shows a reduced

number of peaks (see Figure 36.5). This indicates that the
filter is incorporating sensor observations and the statistical
dynamics model to effectively eliminate a number of poten-
tial ambiguity possibilities.
After 100 cycles (Figure 36.6), the filter has converged to a

single ambiguity.
The global state estimate and associated standard devia-

tion result for this simulation are shown in Figure 36.7.
The shape of the uncertainty bound clearly shows the
effects described above. As the likelihood of each integer
ambiguity realization changes, the overall uncertainty
changes and eventually collapses to the centimeter level.
Finally, the associated normalized filter weights for a

subset of the integer ambiguity realizations are shown in
Figure 36.8. As expected, the highly unlikely edge integers
quickly collapse. The integers closer to the mean take
longer to resolve. It is important to note that the resulting
uncertainty is dependent on the actual measurement reali-
zation sequence received; thus‚ each realization would pro-
duce a different uncertainty (Table 36.2). This is a notable
difference from the standard linear Kalman filter‚ where
the uncertainty is independent of the observed measure-
ments. Finally, it is important to note that, in this example,
the state estimate and uncertainty of the MMAE filter are

Table 36.1 Simulation parameters

Parameter Value Units

σρ 0.5 m

σϕ 0.1 cycles

λ 0.2 m

σv 0.2 m/s

τv 500 s

xt 0 m

Δt 1.0 s
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Table 36.2 Summary of filter classes

Linear and extended Kalman filter

Strengths Weaknesses Use case

• Optimal for linear Gaussian systems

• Computationally simple • Suboptimal approximation for
nonlinear systems, can be prone to
divergence

• Linear, or close-to-linear,
Gaussian problems

Gaussian sum filter

Strengths Weaknesses Use case

• Optimal for linear Gaussian systems with discrete
parameter vector • If parameter vector is not discrete, the

differences must be observable

• Conservative tuning can mask
difference between models and reduce
performance

• Increased computation requirements
over simple Kalman filter

• Linear, or close-to-linear,
Gaussian problems with discrete
parameters

Grid particle filter

Strengths Weaknesses Use case

• Optimal solution when state space consists of
discrete elements

• Suitable for wide range of nonlinear conditions

• Computational requirements can be
excessive

• Processing requirements scale
geometrically with the number of
dimensions

• Discretizing continuous state space
results in suboptimal performance

• Nonlinear problems with lower
dimensionality

Sampling particle filter

Strengths Weaknesses Use case

• Can produce nearly optimal solution for
nonlinear problems

• Computational requirements can be reduced over
a grid particle filter via importance sampling
strategies

• Maintaining good particle distribution
can be difficult

• Lack of repeatability from run to run

• Computational requirements can still
be large

• Nonlinear problems with higher
dimensionality
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Figure 36.3 Sample vehicle trajectory and observations. Note
that the range observations are accurate but not precise and the
phase observations are precise but not accurate. Our goal is to
accurately estimate the joint pdf of this system.
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Figure 36.4 MMAE initial state estimate and position density
function. Note the position density function is extremely multi-
modal due to the limited information available at this point.
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truly optimal (i.e. minimum mean square error). This
would not be the case if the integer ambiguity were resolved
using a more traditional approach (e.g. float estimate with
an ad hoc fixing stage). This is an interesting property of the
Gaussian sum filter and sets the stage for us to investigate
additional nonlinear estimation techniques.

36.3.4 Particle Filters

As mentioned in Section 36.3, the key requirement of
a nonlinear filter is the ability to accurately represent
arbitrary probability density functions. Particle filters

accomplish this by representing density functions by using
collections of discrete, weighted state vectors instances.
These state vectors and associated weights are referred to
as particles.
The development of the theory related to a particle-based

representation of density functions begins by reviewing the
essential properties of both the probability density function
and the cumulative distribution function. An example cdf
and pdf are shown in Figure 36.9. The cumulative distribu-
tion function is a monotonically increasing function which
represents the probability of a random variable realization
that is less than the operand and can be defined as the inte-
gral of the density function [11]:

Pr x < xa = F xa 36 64

=
xa

− ∞
p x dx 36 65

Additionally, the probability of a random variable reali-
zation between a range xa and xb is expressed by

Pr xa ≤ x < xb = F xb −F xa 36 66

=
xb

xa

p x dx 36 67

As a result, the density and cumulative distribution
functions must have the following properties:

F − ∞ = 0 36 68

F + ∞ = 1 36 69

∞

− ∞
f x dx = 1 36 70
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Figure 36.6 MMAE state estimate (after 100 observations). Note
the state estimate is almost completely unimodal and has
converged to the correct integer ambiguity.
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information is available to resolve the integer ambiguity.
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f x ≥ 0 36 71

The particle filter uses a collection of weighted delta
functions to represent the pdf:

p x ≈
J

j = 1

w j δ x− x j 36 72

where w[j] is a scalar weighting value for the j-th particle
with location x[j]. As mentioned previously, the sum of
weights must be unity:

N

j = 1

w j = 1 36 73

An example pdf represented by a collection of weighted
particles is shown in Figure 36.10. This importance
sampling strategy allows us to represent any pdf with a
desired level of fidelity, given enough particles. Additional
details regarding importance sampling are provided in
Section 36.3.7.
In addition to representing arbitrary pdfs of random vec-

tors, successful nonlinear estimation requires the ability to
determine the resulting pdfs after applying nonlinear trans-
formations to random vectors. In general, this can be intrac-
table; however, representing the pdf using the collection of
weighted particles makes the transformation relatively
straightforward. An example of the effect of some sample
nonlinear transformations is shown in Figure 36.11.
One of the most common functions necessary for filtering

applications is calculation using the expectation operator.
The expectation operator is defined as

E g x =
+ ∞

− ∞
g x p x dx 36 74

where E[ ] is the expectation operator, g(x) is an arbitrary
function of the random vector x, and p(x) is the pdf of
the random vector.

Based on this definition, we can easily calculate some
common expectations of the weighted particle pdf. The first
is the mean, which is defined as E[x]:

E x =
+ ∞

− ∞
xp x dx 36 75

Substituting the pdf of x from Eq. 36.72, rearranging
the summation and integral, and then applying the sifting
property:

E x =
+ ∞

− ∞
x

J

j = 1

w j δ x− x j dx 36 76

=
J

j = 1

w j
+ ∞

− ∞
xδ x− x j dx 36 77

=
J

j = 1

w j x j 36 78

This shows that the mean of a weighted particle random
variable can be calculated as the weighted sum of particles.
The above development can be applied identically to the

general expectation function case with the following result:

E g x =
J

j = 1

w j g x j 36 79

This can easily be extended to represent a set of sufficient
statistics for an arbitrary density function. As a result, it can
be shown that any density function can be represented to
arbitrary accuracy, given enough particles. Because we
seek estimation methods that are computationally feasible,
we are searching for methods that give us “good enough”
performance (e.g. accuracy and stability) with limited
computational resources.
In the next section, we investigate one approach, known

as the grid particle filter, to representing the location of our
particle collection.

CONSTANT INTERVAL

VARIABLE WEIGHT

VARIABLE INTERVAL

CONSTANT WEIGHT

VARIABLE INTERVAL

VARIABLE WEIGHT

Figure 36.10 Importance sampling used to represent arbitrary density functions. The density function is represented by a combination of
particle locations and weights (represented by arrows), which can be varied independently.
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36.3.5 Grid Particle Filtering

One approach to addressing the generalized nonlinear esti-
mation requirement tomaintain the full probability density
is the so-called grid particle filter. The grid particle filter
maintains a discrete collection of possible system states
and associates a probability with each of those states (i.e.
particles). This approach is optimal given systems with
the following conditions:

1) The state vector is truly discrete or can be accurately
approximated using a discretization of the state space.

2) The number of discrete states is computationally
tractable.

Given these conditions, the state density function can be
expressed as a weighted collection of particles (repeated
from Eq. 36.72)

p x =
J

j = 1

w j δ x− x j 36 80

where the particle weights, w[j], must sum to one. Because
the particle locations are assumed to be static, the filtering
operation is performed over the collection of weights. This
allows the filter to maintain the density function as the

collection of propagation and update steps are applied. At
this point, it is relatively straightforward to derive the prop-
agation and update relations for the collection of particles.
We begin with the propagation from time k – 1 to k.

Assume that the posterior density function at time k – 1
is given by

p xk− 1 Zk− 1 =
J

j = 1

w j
k− 1 k− 1δ xk− 1 − x j

36 81

Substituting Eq. 36.81 into the Chapman–Kolmogorov
equation (Eq. 36.12) and simplifying:

p xk Zk− 1 = p xk xk− 1 p xk− 1 Zk− 1 dxk− 1

36 82

= p xk xk− 1

J

j = 1

w j
k− 1 k− 1δ xk− 1 − x j dxk− 1

36 83

=
J

j = 1

w j
k− 1 k− 1 p xk xk− 1 δ xk− 1 − x j dxk− 1

36 84

Given: x,y : u (–1,1), u (–1,1)
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Figure 36.11 Visualization of nonlinear transformation on a random variable. Given uniform random variables x, y, the effects of three
nonlinear transformations show that the density can change significantly during transformation.
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=
J

j = 1

w j
k− 1 k− 1p xk x j 36 85

The rightmost density in Eq. 36.85 is the transition prob-
ability function‚ which can be rewritten as

p xk x j =
J

l = 1

p x l
k x j

k− 1 δ xk − x l 36 86

Substituting Eq. 36.86 into Eq. 36.85 and simplifying

p xk Zk− 1 =
J

j = 1

w j
k− 1 k− 1

J

l = 1

p x l x j δ xk − x l

36 87

=
J

l = 1

J

j = 1

w j
k− 1 k− 1p x l x j δ xk − x l

36 88

=
J

l = 1

w l
k k− 1δ xk − x l 36 89

where the new particle weight is given by

w l
k k− 1 =

J

j = 1

w j
k− 1 k− 1p x l x j 36 90

Conceptually, this can be calculated as the sum of all
posterior weights at time k – 1multiplied by the specific tran-
sition probability into state l from all possible prior states.
The development of the measurement update function

proceeds in a similar fashion. Recalling our definition of
the a priori density function (repeated from Eq. 36.89 for
clarity):

p xk Zk− 1 =
J

j = 1

w j
k k− 1δ xk − x j 36 91

and substituting into the update equation (Eq. 36.16) yields

p xk Zk =

p zk xk
J

j = 1
w j
k k− 1δ xk − x j

p zk xk
J

j = 1
w j
k k− 1δ xk − x j dxk

36 92

which can be simplified by changing the order of integra-
tion and using the properties of the delta function

p xk Zk =

p zk xk
J

j = 1
w j
k k− 1δ xk − x j

p zk xk
J

l = 1
w l
k k− 1δ xk − x l dxk

36 93

=

J

j = 1
w j
k k− 1p zk xk δ xk − x j

J

l = 1
w l
k k− 1 p zk xk δ xk − x l dxk

36 94

=

J

j = 1
w j
k k− 1p zk x j δ xk − x j

J

l = 1
w l
k k− 1p zk x l

36 95

Finally, recalling the grid particle filter form of the pos-
terior density function

p xk Zk =
J

j = 1

w j
k kδ xk − x j 36 96

and substituting into Eq. 36.95 yields

J

j = 1
w j
k k δ xk − x j

=
J

j = 1

w j
k k− 1p zk x j

J

l = 1
w l
k k− 1p zk x l

δ xk − x j

36 97

The bracketed areas show the final particle weight update
equations

w j
k k =

w j
k k− 1p zk x j

J

l = 1
w l
k k− 1p zk x l

36 98

In the next section, we illustrate a potential application of
the grid particle filter in a navigation context.

36.3.6 Grid Particle Filter Example Application

We return to the example presented in Section 36.3.3; how-
ever, in this case, we utilize a grid particle filter solution.
The first step in the process is to determine the composition
of the grid. In this case, there are two parameters we would
like to estimate, position and velocity. Both of the para-
meters are continuous random variables, so we must quan-
tize both of the parameters.
For this example, we are interested in centimeter-level

positioning accuracy; thus, we divide the domain into
5 mm by 20 mm/s grids. For simplicity, we build a grid that
is ±2 m in range and ±0.6 m/s in velocity. The absolute
grid location is periodically adjusted based on the current
estimated position and velocity of the vehicle.
An identical randomly generated trajectory andmeasure-

ment set from the MMAE example (Section 36.3.3) is used
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as the inputs to the grid particle filter. For reference, the
system parameters are specified in Table 36.1, and the
resulting trajectory, range observations, and phase observa-
tions are shown in Figure 36.3.
The grid particle filter global state estimate and density

function of position after one observation (t = 1 s) are
shown in Figure 36.12. In this case, we present the proba-
bility density function using a two-dimensional array
(position vs. velocity) of probabilities. The resulting pdf
is clearly multi-modal, which accurately represents the
range of solutions associated with the phase observation.
As expected, the peaks are located as a function of the

wavelength and represent the most likely values of integer
ambiguity. These peaks indirectly indicate the relative
likelihood of the associated ambiguity being correct by
exhibiting influence on the overall position density. In each
plot below, the calculated mean is represented by a white
“plus,” the true state is represented by a green asterisk,
and the calculated 2-sigma uncertainty is represented as
a white ellipse.
After 22 cycles, the density shows a reduced number of

peaks (see Figure 36.13). This indicates that the filter is
incorporating sensor observations and the statistical dyna-
mics model to effectively eliminate a number of potential
ambiguity possibilities.
After 100 cycles (Figure 36.14), the filter has converged

to a single ambiguity.
The global state estimate and associated standard devia-

tion result for this simulation are shown in Figure 36.15.
The shape of the uncertainty bound clearly shows the
effects described above. As the likelihood of each integer
ambiguity realization changes, the overall uncertainty
changes and eventually collapses to the centimeter level.
In the next section, we will move to our final nonlinear

filter algorithm, the sampling particle filter.

36.3.7 Sampling Particle Filter (SIS/SIR)

In a similar manner to the grid particle filter, the sampling
particle filter, also known as a the sequential Monte Carlo
(SMC) filter, represents the state density function using
a weighted collection of particles. However, we seek to
address the computational scaling problems inherent in
grid-based approaches by exploiting an approach that
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Figure 36.12 Grid particle filter state estimate and position
density function after one observation. Note the density
function is extremely multi-modal due to the limited information
available at this point.
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Figure 36.13 Grid particle filter state estimate (after
22 observations). Range observations combined with the vehicle
dynamics model are eliminating unlikely integer ambiguity values.
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Figure 36.14 Grid particle filter state estimate (after 100
observations). Note that the state estimate is almost completely
unimodal and has converged to the correct integer ambiguity.
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focuses computation on the regions of the state space with
the highest likelihood. This is accomplished by randomly
sampling the state space.
The main advantage of this approach is the potential to

more completely sample the important areas of the state
space, while limiting the total number of particles required.
This is a useful advantage over the grid particle filter,
which can require unreasonable numbers of particles as
the state dimensionality and domain increase. While sam-
pling particle filtering approaches are suboptimal, their
computational advantages make them attractive for a
larger range of applications.
We begin by describing the concept of Monte Carlo inte-

gration, which is subsequently used to develop a basic
recursive estimation algorithm.
The fundamental enabling concept for the sampling par-

ticle filter is the concept of Monte Carlo integration. Given
an integral in the following form:

I =
Ω
g x dx 36 99

where Ω is an nx-dimensional region in Rnx with volume

V =
Ω
dx 36 100

If N independent samples are uniformly drawn from Ω,
that is, {x[1], x[2], , x[N]} Ω, then the integral can be
approximated as

I ≈ IN = V
1
N

N

i = 1

g x i 36 101

which approaches equality as

lim N ∞ IN = I 36 102

Now consider the case where the function in the inte-
grand, g(x), can be expressed as the product

g x = f x p x 36 103

where p(x) is a probability density function; thus‚ p(x) ≥ 0
and p(x)dx = 1. If N independent samples, x[i], can be
drawn in accordance with p( ), then the integral can be esti-
mated as the sample mean of the transformed particles:

IN =
1
N

N

i = 1

f x i 36 104

The resulting error in the estimate is unbiased and, most
importantly, scales as the reciprocal of the square root of N.
This is an important result as it indicates that the error is
independent of the dimensionality of the state, as long as
the particles are properly sampled from the distribution
of x. This is an important distinction from the grid filter‚
which requires particles that increase geometrically with
the number of dimensions in the state vector [6].
Unfortunately, it is not always possible to generate

samples from arbitrary density functions. This motivates
additional development of the concept known as impor-
tance sampling.
To further our discussion of importance sampling, it is

convenient to introduce the concept of a proposal density,
chosen to resemble (and provide support over) the true
density of x, while retaining the ability to generate
samples. An illustration of a proposal-density sampling
approach is shown in Figure 36.16.
Given a random vector with true density p(x) and parti-

cles sampled from a proposal density, q(x), Eq. 36.103 can
be rewritten as

g x = f x
p x
q x

q x 36 105
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Figure 36.15 Grid particle filter position error and one-sigma
uncertainty. Note that the error uncertainty collapses once
sufficient information is available to resolve the integer ambiguity.
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Figure 36.16 Proposal sampling illustration. In this example,
the particles are generated using the proposal density (q) and
subsequently weighted to represent the desired density (π).
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The resulting estimate of the integral, assuming N
independent particles sampled from q( ), is given by

I =
N

i = 1
f x

p x
q x

q x dx 36 106

≈
1
N

N

i = 1

f x i p x i

q x i
36 107

where the ratio between the true density and the proposal
density can be expressed as particle importance weights:

w i =
p x i

q x i
36 108

Substituting Eq. 36.108 into Eq. 36.107 yields

IN =
1
N

N

i = 1

g x i w i 36 109

Finally, the collection of particle weights can be normal-
ized via

w i =
w i

N

i = 1
w i

36 110

then Eq. 36.109 becomes

IN =
N

i = 1

g x i w i 36 111

which we will exploit to develop a recursive estimator.

36.3.8 Sequential Importance Sampling
Recursive Estimator

In this section, we leverage the previously presented con-
cept of importance sampling to derive the basis for a recur-
sive nonlinear estimator using Monte Carlo integration [4].
This type of filter is generally referred to as a recursive par-
ticle filter.
Consider the following general system model:

xk = f xk− 1,wk− 1 36 112

zk = h xk, vk 36 113

where xk is the state vector at time k, f( , ) is the process
model function at time k – 1,wk − 1 is the process noise vec-
tor,h( , ) is the observation function, and vk is themeasure-
ment noise vector at time k. The noise vectors are assumed
to be independent of each other and in time with a known
density function. Note that Gaussian densities are not
required or assumed.

Assuming we begin with a known posterior density, p
(xk − 1|Zk − 1). If N samples are drawn from an associated
proposal density,

x i
k− 1 k− 1q xk− 1 Zk− 1 i 1,…,N 36 114

With normalized weights given by

w i
k− 1 k− 1 = κ

p x i
k− 1 Zk− 1

q x i
k− 1 Zk− 1

36 115

where κ is the normalization factor required such that the
sum of weights is unity, the posterior density function is
expressed by the collection of particles and weights

p xk− 1 Zk− 1 =
N

i = 1

w i
k− 1 k− 1δ x− x i

k− 1 k− 1

36 116

or, equivalently

p xk− 1 Zk− 1 x i ,w i ; i = 1,…,N
k− 1 k− 1

36 117

Our goal is to estimate the posterior density at time k, p
(xk|Zk), by incorporating the statistical process model and
the observation at time k. The density function of interest
can be written as

p xk Zk =
p zk xk p xk xk− 1

p zk Zk− 1
p xk− 1 Zk− 1

36 118

p zk xk p xk xk− 1 p xk− 1 Zk− 1 36 119

Assuming our proposal density can be factored:

q xk Zk = q xk xk− 1, zk q xk− 1 Zk− 1 36 120

the posterior particle locations can be sampled from

x j
k q xk x

j
k− 1, zk 36 121

Thus‚ the associated particle weights at time k can be cal-
culated in a similar fashion as Eq. 36.108:

w j
k

p x j
k Zk

q x j
k Zk

36 122

Substituting Eqs. 36.119 and 36.120 into Eq. 36.122 yields

w j
k

p zk x
j
k p x j

k x j
k− 1

q x j
k x j

k− 1, zk

p x j
k− 1 Zk− 1

q x j
k− 1 Zk− 1

36 123
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Note that this equation is a function of the posterior
weights at time k – 1; thus‚ the right-hand fraction of
Eq. 36.123 can be replaced according to Eq. 36.108, which
yields the final particle weight update equation from time
k – 1 to time k:

w j
k

p zk x
j
k p x j

k x j
k− 1

q x j
k x j

k− 1, zk
w j
k− 1 36 124

which can be normalized such that the collection of weights
sums to one, thus approximating the posterior density as

p xk Zk ≈
N

j = 1

w j
k δ xk − x j

k 36 125

In this manner, the particle locations and weights can be
continuously maintained and updated using a recursive
estimation framework.

36.3.9 Sampling Particle Filter Demo

In this section, we apply a sequential importance sampling
particle filter design to our previous nonlinear estimation
example. As before, an identical, randomly generated tra-
jectory and measurement set from the MMAE example
(Section 36.3.3) are used as inputs to the filter. Once again,
for reference, the system parameters are specified in
Table 36.1, and the resulting trajectory, range observations,
and phase observations are shown in Figure 36.3. For this
example, we use 10 000 two-dimensional particles. Finally,
we exercise an importance resampling procedure [6] to
ensure that the number of effective particles remains
acceptable.
The SIS particle filter global state estimate and density

function of position after one observation (t = 1 s) are
shown in Figure 36.17. In this example, we show the loca-
tion of the particles along with the estimated mean and
one-sigma standard deviation calculated using the ensem-
ble of particles. In the figures below, the estimated mean is
represented as a magenta “plus,” the true state is a green
asterisk, and the estimated 2-sigma error bounds as a
dashed ellipse. Each particle location is shown as a
black dot.
After 22 cycles, the density shows a reduced number of

peaks (see Figure 36.18) and is clearly multi-modal. Based
on our knowledge of the true density functions developed
in the previous examples, this indicates that the filter is
incorporating sensor observations and the statistical
dynamics model to effectively eliminate a number of poten-
tial ambiguity possibilities.
After 100 cycles (Figure 36.19), the filter has converged to

a single ambiguity.

The global state estimate and associated standard devia-
tion result for this simulation is shown in Figure 36.20. The
shape of the uncertainty bound clearly shows the effects
described above. As the likelihood of each integer ambigu-
ity realization changes, the overall uncertainty changes and
eventually collapses to the centimeter level.

36.3.10 Strengths and Weaknesses
of Approaches

In this chapter, we have presented three classes of nonlin-
ear recursive estimation algorithms. While each algorithm
offers improved performance over the linear and extended
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Figure 36.17 SIR particle filter initial state estimate and position
density function. Note that the density function is extremely multi-
modal due to the limited information available at this point.
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Figure 36.18 SIR particle filter state estimate (after
22 observations). Range observations combined with the vehicle
dynamics model are eliminating unlikely integer ambiguity values.
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Kalman filter in the presence of nonlinearities and non-
Gaussian systems, it is important to address the “strengths
and weaknesses” of each. To accomplish this, we evaluate
each estimation from this perspective, starting with the tra-
ditional approaches.
As expected, each approach has a set of associated

strengths and weaknesses that can greatly influence the
results for a given problem. Thus, the choice of estimator
must be considered carefully based on the characteristics
of the problem at hand. In cases where the constraints of
the problem do not readily fit into the generalized cate-
gories above, there are many examples of hybrid estimation
schemes that seek to synergistically combine the desirable

properties of multiple estimator types. While it is beyond
the scope of this chapter to explore the range of hybrid fil-
tering approaches, the interested reader is referred to the
references (e.g. [4, 5, 6, 9, 10]) for foundational concepts.

36.4 Summary and Conclusions

In this chapter, we have presented an overview of nonlinear
estimation approaches suitable for navigation problems.
Starting with first principles, three classes of nonlinear,
recursive estimators were derived, the performance
was demonstrated using a common navigation example
application, and comparisons were made between the
approaches.
The growing availability of a wide range of sensors and

improved computational resources has heralded a new
era of multisensor navigation. Because many of these sen-
sors have nonlinear and non-Gaussian error models,
researchers are developing a range of recursive navigation
algorithms to meet these requirements.
When used within their associated limitations, nonlinear

estimation algorithms hold enormous promise for addres-
sing the most difficult navigation problems.
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Overview of Indoor Navigation Techniques
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37.1 Introduction

While localization and navigation in outdoor environments
canmake use of global navigation satellite systems (GNSSs)
such as Global Positioning System (GPS), this is not a viable
solution for indoor localization because signals from GPS
satellites are too weak to penetrate through buildings,
obstacles, and into underground environments. Conse-
quently, precise localization inside a closed structure, such
as shopping malls, hospitals, airports, subways, and univer-
sity campus buildings‚ require the use of alternative local-
ization technologies. But indoor environments present
unique challenges, particularly due to a diverse array of
obstacles such as walls, doors, furniture, electronic equip-
ment, and stationary or moving humans, all of which give
rise to multipath effects in wireless signals due to signal
reflection, attenuation, and noise interference. As a result,
accurate indoor localization with wireless communication
signals is a very complex problem. Moreover, indoor locales
also require much higher levels of accuracy than outdoor
environments; for example, while a 4–6 m accuracy is
acceptable outdoors for vehicle navigation, it may not be
acceptable for localization in many indoor contexts‚ where
4–6 m may be the difference between one room and
the next.
Enabling location services for indoor locales has many

potential applications. Buildings with awareness of the
location of occupants can use this knowledge to optimize
heating, lighting, and other resources toward saving energy
costs. In emergency scenarios such as earthquakes and
hurricanes, location services can allow emergency respon-
ders to determine where people are located at any time,
potentially expediting evacuations as well as search and res-
cue efforts. Location awareness can be used as a backbone
for smarter workplaces by allowing telephone calls to be
routed to the nearest device in the proximity of a person,
allowing colleagues to find each other, and helping guests

navigate new buildings to reach their desired location.
Services that utilize indoor location systems can also enable
smart dynamic locking of sensitive rooms and resources if
an owner is not present, to improve overall safety. Ubiqui-
tous localization already plays a central role in social
networking, for instance‚ to locate friends for coordinating
joint activities or check into restaurants and other indoor
locales via various smartphone apps, and is expected to play
an even bigger role in the future. Indoor position awareness
is also an essential component of industrial applications,
such as for robot motion guidance, robot cooperation,
and smart factories (e.g. the ability to find tagged mainte-
nance tools and equipment scattered all over a plant in
production facilities). Localization for cargo management
systems at airports, ports, and for rail traffic enables
unprecedented opportunities for increasing their efficiency.
Many different techniques have been proposed to enable

indoor localization and navigation. The interest in indoor
navigation systems is peaking because the crucial sensors
necessary for localization have become sufficiently small
and inexpensive to enable practical tracking of individuals
(who must carry them at all times). A prime example of this
is the inertial sensors that are part of inertial measurement
units (IMUs) found in smartphones that can aid with
localization. However, activity trackers, smart cards, and
various types of wearable sensors can also play a crucial role
to enable indoor navigation. The challenge today is to
exploit these available sensors to achieve indoor tracking
with acceptable robustness levels, similar to that demon-
strated by GNSS in outdoor locales.
This chapter provides an overview of the state of the-art

in the area of indoor localization and navigation. One can
consider localization as an instantaneous process, provid-
ing the location of a user or object being tracked at a specific
instance of time. In contrast, navigation can be considered
as a form of continuous localization, where location esti-
mates must be provided frequently and periodically over
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time to help a user while they navigate an indoor environ-
ment. Tracking can be considered to be similar to naviga-
tion, except that the location estimates of the mobile
subject are provided not to the user but to some third party
that is interested in the location information. For the sake
of clarity and brevity, we will mainly use the term localiza-
tion in the rest of the chapter to represent both instantane-
ous point estimates and continuous estimates (navigation
or tracking), when discussing components and solutions
that are relevant for indoor location estimation. We will
use the term navigation sparingly, when necessary to
discuss the unique aspects of continuous estimation of
location.
The rest of the chapter is organized as follows.

Section 37.2 discusses performance metrics that are neces-
sary to understand, in order to compare and contrast the
landscape of indoor localization approaches. Section 37.3
provides an easy reference to the key technical terms that
are used throughout the rest of the chapter. Section 37.4
presents a review of the various signals that can be used
to provide tracking in indoor locales, for the purpose of
localization. Section 37.5 provides an overview of the vast
landscape of solutions for indoor localization. Lastly,
Section 37.6 discusses open research issues and challenges
that still remain to be overcome for viable indoor
localization.

37.2 Overview of Technical Terms

This section provides a brief overview of some of the
commonly used technical terms that are relevant in the
field of indoor localization [1].
Absolute and Relative Location. A location deter-

mined within the context of a global or large area reference
grid obtained from GNSS satellites, markers, or landmarks
is referred to as an absolute location. In contrast, relative
positions depend on a local frame of reference, for example,
coordinates within a small coverage area that represent
displacement with respect to a local fixed reference (e.g. a
fixed Wi-Fi access point with known global coordinates).
Anchor and Mobile Nodes. From a networking per-

spective, nodes in indoor environments that are part of
the network and have a stationary (fixed) location are
referred to as anchor nodes. In the literature, such nodes
may also be referred to as beacons, fixpoints, access points
(APs), base stations, or reference nodes. Typically, the coor-
dinates of such anchor nodes are assumed to be known. In
contrast, nodes that are part of the network and can move
in the indoor environment are referred to as mobile nodes.
Such nodes could represent people, robots, or other

locomotion-capable devices (e.g. drones). In general, it is
the job of the localization system to determine the (local
or global) coordinates of such mobile nodes.
Centralized and Distributed Localization. In a cen-

tralized localization architecture, location estimation is car-
ried out at a central server where all anchor and mobile
node locations are stored and available to an administrator.
The benefits of centralized architectures are simplicity, uni-
form service to all users, and lower expansion costs as most
of the intelligence in the system is concentrated at one loca-
tion, allowing the mobile and anchor nodes to be lower cost
and contain fewer components. In a distributed system,
location estimation is carried out on each mobile and
anchor node based on local observations. The advantages
of a distributed architecture are good system scalability
and better guarantees of the user’s privacy (as sensitive
location information is not centrally stored, making it less
susceptible to being compromised).
Line of Sight (LOS). When a signal can travel via a

direct straight path from an emitter to a receiver, it is
referred to as LOS transmission. Several localization tech-
niques rely on LOS, for example, time of arrival (ToA)-
based distance measurements with radio frequency (RF)
signals. But due to occlusions from walls, furniture, and
people, most indoor environments typically induce non-
LOS (NLOS) propagation, which may cause inconsistent
time delays at a radio receiver. These delays pose a chal-
lenge that can only be tackled by few localization
techniques.
Multipath Environment. An environment in which a

transmitted signal propagates along multiple paths
(echoes), each of which arrives with different path delays
at the receiver, is referred to as a multipath environment.
Multipath propagation of signals is particularly problem-
atic for time-based localization methods (Section 37.5.1.2)
because signal paths from different directions degrade the
ability to determine the travel time of the direct path.
One way to distinguish the direct path from a non-LOS
path is to move the receiver or transmitter. Non-LOS paths
change erratically while in motion, allowing for separation
and averaging, while the direct path is directly related to the
motion of the object. Thus, averaging over time with a
motion-trackingmodel is one effective way tomitigatemul-
tipath. Another way to overcome multipath is to switch to
different frequency channels. Alternatively, radio signals
with a large absolute frequency bandwidth such as Ultra-
Wideband (UWB) have been shown to be advantageous
for mitigation of multipath fading [2].
Received Signal Strength Indicator (RSSI). Signal

attenuation can be used for distance estimation during
localization, based on RSSI values. RSSI are observed RSS
(received signal strength) values averaged over a specific
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sampling period and usually specified as received power PR
in decibels. Based on the attenuation model

PR PT
GTGR

4πdp

the received signal power or signal strength PR can help
with the estimation of the distance d of a mobile user or
object from the transmitter. In this model, PT is the trans-
mitted power at the transmitter, GT and GR are the antenna
gains of the transmitter and receiver, and p is the path loss
exponent. The path loss factor p characterizes the rate of
attenuation with an increase in distance d. The free space
model does not take into account that antennas are usually
set up above the ground. In fact, the ground acts as a reflec-
tor, and thus the received power differs from that of free
space. A mathematical formulation of such a path loss
model, also known as open field model, can be found in
[3]. Typically, in free space p= 2, whereas for environments
with NLOS multipath, p > 2. For indoor environments, the
path loss exponent typically takes higher values between 4
and 6. Theoretically, distances estimated from RSSI values
to multiple anchor nodes can be used to determine the
receiver position by multilateration techniques (see
Section 37.5.1 for more details). However, interference,
multipath propagation, and presence of obstacles and peo-
ple results in a complex spatial distribution of RSSI values,
which can make the estimation of distances using RSSI
alone quite inaccurate. Therefore, fingerprinting has
become more popular than propagation modeling (see
Section 37.5.2 for more details).

37.3 Performance Metrics

Indoor localization solutions need to meet several goals if
they are to be considered viable candidates for use in indoor
environments. Here we review some of the more relevant
performance metrics [4] that must be satisfied by any can-
didate indoor localization solution:

Accuracy: The location error of a positioning system is one
of the most important metrics used to determine the
effectiveness of a localization system. In its simplest
form, localization accuracy can be reported as an error
distance between the estimated location and the actual
location of the user or object being tracked. For naviga-
tion systems, this may take the form of a running average
of errors over a time period of interest, or the error could
be calculated using geometric principles, to estimate the
deviation of the predicted trajectory from the actual tra-
jectory. Usually, the higher the accuracy, the better the
system, but there is often a trade-off between accuracy

and other characteristics. Therefore, a compromise
between adequate accuracy and other characteristics
described below is essential.

Timeliness: The timeliness or responsiveness of a solution
determines how quickly the location estimate of a target
is obtained. For simple indoor localization queries, a fast
response to the query is important in most cases, but not
crucial. However, for navigation systems, timeliness is a
critical measure of effectiveness: if location estimates are
not updated quickly in sync with the motion profile of
the subject being tracked, the system will be ineffective
for the purpose of navigation (regardless of the eventual
accuracy of the estimates). Usually, the term location lag
is used to refer to the delay between a mobile subject
moving to a new location and the new location of that
subject being reported by the system.

Coverage:Any indoor localization solutionmust work and
be usable over the entire indoor environment of interest.
Coverage defines the area over which a localization solu-
tion can provide estimates of sufficient accuracy, and
possibly timeliness, to be considered useful. The physical
environment (e.g. obstacles, walls, doors) plays a crucial
role in limiting the availability of signals that are used by
a given localization technique, consequently impacting
the coverage achievable by the technique for that envi-
ronment. Intuitively, it is possible to extend coverage
by altering the physical environment or supplementing
it with additional hardware, for example, wireless signal
repeaters. Coverage can also be improved by enhancing
the hardware carried by the user or object being tracked,
for example, using mobile devices with more powerful
and capable wireless radio antennas and chipsets.

Adaptiveness: Often, the physical environment around
the subject to be tracked does not stay the same over
time. For example, at different times of the day and days
of the week, the number of people in a shopping mall
varies quite significantly. In some environments,
machinery, goods, containers, and other equipment
may be repositioned constantly. Sometimes signals from
wireless transmitters are temporarily blocked in an envi-
ronment, or some transmitters may stop functioning due
to unpredictable circumstances. These changes create a
challenge for any indoor localization solution that relies
on these signals. The ability of a solution to cope with
these environmental changes represents its adaptive-
ness, or robustness. Obviously, a solution that is able
to adapt to environmental changes can provide better
localization accuracy than solutions that cannot adapt.
An adaptive system can also prevent the need for
repeated calibration of sensors used for localization.

Scalability: At a system level, solutions for localization
may require supporting requests from multiple entities.
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For instance, a system deployed in a shoppingmall needs
to be able to handle location queries from a few people,
all the way up to thousands of people simultaneously.
The ability to “scale up” and quickly respond to multiple
location queries is of paramount importance in many
indoor environments. Poor scalability can result in poor
localization performance, necessitating the reengineer-
ing or duplication of systems, which can increase deploy-
ment overheads.

Integrity: The confidence that can be placed in the output
of a localization solution can be termed its integrity.
A solution with low integrity has a high probability that
a malfunction will lead to an estimated position that dif-
fers from the required position by more than an accept-
able amount and that the user will not be informed
within a specified period of time about the malfunction.
While regulatory bodies have studied and defined integ-
rity performance parameters in some sectors such as civil
aviation, for indoor localization it is more difficult to find
well-quantified integrity parameters. At the very least, an
indoor localization solution must provide an indication
of some integrity parameters that are related to safety
of life, economic factors, or convenience factors; thereby
allowing consumers of the solution to understand its lim-
its and capabilities under different usage scenarios.

Cost: An indoor localization system has costs associated
with it that must be as low as possible, to incentivize
widespread adoption and ease deployment overheads.
These costs may include installation of localization solu-
tion-specific hardware and site survey time during the
deployment period. If a positioning system can reuse
an existing communication infrastructure (e.g. Wi-Fi
APs already deployed in a building), some part of the
infrastructure, equipment, and bandwidth costs can be
saved. In addition to the infrastructure, there may also
be costs associated with the mobile devices carried by
the subject being tracked. For instance, such costs could
represent monetary costs of the smartphone and any
externally connected hardware sensors. However, the
cost could also be calculated by considering other
aspects, such as lifetime, weight, and energy consump-
tion. For example, some mobile devices, such as elec-
tronic article surveillance (EAS) tags and passive radio
frequency identification (RFID) tags, are energy passive
(i.e. they only respond to external fields) and thus, can
have an unlimited lifetime; however other mobile
devices (e.g. smartphones with rechargeable battery)
have a limited lifetime of several hours without
recharging.

Complexity: Indoor localization solutions inevitably
require hardware and software components that can
have different complexities. Solutions may differ in the

sophistication required from their associated signal pro-
cessing software and hardware. While some techniques
may involve very simple hardware (e.g. inertial sensors)
and software (e.g. to implement simple filtering techni-
ques), other techniques may require more complex cus-
tom hardware (e.g. for specialized digital signal
processing) and complex software (e.g. sophisticated
machine learning techniques). Also, if the computation
of the localization algorithm is performed on a centra-
lized server, the localization can be quickly estimated
due to the powerful processing capability and the suffi-
cient power supply; however if it is carried out on a
mobile device, the effects of complexity can be much
more apparent. Inevitably, complexity impacts the cost
of the solution, and thus it is common practice to trade
off the complexity with the other (non-cost) metrics.

37.4 Indoor Localization Signal
Classification

GPS is the most popular wireless-signal-based positioning
system in use today, and is extremely useful in outdoor
environments [5]. GPS satellites broadcast microwave sig-
nals to enable GPS receivers on or near Earth’s surface to
determine location, velocity, and time. The GPS system
itself is operated by the US Department of Defense (DoD)
for use by both the military and the general public. Unfor-
tunately, GPS signals cannot penetrate into indoor environ-
ments due to obstacles that spread and attenuate the
electromagnetic radio signals [6]. Thus, GPS cannot be used
for localization in indoor environments. Fortunately, there
are many other signals available in indoor locales that can
be leveraged by solutions intended for indoor localization.
This section reviews some of the more relevant signals that
can be used for indoor localization. Figure 37.1 shows a tax-
onomy of the signals that are covered in more detail in the
rest of this section.

37.4.1 Infrared Radiation (IR) and Visible Light

Electromagnetic radiation at wavelengths within the visible
range, which extends approximately between 380 and 750
nm, as well as in its lower or upper vicinity, known as ultra-
violet (UV) and infrared (IR) light, are part of some of the
most common indoor positioning systems that use wireless
technology.
Visible light systems typically utilize general-purpose

cameras and have been adopted particularly for indoor
localization of robots. One common approach is to have a
robot carry a camera to capture images of the environment
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that can then be processed to infer location with respect to
the environment [7]. Other approaches deploy cameras in
fixed locations across the environment, and if the salient
features of the object to be tracked appear in the field of
view of the camera, the location of the object can be calcu-
lated with respect to the camera’s fixed position [8]. A key
challenge is how location can be estimated in a 3D world
when the primary observations are 2D, from an image sen-
sor. Depth information can be obtained by making use of
the motion of a camera. In such an approach – known as
synthetic stereo vision – the scene is observed sequentially
from different locations by the same camera (or by multiple
fixed coordinated cameras) and image depths can be esti-
mated in a manner similar to the well-known stereo-vision
approach. Alternatively, distances can be directly measured
with additional sensors, such as with laser scanners or
range imaging cameras. The latter returns a distance value
for every pixel of an image at a specific frame rate.
All visible-light-based localization approaches require

some form of image processing, which is time consuming
and can be particularly error prone in some dynamic envir-
onments, for example, due to illumination variability [8]. In
the case of laser based-solutions, only class 1 laser devices
should be used, which are classified as “eye-safe” by the
IEC 60825-1 standard [9]. Another challenge arises due
to occlusions caused by dynamic elements of the environ-
ment (e.g., moving objects or people). One way of reducing

occlusion is to deploy sensors with overlapping coverage
areas [8]. However, clinical settings and public indoor areas
such as shopping malls are often densely populated, and
therefore occlusion conditions can arise frequently even
with ceiling-mounted sensors.
IR-based localization systems are also very popular, rely-

ing on a LOS communication mode between the transmit-
ter and receiver. For instance, [10] presents an IR-based
localization system for museums with IR emitters installed
in the ceiling of the door frames of every room. Each emitter
transmits a unique ID using the Infrared Data Association
(IrDA) protocol. Visitors carry a personal digital assistant
(PDA) with an infrared port. The PDA contains a database
of visual and textual information of the exhibits, as well as
maps of the museum. Upon reception of a new ID, the PDA
automatically presents the map of the corresponding
exhibit hall. The main advantage of using IR-based system
devices is that they are small, lightweight, and easy to carry.
However, IR-based indoor positioning systems also have
several limitations for location estimation, such as interfer-
ence from fluorescent light, sunlight, as well as noise and
reflections [11].
It is important to mention the privacy issues that may

arise when using imaging-based localization solutions.
Typical solutions capture images of the environment, and
thus can reveal important information about the person
wearing the system or bystanders, for example, patients
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Figure 37.1 Taxonomy of signals for indoor localization.
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and health care personnel in the vicinity, in a hospital envi-
ronment. This is particularly challenging because certain
facilities (e.g., for health care) are required to protect the
privacy of personnel, patients, and clients. The scenario
becomes even more complex if image-processing-based
mobile localization devices are designed to send captured
images to central, computationally powerful servers for
image processing. The confidentiality of the image is at
great risk of being compromised while in transit over a net-
work [12].

37.4.2 RF Signals

RF technologies [13] are commonly used in location posi-
tion systems because radio waves can penetrate through
obstacles such as building walls and human bodies easily.
Moreover, they also enable a larger coverage area than
other techniques. Localization solutions in this category
estimate the location of a mobile user in the environment
by measuring one or more properties of an electromagnetic
wave radiated by a transmitter and received by a device car-
ried by the mobile user. These properties typically depend
on the distance traveled by the signal and the characteris-
tics of the surrounding environment. RF localization sys-
tems can be categorized according to the underlying
hardware technology and network type used: (i) personal
and local area networks, and (ii) broadcast and wide area
networks.

37.4.2.1 Personal and Local Area Networks

Personal and local area networks include technologies such
as IEEE 802.11 (WLAN), Bluetooth, Zigbee, Ultra-
Wideband (UWB), and RFID.
WLAN APs are ubiquitous in indoor environments,

where they are used to provide Wi-Fi Internet services
to users with a range of approximately 50–100 m per
Wi-Fi access point. Therefore, Wi-Fi signals represent
some of the most widely available RF signals in indoor
environments. Not surprisingly, a majority of triangula-
tion and fingerprint-based indoor localization techniques
(discussed in more detail in Section 37.5) utilize Wi-Fi sig-
nals. The 802.11Wi-Fi family consists of several standards.
The 802.11b and 802.11g standards use the 2.4 GHz indus-
trial, scientific, and medical radio (ISM) radio band, and
employ direct-sequence spread spectrum (DSSS) and
orthogonal frequency-division multiplexing (OFDM) sig-
naling methods to limit occasional interference from
microwave ovens, cordless telephones, and Bluetooth
devices. The 802.11a standard uses the 5 GHz U-NII band,
which for much of the world, offers at least 23 non-
overlapping channels rather than the 2.4 GHz ISM fre-
quency band offering only 3 non-overlapping channels,

where other adjacent channels overlap. The 802.11n
standard allows using either the 2.4 GHz or the 5 GHz
band, while 802.11ac uses only the 5 GHz band. Note that
as the segment of the RF spectrum used by 802.11 varies
between countries, indoor localization solutions that uti-
lize WLAN signals may need to be adjusted when
deployed in different countries.
Bluetooth is a wireless standard for wireless personal area

networks (WPANs), for exchanging data over short dis-
tances (using short-wavelength RF waves in the ISM band
from 2.4 to 2.485 GHz). Almost all Wi-Fi-enabled mobile
devices available in the market today (e.g. smartphones,
tablets, laptops) have an embedded Bluetooth module.
Bluetooth has a smaller coverage area than Wi-Fi (typically
10–20 m). In [14] it was shown that the Bluetooth Low
Energy (BLE; Bluetooth 4.0) propagation model can better
relate RSSI to range than Wi-Fi, which indicates that BLE
can be more accurate when used in localization scenarios.
However, Wi-Fi has a much wider coverage than BLE, so
BLE-based localization solutions will require more
anchors/beacons compared to Wi-Fi APs, for the same cov-
erage area.
Zigbee is another short-range wireless technology based

on the IEEE 802.15.4 specification and mainly designed for
applications which require low power consumption but do
not require large data throughput. It operates in the
2.4 GHz ISM band in most jurisdictions worldwide,
784 MHz in China, 868 MHz in Europe‚ and 915 MHz in
the United States and Australia. Zigbee implementations
are typically more economical, more energy efficient, and
have higher coverage (~100 m) than Bluetooth implemen-
tations. However‚ Zigbee support is less common in mobile
devices than Bluetooth support. Moreover data rates for
Zigbee vary from 20 kbit/s (868 MHz band) to 250 kbit/s
(2.4 GHz band), which are much lower than the data rates
achievable with Bluetooth (1–25 Mbit/s).
RFID systems are commonly composed of one or more

reading devices that can wirelessly obtain the ID of tags
present in the environment. When the reader transmits
an RF signal, RFID tags in the environment reflect the sig-
nal, modulating it by adding a unique identification code
[15]. The tags can be active, that is, powered by a battery,
or passive, drawing energy from the incoming radio signal.
The detection range of passive tags is therefore more lim-
ited compared to that of active tags. RFID technology is
used in a wide range of tracking applications in the automo-
bile assembly industry, warehouse management systems,
and across supply chain networks, where LOS contact is
difficult or even impossible [16]. Passive RFID systems typ-
ically make use of four frequency bands: LF (125 kHz), HF
(13.56MHz), UHF (433, 868–915MHz), andmicrowave fre-
quency (2.45 GHz, 5.8 GHz). Active RFID systems use
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similar frequency ranges, except for the low-frequency and
high-frequency ranges.
UWB radio technology is designed for short-range, high-

bandwidth communication, with the desirable properties of
strong multipath resistance. Unlike narrowband wireless
technologies such as Wi-Fi, which beam signals within a
defined frequency band (e.g. the 2.4 GHz or 5 GHz band),
UWB scatters its transmissions over several gigahertz of the
spectrum (from 3.1 to 10.6 GHz in the United States as
restricted by the FCC; 6.0 to 8.5 GHz in Europe as restricted
by the ECC) using short pulses (typically <1 ns). UWB
waves typically occupy a much larger frequency bandwidth
(>500 MHz) than narrowband operation. Due to its spec-
trum-scattered approach to communication, UWB is theo-
retically less susceptible to interference. UWB short-
duration pulses are easy to filter, to determine which sig-
nals are correct and which are generated from multipath.
UWB signals also pass easily through walls, equipment‚
and clothing, but metallic and liquid materials can still
cause UWB signal interference. A major advantage of using
UWB for distance measurements is that large bandwidth
translates into a higher resolution in time and consequently
in distance than other technologies.

37.4.2.2 Broadcast and Wide Area Networks

Broadcast and wide area networks include networks
designed for localization purposes, such as GPS, and broad-
cast networks not originally intended for localization pur-
poses, such as television broadcast signals [17], cellular
phone networks [18], and FM radio signals [19].
As the signal properties and geometrical arrangement of

the digital TV broadcast network have been designed to
penetrate indoors, they offer significantly greater indoor
coverage than GPS-based solutions. For instance, [17] pro-
posed using synchronization signals already present in the
Advanced Television Signal Committee (ATSC) standard
for compliant digital TV signals to perform indoor localiza-
tion. Emitters of digital television are synchronized with
GPS time‚ allowing the data to be time-stamped, which
can be useful for distance estimation with ToA techniques
(Section 37.5.1.2). Digital TV signals also have a wide band-
width of 5–8 MHz that can theoretically help reduce multi-
path mitigation. However, the weak density of terrestrial
emitters causes the direct signal to arrive at low elevation
angles near the horizon. As such, only 2D positioning is fea-
sible‚ and multipath is severe because the direct signal is
usually blocked.
Similar to digital TV networks, cellular networks have a

wider range than, say, Wi-Fi signals, and can also be used
for indoor localization, much like with Wi-Fi. With the
Federal Communications Commission’s Enhanced-911
(E-911) mandate, cellular networks include positioning

information as part of their standards. The E-911 mandate
requires mobile phones to be locatable within a 50 m accu-
racy for 67% of emergency calls. Such accuracies are usually
achievable with the help of GPS signals. However, an accu-
racy of 50 m is insufficient for indoor areas. Therefore, cel-
lular networks such as 2G/GSM, 3G UMTS, 4G LTE, and
emerging standards must be utilized with other technolo-
gies for finer-grained localization resolution in indoor
environments.
FM radio is another possible candidate, utilizing fre-

quency-division multiple access (FDMA) to split the wire-
less band into a number of separate frequency channels
that are used by stations. FM band ranges and channel sep-
aration distances vary in different regions, but the perva-
siveness of FM signals can enable their use for indoor
localization. Typically, radio waves operating in the fre-
quency band 87.5 to 108.0 MHz are part of the FM spec-
trum. Due to the passive nature of the client devices, FM
can be used in sensitive areas where other RF technologies
are prohibited for safety or security reasons. Unfortunately,
FM signals lack timing information, which limits their use
in certain localization techniques (such as the time-based
trilateration techniques discussed in Section 37.5.1.2).

37.4.2.3 Challenges

In general, the propagation of RF signals in indoor environ-
ments faces several challenges. Certain materials in the
indoor environment affect the propagation of RF waves.
For example, materials such as wood or concrete attenuate
RF signals, while materials such as metals or water cause
reflections, scattering, and diffraction of RF waves. These
effects lead to multipath radio wave propagation, which
prevents accurate calculation of the distance between the
transmitter and the receiver in indoor environments. The
propagation of RF waves is also affected by changes to
the physical indoor environment (e.g. movement of people,
rearrangement of furniture, structural modifications). In
these environments, the RF properties are highly dynamic,
and a radio map captured at a certain point in time cannot
be used reliably for localization without accounting for
these dynamic changes [12]. Moreover, while some solu-
tions operate within a reserved radio band [18], most solu-
tions utilize open spectrum bands. This means that these
solutions must account for the increased risk of interfer-
ence due to other systems sharing the same frequency
bands of the radio spectrum. The usage of radio transmit-
ting devices is also restricted in some cases, for example,
in critical areas of most healthcare facilities, according to
recommendations made by the Association for the
Advancement of Medical Instrumentation (AAMI) [20]
and other standards or regulatory bodies. Such restrictions
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limit the deployment of localization systems based on non-
broadcast RF waves.

37.4.3 Ultrasound

Sonic waves are mechanical vibrations transmitted over a
solid, liquid, or gaseousmedium. The sonic waves produced
by vibrations below and above the threshold of human
hearing are known as infrasonic and ultrasonic waves,
respectively. There are indoor localization solutions that
propose the use of ultrasonic range finders and sonars
[21]. The relative distance between two devices can be esti-
mated from ToA measurements (see Section 37.5.1.2) of
ultrasound pulses from the emitter to the receiver, and thus
ultrasound signals can be used to estimate the position of
the emitter tags from the receivers. Typical ultrasound sys-
tems operate in the low-frequency band compared to the
other RF signaling technologies. In contrast to RF waves,
the ultrasound ToA operating range is 10 m or less due
to the specific decay profile of the airborne acoustic chan-
nel. Doubling the distance causes the signal’s sound pres-
sure level to attenuate by 6 dB due to radial intensity
attenuation and absorption, which translates to an inverse
quadratic attenuation in 3D space. In general, ultrasound
signals are unable to penetrate walls, and they reflect off
most indoor obstructions (furniture, people), resulting in
echoes that can lead to localization inaccuracies. It has also
been observed that high levels of ambient noise prevent
accurate detection of the sonic signal; co-interference
caused by the presence of multiple sonic emitters in the
environment also leads to errors. Variations in the speed
of sound over air are another challenge: for instance, tem-
perature variations are known to affect the speed of sound
in air [22]. Therefore, sonic-wave-based systems cannot be
used in environments with frequent and drastic tempera-
ture changes.

37.4.4 Inertial and Mechanical

Whenever energy is exerted due to the mechanical move-
ment of a moving subject, the energy can be measured
and used for localization in indoor environments. As an
example, a “Smart Floor” [23] was proposed with metallic
plates that were instrumented with load cells, which used
mechanical coupling between a moving person and the
load cells. The plates were laid on the floor, and the signal
captured via the load cell was processed in order to identify
the person walking over a plate and the path they were tak-
ing. A more common example of exploiting mechanical
energy for localization is via accelerometer (to measure
acceleration) and gyroscope (to measure angular rotation)
sensors. Such “inertial” sensors that are part of IMUs com-
monly found in smartphones can be used to estimate the

trajectory of motion for a moving person or object, which
can help with their localization in indoor environments
[24]. In particular, such sensors are very useful to estimate
the stride length and step counts for a person in motion, to
determine their displacement over time. Techniques that
use inertial sensors for localization are often referred to
as “dead reckoning” techniques, as the location estimates
provided by the sensors depend on previous measurements
to estimate the absolute position or orientation of the object
being tracked at any given instant. A challenge with using
inertial measurements for localization is that the inertial
sensors are susceptible to drift due to thermal changes in
the circuitry of the sensors, calibration issues, and inherent
noise [25].

37.4.5 Other Signals

There are a few other signals that can aid with indoor local-
ization. Atmospheric pressure can be captured using baro-
metric/altitude/pressure sensors, and used to provide
estimates of the altitude of the person or object to be
tracked. Magnetic readings captured by a (digital) compass
can also be used for heading (direction) estimation. Most
IMUs today include three perpendicular magnetometer
sensors to measure the strength and/or direction of a mag-
netic field, along with traditional 3-axis accelerometer sen-
sors for motion estimation, and 3-axis gyroscope sensors to
measure angular rotation. However, spurious electromag-
netic field disturbances can affect the readings of the mag-
netometer sensors when in proximity to metallic structures
or radio-wave-emitting devices.
In general, the signals discussed above can help improve

the accuracy of indoor localization when used in tandem
with othermore robust and comprehensive localization sig-
nals, for example, dead reckoning or RF-signal-based
localization.

37.5 Indoor Localization Techniques

Having identified the commonly used signals for indoor
localization, we now present a survey of various indoor
localization techniques that have been proposed and eval-
uated to date. We classify these techniques in this
section based on the measuring principles used: triangula-
tion, fingerprinting, proximity, dead reckoning, map
matching, and hybrid techniques. Typically, for all of these
different types of techniques, there are two main
approaches for deployment: (i) developing a custom signal-
ing and network infrastructure, and (ii) reusing an existing
network infrastructure (e.g. existing Wi-Fi APs in a build-
ing). With the first approach, it is possible to control the
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physical specification and, consequently, the quality of the
location sensing results; whereas the second approach has
much lower costs as it avoids expensive and time-
consuming deployment of infrastructure [26].

37.5.1 Triangulation

Triangulation is a family of wireless radio-signal-based
methods that use the geometric properties of triangles to
determine location. The methods can be broadly classified
as angulation-based and lateration-based [27]. Angulation
locates an object by computing its angles relative to multi-
ple fixed reference points. In contrast, lateration estimates
the position of an object by measuring its distances from
multiple reference points (the general term multilateration
is often used whenever two or more reference points are
used). As a proxy for directly using distance, some methods
use the RSS, ToA or time difference of arrival (TDoA). In
these methods, the distance is derived by computing the
attenuation of the signal strength or by multiplying the
radio signal velocity and the signal travel time. A fewmeth-
ods also use the round-trip time of flight (RToF) or received
signal phase for distance estimation. We describe the major
triangulation-based methods for indoor localization in the
rest of this section.

37.5.1.1 Angle-Based Methods

The angle of arrival (AoA) technique estimates the location
of the desired target by analyzing the intersection of several
pairs of angle direction lines, each formed by the circular
radius from a base station or a beacon station to the mobile
target. Figure 37.2 shows how AoA methods may use at
least two known reference points (A, B), and two measured
angles (θ1, θ2) to derive the 2D location of the subject P. The
actual estimation of AoA can be accomplished with direc-
tional antennas or an array of antennas. The AoA between
a UWB pulse arriving at multiple sensors has been used for

real-time 3D location positioning in [28]. The advantages of
the AoA approach are that a location estimate may be
determined with just three measuring units for 3D position-
ing or two measuring units for 2D positioning, and that no
time synchronization between measuring units is required
[29]. The disadvantages are primarily due to the large and
complex hardware needed (e.g. Quuppa’s HAIP system [30]
uses AoA for indoor localization but requires a specific
hardware device including 16 array antennas with a trans-
mitter as nearby anchors and special tags for positioning),
and location estimate degradation as the mobile subject
moves farther from the measuring units [31]. The angle
measurements need to be accurate for accurate positioning,
but this is challenging with wireless signals due to limita-
tions imposed by shadowing, multipath reflections arriving
frommisleading directions, or by the directivity of the mea-
suring aperture [32].
AoA-based methods have been used in several light-

based localization solutions. PIXEL [33] is an indoor local-
ization solution that uses AoA methods to determine local-
ization and orientation of mobile devices. The system
consists of beacons that periodically send out their identity
via visible light communication, which are captured by the
mobile devices, followed by AoA-based post-processing.
Luxapose [34] also uses visible light and employs AoA tech-
niques for indoor localization. In [35], an AoA-based local-
ization solution was proposed based on passive thermal IR
sensors to detect thermal radiation of the human skin. The
system is passive as it uses natural infrared radiation with-
out any active IR signal emitters. The approach used ther-
mophiles (a series of thermocouple-based temperature
sensor elements) with a lower resolution compared to IR
cameras. Multiple sensors were placed in the corners of a
room from where the angles relative to the radiation source
were measured. The position of human subjects was then
roughly estimated via the principle of AoA, using triangu-
lation from multiple thermophile arrays. However, the
effects of dynamic background radiation need to be care-
fully considered before the method is considered for use
in real-world environments.
A somewhat different technique from AoA that also

exploits angular information was proposed in [36]. The
system uses a fixed beacon composed of an active infrared
(IR) light source and an optical polarizing filter, which
only passes light through that oscillates along a single
plane. The mobile receiver consists of a photo detector
and a rotating polarizer that causes attenuation of the sig-
nal intensity depending on the horizontal angle. The
phase of the time-varying signal is then translated into
the angle of the polarizing plane. This allows estimation
of the absolute azimuth angle with an accuracy of 2%
(or a few degrees).
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Figure 37.2 Positioning based on angle of arrival (AoA)
measurement [27]. Source: Reproduced with permission of IEEE.
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37.5.1.2 Time-Based Methods

ToA-based localization solutions are based on the synchro-
nization of the arrival time of a signal transmitted from a
mobile subject (P) to at least three receiving beacons, as
shown in Figure 37.3. The underlying idea is that the dis-
tance from the mobile subject to the beacons is directly pro-
portional to the propagation time. This distance between
the mobile subject and beacons is calculated based on
one-way propagation time measurements [37]. Several
methods have been proposed for such measurements using
DSSS [38] or UWB [39, 40]. In general, short-pulse UWB
waveforms permit accurate determination of the precise
ToA and time of flight of a burst transmission from a
short-pulse transmitter to a corresponding receiver, which
has been utilized in UWB-based indoor localization solu-
tions that can achieve very high indoor location accuracy
(down to 20 cm in some cases) [41, 42]. But care needs to
be taken in ToA systems so that that all transmitters and
receivers in the system are precisely synchronized. Also,
the transmitting signal must send a timestamp for the
receiver to discern the distance the signal has traveled.
The Active Bat positioning system [43] uses ultrasound sig-
naling and ToA triangulation to measure the location of a
tag carried by a person. The tag periodically broadcasts a
short pulse of ultrasound that is received by a matrix of ceil-
ing-mounted receivers at known positions. The distances
between the tag and the receivers can be measured by
the ToA of the ultrasonic waves. The Hexamite system
[44] also uses ToA triangulation-based localization with
ultrasound signaling. A hybrid ToA/AoA approach was
introduced in [45]. By utilizing the information measured
from AoA and ToA, the number of beacons (anchors)
required can be reduced. In [46], another hybrid approach
is proposed, in which a hybrid AoA/ToA scheme is used for
localization if only one Wi-Fi AP is available; however, if
more APs are available, then a multiple-message-based

AoA scheme is used to obtain higher accuracy location.
This design aims to provide accurate localization even
when the number of nearby anchors (Wi-Fi APs) is limited.
TDoA techniques determine the relative position of a

mobile transmitter by analyzing the difference in time at
which the signal arrives at multiple measuring units, rather
than the absolute arrival time of ToA. A 2D target location
can be estimated from the two intersections of two or more
TDoA measurements, as shown in Figure 37.4. Two hyper-
bolas are formed from TDoA measurements at three fixed
measuring units (A, B, C) to provide an intersection point
and locate the subject P. The conventional methods for
obtaining TDoA estimates are to use correlation techni-
ques, for example, by the cross-correlation between the sig-
nals received at a pair of measuring units. With TDoA, a
transmission with an unknown starting time is received
at various receiving nodes, with only the receivers requiring
time synchronization [47]. TDoA does not need a synchro-
nized time source of transmission in order to resolve time-
stamps and find the location. A delay-measurement-based
TDoA estimation method was proposed in [38] for Wi-Fi
signals, which eliminates the requirement of initial syn-
chronization in conventional methods. The TDoA between
a UWB pulse arriving at multiple sensors has been used for
high-precision real-time 3D location positioning [28]. Wi-
Fi-based TDoA was proposed by [48], for indoor location
estimation. The approach requires the same radio signal
to be received at three or more separate points, timed very
accurately (to a few nanoseconds) and processed using a
TDoA algorithm to determine the location. A TDoA system
with a proprietary RF signal (from the 2.4 GHz band) was
proposed [49], with an emphasis on power efficiency. The
approach used a dedicated standard protocol (ANSI 371.1)
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Figure 37.3 Positioning based on ToA/RToF measurements [27].
Source: Reproduced with permission of IEEE.
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Figure 37.4 Positioning based on time difference of arrival
(TDoA) [27]. Source: Reproduced with permission of IEEE.
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optimized for low-power spread-spectrum localization,
which works by timing the signals transmitted from tags
to a network of receivers.
RToF techniques measure the time of flight of a signal

from the transmitter to the measuring unit and back. While
ToA techniques calculate delay by using two local clocks in
two different measuring nodes, RToF techniques use only
one node to record the transmitting and arrival times. Thus,
RToF techniques are less susceptible to synchronization
problems than the other time-basedmethods. An algorithm
to measure the RToF of Wi-Fi packets is presented in [9],
with the results indicating measurement errors of a few
meters. The positioning algorithms for ToA can often be
directly applied in RToF techniques. Typically, the mobile
subject responds to a received signal from the measuring
units, and these measuring units calculate the RToF; how-
ever, it is difficult for the measuring unit to know the exact
processing/response delay time at the mobile subject.
Another challenge is that the measuring node may become
overloaded when tracking multiple mobile subjects moving
quickly. The 3D-ID system [50] uses the RToF for distance
estimation during localization. In the proposed approach,
whenever a mobile tag receives a broadcast, the tag imme-
diately rebroadcasts it on a different frequency, modulated
with the tag’s ID. A cell controller cycles through the anten-
nas, collecting a set of ranges to the tag. With a 40 MHz sig-
nal, this system was shown to achieve a 30 m range, 1 m
precision, and 5 s location update rate.
It should be noted that radar (RAdio Detection And Ran-

ging) systems exploit time-based methods, such as the ones
discussed above, for localization of an object. The original
principle of radar was to measure the propagation time and
direction of radio pulses transmitted by an antenna and
then bounced back from a distant passive target. If the
object returns some of the wave’s energy to the antenna,
the radar can measure the elapsed time (i.e. RToF) to esti-
mate the distance, as well as the angle of incidence (by
using a directional antenna). This original concept of radar
assumes passive object reflection and involves only one sta-
tion with both a transmitter and sensor. But in such sys-
tems, most of the signal energy gets lost due to reflection,
and the use of steerable directional antennas is impractica-
ble. Therefore, the concept of radar has been extended to
includemore than one active transmitter (secondary radar).
Instead of passive reflection, the single-way travel time of
the radar pulse is measured by ToA and then returned
actively. Frequency-Modulated Continuous Wave
(FMCW) radar is a short-range localization technique,
where the transmitter frequency is linearly increased with
the time [1]. The returned echo is received with a constant
offset, which relates to the distance traveled. An advantage
of FMCW is its resistance to the Doppler effect. The

Doppler movement introduces a shift in the frequency
which is canceled out by differencing. Most FMCW radar
implementations make use of multilateration based on
RToF-based distance estimates between a mobile transmit-
ter and multiple fixed transponders. The transponder
broadcasts a radio signal in the free ISM band (5.725
GHz to 5.875 GHz) which is received, processed, and
echoed back to the transponder by each transmitter with-
out time delay. The echo is coded with the respective trans-
ponder’s identification in order to allow the transmitter to
separate each transponder´s answer. A localization system
based on FMCW radar was proposed in [51] that consists of
multiple fixed base stations and a lightweight mobile tran-
sponder operating at 5.8 GHz. Based on TDoA ranges at
centimeter-level precisionmeasured under LOS conditions,
a positioning accuracy of 10 cm over 500mwas shown to be
achieved.

37.5.1.3 Signal-Property-Based Methods

The triangulation-based localization techniques discussed
previously compute the distance to themobile subject using
either timing or angle information. But in the absence of
LOS channels between transmitters and receivers, the
underlying mechanism in both types of techniques (time
and angle) are impacted by multipath effects, which can
reduce the accuracy of the estimated location.
An alternative approach to measuring the distance of a

mobile subject to some reference measuring nodes involves
using the attenuation of the emitted (radio) signal strength.
Theoretical and empirical models are usually used to trans-
late the difference between the transmitted signal strength
and the RSS into a range estimate. Such an RSSI is the most
widely used signal-related feature [52]. Typically, RSSI
measurement estimations depend heavily on the environ-
ment, and are also nonlinear. Several techniques make
use of RSSI with Wi-Fi technology for indoor localization.
As path loss models that are essential for such techniques
are also impacted by multipath fading and shadowing
effects [27], often indoor site-specific parameters need to
be used for these models. Some efforts have been proposed
to improve accuracy in such cases; for example, [53] uses
pre-measured RSSI contours centered at the receiver to
improve localization accuracy with cellular network sig-
nals, while [54] employs a fuzzy logic algorithm to improve
Wi-Fi RSSI-based localization. In [55, 56], Bluetooth RSS
was used to estimate distances and then an extended Kal-
man filter (EKF) algorithm was applied to obtain 3D posi-
tion estimates.
Another approach to estimating distance is to use the sig-

nal phase (or phase difference) property [57]. As an exam-
ple, assuming that all transmitting stations emit pure
sinusoidal signals that are of the same frequency, with zero
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phase offset; then the receiver canmeasure the phase differ-
ence between the signals transmitted by the stations, which
is a function of its location with respect to the stations. It is
possible to use the signal phase approach together with
ToA/TDoA or RSSI techniques to fine-tune the location
positioning. However, the signal phase approach is suscep-
tible to interference along NLOS paths that can introduce
errors.

37.5.2 Fingerprinting

Fingerprinting techniques refer to algorithms that estimate
the location of a person or object at any time by matching
real-time signal measurements with unique location-
specific “signatures” of signals (e.g. Wi-Fi RSSI). Typically,
fingerprinting can be performed analytically or empirically.
Analytical fingerprinting, for example, RSSI-based,

involves using propagation models such as the radial sym-
metric free-space path loss model to derive the distance
between a radiating source and a receiver by exploiting
the attenuation of RSSI with distance. Unfortunately, this
simplistic model is rarely applicable in indoor environ-
ments, where the signals do not attenuate predictably with
the distance due to shadowing, reflection, refraction, and
absorption by the indoor building structures. Therefore,
other models have been proposed, such as the Indoor Path
Loss Model [58] and the Dominant Path Model [59], which
takes into account only the strongest path, which is not nec-
essarily identical to the direct path.
Empirical fingerprinting is more commonly used in var-

ious indoor localization techniques due to the difficulty in
analytically modeling unpredictable multipath effects.
There are typically two stages involved in such empirical
location fingerprinting: an offline (calibration) stage and
an online (run-time) stage. The offline stage involves a site
survey in an indoor environment, to collect the location
coordinates/landmarks/labels and strengths (or other fea-
tures) of signals of interest at each location. This procedure
of site survey is time consuming and labor intensive. How-
ever, such a survey can account for static multipath effects
much more easily than with analytical fingerprinting
(although dynamic effects, e.g. due to different number of
moving people are still problematic and can cause varia-
tions in readings for the same location). Several public
Wi-Fi APs (and also cellular network ID) databases are
readily available [60–63] that can somewhat reduce survey
overheads for empirical-fingerprinting-based indoor locali-
zation solutions; however, the limited quantity and granu-
larity of fingerprint data for building interiors remains a
challenge. In the run-time stage, the localization technique
uses the currently observed signal features and previously
collected information to figure out an estimated location,

with the underlying premise that the locations of interest
each have unique signal features.
RSSI-based empirical fingerprinting is used extensively

in several indoor localization techniques. Many RSSI-based
fingerprinting solutions aim to utilize the existing infra-
structure to minimize costs, for example, Wi-Fi APs [65]
and GSM/3G/4G cellular networks [66], while a few
approaches advocate for custom beacon deployment for
RF signal generation to support RSSI-based localization
[67, 68]. A GSM cellular network RSSI-based indoor local-
ization system is presented in [66]. Indoor localization
based on a cellular network is possible if the locale is cov-
ered by several base stations or one base station with strong
RSSI received by indoor cellular devices. The approach uses
wide signal strength fingerprints, which includes the six
strongest GSM cells and readings of up to 29 additional
GSM channels, most of which are strong enough to be
detected but too weak to be used for efficient communica-
tion. The additional channels help improve localization
accuracy, with results showing the ability to differentiate
between floors in three multi-floor buildings, and achieving
median within-floor accuracy as low as 2.5 m in some cases.
Typically, Wi-Fi is the most common signal type used in
RSSI-based fingerprinting approaches. Figure 37.5 illus-
trates how different locations often are covered by different
Wi-Fi APs or have different signal strength characteristics
for the same Wi-Fi AP, as can be seen from the two plots
in the figure, allowing for unique fingerprinting and conse-
quently, localization [64].
RADAR [65] was one of the first approaches to use Wi-Fi

RSSI for indoor localization. An offline phase was used to
measure Wi-Fi AP signal strengths across locations. Signal
attenuations due to floors, walls, and other obstructions
were also modeled, to improve the accuracy of the system
to about 2–3 m in some cases. Several other indoor locali-
zation approaches use a similar strategy, for example, Pla-
ceLab [69] and Horus [70]. Probabilistic (Bayesian-network
based) methods were employed in [71, 72] to improve the
correlation between locations and Wi-Fi RSSI during fin-
gerprinting. In [73], a neural network classifier was used
for Wi-Fi RSSI-based location estimation, with a reported
error of 1mwith 72% probability. Wi-Fi RSSI fingerprinting
has also been widely used in the area of mobile robotics, to
determine the location of a mobile robot assuming the
availability of inputs from robot-mounted sensors.
A Bayesian robot localization algorithm was proposed in
[74] that first computed the probability of a robot’s location
based on the RSS from nineWi-Fi APs, and then as a second
step exploited the limited maximum speed of mobile robots
to refine the results (of the first step) and reject solutions
with significant change in the location of the mobile robot.
Depending on whether the second step is used or not, 83%
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and 77% of the time, mobile robots could be located within
1.5 m in their studies. A challenge in these fingerprinting-
based techniques is that two distant locations in an open
indoor space may have similar signal fingerprints, which
can be very problematic during localization [75]. Finger-
printing using the RSS of FM radio signals was proposed
in [76]. As FM signals do not carry any timing information,
which is a critical factor in range calculation using ToA,
TDoA, and AoA methods, RSS-based fingerprinting is the
most viable approach when using FM signals for indoor
localization. In [77], it was demonstrated that FM and
Wi-Fi signals are complementary; that is, their localization
errors are independent. Further, experimental results indi-
cated that when FM and Wi-Fi signals were combined to
generate fingerprints, the localization accuracy increased
by 11% (without accounting for temporal variation) or up
to 83% (when accounting for wireless signal temporal var-
iation) compared to when Wi-Fi RSSI only is used as a sig-
nature. A few efforts have also proposed Bluetooth RSSI-
based localization. Gimbal [67] and iBeacon [68] allow
users to instrument their environment with custom Blue-
tooth-based beacons and then use RSSI values received
from these beacons on the user’s mobile device for indoor
localization. Zigbee RSSI-based localization has also been
proposed in several works [2, 78, 79].

Although empirical RSSI-based localization schemes are
very popular, a disadvantage of these methods, as men-
tioned earlier, is that they require labor-intensive surveying
of the environment to generate radio maps. Crowdsourcing
is one possible solution to simplify the radio map genera-
tion process, by utilizing data from multiple users carrying
smartphones [80]. Utilizing principles from Simultaneous
Localization and Mapping (SLAM) approaches proposed
for robot navigation in a priori unknown environments
can also be beneficial for quickly building maps of indoor
locales [81]. Another challenge is that RSSI readings are
susceptible to wireless multipath interference as well as
shadowing or occlusions created bywalls, windows, or even
the human body; thus, in dynamic environments such as a
shopping mall with moving crowds, the performance of fin-
gerprinting can degrade dramatically. To overcome multi-
path interference, a recent effort [82] proposes using the
energy of the direct path (EDP), and ignoring the multipath
reflections between the mobile client and APs. EDP can
improve performance over RSSI because RSSI includes
the energy carried by multipath reflections which travel
longer distances than the actual distance between the client
and the APs.
Several approaches have proposed computer-vision-

based fingerprinting [83–86]. These techniques require
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Figure 37.5 Measured accuracy and Wi-Fi signal distributions excerpted for an indoor location. Different locations are often covered
by different Wi-Fi access points (APs) and or have different signal strength characteristics for the same Wi-Fi AP (as can be seen from
the two plots in the figure), allowing for unique fingerprinting. Black, blue, violet, and red bars on the map represent 3-, 6-, 9-, and
more than 12 m error distances, respectively, when using Wi-Fi RSSI fingerprinting for localization [64]. Source: Reproduced with
permission of IEEE.
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the mobile subject to either carry a camera or use a camera
embedded in a handheld device, such as a smartphone.
When the subject moves around in an indoor environment,
the camera captures images (visual fingerprints) of the
environment, and then determines the subject’s position
and orientation by matching the images against a database
of images with known location. One challenge with such an
approach is the high storage capacity required for storing
the images of an indoor environment. Significant comput-
ing power may be required to perform the image matching,
which may be challenging to implement on mobile devices.
If subjects are required to carry supporting computing
equipment [85], it may impede their mobility. In [87, 88],
it is assumed that the illumination intensity and ambient
color vary from room to room and thus can be used as fin-
gerprints for room-level localization. Light matching [89]
utilizes the position, orientation, and shape information
of various indoor luminaires, and models the illumination
intensity using an inverse-square law. To distinguish differ-
ent luminaires, the work relies on asymmetries/irregulari-
ties of luminaire placement. Absolute and relative intensity
measurements for localization have been proposed in [90,
91], respectively, with knowledge of the receiver orienta-
tion assumed to be available to solve for a position. These
techniques employ received intensity measurements to
extract position information from multiple transmitters
using a suitable channel model. Other approaches exploit
the directionality of free space optics, where angular infor-
mation is encoded by discrete emitters (e.g. modulated
LED-based beacons) [92–94]. The Xbox Kinect [95] uses
continuously projected infrared (IR) structured light to fin-
gerprint and capture 3D scene information with an infrared
camera. The 3D structure can be computed from the distor-
tion of a pseudorandom pattern of structured IR light dots.
People can be tracked simultaneously up to a distance of 3.5
m at a frame rate of 30 Hz. An accuracy of 1 cm at 2 m dis-
tance has been reported.
Some approaches utilize dedicated coded markers or tags

in the environment for visual fingerprinting, to help with
localization [96–100]. Such approaches can overcome the
limitations of traditional vision-based localization systems
that rely entirely on natural features in images which often
lack of robustness, for example, under conditions with
varying illumination. Common types of markers include
concentric rings, barcodes, or patterns consisting of colored
dots. Such markers greatly simplify the automatic detection
of corresponding points, allow determination of the system
scale, and enable distinguishing between objects by using a
unique code for different types of objects. An optical navi-
gation system for forklift trucks in warehouses was pro-
posed in [96]. Coded reference markers were deployed on
ceilings along various routes. On the roof of each forklift,

an optical sensor took images that were forwarded to a cen-
tralized server for processing. Another low-cost indoor
localization system was proposed in [97] that made use
of phone cameras and bar-coded markers in the environ-
ment. The markers were placed on walls, posters, and other
objects. If an image of these markers was captured, the pose
of the device could be determined with an accuracy of “a
few centimeters.” Additional location-based information
(e.g. about the next meeting in the room) could also be
displayed.
An alternative approach to physically deploying markers

is to project reference points or patterns onto the environ-
ment. In contrast to systems relying only on natural image
features, the detection of projected patterns is facilitated by
the distinct color, shape, and brightness of the projected
features. For example, in [101], the TrackSense system
was proposed, consisting of a projector and a simple web-
cam. A grid pattern is projected onto plain walls in the cam-
era’s field of view. Using an edge detection algorithm, the
lines and intersection points are determined. By the princi-
ple of triangulation – analogous to stereo vision – the dis-
tance and orientation to each point relative to the camera
are computed. With a sufficient number of points, Track-
Sense is able determine the camera’s orientation relative
to fixed large planes, such as walls and ceilings.

37.5.3 Proximity

Techniques that are based on the presence of the mobile
subject in the vicinity of a sensor (with a finite range and
analysis capabilities) are referred to as proximity-based
localization approaches. The proximity of the mobile sub-
ject can be detected via physical contact or by monitoring
a physical quantity in the vicinity of the sensor, such as a
magnetic field. When a mobile subject is detected by a sin-
gle sensor, it is considered to be collocated with it. Several
proximity-based localization techniques have been imple-
mented, involving IR, RFID, and cell identification
(Cell-ID).
One of the first IR-based proximity indoor positioning

systems was the Active Badge system [102] designed at
AT&T Cambridge in the 1990s. By estimating the location
of active badges worn by people in the building, the Active
Badge system was able to locate persons in a building. The
active badges would transmit a globally unique IR signal
every 15 s (with a battery life of 6 months to a year). In each
room, one or more sensors were fixed and detected the IR
signal sent by an active badge. Using the measured location
of the people in the building, the system was able to track
the employees, their location (room numbers), and the
nearest telephone to reach them. The accuracy of the sys-
tem was driven by the operating range of the IR sender,

1154 37 Overview of Indoor Navigation Techniques



which was 6m. The proximity system based on wearable IR
emitters was small, lightweight, and easy to carry; however,
the network of fixed sensors deployed across the building
had a substantial cost associated with it. Moreover, the
update rate of 15 s is too large for real-time localization
(navigation).
An RFID system consists of RFID readers (scanners) and

RFID tags. The RFID reader is able to read the data from
RFID tags that are either passive or active. Passive RFID
tags rely on inductive coupling and operate without a bat-
tery, reflecting the RF signal transmitted to them from a
reader and adding information by modulating the reflected
signal. Inductive coupling allows the passive tags to receive
sufficient energy in the form of RF waves from the nearby
RFID reader to perform signal modulation, to transfer their
unique serial ID (or other information) back to the reader.
But the range of passive RFID tags is very limited (1–2 m),
and the cost of the readers is relatively high. Active RFID
tags are small transceivers that can actively transmit their
ID (or other additional data) in response to an interroga-
tion. Systems based on active RFID use smaller antennas
and have a much longer range (tens of meters). LAND-
MARC [103] utilizes active RFID-based fixed location refer-
ence tags for proximity-based indoor location calibration.
The Cell-ID (or Cell-of-Origin) method is based on the

principle of capturing the ID of an anchor node that is gen-
erating the RF signal with the highest RSSI, and then iden-
tifying the mobile subject’s position as having the same
coordinates as the anchor node. For example, mobile cellu-
lar networks can identify the approximate position of a
mobile handset by knowing which cell site the device is
using at a given time. Wi-Fi APs can also be used to obtain
the ID of the AP with the highest RSSI and perform local-
ization with respect to that AP. In general, the localization
accuracy when using cell-ID is quite low (50–200 m),
depending on the cell size (or Wi-Fi coverage). The accu-
racy is often higher in densely covered areas (e.g. urban
places) and much lower in rural environments [104].

37.5.4 Dead Reckoning

Dead reckoning refers to the use of sensors that provide
location updates, calculated based on the last determined
position and incrementing that position based on known
or estimated speeds over elapsed time. Position and speed
estimation is typically based on IMUs, which include
multi-axis accelerometers, gyroscopes, and possibly mag-
netometers. A disadvantage of dead reckoning is that the
inaccuracy of the estimation process is cumulative, so
any deviations in the position estimates become larger with
time. This is because new positions are calculated entirely
from previous positions. Thus, these inertial navigation

systems (INSs) are often used to estimate relative rather
than absolute location, that is, the change in position since
the last update, with some other localization technology
(e.g. Wi-Fi fingerprinting) for obtaining periodic position
fixes (absolute location estimates).
The first task in an INS that is used for human localiza-

tion is the identification of steps or strides from the sensor
data. A step is the period between two footfalls on opposite
feet, whereas a stride is the same quantity but between the
same foot. At a minimum, there is a need for accurate step
detection and step counting for most INS-based indoor
localization approaches. Step cycle detection algorithms
detect cycles in the INS data caused by the repetitivemotion
of walking, which may involve searching for repeating data
patterns or for repeating events (e.g. the heel strike). This
information can be used for step detection and counting.
Figure 37.6 shows an example of extracting the cycle
(and thus step counts) by seeking maxima in the mean-
adjusted autocorrelation of a sequence of accelerometer
magnitude data [105]. Usually a low-pass filter is used on
the raw accelerometer data to remove noise as a pre-
processing step before the algorithm is used. Filter cutoff
frequencies of around 20 Hz retain the step periodicity,
although filtering down to 2 or 3 Hz has also been used suc-
cessfully [106]. In general, the cyclic property of walking is
directly reflected in the acceleration trace in the time
domain. As heel strikes tend to introduce sharp changes,
numerous schemes propose to detect magnitude peaks
[107, 108], local variance peaks [109, 110], local minima
[111, 112], zero crossings [113], or level crossings [114]
(where levels are defined by historical mean and variance)
from the low-pass filtered acceleration trace.
Knowing the step count, it is possible to estimate dis-

placement of a mobile subject if information related to
the stride length is available. Pedestrians typically have a
natural walking pace with a surprisingly constant stride
length. However, this natural walking pace is altered when
rushing, ambling, or walking with others. The stride length
can vary by as much as 40% between pedestrians walking at
the same speed, and up to 50% across the range of walking
speeds of a pedestrian [106]. Direct measures involving
additional sensors can help estimate the length with high
accuracy (e.g. using ultrasonic sensors mounted on the
front and back of each shoe [115], or electromyography sen-
sors attached to the calf [116]), but such methods also come
at high costs and inconvenience to the mobile user. Several
studies in human kinematics correlate stride length with
step frequency [117–119]. The major observation is that
stride length tends to be shorter when walking slowly
rather than fast [120]. A simple linear relationship often
suffices [121], but the model parameters that are trained
offline are specific to walking conditions, such as wearing
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sport shoes or high heels [122]. Techniques to detect loco-
motion modalities (e.g. walking or running) can help con-
struct more elaborated motion models (e.g. adjust stride
length estimation or step counting according to varying
speeds), to improve localization accuracy. Utilizing acceler-
ometers in smartphones to distinguish different locomotion
modalities has been proposed in a few works [123–125].
While accurate stride length improves displacement esti-

mation, the accuracy increase is often marginal as drifts in
heading (the direction of motion) typically dominate errors
[126]. The heading direction of steps during motion can be
obtained with a gyroscope or a compass (magnetometer).
Gyroscopes output angular velocities in 3D, which are inte-
grated over time to obtain direction change information.
A turn can be detected when the relative orientation meas-
ured by a gyroscope changes abruptly. To distinguish
between changes due to turns and changes caused by noise,
only heading changes exceeding a predefined threshold are
determined as turns [127]. A compass can measure the
absolute orientation (heading) of the mobile device (e.g.
smartphone) with respect to the magnetic north. However,
Earth’s magnetic field is relatively weak at the surface, and
buildings that are filled with metal and conducting wires
can overpower the natural signal, leading to local “distur-
bances” (e.g. location-specific magnetic offsets that can
cause heading errors of up to 100o [128]). Some efforts
attempt to filter themagnetic offset on consecutive compass

readings, to improve accuracy [129]. An increasingly popu-
lar solution to overcome the offset is to combine gyroscope
and magnetometer readings as the two sensors have com-
plementary error characteristics: gyroscopes provide poor
long-term orientation, while magnetometers are subject
to short-term orientation errors [130]. In general, multiple
types of inertial sensors perceive similar movements during
walking, which can be used to overcome errors; for exam-
ple, a compass value can be considered valid if the readings
of the compass and gyroscope in the INS unit experience a
correlated trend [111], which can help discard compass
values containing a severe magnetic offset.
Today’s smartphones include IMUs, and the fact that

they are carried by people almost everywhere makes
INS-based indoor localization particularly attractive.
However, one important challenge is to account for
the manner in which the smartphone is carried: in front
pockets, back pockets, side pockets, shirt pockets, back-
packs, handbags, on belt clips, or in the hand. A few
efforts on activity recognition have explored estimating
phone placements [125], which may help improve the
performance of dead-reckoning-based localization sys-
tems. However, studies have shown that even if a smart-
phone is located in a single location (e.g. trouser
pocket), notable errors are accrued (about 14.4% [131])
when estimating distance traveled, compared to foot-
mounted ground truth sensors.
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Figure 37.6 Autocorrelation-based step cycle detection. The top graph shows the raw acceleration magnitude during five sample
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stride [105]. Source: Reproduced with permission of IEEE.
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37.5.5 Map Matching

Accurate trajectory estimation is a major goal of most
indoor localization and navigation systems. A pedestrian
trajectory consists of a sequence of step vectors. Techniques
that utilize an electronic map to determine the position of a
mobile person or object along a trajectory in the context of
locations provided on the map are referred to as map
matching techniques. The idea of applying electronic maps
to adjust a mobile subject’s positions has been used in out-
door localization schemes [132]. Similarly, integrating the
geometric constraints of floor plans in indoor environments
can help improve indoor localization accuracy (e.g. when
used in tandem with dead reckoning or Wi-Fi fingerprint-
ing). In general, the overall geometric shape of a mobile
subject’s trajectory should be similar to that of the floor
plan, and any deviations can point toward an error in a
localization scheme. Various geometric abstraction models
have been proposed for map matching, for example, link-
node models [133] and stress-free floor plans [108]. Particle
filtering techniques can additionally be used to exclude
unlikely positions for mobile subjects, such as obstacles
and walls [134, 135].
LiFS [110] is an example of a framework for matching

sensor/signal readings to a physical floor plan. First, contin-
uous measurement of acceleration readings and RSS read-
ings is performed with the aid of smartphone users during
their routine work and occupancy of buildings. Footsteps
are then detected and counted, and these are then used
as the inter-fingerprint distance measurements. Feeding
the inter-fingerprint distances to a multidimensional scal-
ing (MDS) algorithm results in a high-dimension space
called the fingerprint space, where the mutual distances
between points (fingerprints) are preserved. The fingerprint
space is then mapped to the physical floor plan to associate

fingerprints with their corresponding physical locations in
the indoor environment. The mapping is achieved by
exploring the spatial similarity between the fingerprint
space and a transformed floor plan, called the stress-free
floor plan. The stress-free floor plan is a space that trans-
forms a normal floor plan into a high-dimension space
using MDS, in such a way that the geometrical distances
between the points in the new space reflect walking dis-
tances instead of straight distances. The rationale behind
such transformation is that, due to the presence of obstacles
(e.g. walls), the walking distance between two locations is
not necessarily equal to the geographical distance between
them. LiFS was shown to achieve good performance, with
the 95th percentile mapping error being lower than 4m and
an average error of 1.33 m. The radio map generated using
LiFS can be used as a starting point for various fingerprint-
based localization techniques.
Several other efforts have addressed map matching. In

[136], a framework was proposed to combine a backtrack-
ing particle filter (BPF) with different levels of building plan
detail to improve the indoor localization performance via
dead reckoning. Particle filters are able to take into account
building plan information during indoor localization with a
technique called map filtering [137]. With map filtering,
new particles are not allowed to occupy impossible posi-
tions given the map constraints. For example, particles
are not allowed to cross directly through walls. Particles
that transition through such obstacles are deleted from
the set of particles or downweighted, as shown in
Figure 37.7. BPF further exploits particle trajectory his-
tories to improve upon simple particle filters, by recalculat-
ing previous state estimates after invalid particles are
detected. In order to enable backtracking, each particle
has to remember its state history or trajectory. Mean loca-
tion estimation errors when using dead reckoning, dead

wall

A Successful Particle

Failed Particles

Possible New Positions
t

Current PositionPrevious Position

Figure 37.7 Particle transition near obstacles: if a particle tries to move to an impossible location, for example, across walls
defined in the map, it will be killed off [136]. Source: Reproduced with permission of IEEE.
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reckoning with particle filters, and dead reckoning with
BPFwere shown to be 7.7, 3.1, and 2.6m, respectively [136].
Predicting the trajectory of a mobile subject can also help

reduce ambiguity when using fingerprinting for localiza-
tion [138]. As an example, displacement and direction
information obtained with dead reckoning impose relative
geometrical constraints between consecutive location
queries along a trajectory. These constraints transform
the fingerprint matching from essentially being a point
matching process to one that now involves line fitting by
embedding the entire trajectory into the radio map. ACMI
[139] employs FM broadcast signal fingerprinting for local-
ization, and uses trajectory predictions for localization
accuracy improvement. Experimental results have demon-
strated that localization errors decreased from 10–18 m to 6
m, along with an increase in the room identification accu-
racy from 59% to 89%, when trajectory matching was used.
Certain indoor landmarks and contexts also possess dis-

tinctive sensor signatures. For example, accelerometer
readings on an elevator exhibit a sharp surge and drop at
the start and the stop of the elevator. An investigation of
such unique acceleration patterns of stairs, elevators, esca-
lators, and so on, was performed in [111], and it was con-
cluded that if the locations of these structures were
known previously, they could serve as landmarks to
improve indoor localization accuracy (e.g. to overcome
dead reckoning drifts).
The techniques discussed so far address the problem of

positioning amobile subject in an indoor environment with
a known map or landmarks. A more difficult problem that
has been studied by the robotics community involves
SLAM for robots to navigate in a priori unknown environ-
ments [81]. In SLAM, a moving robot explores its environ-
ment and uses its sensor information and odometry control
inputs to build a “map” of landmarks or features, while also
estimating its position in reference to the map [140]. Odo-
metry refers to the control signals given to the driving
wheels of the robot. Simple integration of these odometry
signals can be considered to be a form of dead reckoning.
EKF-SLAM [81] employs an EKF to represent the large
joint state space of robot pose (position and orientation)
and all landmarks identified so far. The approach known
as FastSLAM uses a Rao-Blackwellized particle filter
(RBPF) [141] where each particle effectively represents a
pose and set of independent compact EKFs for each land-
mark. The conditioning on a pose allows the landmarks
to be estimated independently, leading to lower complexity.
SLAM implementations for robot positioning always build
on sensors and robot odometry that are readily available on
robot platforms. The sensors can consist of laser rangers or
a single or multiple cameras mounted on the robot plat-
form, and the features are extracted from the raw sensor

data. SLAM is considered to be a “hard” problem, in con-
trast to the two easier special cases: positioning in an envi-
ronment with known landmarks or building a map of
features given the true pose of the robot. In [140], a SLAM
approach was proposed for learning building paths/maps
automatically by observing data from a mobile subject,
which can either be used to localize the subject or provide
maps for others. The approach made use of inertial sensors
together with principles derived from the FastSLAM frame-
work [141] and dynamic Bayesian networks.

37.5.6 Hybrid Techniques

Each of the five classes of techniques discussed in this
section so far has drawbacks when used in isolation. There-
fore, a recent trend has been to combine various techniques
together, to successfully bridge the differences among dif-
ferent types of techniques and overcome the limitations
of a single type of localization strategy to improve accuracy.
Some of these hybrid techniques can also be used in both
indoor and outdoor environments.

37.5.6.1 GPS-Based Techniques

The wireless-assisted GPS (A-GPS) was pioneered by Snap-
Track (now part of Qualcomm) and can be used for indoor
locales. The approach leverages the cellular network
together with GPS signals. Many cellular network towers
have GPS receivers (or a base station nearby), and those
receivers often constantly collect satellite information to
detect the same satellites as cellular phones. This data is
sent to the cellular phone (when requested), speeding up
the time to first fix (TTFF; to acquire the orbit and clock
data of relevant GPS satellites), which on a mobile device
without assistance can take a long time (minutes) in some
cases. Not only does the TTFF get reduced, but the
approach can enable localization in indoor environments,
where the GPS signals detected by the cellular phone are
often very weak, with accuracies ranging from 5–50 m.

37.5.6.2 Techniques Fusing RF Signals with Dead
Reckoning

Several techniques have been proposed that combine iner-
tial sensor readings with data from RF signals for indoor
localization. For example, in [142], an indoor localization
framework is proposed that combines Wi-Fi RSSI finger-
print-based positioning and dead reckoning data, with
the help of a HiddenMarkovModel (HMM). The dead reck-
oning consists of an accelerometer-driven step length esti-
mation and a magnetic-field-based heading calculation.
While dead reckoning achieves high precision over short
time periods, it suffers from error accumulation over longer
durations. In contrast, the positioning error with Wi-Fi
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fingerprints does not increase with time, but has less accu-
racy over the short term. Thus, the sensor data fusion of
dead reckoning and Wi-Fi positioning yields a synergistic
effect, resulting in higher robustness and precision. The
proposed HMM is based on the discrete positions of the
Wi-Fi fingerprints as the hidden states and the RSSI Wi-
Fi measurements as the observable states (a Markov model
is called hidden if it contains an underlying stochastic proc-
ess that is not directly observable, but can be observed
through another stochastic process [143]). State transitions
depend on movement inputs from dead reckoning. The use
of the HMM makes it possible to deal with ambiguities
resulting from Wi-Fi fingerprinting. The HMM approach
is also computationally less expensive than the filtering
schemes used in other efforts. For instance, particle filters
are used in [144, 145] for the integration of Wi-Fi position-
ing and dead reckoning, but the particle filters have high
computational costs, depending on the number of particles
computed. Kalman filters and EKFs are also not well suited
for such sensor data fusion, as the assumption of Gaussian
distributions is in conflict with the ambiguous outputs of
Wi-Fi fingerprinting algorithms. In [146], another HMM-
based indoor localization approach was proposed that fused
Wi-Fi fingerprints and dead reckoning. In the work, the
HMM is augmented to take into account vector (instead
of scalar) observations, and prior knowledge about user
mobility drawn from personal electronic calendars (e.g. a
calendar entry of “meeting in conference room C103A at
1 p.m.” can be useful to estimate the probability associated
with positioning of the subject in room C103A). An exten-
sion of the Baum–Welch algorithm [147] is used to learn
the parameters of the augmented HMM.
The LearnLoc framework [148] fuses Wi-Fi fingerprint-

ing with dead reckoning to create a low-cost, infrastruc-
ture-less indoor navigation solution. The framework
adapted and enhanced three machine learning techniques
that took inputs from inertial sensors and Wi-Fi finger-
printing to make predictions about indoor location on a
map in the presence of noise (e.g. due to incorrect sensor
readings). The three supervised learning algorithms used
to assist with indoor localization were based on KNN, lin-
ear regression (LR), and nonlinear regression with neural
networks (NL-NN). Regression-based variants of these
algorithms were used instead of the more traditional clas-
sification-based variants. This is because a classification
technique requires dividing the entire indoor map area into
a fine-grained grid for classification toward accurate local-
ization, which creates a prohibitively large input space that
is impractical to process on resource-constrained mobile
devices. For instance, their efforts to implement Surround-
Sense [149] that proposes an SVM-based classification tech-
nique for indoor localization for real-time localization on a

smartphone were not successful because of the large mem-
ory footprint and slow performance (taking close to a
minute for each prediction) with the approach. In contrast,
regression can allow fast predictions with much lower
resource demands, which is what is needed for real-time
indoor localization with mobile devices. Figure 37.8(a)
shows a detailed look at the predicted paths by the KNN-
based LearnLoc variant for different Wi-Fi scan intervals.
Not surprisingly, the lowest Wi-Fi scan interval (1 s) results
in the highest accuracy, but also incurs a very high energy
consumption overhead because scanning is performed very
frequently (as can be seen by the high density of green dots
that represent Wi-Fi scan instances in Figure 37.8(a) for the
1 s interval case). As the Wi-Fi scan interval increases, the
paths traced start deviating notably from the actual path,
and the estimation errors increase. A scan interval of 4 s
was chosen for all three LearnLoc variants to balance
energy consumption on a smartphone with localization
accuracy. Figure 37.8(b) summarizes the paths traced by
the three LearnLoc variants and the Footpath [150] inertial
navigation (Inertial_Nav) technique. It can be observed
that the path traced by the Inertial_Nav technique greatly
deviates from the actual path due to error accumulation
over time. The sequence alignment algorithm in the Iner-
tial_Nav technique aims to overcome this error with peri-
odic recalibration, but is not always successful in doing
so. For the LearnLoc variants, the green points in the figure
indicate instances where a Wi-Fi scan was performed. The
KNN variant performs best, with an average error of 2.23m.
The accuracy can be improved much further if scan inter-
vals smaller than 4 s are chosen. LearnLoc is one of the very
few techniques to explore trade-offs between energy con-
sumption and accuracy during indoor localization, and also
consider realistic resource constraints when devising algo-
rithmsmeant for execution on resource-constrainedmobile
devices. A more recent work, CNNLoc [151], improves
upon LearnLoc by using a more sophisticated convolu-
tional neural network (CNN) machine learning algorithm
deployed on smartphones.
An indoor localization system was proposed in [152] that

does not depend on a centrally established database of sig-
nals, nor on a pre-supplied building map. It combines iner-
tial sensor data (from the accelerometer and compass), as
well as RSSI measurements from Wi-Fi and GSM cellular
radios. It divides the building area into a regular grid and
applies a SLAM technique to correct any observed drift.
Apple’s WiFiSLAM system [153] also utilizes the above
combination of signals and sensors for indoor localization.
SignalSLAM [154] extends these efforts by combining read-
ings from many more sources: time-stamped Wi-Fi
and Bluetooth RSS, 4G LTE Reference Signal Received
Power (RSRP), magnetic field magnitude, near-field
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communication (NFC) readings at specific landmarks, and
dead reckoning based on inertial data. The location of a
mobile subject is resolved by using a modified version of
GraphSLAM optimization [155] of the user’s poses with a
collection of absolute location and pairwise constraints that
incorporate multi-modal signal similarity.

37.5.6.3 Techniques Fusing RF Signals with Other
Signals

Many techniques propose to combine RF signal data with
readings from other sources beyond inertial sensors. Sur-
roundSense [149] utilizes fingerprints of a location based
on RF (GSM, Wi-Fi) signals as well as ambient sound,
light, color, and the layout-induced user movement
(detected by an accelerometer). Cameras, microphones,
and accelerometers on a Wi-Fi-enabled Nokia N95 phone
were used to sense the fingerprint information. The sensed
values are recorded, pre-processed, and transmitted to a
remote SurroundSense server. The goal of pre-processing
on the phone is to reduce the data volume that needs to be
transmitted. Once the sensor values arrive at the server,
they are separated by the type of sensor data (sound, color,
light, Wi-Fi, accelerometer) and distributed to different
fingerprinting modules. These modules perform a set of
appropriate operations, including color clustering, light
extraction, and feature selection. The individual finger-
prints from each module are logically inserted into a com-
mon data structure, called the ambience fingerprint,
which is forwarded to a fingerprint matching module
for localization. Support vector machines (SVMs), color
clustering, and other simple methods were used for loca-
tion classification.
The Acoustic Location Processing System (ALPS) [156]

combines BLE transmitters with ultrasound signals to
improve localization accuracy and also help users configure
indoor localization systems with minimal effort. ALPS con-
sists of time-synchronized beacons that transmit ultrasonic
chirps that are inaudible to humans, but are still detectable
by most modern smartphones. The phone uses the TDoA of
chirps to measure distances. ALPS uses BLE on each node
to send relevant timing information, allowing for the entire
ultrasonic bandwidth to be used exclusively for ranging.
The platform requires a user to place three or more beacons
in an environment and then walk through a calibration
sequence with a mobile device where they touch key points
in the environment (e.g. the floor and the corners of the
room). This process automatically computes the room
geometry as well as the precise beacon locations without
needing auxiliary measurements. Once configured, the sys-
tem can track a user’s location referenced to a map. Other
techniques such as SmartLOCUS [157] and Cricket [158]
also use a combination of RF and ultrasound technologies,
where the TDoA between RF and ultrasound signals
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Figure 37.8 (a) Paths traced for various Wi-Fi scan intervals
for LearnLoc using K-nearest neighbor (KNN) along the Clark
L2 South path; green dots represent an instance of a Wi-Fi
scan along the path; (b) paths traced by indoor localization
techniques along the Clark L2 North building benchmark
path [148]. Source: Reproduced with permission of IEEE.
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(generated by wall- and ceiling-mounted beacons) is used
to measure distance and localize mobile subjects.
Radianse [159] and Versus [160] use a combination of RF

and IR signals to perform location positioning. Their tags
emit IR and RF signals containing a unique identifier for
each person or asset being tracked. The use of RF allows
coarse-grain positioning (e.g. floor level granularity), while
the IR signals provide additional resolution (e.g. room gran-
ularity). The EIRIS local positioning system [161] uses an
IRFID triple technology that combines IR, RF (UHF),
and LF (RF low-frequency transponder) signals. It com-
bines the advantages of each technology, that is, the room
location granularity of IR, the wide range of RF, and the tai-
lored range sensitivity of LF.
The CUPID2.0 indoor positioning system [162] combines

ToF-based localization with signal strength information to
improve indoor localization withWi-Fi RF signals. The pro-
posed architecture consists of a location server andmultiple
Wi-Fi APs, each of which talks to the mobile device. ToA-
based trilateration methods are used to determine the
device location. In particular, the time of flight of the direct
path (TFDP), as calculated from the data-ACK exchange
between the AP and the device, is used for distance estima-
tion. TFDP is then combined with measurements of signal
strength, particularly the EDP [82], to improve accuracy
and also ensure scalability. The system was implemented,
deployed, and analyzed at six cities across two different
continents for more than 14 months with 40 different
mobile devices and more than 2.5 million location
fixes, and was shown to achieve a mean localization
error of 1.8 m.

37.5.6.4 Techniques Fusing Dead Reckoning
with Non-RF Signals

A few indoor localization techniques combine inertial sen-
sors with non-RF signals. In [163], the IDyLL indoor local-
ization system is proposed that combines dead reckoning
with light measurements from photodiode sensors on
smartphones. Typical luminaire sources (including incan-
descent, fluorescent, and LED) are often uniquely (some-
times evenly) spaced in many indoor environments.
Moreover, most smartphones have light sensors (photo-
diodes) for automatic brightness adjustment that can theo-
retically sample at a high rate (e.g. 1.17MHz for APDS-9303
on Nexus 5 and 7 devices), although they are often con-
strained either by the hardware interface or the OS-level
support to a few hertz to up to 100 Hz. IDyLL samples
the light sensors at 10 Hz, and uses an illumination peak
detection algorithm to gather light readings. The readings
are combined with those obtained from inertial sensors,
as well as knowledge of the floor map and luminary place-
ment, to achieve fine-grained indoor localization. The

approach in [164] combines dead reckoning, laser scanners,
and image-based localization, all integrated in a human-
carried backpack which can be used to generate 3D models
of complex indoor environments. The locations are deter-
mined from data capture based on two laser scanners
and an inertial measurement unit. The localization perfor-
mance could be improved by making use of camera images
that have been taken in an offline phase. The images can be
used to refine the six parameters of the camera pose and
improve the quality of the 3D textured model.

37.6 Open Research Issues

Indoor localization systems are steadily becoming more
mature, but there are still several challenges that must be
addressed, as outlined in [165], which discusses the experi-
ences and lessons learned from Microsoft’s indoor localiza-
tion competition. Below we provide a holistic overview of
some of the key open research challenges in the area of
indoor localization.

Evaluation methodologies. The outcomes of studies to
determine the efficacy of an indoor localization solution
can be impacted by several factors, such as the building
type and size, construction materials and layout along
the analyzed indoor paths, lengths of the indoor paths,
characteristics of test subjects, and the test procedure fol-
lowed (including duration and the degree of “natural”
activity) [126]. There is currently very little consensus
on how to evaluate various indoor localization solutions,
which hinders an appropriate comparison. Because of
stark differences in the above-listed factors (that are also
not often clearly presented) across evaluation studies,
claims made in literature about the accuracy of a partic-
ular solution are often difficult to reproduce. Many solu-
tions in literature are content with a very simple proof-
of-concept evaluation, with contrived walking tests
along indoor locales that are limited in scope (e.g. testing
with a single subject). Moreover, manually evaluating
indoor localization technologies is a tedious and time-
consuming process. It may be possible to reduce evalua-
tion overhead with an automated robot-based bench-
marking platform that can also improve the fidelity of
the evaluation process.

Evaluation metrics. Indoor localization solutions in the
literature are compared using various metrics such as
the average location error, RMSE, 95th percentile, and
so on. However these metrics often do not capture
real-world variations. For instance, [165] discussed
how certain indoor locales were very easy to localize
by even the simplest of techniques; however, some other
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points were extremely difficult to accurately localize. The
way in which evaluation points are selected and
weighted in the evaluation metric is therefore crucial,
and a lot of work needs to be done in terms of standar-
dizing the evaluation metrics of indoor localization
technologies to properly capture these parameters.

Sensor positioning. Many indoor localization techniques
rely on readings from sensors that are carried by the per-
son or object to be tracked. It is possible for the orienta-
tion and position of the sensors to change over time and
across tracked subjects; for example, a person may carry
a smartphone with inertial sensors in different pockets,
or hold it in their hand when moving. There may also
be other types of positioning issues; for example, the
direction a smartphone is facing may be different from
the direction the subject is moving. Indoor localization
techniques should take such factors into account and
compensate for positioning variations. For better accu-
racy in the estimation of the step length or even the head-
ing direction, it may be preferable to use foot-mounted
sensors [166]; however, this usually comes at the cost
of user inconvenience.

Sensor calibration. Many of the sensors used for indoor
localization have an inherent bias and variations in sen-
sitivity to environmental factors. In particular, the low-
cost and compact MEMS inertial sensors found in smart-
phone IMUs have inferior sensor screening, installation
error calibration, cross axis error calibration, zero point
correction, temperature drift compensation, and so on,
compared to the more accurate (and thus bulkier and
more expensive) IMUs used in unmanned aerial vehicles
(UAVs) and other industrial applications [138]. The IMU
sensors must therefore be individually re-calibrated
when in use, to avoid drifts in outputs that result in
increasing errors over time.

Battery power. Indoor localization techniques that rely
on mobile devices carried by moving subjects need to
be aware of the battery life constraints of the device. If
excessive computation or sensing is performed with
the mobile device, the battery of the mobile device
can drain quickly, and this is an extremely undesira-
ble scenario, especially if it happens during naviga-
tion. For example, if smartphones are utilized for
indoor localization, care should be taken to limit
the use of CPU, GPU, or DSP processing; wireless
radio modules (e.g. Wi-Fi, 4G/5G cellular, GPS);
and inertial sensors, as all of these when used contin-
uously or in combination can cause the smartphone
battery to drain very quickly. Techniques to optimize
energy efficiency in mobile devices [167–170] will be
key to achieving cost-effective and practical indoor
localization solutions.

Processing capability and memory constraints. Many
indoor localization techniques rely on algorithms that
must be run on resource-constrained mobile devices car-
ried by the moving subject. For example, many techni-
ques require the use of machine learning algorithms,
image processing, signal processing, bandpass filters,
peak detectors, autocorrelators or particle filters, and
so on. In general, mobile devices have limited computa-
tional capabilities, and therefore algorithms that are
shown to work correctly on laptops or desktops may
not run fast enough on mobile devices for reasonable
indoor localization (especially for navigation situations).
In some cases, the limited memory in mobile devices
may restrict the types of algorithms that can be deployed.
Even though over time mobile devices such as smart-
phones are becoming more powerful (with the size of
integrated memory also increasing steadily), the sophis-
tication of localization algorithms has also increased
over time, driven by the need for greater levels of accu-
racy. Thus, limits on processing capabilities and memory
with mobile devices cannot be overlooked.

Portability. Techniques for indoor localization that
require mobile devices to be carried by the moving sub-
ject must ensure that such devices are not heavy, too
large, or cumbersome to carry. For instance, requiring
subjects to wear foot-mounted/strapped sensors is incon-
venient and unlikely to result in a solution that is
accepted by a large population of users. Similarly, using
proprietary wireless signals that require custom (and
possibly bulky) hardware to be attached to smartphones
for indoor localization may not be ideal for many people
who carry smartphones in their pockets. Thus, portabil-
ity concerns cannot be ignored, as they canmake the cru-
cial difference between indoor localization solutions
being widely accepted or largely ignored.

Device heterogeneity. Indoor localization techniques
must be able to cope with the heterogeneity of devices
on which they may eventually be deployed. Such heter-
ogeneity can be a function of differences in models/ven-
dors of Wi-Fi, IMU, or other wireless/sensor interfaces
used across devices. These differences can cause signifi-
cant accuracy variations when deploying indoor localiza-
tion techniques across devices. For example, analysis in
[171] shows a localization error of as much as 8× due to
mobile device heterogeneity. Approaches such as the
SHERPA framework [172], which proposes heterogene-
ity-resilient fingerprint pattern matching, are needed to
enable heterogeneity resilience.

Initialization and deployment costs.Many indoor local-
ization techniques require an initialization phase, for
example, training machine learning algorithms,
war-driving (i.e. site surveying involving searching for
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Wi-Fi wireless networks with a moving vehicle or person
to create a map of Wi-Fi APs in an area), or calibrating
sensors. Other techniques may require infrastructure
enhancements, for example, deploying custom radio bea-
cons across an indoor environment, before the technique
can be used for localization. All such initialization is time
consuming and usually has costs associated with it. Care
needs to be taken to ensure that the initialization phases
of localization techniques are short andmanageable; and
that deployment costs for any custom components are
not too high. Novel techniques, such as crowdsourcing
with multiple users and heterogeneous devices to create
radio maps for fingerprinting-based indoor localization,
and variants of the SLAM techniques discussed earlier,
can significantly reduce initialization time and costs.
Such approaches can overcome limitations that arise
due to changing infrastructure, for example, adding or
removing of Wi-Fi APs in indoor environments
over time.

Application-domain specific requirements. The
requirements from indoor localization solutions vary
quite significantly across application domains. A few
studies have quantified acceptable values for localization
performance metrics (Section 37.3) across application
domains. In [173], the requirements for indoor localiza-
tion for the mass market were discussed, emphasizing
the use of standard devices (e.g. smartphones) and exist-
ing infrastructure (e.g. Wi-Fi APs) without significant
supplementary sensors, beacons, or additional wearable
components. In [174], indoor localization requirements
for underground construction sites are discussed, with
an emphasis on high accuracy (~centimeter level). In
[175], indoor localization requirements for enforcement
officers, firefighters, and military personnel are pre-
sented, with an emphasis on encrypted communication,
uncertainty estimation, fast real-time response, and
robustness of devices.
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Navigation with Cellular Signals of Opportunity
Zaher (Zak) M. Kassas

University of California Irvine, United States

38.1 Introduction

Among the different types of signals of opportunity, cellular
signals are particularly attractive for positioning, naviga-
tion, and timing (PNT) due to their inherently attractive
characteristics:

Abundance
Cellular base transceiver stations (BTSs) are plentiful

due to the ubiquity of cellular and smartphones and
tablets. The number of BTSs is bound to increase dra-
matically with the introduction of small cells to sup-
port fifth-generation (5G) wireless systems.

Geometric diversity
The cell configuration by construction yields favorable

BTS geometry, unlike certain terrestrial transmitters,
which tend to be colocated (e.g. digital television).
Such geometric diversity yields low geometric dilution
of precision (GDOP) factors, which results in a precise
PNT solution.

High carrier frequency
The current cellular carrier frequency ranges between

800 MHz and 1900 MHz, which yields precise carrier
phase navigation observables. Future 5G networks
will tap into frequencies between 30 and 300 GHz.

Large bandwidth
Cellular signals have a large bandwidth, which yields

accurate time-of-arrival (TOA) estimation (e.g. the
bandwidth of certain cellular long-term evolution
(LTE) reference signals is up to 20 MHz).

High transmitted power
Cellular signals are often available and usable in envir-

onments where global navigation satellite system
(GNSS) signals are challenged (e.g. indoors and in
deep urban canyons). The received carrier-to-noise

ratio, C/N0, from nearby cellular BTSs is more
than 20 dB-Hz than that received from GPS space
vehicles (SVs).

Free to use

There is no deployment cost associated with using cellu-
lar signals for PNT – the signals are practically free to
use. Specifically, the user equipment (UE) could
“eavesdrop” on the transmitted cellular signals with-
out communicating with the BTS, extract necessary
PNT information from received signals, and calculate
the navigation solution locally.While other navigation
approaches requiring two-way communication
between the UE and BTS (i.e. network-based) exist,
this chapter focuses on explaining how UE-based nav-
igation could be achieved.

Regardless of whether GNSS signals are available or not,
cellular signals of opportunity could be used to produce or
improve the navigation solution. In the absence of GNSS
signals, cellular signals could be used to produce a naviga-
tion solution in a stand-alone fashion or to aid the inertial
navigation system (INS) [1–6]. When GNSS signals are
available, cellular signals could be fused with GNSS signals,
yielding a navigation solution that is superior to a stand-
alone GNSS solution, particularly in the vertical direction
[7, 8].
Cellular signals are not intended for PNT. Therefore, to

use these signals for such purpose, several challenges must
be addressed. This has been the subject of extensive
research over the past few years. These challenges and
potential remedies are summarized next.

• Cellular signals are modulated and subsequently trans-
mitted for non-PNT purposes. These signals are much
more complicated than GNSS signals, and extracting rel-
evant PNT information from them is not straightforward.
Recent research has focused on deriving appropriate
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low-level models to optimally extract states and para-
meters of interest for PNT from received cellular signals.
The effect of different propagation channels on such sig-
nals is an ongoing area of research [9–15].

• GNSS receivers are commercially available, and there is a
rich body of literature on GNSS receiver design. This is
not the case for cellular navigation receivers. The recent
literature has published specialized receiver designs for
producing navigation observables from received cellular
signals (e.g. code phase, carrier phase, and Doppler fre-
quency) [16–19].

• GNSS SVs are equipped with atomic oscillators and are
tightly synchronized. However, cellular towers are
equipped with less stable oscillators, typically oven-
controlled crystal oscillators (OCXOs), and are less
tightly synchronized. This is because communication
synchronization requirements are less stringent than
PNT synchronization requirements. Timing errors aris-
ing due to this somewhat loose synchronization could
introduce tens of meters of localization error. Research-
ers have been modeling such errors and synthesizing
PNT estimators that compensate for them [20–25].

• GNSS SVs transmit all necessary states and parameters to
the receiver in the navigation message (e.g. SV position,
clock bias, ionospheric model parameters, etc.). In con-
trast, cellular BTSs do not transmit such information.
Therefore, navigation frameworks must be developed
to estimate the states and parameters of cellular BTSs
(position, clock bias, clock drift, frequency stability,
etc.), which are not necessarily known a priori. Several
navigation frameworks have been proposed. One such
framework is to have a dedicated station that acts as a
mapper, which knows its states (from GNSS signals, for
instance), is estimating the unknown states of cellular
BTSs, and is sharing such estimates with navigating
receivers. Another framework is to simultaneously esti-
mate the states of the receiver and cellular BTSs in a radio
simultaneous localization and mapping (radio SLAM)
manner [26–29].

This chapter discusses how cellular signals could be used
for PNT by presenting relevant signal models, receiver
architectures, PNT sources of error and corresponding
models, navigation frameworks, and experimental results.
The remainder of this chapter is organized as follows.
Section 38.2 gives a brief overview of the evolution of cellu-
lar systems. Section 38.3 discusses modeling the clock error
dynamics to facilitate estimating the unknown BTSs’ clock
error states. Section 38.4 describes two frameworks for nav-
igation in cellular environments. Sections 38.5 and 38.6 dis-
cuss how to navigate with cellular code-division multiple
access (CDMA) and LTE signals, respectively.

Section 38.7 discusses a timing error that arises in cellular
networks: clock bias discrepancy between different sectors
of a BTS cell. Section 38.8 highlights the achieved naviga-
tion solution improvement upon fusing cellular signals
with GNSS signals. Section 38.9 describes how cellular sig-
nals could be used to aid an INS.
Throughout this chapter, italic small bold letters (e.g. x)

represent vectors in the time domain, italic capital bold let-
ters (e.g. X) represent vectors in the frequency domain, and
capital bold letters represent matrices (e.g. X).

38.2 Overview of Cellular Systems

Cellular systems have evolved significantly since the first
handheld cell phone was demonstrated by John F. Mitchell
and Martin Cooper of Motorola in 1973. The first commer-
cially automated cellular network was launched in Japan
by Nippon Telegraph and Telephone (NTT) in 1979. This
first generation (1G) was analog and used frequency divi-
sion multiple access (FDMA). The second generation
(2G) transitioned to digital and mostly used time-division
multiple access (TDMA), which later evolved into 2.5G:
General Packet Radio Service (GPRS) and 2.75G: Enhanced
Data Rates for GSM Evolution (EDGE). The third genera-
tion (3G) upgraded 2G networks for faster Internet speed
and used CDMA. The fourth generation (4G), commonly
referred to as LTE, was introduced to allow for even faster
data rates. LTE used orthogonal frequency division multi-
ple access (OFDMA) and featured multiple-input multi-
ple-output (MIMO), that is, antenna arrays. Figure 38.1
summarizes the existing cellular generations and their cor-
responding predominant modulation schemes.
This chapter focuses on using cellular CDMA and LTE

signals for PNT. Table 38.1 compares the main characteris-
tics of (i) GPS coarse/acquisition (C/A) code, (ii) CDMA
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Figure 38.1 Cellular systems generations. Source: Adapted from
A. Elnashar, “Wireless Broadband Evolution,” http://www.
slideshare.net/aelnashar/ayman-el-nashar, June 2011, accessed
on: June 2019.

1172 38 Navigation with Cellular Signals of Opportunity



pilot signal, and (ii) three LTE reference signals: primary
synchronization signal (PSS), secondary synchronization
signal (SSS), and cell-specific reference signal (CRS).
In 2012, the International Telecommunication Union

Radiocommunication (ITU-R) sector started a program to
develop an international mobile telecommunication
(IMT) system for 2020 and beyond. This program set the
stage for 5G research activities. The main goals of 5G com-
pared to 4G include (i) higher density of mobile users;
(ii) supporting device-to-device, ultra-reliable, and massive
machine communications; (iii) lower latency; and
(iv) lower battery consumption. To achieve these goals,
millimeter wave bands were added to the current frequency
bands for data transmission. Other salient features of 5G
include millimeter waves, small cells, massive MIMO,
beamforming, and full duplex [30, 31].

38.3 Clock Error Dynamics Modeling

GNSS SVs are equipped with atomic clocks, are synchro-
nized, and their clock errors are transmitted in the naviga-
tion message along with the SVs’ orbital elements. In
contrast, cellular BTSs are equipped with less stable oscilla-
tors (typically OCXOs), are roughly synchronized to GNSS,
and their clock error states (bias and drift) and positions are
typically unknown. As such, the cellular BTSs’ clock errors
and positions must be estimated. Therefore, it is important
to model the clock error state dynamics. To this end, a typ-
ical model for the dynamics of the clock error states is the
so-called two-state model, composed of the clock bias δt and

clock drift δt, as depicted in Figure 38.2.
The clock error states evolve according to

x
clk

t = Aclkxclk t + wclk t ,

xclk =
δt

δt
, wclk =

wδt

w
δt

, Aclk =
0 1

0 0
,

38 1

where the elements of wclk are modeled as zero-mean,
mutually independent white noise processes, and the
power spectral density of wclk is given by

Qclk = diag S
wδt
, S

w
δt

. The power spectra S
wδt

and S
w
δt

can be related to the power-law coefficients hα
2
α = − 2 ,

which have been shown through laboratory experiments
to be adequate to characterize the power spectral density
of the fractional frequency deviation y(t) of an oscillator
from the nominal frequency, which takes the form

Sy f =
2

α = − 2
hα f

α [32, 33]. It is common to approximate

the clock error dynamics by considering only the frequency
random walk coefficient h−2 and the white frequency coef-

ficient h0, which lead to S
wδt

≈ h0
2 and S

w
δt

≈ 2π2h− 2 [34, 35].

Typical OCXO values for h0 and h−2 are given in Table 38.2.
Discretizing the dynamics (Eq. (38.1)) at a sampling inter-

val T yields the discrete-time-equivalent model

xclk k + 1 = Fclkxclk k + wclk k ,

where wclk is a discrete-time zero-mean white noise
sequence with covariance Qclk, and

Fclk =
1 T

0 1
, Qclk =

S
wδt
T + S

w
δt

T3

3
S
w
δt

T2

2

S
w
δt

T2

2
S
w
δt

T

38 2

Table 38.1 GPS versus cellular CDMA and LTE comparison

Standard Signal
Possible number
of sequences

Bandwidth
(MHz) Code period (ms)

Expected ranging
precision (m)*

GPS C/A code 63 1.023 1 2.93

CDMA Pilot 512 1.2288 26.67 2.44

LTE PSS 3 0.93 10 3.22

SSS 168 0.93 10 3.22

CRS 504 up to 20 0.067 0.15

* 1% of chip width

+

+∙
∙w̃δt

w̃δt

δt
δt

Figure 38.2 Clock error states dynamics model. Source: Z. Kassas,
Analysis and synthesis of collaborative opportunistic navigation
systems, Ph.D. Dissertation, The University of Texas at Austin, USA,
May 2014. Reproduced with permission of Z. Kassas (University of
Texas at Austin).

38.3 Clock Error Dynamics Modeling 1173



38.4 Navigation Frameworks
in Cellular Environments

BTS positions can be readily obtained via several methods,
for example, (i) from cellular BTS databases (if available)
or (ii) by deploying multiple mapping receivers with
knowledge of their own states, estimating the position
states of the BTSs for a sufficiently long period of time
[37–39]. These estimates are physically verifiable via sur-
veying or satellite images. Unlike BTS positions, which
are static, the clock error states are stochastic and
dynamic, as discussed in Section 38.3, and are difficult
to verify.
Estimating the BTSs’ states can be achieved via two

frameworks:

Mapper/Navigator
This framework comprises (i) receiver(s) with knowl-

edge of their own states, referred to asmapper(s), mak-
ing measurements on ambient BTSs (e.g. pseudorange
and carrier phase). Themappers’ role is to estimate the
cellular BTSs’ states. (ii) A receiver with no knowledge
of its own states, referred to as the navigator, making
measurements on the same ambient BTSs to estimate
its own states, while receiving estimates of the BTSs’
states from the mappers.

Radio SLAM
In this framework, the receiver maps the BTSs simulta-

neously with localizing itself in the radio
environment.

To make the estimation problems associated with the
above frameworks observable, certain a priori knowledge
about the BTSs’ or receiver’s states must be satisfied [27,
40–42]. For simplicity, a planar environment will be
assumed, with the receiver and BTS three-dimensional
(3D) position states appropriately projected onto such a pla-
nar environment. The state of the receiver is defined as

xr ≜ rTr , cδtr
T
, where rr = xr , yr

T is the position vector

of the receiver, δtr is the receiver’s clock bias, and c is the
speed of light. Similarly, the state of the i-th BTS is defined

as xsi ≜ rTsi , cδtsi
T
, where rsi = xsi , ysi

T
is the position vec-

tor of the i-th BTS, and δtsi is its clock bias. The pseudorange
measurement to the i-th BTS, ρi, can be expressed as

ρi = hi xr , xsi + vi, 38 3

where hi xr , xsi ≜ rr − rsi 2 + c δtr − δtsi and vi is the
measurement noise, which is modeled as a zero-mean
Gaussian random variable with variance σ2i [27]. The fol-
lowing sections outline the calculations associated with
each navigation framework assuming pseudorange mea-
surements from cellular towers. Frameworks with carrier
phase measurements are discussed in [43].

38.4.1 Mapper/Navigator Framework

Assuming that the receiver is drawing pseudoranges from
N ≥ 3 BTSs with known states, the receiver’s state can be
estimated from (Eq. (38.3)) by solving a weighted nonlinear
least-squares (WNLS) problem. However, in practice, the
BTSs’ states are unknown, in which case the mapper/navi-
gator framework can be employed [18, 25].
Consider a mapper with knowledge of its own state vec-

tor (by having access to GNSS signals, for example) to be
present in the navigator’s environment as depicted in
Figure 38.3.
The mapper’s objective is to estimate the BTSs’ position

and clock bias states and share these estimates with the
navigator through a central database. For simplicity,
assume the position states of the BTSs to be known and
stored in a database. In the sequel, it is assumed that the
mapper is producing an estimate δtsi and an associated esti-
mation error variance σ2δtsi

for each of the BTSs.

ConsiderMmappers and N BTSs. Denote the state vector
of the j-th mapper by xr j, the pseudorange measurement by

Table 38.2 Typical h0 and h−2 values for different OCXOs [36]

h0 h−2

2.6 × 10−22 4.0 × 10−26

8.0 × 10−20 4.0 × 10−23

3.4 × 10−22 1.3 × 10−24

Source: J. Curran, G. Lachapelle, and C. Murphy, “Digital GNSS PLL
design conditioned on thermal and oscillator phase noise,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 48, no. 1,
pp. 180–196, January 2012.

Navigator

BTSi

Database

BTS2

BTS1

Mapperxsi
, ysi

δtsi
, σ2

δtsi

̂

Figure 38.3 Mapper and navigator in a cellular environment
(Khalife et al. [18]; Khalife and Kassas [25]). Source: Reproduced
with permission of IEEE, ION.
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the j-th mapper on the i-th BTS by ρ j
i , and the correspond-

ing measurement noise by v j
i . Assume v j

i to be independ-

ent for all i and j with a corresponding variance σ j
i

2
.

Define the set of measurements made by all mappers on
the i-th BTS as

zi ≜

rr1 − rsi + cδtr1 − ρ 1
i

rrM − rsi + cδtrM − ρ M
i

=

cδtsi − v 1
i

cδtsi − v M
i

= cδtsi1M + vi,

where 1M ≜ 1,…, 1 T and vi ≜ − v 1
i ,…, v M

i

T
. The clock

bias δtsi is estimated by solving a weighted least-squares
(WLS) problem, resulting in the estimate

δtsi =
1
c

1TMW1M
− 1

1TMWz,

W = diag
1

σ 1
i

2 ,…,
1

σ M
i

2

and the associated estimation error variance

σ2δtsi
= 1

c2 1TMW1M
− 1

, where W is the weighting matrix.

The true clock bias of the i-th BTS can now be expressed

as δtsi = δtsi + wi , where wi is a zero-mean Gaussian ran-
dom variable with variance σ2δtsi

.

Since the navigating receiver is using the estimate of the
BTS clock bias, which is produced by the mapping receiver,
the pseudorange measurement made by the navigating
receiver on the i-th BTS becomes

ρi = hi xr , xsi + ηi,

where xsi = rTsi , cδtsi
T
and ηi ≜ vi − wi models the overall

uncertainty in the pseudorange measurement. Hence, the

vector η ≜ η1,…, ηN
T is a zero-mean Gaussian random vec-

tor with a covariance matrix Σ = C + R, where C = c2

diag σ2δts1 ,…, σ
2
δtsN

is the covariance matrix of

w ≜ w1,…,wN
T and R = diag σ21,…, σ2N is the covariance

of the measurement noise vector v = v1,…, vN T. The Jaco-
bian matrix H of the nonlinear measurements

h ≜ h1 xr , xs1 ,…, hN xr , xsN
T with respect to xr is given

by H = G 1N , where

G ≜

xr − xs1
rr − rs1

yr − ys1
rr − rs1

xr − xsN
rr − rsN

yr − ysN
rr − rsN

The navigating receiver’s state can now be estimated by
solving a WNLS problem. The WNLS equations are
given by

xr
l + 1 = xr

l + HTR− 1H
− 1

HTR− 1 ρ− ρ l

P l = HTR− 1H
− 1

,

where l is the iteration number‚ and ρ l denotes the nonlin-

ear measurements h evaluated at the current estimate xr
l .

38.4.2 Radio SLAM Framework

A dynamic estimator, such as an extended Kalman filter
(EKF), can be used in the radio SLAM framework for
stand-alone receiver navigation (i.e. without a mapper).
Certain a priori knowledge about the BTSs’ and/or recei-
ver’s states must be satisfied to make the radio SLAM esti-
mation problem observable [27, 40–42].
To demonstrate a particular formulation of the radio

SLAM framework, consider the simple case where the
BTSs’ positions are known. Also, assume the receiver’s ini-
tial state vector to be known (e.g. from a GNSS navigation
solution). Using the pseudoranges (Eq. (38.3)), the EKF will
estimate the state vector composed of the receiver’s position
rr and velocity r

r
as well as the difference between the recei-

ver’s clock bias and each BTS and the difference between
the receiver’s clock drift and each BTS, specifically

x= rTr ,r
T
r , x

T
clk1 ,…, x

T
clkN

T
,

where xclki ≜ δtr − δtsi , δtr − δtsi
T ; δtr and δtsi are the

receiver’s and the i-th BTS clock bias, respectively; and
δtr and δtsi are the receiver’s and the i-th BTS clock drift,
respectively.
Assuming the receiver to be moving with velocity

random walk dynamics, the system’s dynamics after
discretization at a uniform sampling period T can be
modeled as

x k + 1 = Fx k + w k , 38 4

F =
Fpv 04 × 2N

02N × 4 Fclk

, Fclki =
1 T

0 1
,

Fclk = diag Fclk1 ,…,FclkN , Fpv =
I2 × 2 TI2 × 2

02 × 2 I2 × 2

,

where w k is a discrete-time zero-mean white noise
sequence with covariance Q = diag [Qpv,Qclk]. Defining
qx and qy to be the power spectral densities of the

acceleration in the x− and y− directions, Qpv and Qclk

are given by
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Qpv =

qx
T3

3
0 qx

T2

2
0

0 qy
T3

3
0 qy

T2

2

qx
T2

2
0 qxT 0

0 qy
T2

2
0 qyT

,

Qclk =

Qclkr + Qclks1
Qclkr … Qclkr

Qclkr Qclkr + Qclks2
… Qclkr

Qclkr Qclkr … Qclkr + QclksN

,

where Qclkr and Qclksi
correspond to the receiver’s and the

i-th BTS clock process noise covariances, respectively,
specified in Eq. (38.2). Formulations of other more
sophisticated radio SLAM scenarios are discussed in [27,
29, 41].
Note that in many practical situations, the receiver is

coupled with an inertial measurement unit (IMU), which
can be used instead of the statistical model to propagate
the estimator’s state between measurement updates from
BTSs [44, 45]. This is discussed in more detail in
Section 38.9.

38.5 Navigation with Cellular CDMA
Signals

To establish and maintain a connection between cellular
CDMA BTSs and the UE, each BTS broadcasts comprehen-
sive timing and identification information. Such informa-
tion could be utilized for PNT. The sequences transmitted
on the forward link channel, that is, from BTS to UE, are
known. Therefore, by correlating the received cellular
CDMA signal with a locally generated sequence, the
receiver can estimate the TOA and produce a pseudorange
measurement. This technique is used in GPS. With enough
pseudorange measurements and knowing the states of the
BTSs, the receiver can localize itself within the cellular
CDMA environment.
This section is organized as follows. Section 38.5.1 pro-

vides an overview of the modulation process of the forward
link channel. Section 38.5.2 presents a receiver architecture
for producing navigation observables from received cellular
CDMA signals. Section 38.5.3 analyzes the precision of the
cellular CDMA pseudorange observable. Section 38.5.4
shows experimental results for ground and aerial vehicles
navigating with cellular CDMA signals.

38.5.1 Forward Link Signal Structure

Cellular CDMA networks employ orthogonal and maxi-
mal-length pseudorandom noise (PN) sequences in order
to enable multiplexing over the same channel. In a cellular
CDMA communication system, 64 logical channels are
multiplexed on the forward link channel: a pilot channel,
a sync channel, 7 paging channels, and 55 traffic channels
[46]. The following sections discuss the modulation process
of the forward link and give an overview of the pilot, sync,
and paging channels from which timing and positioning
information can be extracted. Models of the transmitted
and received signals are also given.

38.5.1.1 Modulation of Forward Link CDMA Signals

The data transmitted on the forward link channel in cellu-
lar CDMA systems is modulated through quadrature phase
shift keying (QPSK) and then spread using direct-sequence
CDMA (DS-CDMA). However, for the channels of interest
from which positioning and timing information is
extracted, the in-phase and quadrature components, I
and Q, respectively, carry the same message m(t) as shown
in Figure 38.4. The spreading sequences cI and cQ, called the
short code, are maximal-length PN sequences that are gen-
erated using 15 linear feedback shift registers (LFSRs).
Hence, the length of cI and cQ is 215 − 1 = 32, 767 chips
at a chipping rate of 1.2288 Mcps [47]. The characteristic
polynomials of the short code I and Q components, PI(D)
and PQ(D), are given by

PI D = D15 + D13 + D9 + D8 + D7 + D5 + 1

PQ D =D15 +D12 +D11 +D10 +D6 +D5 +D4 +D3 + 1,

where D is the delay operator. It is worth noting that an
extra zero is added after the occurrence of 14 consecutive
zeros to make the length of the short code a power of two.
In order to distinguish the received data from different

BTSs, each station uses a shifted version of the PN codes.
This shift is an integer multiple of 64 chips, and this integer
multiple, which is unique for each BTS, is known as the
pilot offset. The cross-correlation of the same PN sequence
with different pilot offsets can be shown to be negligible
[46]. Each individual logical channel is spread by a unique

cI

cQ

cos(ωct)
+

–
sin(ωct)

s(t)m(t) Pulse-Shaping

Filter

Figure 38.4 Forward link modulator (Khalife et al. [18]). Source:
Reproduced with permission of IEEE.
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64-chipWalsh code [48]. Therefore, at most 64 logical chan-
nels can be multiplexed at each BTS. Spreading by the short
code enables multiple access for BTSs over the same carrier
frequency, while orthogonal spreading by the Walsh codes
enables multiple access for users over the same BTS. The
CDMA signal is then filtered using a digital pulse shaping
filter that limits the bandwidth of the transmitted CDMA
signal according to the cdma2000 standard. The signal is
finally modulated by the carrier frequency ωc to produce
s(t).

38.5.1.2 Pilot Channel

The message transmitted by the pilot channel is a constant
stream of binary zeros and is spread by Walsh code zero,
which also consists of 64 binary zeros. Therefore, themodu-
lated pilot signal is nothing but the short code, which can be
utilized by the receiver to detect the presence of a CDMA
signal and then track it. The fact that the pilot signal is
data-less allows for longer integration time. The receiver
can differentiate between the BTSs based on their pilot
offsets.

38.5.1.3 Sync Channel

The sync channel is used to provide time and frame syn-
chronization to the receiver. Cellular CDMA networks typ-
ically use GPS as the reference timing source‚ and the BTS
sends the system time to the receiver over the sync channel
[49]. Other information such as the pilot PN offset and the
long code state are also provided on the sync channel [47].
The long code is a PN sequence and is used to spread the
reverse link signal (i.e. UE to BTS) and the paging channel
message. The long code has a chip rate of 1.2288 Mcps and
is generated using 42 LFSRs. The outputs of the registers are
masked and modulo-two added together to form the long
code. The latter has a period of more than 41 days; hence,
the states of the 42 LFSRs and the mask are transmitted to
the receiver so that it can readily achieve long code syn-
chronization. The sync message encoding before transmis-
sion is shown in Figure 38.5.
The initial message, which is at 1.2 Ksps, is convolution-

ally encoded at a rate r = (1/2) with generator functions
g0 = 753 (octal) and g1 = 561 (octal) [48]. The state of the
encoder is not reset during the transmission of a message

capsule. The resulting symbols are repeated twice, and
the resulting frames, which are 128 symbols long, are
block-interleaved using the bit reversal method [47]. The
modulated symbols, which have a rate of 4.8 Ksps, are
spread with Walsh code 32. The sync message is divided
into 80 ms superframes, and each superframe is divided
into three frames. The first bit of each frame is called the
start of message (SOM). The beginning of the sync message
is set to be on the first frame of each superframe, and the
SOM of this frame is set to one. The BTS sets the other
SOMs to zero. The sync channel message capsule is com-
posed of the message length, the message body, cyclic
redundancy check (CRC), and zero padding. The length
of the zero padding is such that the message capsule
extends up to the start of the next superframe. A 30-bit
CRC is computed for each sync channel message with
the generator polynomial

g x = x30 + x29 + x21 + x20 + x15 + x13 + x12 +

x11 + x8 + x7 + x6 + x2 + x + 1

The SOM bits are dropped by the receiver‚ and the frames
bodies are combined to form a sync channel capsule. The
sync message structure is summarized in Figure 38.6.

38.5.1.4 Paging Channel

The paging channel transmits all the necessary overhead
parameters for the UE to register into the network [46].
Some mobile operators also transmit the BTS latitude
and longitude on the paging channel, which can be
exploited for navigation. The major cellular CDMA provi-
ders in the United States, Sprint and Verizon, do not trans-
mit the BTS latitude and longitude. US Cellular used to
transmit the BTS latitude and longitude, but this provider
does not operate anymore. The Base Station ID (BID) is also
transmitted in the paging channel, which is important to
decode for data association purposes. The paging channel
message encoding before transmission is illustrated in
Figure 38.7.
The initial bit rate of the paging channel message is either

9.6 Kbps or 4.8 Kbps and is provided in the sync channel
message. Next, the data is convolutionally encoded in the
same way as that of the sync channel data. The output sym-
bols are repeated twice only if the bit rate is less than 9.6
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Figure 38.5 Forward link sync channel encoder (Khalife et al. [18]; 3GPP2 [50]). Source: Reproduced with permission of IEEE.
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Kbps. After symbol repetition, the resulting frames, which
are 384 symbols long, are block-interleaved one frame at a
time. The interleaver is different from the one used for the
sync channel because it operates on 384 symbols instead of
128 symbols. However, both interleavers use the bit reversal
method. Finally, the paging channel message is scrambled
by modulo-two addition with the long code sequence.
The paging channel message is divided into 80 ms time

slots, where each slot is composed of eight half-frames.
All the half-frames start with a synchronized capsule indi-
cator (SCI) bit. A message capsule can be transmitted in
both a synchronized and an unsynchronized manner.
A synchronized message capsule starts exactly after the
SCI. In this case, the BTS sets the value of the first SCI to
one and the rest of the SCIs to zero. If by the end of the
paging message capsule there remains fewer than 8 bits
before the next SCI, the message is zero-padded to the next
SCI. Otherwise, an unsynchronized message capsule is sent
immediately after the end of the previous message [46]. The
paging channel structure is summarized in Figure 38.8.

38.5.1.5 Transmitted Signal Model

The pilot signal, which is purely the PN sequence, is used to
acquire and track a cellular CDMA signal. The acquisition
and tracking will be discussed in Section 38.5.2. Demodu-
lating the other channels becomes an open-loop problem,
since no feedback is taken from the sync, paging, or any
of the other channels for tracking. Since all the other

channels are synchronized to the pilot, only the pilot needs
to be tracked. In fact, it is required by the cdma2000 spec-
ification that all the coded channels be synchronized with
the pilot to within ±50 ns [50]. Although signals from mul-
tiple BTSs could be received simultaneously, a UE can asso-
ciate each individual signal with the corresponding BTS,
since the offsets between the transmitted PN sequences
are much larger than one chip. This is because the autocor-
relation function has negligible values for delays greater
than one chip. Therefore, the PN offsets, which are much
larger than one chip delay, guarantee that no significant
interference is introduced (the autocorrelation function is
discussed in Section 38.5.2.3 and is shown in Figure 38.13).
The normalized transmitted pilot signal s(t) by a particu-

lar BTS can be expressed as

s t = C cI t−Δ t cos ωct − cQ t−Δ t sin ωct

= ℜ C cI t−Δ t + jcQ t−Δ t e jωct

=
C
2

cI t−Δ t + jcQ t−Δ t e jωct

+
C
2

cI t−Δ t − jcQ t−Δ t e− jωct ,

whereℜ{ } denotes the real part; C is the total power of the
transmitted signal; c I(t) = cI(t) ∗ h(t) and c Q(t) = cQ(t) ∗ h(t);
h is the continuous-time impulse response of the pulse
shaping filter; cI and cQ are the in-phase and quadrature
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PN sequences, respectively; ωc= 2πfc, where fc is the carrier
frequency; and Δ is the absolute clock bias of the BTS from
GPS time. The total clock bias Δ is defined as

Δ t = 64 PNoffsetTc + δts t ,

where PNoffset is the PN offset of the BTS, Tc =
1 × 10− 6

1 2288
s

is the chip interval, and δts is the BTS clock bias. Since the
chip interval is known and the PN offset can be decoded by
the receiver, only δts needs to be estimated.
It is worth noting that the cdma2000 standard requires

the BTS’s clock to be synchronized with GPS to within
10 μs, which translates to a range of approximately 3 km
(the average cell size) [51]. Note that a PN offset of
1 (i.e. 64 chips) is enough to prevent significant interference
from different BTSs. This translates to more than 15 km
between BTSs. Subtracting 6 km from this value due to
worst-case synchronization with GPS (i.e. 3 km for each
BTS), BTSs at 9 km or more from the serving BTS could
cause interference (assuming all BTSs suffer from the
worst-case synchronizations). But 9 km is larger than the
maximum distance for receiving cellular CDMA signals
for ground receivers. Therefore, this synchronization
requirement is enough to prevent severe interference
between the short codes transmitted from different BTSs
and maintains the CDMA system’s capability to perform
soft hand-offs [47]. The clock bias of the BTS can therefore
be neglected for communication purposes. However, ignor-
ing δts in navigation applications can be disastrous, and it is
therefore crucial for the receiver to know the BTS’s clock
bias. The estimation of δts can be accomplished via the
frameworks discussed in Section 38.4.

38.5.1.6 Received Signal Model

Assuming the transmitted signal to have propagated
through an additive white Gaussian noise channel with a

power spectral density of N0
2 , a model of the received

discrete-time signal r[m] after radio frequency (RF)

front-end processing: down-mixing, a quadrature approach
to bandpass sampling [52], and quantization can be
expressed as

r m =
C
2

cI tm− ts tm − jcQ tm− ts tm ejθ tm +n m ,

38 5

where ts(tm) ≜ δtTOF + Δ(tk − δtTOF) is the PN code phase of
the BTS, tm = mTs is the sample time expressed in receiver
time, Ts is the sampling period, δtTOF is the time of flight
(TOF) from the BTS to the receiver, θ is the beat carrier
phase of the received signal, and n[m] = nI[m] + jnQ[m]
with nI and nQ being independent and identically distribu-
ted Gaussian random sequences with zero mean and vari-

ance N0
2Ts

. The receiver presented in Section 38.5.2 will

operate on the samples of r[m] in Eq. (38.5).

38.5.2 CDMA Receiver Architecture

This section details the architecture of a cellular CDMA
navigation receiver, which consists of three main stages:
signal acquisition, tracking, and message decoding [18].
The receiver utilizes the pilot signal to detect the presence
of a CDMA signal and then tracks it. Section 38.5.2.1
describes the correlation process in the receiver. Sections
38.5.2.2 and 38.5.2.3 discuss the acquisition and tracking
stages, respectively. Section 38.5.2.4 details decoding the
sync and paging channel messages.

38.5.2.1 Correlation Function

Given samples of the baseband signal exiting the RF front-
end defined in Eq. (38.5), the cellular CDMA receiver first
wipes off the residual carrier phase and match-filters the
resulting signal. The output of the matched filter can be
expressed as

x m = r m e− jθ tm ∗h −m , 38 6
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where θ is the beat carrier phase estimate, and h is a
pulse shaping filter, which is a discrete-time version of
the one used to shape the spectrum of the transmitted
signal, with a finite-impulse response (FIR) given in
Table 38.3. The samples m of the FIR in Table 38.3 are

spaced by Tc
4 .

Next, x[m] is correlated with a local replica of the spread-
ing PN sequence. In a digital receiver, the correlation oper-
ation is expressed as

Zk =
1
Ns

k + Ns − 1

m = k

x k cI tm − ts tm + jcQ tm − ts tm

38 7

≜ Ik + jQk ,

where Zk is the k-th subaccumulation, Ns is the number of
samples per subaccumulation, and ts tm is the code start
time estimate over the k-th subaccumulation. The code
phase can be assumed to be approximately constant over
a short subaccumulation interval Tsub = NsTs; hence,
ts tm ≈ tsk . It is worth mentioning that theoretically, Tsub

can be made arbitrarily large since no data is transmitted
on the pilot channel. Practically, Tsub is mainly limited
by the stability of the BTS and receiver oscillators. In the
following, Tsub is set to one PN code period. The carrier

phase estimate is modeled as θ tm = 2πf Dk
tm + θ0, where

f Dk
is the apparent Doppler frequency estimate over the i-th

subaccumulation, and θ0 is the initial beat carrier phase of
the received signal. As in a GPS receiver, the value of θ0 is
set to zero in the acquisition stage and is subsequently
updated in the tracking stage. The apparent Doppler fre-
quency is assumed to be constant over a short Tsub. Substi-
tuting for r[m] and x[m], defined in Eqs. (38.5)–(38.6), into
Eq. (38.7), it can be shown that

Zk = CRc Δtk
1
Ns

k + Ns − 1

m = k

e jΔθ tm + nk ,

38 8

where Rc is the autocorrelation function of the PN

sequences c I, and cQ, Δtk ≜ tsk − tsk is the code phase error,

Δθ tm ≜ θ tm − θ tm is the carrier phase error, and

nk ≜ nIk + jnQk
with nIk and nQk

being independent and

identically distributed Gaussian random sequences with

zero mean and variance N0
2TsNs

= N0
2Tsub

.

The expression for Zk in Eq. (38.8) assumes that the
locally generated cI and cQ have the same code phase. To
ensure this, both sequences must begin with the first binary
“1” that occurs after 15 consecutive zeros; otherwise, Zk

will be halved. Figure 38.9 shows |Zk|
2 for unsynchronized

and synchronized cI and cQ code phases (i.e. shifted by
34 chips). The correlation peak of the synchronized codes
is four times the peak of the unsynchronized case.
The carrier wipe-off and correlation stages are illustrated

in Figure 38.10.

38.5.2.2 Acquisition

The objective of this stage is to determine which BTSs are in
the receiver’s proximity and to obtain a coarse estimate of
their corresponding code start times and Doppler frequen-
cies. For a particular PN offset, a search over the code start
time and Doppler frequency is performed to detect the pres-
ence of a signal. To determine the range of Doppler fre-
quencies to search over, one must consider the relative
motion between the receiver and the BTS and the stability
of the receiver’s oscillator. For instance, a Doppler shift of
122 Hz will be observed for a cellular CDMA carrier fre-
quency of 882.75 MHz at a mobile receiver with a

Table 38.3 FIR of the pulse shaping filter used in cdma2000 [50]

m h[m ] m h[m ] m h[m ]

0, 47 −0.02528832 8, 39 0.03707116 16, 31 −0.01283966

1, 46 −0.03416793 9, 38 −0.02199807 17, 30 −0.14347703

2, 45 −0.03575232 10, 37 −0.06071628 18, 29 −0.21182909

3, 44 −0.01673370 11, 36 −0.05117866 19, 28 −0.14051313

4, 43 0.02160251 12, 35 0.00787453 20, 27 0.09460192

5, 42 0.06493849 13, 34 0.08436873 21, 26 0.44138714

6, 41 0.09100214 14, 33 0.12686931 22, 25 0.78587564

7, 40 0.08189497 15, 32 0.09452834 23, 24 1.0

Source: 3GPP2, “Physical layer standard for cdma2000 spread spectrum systems (C.S0002-E),” 3rd Generation Partnership Project 2 (3GPP2), TS C.
S0002-E, June 2011. Reproduced with permission of 3CPP2.
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receiver-to-BTS line-of-sight velocity of 150 km/h. There-
fore, to account for this Doppler (at a carrier frequency of
882.75 MHz) as well as oscillator-induced Doppler, the
Doppler frequency search window is chosen to lie between
−500 and 500 Hz. The frequency spacing ΔfD must be a
fraction of 1/Tsub, which implies that ΔfD 37.5 Hz, if Tsub

is assumed to be one PN code period (e.g. a ΔfD between 8
and 12 Hz can be chosen). The code start time search win-
dow is naturally chosen to be one PN code interval with a
delay spacing of one sample.
Similar to GPS signal acquisition, the search could be

implemented either serially or in parallel, which in turn
could be performed over the code phase or the Doppler fre-
quency. The receiver presented here performs a parallel
code phase search by exploiting the optimized efficiency
of the fast Fourier transform (FFT) [53]. If a signal is pres-
ent, a plot of |Zk|

2 will show a high peak at the correspond-
ing code start time and Doppler frequency estimates.
A hypothesis test could be performed to decide whether

the peak corresponds to a desired signal or noise. Since
there is only one PN sequence, the search needs to be per-
formed once. Then, the resulting surface is subdivided in
the time axis into intervals of 64 chips, each division corre-
sponding to a particular PN offset. The PN sequences for the
pilot, sync, and paging channels could be generated off-line
and stored in a binary file to speed up the processing.
Figure 38.11 depicts the acquisition stage of a cellular
CDMA signal with a software-defined receiver (SDR) devel-

oped in LabVIEW, showing |Zk|
2 along with tsk , f Dk

, the

PN offset, and the carrier-to-noise ratio C/N0 for a particu-
lar BTS [18].

38.5.2.3 Tracking

After obtaining an initial coarse estimate of the code start

time tsk and Doppler frequency f Dk
, the receiver refines

and maintains these estimates via tracking loops.
A phase-locked loop (PLL) or a frequency-locked loop

−60
−20

20
60

100

10.4

20.8

31.2

41.6

52

ts [μs]

×10
14

0

3.40

6.80

10.2

13.6

17.0

ІZ
kІ2

ІZ
kІ2

f D [H
z]

−100
−60

−20
20

60
100

10.4

20.8

31.2

41.6

52

ts [μs]

×10
15

0

1.34

2.68

4.02

5.36

6.70

f D [H
z]

(a) (b)

−100

Figure 38.9 |Zk|
2 for (a) unsynchronized and (b) synchronized cI and cQ codes (Khalife et al. [18]). Source: Reproduced with permission

of IEEE.

cI [ tm − tsk
] + jcQ [tm−tsk

]e−jθ(tm)ˆ
Pulse-Shaping

Filter

r [m] Zk

Carrier wipe-off Correlator

m = k 

k +Ns− 1

∑ (·)

Figure 38.10 Carrier wipe-off and correlator. Thick lines indicate a complex-valued variable (Khalife et al. [18]). Source: Reproduced with
permission of IEEE.

38.5 Navigation with Cellular CDMA Signals 1181



(FLL) can be employed to track the carrier phase‚ and a car-
rier-aided delay-locked loop (DLL) can be used to track the
code phase. FLLs are generally more robust than PLLs, are
useful when transitioning from acquisition to tracking, and
can track in more challenging environments [54, 55].
Figure 38.12 depicts a block diagram of a PLL-aided DLL
tracking loop [12, 18 ]. The PLL and DLL are discussed
in detail next.
PLL: The PLL consists of a phase discriminator, a loop

filter, and a numerically controlled oscillator (NCO). Since
the receiver is tracking the data-less pilot channel, an
atan2 discriminator can be used, given by

ePLL,k = atan2 Qpk , Ipk ,

where Zpk = Ipk + jQpk
is the prompt correlation. The

atan2 discriminator remains linear over the full input
error range of ±π and could be used without the risk of

introducing phase ambiguities. In contrast, a GPS receiver
cannot use this discriminator unless the transmitted data
bit values of the navigation message are known [54]. Fur-
thermore, while GPS receivers require second- or higher-
order PLLs due to the high dynamics of GPS SVs, lower-
order PLLs could be used in cellular CDMA navigation
receivers. It was found that the receiver could easily track
the carrier phase with a second-order PLL with a loop filter
transfer function given by

FPLL s =
2ζωns + ω2

n

s
, 38 9

where ζ 1
2
is the damping ratio‚ andωn is the undamped

natural frequency, which can be related to the PLL noise-

equivalent bandwidth Bn,PLL by Bn,PLL =
ωn

8ζ
4ζ2 + 1

[55]. The output of the loop filter vPLL, k is the rate of change
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of the carrier phase error, expressed in rad/s. The Doppler
frequency is deduced by dividing vPLL, k by 2π. The loop fil-
ter transfer function in Eq. (38.9) is discretized and realized
in state space. The noise-equivalent bandwidth is chosen to
range between 4 and 8 Hz.
DLL: The carrier-aided DLL employs a non-coherent

dot-product discriminator given by

eDLL,k = Λ Iek − Ilk Ipk + Qek −Qlk Qpk ,

where Λ is a normalization constant given by Λ = Tc/2C;
C is the carrier power, which can be estimated from
the prompt correlation; and Zpk = Ipk + jQpk

, Zek = Iek
+ jQek , and Zlk = Ilk + jQlk are the prompt, early, and late

correlations, respectively. The prompt correlation was
described in Section 38.5.2.1. The early and late correlations
are calculated by correlating the received signal with an
early and a delayed version of the prompt PN sequence,
respectively. The time shift between Zek and Zlk is defined
by an early-minus-late time teml, expressed in chips. Since
the autocorrelation function of the transmitted cellular
CDMA pulses is not triangular as in the case of GPS, a wider
teml is preferable in order to have a significant difference
between Zpk , Zek, and Zlk. Figure 38.13 shows the autocor-
relation function of the cellular CDMAPN code as specified
by the cdma2000 standard and that of the C/A code in GPS.
It can be seen from Figure 38.13 that for teml ≤ 0.5 chips,
Rc(τ) in the cdma2000 standard has an approximately con-
stant value, which is not desirable for precise tracking.
A good rule of thumb is to choose 1 ≤ teml ≤ 1.2 chips.
The DLL loop filter is a simple gain K, with a noise-

equivalent bandwidth Bn,DLL = K
4 0 5 Hz. The output

of the DLL loop filter vDLL, k is the rate of change of the code
phase, expressed in s/s. Assuming low-side mixing, the
code start time is updated according to

tsk + 1 = tsk − vDLL,k + f Dk
f c NsTs

In a GPS receiver, the pseudorange is calculated based on
the time a navigation message subframe begins‚ which
eliminates ambiguities due to the relative distance between
GPS SVs [55]. This necessitates decoding the navigation
message in order to detect the start of a subframe. These
ambiguities do not exist in a cellular CDMA system. This
follows from the fact that a PN offset of one translates to
a distance greater than 15 km between BTSs, which is
beyond the size of a typical cell [56].
Finally, the pseudorange estimate ρ can be deduced

by multiplying the code start time by the speed of light c;
that is,

ρ k = c tsk 38 10

Figure 38.14 shows the intermediate signals produced
within the tracking loops of the cellular CDMA navigation
receiver: code error; phase error; Doppler frequency; early,
prompt, and late correlations; pseudorange; and in-phase
and quadrature components of the correlation.

38.5.2.4 Message Decoding

Demodulating the sync and paging channel signals is per-
formed similarly to the pilot signal but with two major dif-
ferences: (i) the locally generated PN sequence is
furthermore spread by the corresponding Walsh code and
(ii) the subaccumulation period is bounded by the data
symbol interval. In contrast to GPS signals‚ in which a data
bit stretches over 20 C/A codes, a sync data symbol com-
prises only 256 PN chips‚ and a paging channel data symbol
comprises 128 chips. After carrier wipe-off, the sync and
paging signals are processed in the reverse order of the steps
illustrated in Figures 38.5 and 38.7, respectively. It is worth
noting that the start of the sync message always coincides
with the start of the PN code‚ and the corresponding paging
channel message starts after 320 ms minus the PN offset
(expressed in seconds), as shown in Figure 38.15. Recall
that the long code is also used to spread the paging message
in the downlink (see Figure 38.7). The long code state
decoded from a sync message is valid at the beginning of
the corresponding paging channel message.
The long code is generated by masking the outputs of the

42 registers and computing the modulo-two sum of the
resulting bits. In contrast to the short code generator in cel-
lular CDMAand the C/A code generator inGPS, the 42 long
code generator registers are configured to satisfy a linear
recursion given by

p x = x42 + x35 + x33 + x31 + x27 + x25 + x22 + x21

+ x19 + x18 + x17 + x16 + x10 + x7

+ x6 + x5 + x3 + x2 + x + 1
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Figure 38.13 Autocorrelation function of GPS C/A code and
cellular CDMA PN sequence according to the cdma2000 standard
(Khalife et al. [12]). Source: Reproduced with permission of IEEE.

38.5 Navigation with Cellular CDMA Signals 1183



The long code mask is obtained by combining the PN
offset and the paging channel number p as shown in
Figure 38.16.
Subsequently, the sync message is decoded first‚ and the

PN offset, the paging channel number, and the long code
state are then used to descramble and decode the paging
message. It is important to note that the long code is first

decimated at a rate of 1/64 to match the paging channel
symbol rate. More details are specified in [47].
Figure 38.17 shows the demodulated sync signal as well
as the final information decoded from the sync and paging
channels. Note that the shown signal corresponds to the US
cellular provider Verizon, which does not broadcast its BTS
position information (latitude and longitude). Moreover,
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Figure 38.14 Cellular CDMA signal tracking: (a) code phase error (chips), (b) carrier phase error (degrees), (c) Doppler frequency
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