

Trim Size: 6in x 9in McCarthy ffirs.tex V1 - 04/26/2018 8:19pm Page i

�

� �

�

Foundations of Computational
Finance with MATLAB®

Trim Size: 6in x 9in McCarthy ffirs.tex V1 - 04/26/2018 8:19pm Page ii

�

� �

�

Trim Size: 6in x 9in McCarthy ffirs.tex V1 - 04/26/2018 8:19pm Page iii

�

� �

�

Foundations of Computational
Finance with MATLAB®

Ed McCarthy

Trim Size: 6in x 9in McCarthy ffirs.tex V1 - 04/26/2018 8:19pm Page iv

�

� �

�

Copyright © 2018 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750–8400, fax (978)
646–8600, or on the Web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748–6011, fax (201) 748–6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This work’s use or discussion of MATLAB®

software or related products does not constitute endorsement or sponsorship by The MathWorks of a
particular pedagogical approach or particular use of the MATLAB® software. While the publisher and
authors have used their best efforts in preparing this work, they make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation any implied warranties of merchantability or fitness for a particular
purpose. No warranty may be created or extended by sales representatives, written sales materials or
promotional statements for this work. The fact that an organization, website, or product is referred to in
this work as a citation and/or potential source of further information does not mean that the publisher
and authors endorse the information or services the organization, website, or product may provide or
recommendations it may make. This work is sold with the understanding that the publisher is not engaged
in rendering professional services. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a specialist where appropriate. Further, readers should be aware that
websites listed in this work may have changed or disappeared between when this work was written and
when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762–2974, outside the United States at (317)
572–3993, or fax (317) 572–4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Names: McCarthy, Ed (Edward), 1955– author.
Title: Foundations of computational finance with MATLAB / by Ed McCarthy.
Description: Hoboken, New Jersey : John Wiley & Sons, Inc., [2018] | Includes

index. |
Identifiers: LCCN 2018014808 (print) | LCCN 2018016054 (ebook) | ISBN

9781119433873 (epub) | ISBN 9781119433910 (pdf) | ISBN 9781119433859
(cloth)

Subjects: LCSH: Finance—Mathematical models. | Finance—Data processing.
Classification: LCC HG106 (ebook) | LCC HG106 .M396 2018 (print) | DDC

332.0285/53—dc23
LC record available at https://lccn.loc.gov/2018014808

Cover Design: Wiley
Cover Image: © monsitj/iStockphoto

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
https://lccn.loc.gov/2018014808

Trim Size: 6in x 9in McCarthy ffirs.tex V1 - 04/26/2018 8:19pm Page v

�

� �

�

To my wife, Diane

Trim Size: 6in x 9in McCarthy ffirs.tex V1 - 04/26/2018 8:19pm Page vi

�

� �

�

Trim Size: 6in x 9in McCarthy ftoc.tex V1 - 04/26/2018 8:05pm Page vii

�

� �

�

Contents

Introduction xiii
Why You Should Read This Book xiii
The Intended Reader xiv
Why MATLAB®? xiv
How to Use This Book xvi
Font Conventions xvi
About the Author xvii
MathWorks Information xviii
References xviii

Part I MATLAB Conventions and Basic Skills 1

Chapter 1 Working with MATLAB® Data 3
1.1 Introduction 3
1.2 Arrays 3

1.2.1 Numerical Arrays 4
1.2.2 Math Calculations with Scalars,

Vectors, and Matrices 10
1.2.3 Statistical Calculations on Vectors

and Matrices 16
1.2.4 Extracting Values from Numerical

Vectors and Matrices 19
1.2.5 Counting Elements 26
1.2.6 Sorting Vectors and Matrices 28
1.2.7 Relational Expressions and Logical

Arrays 31
1.2.8 Dealing with NaNs (Not a Number) 35
1.2.9 Dealing with Missing Data 39

1.3 Character Arrays 40
1.3.1 String Arrays 44

vii

Trim Size: 6in x 9in McCarthy ftoc.tex V1 - 04/26/2018 8:05pm Page viii

�

� �

�

viii Contents

1.4 Flexible Data Structures 46
1.4.1 Cell Arrays 47
1.4.2 Structure (“struct”) Arrays 49
1.4.3 Tables 51
References 60
Further Reading 60

Chapter 2 Working with Dates and Times 61
2.1 Introduction 61
2.2 Finance Background: Why Dates and Times

Matter 61
2.2.1 First Challenge: Day Count

Conventions 62
2.2.2 Second Challenge: Date Formats 63

2.3 Dates and Times in MATLAB 64
2.3.1 Datetime Variables 64
2.3.2 Date Conversions 73
2.3.3 Date Generation Functions with

Serial Number Outputs 79
2.3.4 Duration Arrays 83
2.3.5 Calendar Duration Variables 86
2.3.6 Date Calculations and Operations 89
2.3.7 Plotting Date Variables Introduction 94
References 95

Chapter 3 Basic Programming with MATLAB® 97
3.1 Introduction 97

3.1.1 Algorithms 101 97
3.1.2 Go DIY or Use Built-In Code? 98

3.2 MATLAB Scripts and Functions 99
3.2.1 Scripts 99
3.2.2 Developing Functions 106
3.2.3 If Statements 112
3.2.4 Modular Programming 115
3.2.5 User Message Formats 121
3.2.6 Testing and Debugging 124
References 127

Trim Size: 6in x 9in McCarthy ftoc.tex V1 - 04/26/2018 8:05pm Page ix

�

� �

�

Contents ix

Chapter 4 Working with Financial Data 129
4.1 Introduction 129
4.2 Accessing Financial Data 129

4.2.1 Closing Prices versus Adjusted
Close Prices for Stocks 130

4.2.2 Data Download Examples 131
4.2.3 Importing Data Interactively 133
4.2.4 Automating Data Imports with

a Script 138
4.2.5 Automating Data Imports with

a Function 140
4.2.6 Importing Data Programmatically 147

4.3 Working with Spreadsheet Data 154
4.3.1 Importing Spreadsheet Data

with Import Tool 154
4.3.2 Importing Spreadsheet Data

Programmatically 154
4.4 Data Visualization 156

4.4.1 Built-In Plot Functions 156
4.4.2 Using the Plot Tools 158
4.4.3 Plotting with Commands 159
4.4.4 Other Plot Tools 162
4.4.5 Built-In Financial Charts 173
References 176

Part II Financial Calculations with MATLAB 177

Chapter 5 The Time Value of Money 179
5.1 Introduction 179
5.2 Finance Background 180

5.2.1 Future Value with Single Cash Flows 180
5.2.2 Future Value with Multiple Cash

Flows 185
5.2.3 Present Value with Single Cash Flows 187
5.2.4 Present Value with Multiple Variable

Cash Flows 188

Trim Size: 6in x 9in McCarthy ftoc.tex V1 - 04/26/2018 8:05pm Page x

�

� �

�

x Contents

5.3 MATLAB Time Value of Money Functions 189
5.3.1 Future Value of Fixed Periodic

Payments 190
5.3.2 Future Value of Variable Payments 191
5.3.3 Present Value of Fixed Payments 193
5.3.4 Present Value of Variable Payments 194

5.4 Internal Rate of Return 197
5.5 Effective Interest Rates 198
5.6 Compound Annual Growth Rate 198
5.7 Continuous Interest 200
5.8 Loans 200

References 202

Chapter 6 Bonds 203
6.1 Introduction 203
6.2 Finance Background 204

6.2.1 Bond Classifications 204
6.2.2 Bond Terminology 205

6.3 MATLAB Bond Functions 206
6.3.1 US Treasury Bills 206
6.3.2 Bond Valuation Principles 208
6.3.3 Calculating Bond Prices 209
6.3.4 Calculating Bond Yields 212
6.3.5 Calculating a Bond’s Total Return 214
6.3.6 Pricing Discount Bonds 216

6.4 Bond Analytics 216
6.4.1 Interest Rate Risk 217
6.4.2 Measuring Rate Sensitivity 219
6.4.3 Yield Curves 227

6.5 Callable Bonds 229
References 231
Further Reading 231

Chapter 7 Dealing with Uncertainty and Risk 233
7.1 Introduction 233
7.2 Overview of Financial Risk 234
7.3 Data Insights 234

7.3.1 Visualizing Data 235
7.3.2 Basic Single Series Plots 237

Trim Size: 6in x 9in McCarthy ftoc.tex V1 - 04/26/2018 8:05pm Page xi

�

� �

�

Contents xi

7.3.3 Basic Multiple Series Plots 237
7.3.4 Adding Plot Customization 238
7.3.5 Histograms 239
7.3.6 Measures of Central Location 241
7.3.7 Measures of Data Dispersion 243

7.4 Data Relationships 249
7.4.1 Covariance and Correlation 251
7.4.2 Correlation Coefficients 252

7.5 Creating a Basic Simulation Model 253
7.6 Value at Risk (VaR) 258

References 261
Further Reading 262

Chapter 8 Equity Derivatives 263
8.1 Introduction 263
8.2 Options 264

8.2.1 Option Quotes 265
8.2.2 Market Mechanics 266
8.2.3 Factors in Option Valuation 267

8.3 Option Pricing Models 268
8.3.1 Arbitrage 269
8.3.2 Binomial Option Pricing 270
8.3.3 Black-Scholes 274

8.4 Options’ Uses 276
8.4.1 Hedging 277
8.4.2 Speculation and Leverage 277
8.4.3 Customizing Payoff Profiles 278

8.5 Appendix: Other Types of Derivatives 279
8.5.1 Commodity and Energy 279
8.5.2 Credit 279
8.5.3 Exotic Options 280
References 281
Further Reading 281

Chapter 9 Portfolios 283
9.1 Introduction 283
9.2 Finance Background 283
9.3 Portfolio Optimization 285
9.4 MATLAB Portfolio Object 286

Trim Size: 6in x 9in McCarthy ftoc.tex V1 - 04/26/2018 8:05pm Page xii

�

� �

�

xii Contents

9.4.1 Object-Oriented Programming
(OOP) 286

9.4.2 A Basic Example 287
9.4.3 Using Data Stored in a Table

Format 294
References 296

Chapter 10 Regression and Time Series 297
10.1 Introduction 297
10.2 Basic Regression 297

10.2.1 Understanding Least Squares 300
10.2.2 Model Notation 301
10.2.3 Fitting a Polynomial with polyfit

and polyval 303
10.2.4 Linear Regression Methods 305

10.3 Working with Time Series 308
10.3.1 Step 1: Load the Data (Single

Series) 308
10.3.2 Step 2: Create the FTS Object 309
10.3.3 Step 3: Using FTS Tools 311
References 314

Appendix 1 Sharing Your Work 315
A1.1 Introduction 315
A1.2 Publishing a Script 316

A1.2.1 Publishing with Code Sections 317
A1.2.2 futureValueCalc3 319
A1.2.3 Formatting Options 321
A1.2.4 Working with Live Scripts 322
A1.2.5 Editing and Control 325
References 326

Appendix 2 Reference for Included MATLAB® Functions 327

Index 335

Trim Size: 6in x 9in McCarthy flast.tex V1 - 04/26/2018 8:05pm Page xiii

�

� �

�

Introduction

Why You Should Read This Book

If you’re planning a career in corporate or investment finance or
already working in one of those areas, you’re probably proficient
with financial calculators and spreadsheets. Those technologies
have proven their value, and it’s likely they will remain essential
tools for many years. (I still use a 30-year-old Hewlett Packard 12C
calculator regularly and it works perfectly, albeit a bit slower than
newer models.)

But the nature of data and analytics are changing, and those
changes are influencing financial analysis and management. Tradi-
tional financial data still drive decisions, but those data are being
supplemented by increasing volumes of nontraditional information
and new computational tools. Consider these headlines from recent
years, which are just a small sample of the articles on these themes:

• “Stop Using Excel, Finance Chiefs Tell Staffs” (Wall Street
Journal, 1/22/1017)

• “The Quants Run Wall Street Now” (Wall Street Journal, article
series in May 2017)

• “At New Digital Lenders, Math Rules” (New York Times,
1/19/2016)

• “Leveraging Data to Own the Engaged Customer” (Utility Ana-
lytics, 11/4/2015)

• “The Morning Ledger: The Rising Profile of Financial Plan-
ning and Analysis” (Wall Street Journal, 12/22/2015)

• “How Computers Trawl a Sea of Data for Stock Picks” (Wall
Street Journal, 4/1/2015)

• “As Big Data and AI Take Hold, What Will It Take to Be an
Effective Executive?” (Wall Street Journal, 1/23/2015)

xiii

Trim Size: 6in x 9in McCarthy flast.tex V1 - 04/26/2018 8:05pm Page xiv

�

� �

�

xiv Introduction

I believe this paradigm shift requires a new approach to financial
analysis and management. Specifically, finance professionals must
supplement their calculators and spreadsheets with more flexible
and powerful computational platforms. These platforms can work
with the new data models while still providing the tools needed for
traditional financial analysis. As the headlines suggest, remaining
competitive in financial analysis and management will require
an understanding of and skill with computational finance. This
knowledge will allow you to access data from multiple sources,
develop customized financial analytics, and then distribute your
tools and findings across a variety of platforms.

The Intended Reader

Transitioning to the new paradigm is a challenge, though, because
it means learning about computational finance. Other authors have
addressed this topic, but they focused on advanced material for
readers who combine extensive math, statistics, programming, and
finance backgrounds, such as financial engineers and academics.

In contrast, I wrote this book for readers seeking an introduc-
tory text that links traditional finance material to the MATLAB
computational platform. This includes upper-level undergraduate
finance students, graduate students, finance practitioners, and
those with STEM backgrounds seeking to learn about finance. My
assumption is that your background will be: (1) A business student or
finance professional who is comfortable with finance theory but has
modest computer programming experience beyond spreadsheets,
or (2) A STEM student or professional who has a more extensive
programming background but less experience with finance.

I’m also assuming you have completed first courses in linear alge-
bra and statistics and will have access to MATLAB and the required
MATLAB Toolboxes. Many universities have MATLAB licenses, but if
you must buy the software, it’s very inexpensive for students, and the
MATLAB Home edition makes it readily affordable for nonacademic
users. (Pricing details are available on the mathworks.com site.)

Why MATLAB®?

That’s a fair question, because there are a host of programming
languages being used in finance. But there’s a question-and-answer

http://mathworks.com

Trim Size: 6in x 9in McCarthy flast.tex V1 - 04/26/2018 8:05pm Page xv

�

� �

�

Introduction xv

dialogue I’ve seen numerous times on web message boards for
quantitative and computational finance that helps answer the
question. It goes something like this:

Q. I’m thinking of getting into quantitative finance (or applying
to a quant educational program) and need advice on programming
languages. Should I start with MATLAB or Python? R or S? C++ or
Java?

A. Yes.
The answer is a bit snarky, so the respondent usually explains that

learning a programming language is not a one-and-done lifetime
proposition. People change employers during their careers and the
new employer might emphasize a different language. Computer
technologies and programming languages evolve, too, and it’s
necessary to keep up with those changes, as those of us who started
programming with punched cards and card readers can attest.

I have no business affiliation with The MathWorks but I believe
the MATLAB software is well-suited for an introduction to computa-
tional finance for several reasons:

• It’s an integrated development environment that combines
a code editor, compiler, debugger, interpreter, and graphics
capability in a well-designed graphical user interface.

• It’s relatively easy to develop basic MATLAB skills. Of course, it
takes time and effort to learn any computer language but the
program’s consistent syntax usage and extensive documenta-
tion improve user productivity.

• The finance-related MATLAB Toolboxes provide access to
multiple financial functions running tested algorithms, which
can save many programming hours and much frustration.
Additional MATLAB Toolboxes can make it easier to move
into other areas, such as big data analytics, as well.

• MATLAB is used in numerous financial firms, other industries,
and over 5,000 universities. If you’re a student, your school
probably has a MATLAB license.

• Prices for students and educators have always been low, and
several years ago The MathWorks began offering inexpensive
personal licenses.

• Users can access multiple training and support channels
through general and specialized books, online and live

Trim Size: 6in x 9in McCarthy flast.tex V1 - 04/26/2018 8:05pm Page xvi

�

� �

�

xvi Introduction

training courses, and formal and informal (community) sup-
port resources. I’ve completed several of the online training
programs offered by The MathWorks, and they were very good.

• Finally, I believe the knowledge and skills developed in learn-
ing MATLAB make it easier to subsequently learn other pro-
gramming languages.

How to Use This Book

Part I introduces the MATLAB syntax and how to use the program.
If you’re new to MATLAB or need a review, start with those chapters.
For a deeper introduction, you can supplement that material with
the resources online The MathWorks offers, including the no-cost
MATLAB Onramp course at matlabacademy.mathworks.com. That
course uses an interactive format and takes about two hours to com-
plete. Other online tutorials can be found at www.mathworks.com/
support/learn-with-matlab-tutorials.html. If you have the time and
funds, the MATLAB Fundamentals course is an excellent in-depth
introduction.

Part II demonstrates how MATLAB can be used as a computa-
tional platform in finance. The material in Chapter 5, “The Time
Value of Money,” has general applications throughout the remain-
ing chapters, so I suggest reviewing that material. The text reviews
the underlying finance material being discussed in each chapter and
includes suggestions for further reading.

Finally, practice using the program interactively or programmat-
ically by entering commands in the MATLAB Command window as
you work through the examples. Learning to use software is some-
what like learning to drive. Reading a book on safe driving gives you
an intellectual perspective but it makes driving sound deceptively
easy. Coding—like getting behind the steering wheel and pulling into
high-speed traffic for the first time—is best experienced hands-on.
Fortunately, writing code is a lot less nerve-wracking than highway
driving.

Font Conventions

The book uses several different font styles to help you distinguish the
material:

Bold: Function names, reserved keywords, matrices, and vectors

http://www.mathworks.com/support/learn-with-matlab-tutorials.html
http://www.mathworks.com/support/learn-with-matlab-tutorials.html
http://matlabacademy.mathworks.com

Trim Size: 6in x 9in McCarthy flast.tex V1 - 04/26/2018 8:05pm Page xvii

�

� �

�

Introduction xvii

Monospaced italic: Command window inputs. Example:

x = 7

Monospaced: MATLAB output and responses. Example:

x =
7

Monospaced starting with %: Code comment lines that
do not execute

Normally spaced lines starting with %: Text comments

About the Author

I have worked as a freelance finance writer since the mid-1980s, and
during that time I have written for many of the financial service
industry’s leading publications. These include Bloomberg Wealth
Manager, CFA Institute Magazine, Institutional Investor online, Financial
Planning, Journal of Accountancy, and the Journal of Financial Planning.
Earlier in my career I published a technology book for financial
advisors, The Financial Advisor’s Analytical Toolbox (Irwin), and one
for consumers, Fast Forward MBA in Personal Finance (Wiley). I have
also written numerous print and web articles for custom publishers
and many of the largest U.S. and international financial services
firms. My primary experience as a writer and the focus for many
of my articles has been explaining complex finance topics and
technologies to readers.

My first exposure to MATLAB was in the mid-1990s when I was
doing research for my first book, which included a discussion of the
software’s financial modeling capabilities. My use of the program
intensified while I was studying for a PhD in finance, and I believe
my experience at that time supports the premise for this book. The
lack of available resources to link finance theory with the requisite
computer programming made that aspect of the work more difficult
than it needed to be. I chose not to finish my dissertation and left
school to write full-time, but I continued to use the software and
periodically work through new financial mathematics and MATLAB
texts to stay current. I am a MathWorks Certified MATLAB Asso-
ciate and am working toward The MathWorks Certified MATLAB
Professional designation.

Trim Size: 6in x 9in McCarthy flast.tex V1 - 04/26/2018 8:05pm Page xviii

�

� �

�

xviii Introduction

MathWorks Information

The material in this book was developed using the MATLAB R2016B,
2017A, and 2017B releases and MATLAB Toolboxes for the same
releases.

For MATLAB and Simulink product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: mathworks.com
How to buy: www.mathworks.com/store

References

Hope, Bradley. “How Computers Trawl a Sea of Data for Stock Picks.” Wall
Street Journal, April 1, 2015. Accessed January 15, 2016. https://www
.wsj.com/articles/how-computers-trawl-a-sea-of-data-for-stock-picks-
1427941801.

Lohr, Steve. “At New Digital Lenders, Math Rules.” New York Times, January
19, 2016. Accessed January 20, 2016. https://bits.blogs.nytimes.com/
2016/01/19/at-new-digital-lenders-math-rules/.

Shumsky, Tatyana. “Stop Using Excel, Finance Chiefs Tell Staffs.” Wall
Street Journal, January 22, 2017. Accessed January 22, 2017. https://
www.wsj.com/articles/stop-using-excel-finance-chiefs-tell-staffs-
1511346601.

Willhite, James. “The Morning Ledger: The Rising Profile of Financial
Planning and Analysis.” Wall Street Journal, December 22, 2015.
Accessed January 15, 2016. https://blogs.wsj.com/cfo/2015/12/22/
the-morning-ledger-the-rising-profile-of-financial-planning-analysis/.

Wladawsky-Berger, Irving. “As Big Data and AI Take Hold, What Will
It Take to Be an Effective Executive?” Wall Street Journal, January
23, 2015. Accessed February 1, 2016. https://blogs.wsj.com/cio/
2015/01/23/as-big-data-and-ai-take-hold-what-will-it-take-to-be-an-
effective-executive/.

Zuckerman, Gregory and Bradley Hope. “The Quants Run Wall Street
Now,” Wall Street Journal. May 21, 2017. Accessed June 1, 2017.
https://www.wsj.com/articles/the-quants-run-wall-street-now-
1495389108.

https://www.wsj.com/articles/how-computers-trawl-a-sea-of-data-for-stock-picks-1427941801
https://www.wsj.com/articles/how-computers-trawl-a-sea-of-data-for-stock-picks-1427941801
https://www.wsj.com/articles/how-computers-trawl-a-sea-of-data-for-stock-picks-1427941801
https://bits.blogs.nytimes.com/2016/01/19/at-new-digital-lenders-math-rules/
https://bits.blogs.nytimes.com/2016/01/19/at-new-digital-lenders-math-rules/
https://www.wsj.com/articles/stop-using-excel-finance-chiefs-tell-staffs-1511346601
https://www.wsj.com/articles/stop-using-excel-finance-chiefs-tell-staffs-1511346601
https://www.wsj.com/articles/stop-using-excel-finance-chiefs-tell-staffs-1511346601
https://blogs.wsj.com/cio/2015/01/23/as-big-data-and-ai-take-hold-what-will-it-take-to-be-an-effective-executive/
https://blogs.wsj.com/cio/2015/01/23/as-big-data-and-ai-take-hold-what-will-it-take-to-be-an-effective-executive/
https://blogs.wsj.com/cio/2015/01/23/as-big-data-and-ai-take-hold-what-will-it-take-to-be-an-effective-executive/
https://www.wsj.com/articles/the-quants-run-wall-street-now-1495389108
https://www.wsj.com/articles/the-quants-run-wall-street-now-1495389108
mailto:info@mathworks.com
http://www.mathworks.com/store
https://blogs.wsj.com/cfo/2015/12/22/
http://mathworks.com
https://blogs.wsj.com/cfo/2015/12/22/the-morning-ledger-the-rising-profile-of-financial-planning-analysis/

Trim Size: 6in x 9in McCarthy flast.tex V1 - 04/26/2018 8:05pm Page xix

�

� �

�

Foundations of Computational
Finance with MATLAB®

Trim Size: 6in x 9in McCarthy flast.tex V1 - 04/26/2018 8:05pm Page xx

�

� �

�

Trim Size: 6in x 9in McCarthy p01.tex V1 - 04/26/2018 8:05pm Page 1

�

� �

�

IP A R T

MATLAB Conventions and Basic Skills

Trim Size: 6in x 9in McCarthy p01.tex V1 - 04/26/2018 8:05pm Page 2

�

� �

�

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 3

�

� �

�

1C H A P T E R

Working with MATLAB® Data

1.1 Introduction

MATLAB® is an abbreviation of “matrix laboratory,” and while
the ability to work with matrices is still an essential part of the
program, the software also works with numerous other data types.
This chapter examines several of the different data types you are
likely to encounter and the functions needed to manipulate them.

This material and the subsequent chapters assume you know how
to open MATLAB, enter commands in the Command Window, and
create and identify variables and their types in the Workspace. If you
lack those skills, consider working through the MATLAB Onramp
training program, which is available free online in The MathWorks®

MATLAB Academy (matlabacademy.mathworks.com) and takes just
a few hours to complete.

Key concepts introduced in this chapter include:

• MATLAB array types
• Flexible data structures

Software required for this chapter: MATLAB base program.

1.2 Arrays

An array is a data series arranged in rows and columns. The usual
notations to denote the number of rows and columns are r × c (rows

3

http://matlabacademy.mathworks.com

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 4

�

� �

�

4 Foundations of Computational Finance with MATLAB®

Table 1.1 MATLAB Data Terminology

Term Size Example

Scalar 1 × 1 (1 row by 1 column) 7

Row vector 1 × n (1 row by n columns) [1 2 3]

Column vector m × 1 (m rows by 1 column)

⎡
⎢
⎢
⎢
⎢
⎣

1

2

3

⎤
⎥
⎥
⎥
⎥
⎦

Matrix m × n (m rows by n columns)
⎡
⎢
⎢
⎣

1 3

2 4

⎤
⎥
⎥
⎦

by columns) or m × n (also signifying rows by columns). Table 1.1
shows the MATLAB terminology used to distinguish arrays.

The term array in MATLAB is potentially confusing because the
program allows for aggregating multiple data types in arrays, so it’s
often easiest to think of an array as a container for holding multiple
values in one variable (except for scalars, which have one value).
In some instances, those values are of the same type: numbers or
characters (letters, for example), but other array types can hold
different value types within one variable. Table 1.2 summarizes the
more common array types; subsequent sections cover each type
in more detail.

1.2.1 Numerical Arrays

Recall that scalars in MATLAB are 1 × 1 arrays, row vectors are 1 × n,
and column vectors measure m × 1. You can create a scalar by enter-
ing a numeric value at the input prompt (all inputs shown in italic):

7
ans =

7

Usually, it’s more practical to assign the input to a variable so you
can reuse it:

x = 7
x =

7

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 5

�

� �

�

Working with MATLAB® Data 5

Table 1.2 MATLAB Array Types

Array Type Description Example

Cell Cells can contain any data type
including strings, numbers, or
combinations of the two.

Row vector cell array:

{1, ‘a’, ‘text’, 1:10}

2 × 2 cell array matrix:

{1, ‘a’; ‘text’, 1:10}

Character Sequence of characters, typically short
pieces of text

‘a b c’

Dates and times Used to represent dates, times, and
durations. Covered in Chapter 2.

Datetime(‘1-Jan-2016’)

Duration(6,1,15) [6 hours,
1 minute, 15 seconds]

Logical False (0) or true (1) values in response
to a logical evaluation of a
relationship (x > y, for example)

val = 5 < 3

val =

logical
0

String Stores text “Hello” (note use of
double quote marks
versus singles for
character array)

Structure Groups logically related data into data
containers called fields. Each field
can contain any data type.

Structure Name: Employee

Fields:
Employee.LastName

Employee.FirstName

Employee.HireDate

Note that you can’t enter a character by itself because MATLAB
won’t recognize it:

a
Undefined function or variable 'a'

You can enter 'a' within single quote marks and it will be
assigned to the ans variable, but again, that’s not very useful for later
reference. It’s generally good practice to create named variables
with your work to avoid retyping the data, should you need to reuse
them later.

The variable-naming rules for MATLAB are straightforward:

• Start with a letter.
• Use only letters, numbers, and underscores.
• Keep the name’s length under 63 characters.

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 6

�

� �

�

6 Foundations of Computational Finance with MATLAB®

This book’s convention will be to use mixed cases with variables
and functions whenever it’s practical. In those instances, names will
begin with a lowercase letter. Insert an uppercase letter for improved
readability if the name contains two or more words:

myVariable = value

MATLAB provides several methods for creating vectors from the
Command window. Enter the numbers within square brackets for a
row vector:

Row Vector

x = [1 2 3 4]
x =

1 2 3 4

Column Vector

Separate the elements with semicolons or add an apostrophe to trans-
pose a row vector:

x = [1; 2; 3; 4]
x =

1
2
3
4

or

x = [1 2 3 4]'
x =

1
2
3
4

Matrix

The vector-creation techniques also apply to matrices. Put square
brackets around the elements and separate rows with semicolons.
Here’s a 2 × 3 example:

x = [1 2 3; 3 4 5]
x =

1 2 3
3 4 5

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 7

�

� �

�

Working with MATLAB® Data 7

The transpose operator functions the same way as with vectors:

x'
x =

1 4
2 5
3 6

Concatenation

You can concatenate (join) compatibly sized vectors to create matri-
ces by enclosing the vectors in square brackets. Also, note the text’s
use of comment lines that begin with %, which is the same syntax
for MATLAB comments. Comment lines do not run as commands or
inputs—their purpose is to provide documentation for users.

a = [1 2 3];
b = [4 5 6];
% Horizontal concatenation
c = [a b]
c =

1 2 3 4 5 6

% Vertical concatenation
d = [a;b]
d =

1 2 3
4 5 6

MATLAB generates an error code if you try to concatenate
incompatibly sized vectors (or matrices):

x = [9; 10]
x =

9
10

% Stack d over x
y = [d; x]

Error using vertcat
Dimensions of matrices being concatenated are not consistent.

Vector Generation Functions

Several methods and functions allow you to create vectors and matri-
ces more efficiently than entering each element manually, as shown
in Table 1.3.

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 8

�

� �

�

8 Foundations of Computational Finance with MATLAB®

Table 1.3 Functions that Create Vectors

Method / Function Description Examples

colon operator (:) Creates a vector from x to y
in increments of dt.
Default dt value = 1.

Format: z = x:dt:y

z = 1: 5

z =
1 2 3 4 5

z = 1:3:10

z =
1 4 7 10

linspace Creates a vector with a set
number of elements

z = linspace(x, y,
numberElements)

z = linspace(1,2,3)

z =
1.00 1.50 2.00

ones Creates an array with each
element equal to 1; can
also generate matrices

% 1 x 2 vector

z = ones(1,2)

z =
1
% 2 x 2 matrix

z = ones(2)

z =
1 1
1 1

zeros Creates an array with each
element equal to 0; can
also generate matrices

% 1 x 2 vector

x = zeros(1,2)

x =
0 0

% 2 x 2 matrix

x = zeros(2)

x =
0 0

0 0

eye Creates an identity matrix
with ones on the diagonal
and zeros elsewhere

z = eye(2)

z =
1 0

0 1

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 9

�

� �

�

Working with MATLAB® Data 9

Random-Number Generation Functions

Subsequent chapters review investment risk, and probabilities will
factor into those discussions. MATLAB includes several functions
that produce arrays of random numbers as shown in Table 1.4.

Table 1.4 Functions that Generate Random Numbers

Function Description Examples

rand(size) Generates a uniformly
distributed random
number or
sequence of
numbers between
0 and 1

% Single value

x = rand()

x =
0.9649

% 1 x 2 Vector

x = rand(1,2)

x =
0.1576 0.9706

% 2 x 2 Matrix

x = rand(2)

x =
0.4854 0.1419

0.8003 0.4218

randi(maximumValue)

randi(maximumValue,n)

randi(maximumValue,r,c)

Generates uniformly
distributed random
integers between 1
and maximumValue

% Random scalar between
1 and 100

x = randi(100)

x =
83

% 1 x 2 random vector
between 1 and 100

x = randi(100,1,2)

x =
70 32

% 2 x 2 random
matrix between 1 and 100

x = randi(100,2)

x =
96 44

4 39

(continued)

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 10

�

� �

�

10 Foundations of Computational Finance with MATLAB®

Table 1.4 (continued)

Function Description Examples

randn(size) Generates a normally
distributed random
number or
sequence of
numbers

% Normally distributed
random scalar

x = randn

x =
0.3129

% Normally distributed
random 1 x 2 vector

x = randn(1,2)

x =
-0.8649 -0.0301

% Normally distributed
random 2 x 2 matrix

x = randn(2)

x =
-0.1649 1.0933

0.6277 1.1093

It’s worth noting that these results are pseudorandom numbers.
The explanation of a pseudorandom versus a genuine random
number is technical, but essentially, pseudorandom numbers are
based on an algorithm whose sequence can be replicated if you
repeat the initial settings. The MATLAB documentation has details
on how the program produces values for the random number
generator functions.

1.2.2 Math Calculations with Scalars, Vectors, and Matrices

MATLAB can perform extensive mathematical operations on data.
The array’s structure—scalar, vector, or matrix—will influence the
operations’ applications.

Scalars

Scalars’ operations include addition, subtraction, multiplication, divi-
sion, and exponentiation plus numerous more specialized function
calls. Table 1.5 lists the notation for the most common operations.

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 11

�

� �

�

Working with MATLAB® Data 11

Table 1.5 Common Scalar Operations

Operation Symbol Example

Addition + Numerical: 100 + 200
Variable: x + y

Character: ‘a’ + 1
Date:
datetime(‘1-Jan-2018’) + 5

Subtraction (or negation) − Same as addition plus negation

Multiplication * 100 * 200
x * y

x * 5

Division (by) / 10 / 5 = 2
x / y

Division (into) \ 10 \ 5 = 0.50
x \ y

Exponentiation ^ 2^3 = 8
x^y

Square root Function: sqrt() sqrt(144) = 12

To avoid conflict, these operators follow a precedence from high-
est to lowest:

Parentheses: ()
Exponentiation: ^
Negation: −
Multiplication and division: *, /, and \
Addition and subtraction: +, −

For example, (2 + 6) * 3 is not equal to 2 + 6 * 3:

(2 + 6)* 3
ans =

24

2 + 6 * 3
ans =

20

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 12

�

� �

�

12 Foundations of Computational Finance with MATLAB®

Vectors and Matrices

Many MATLAB math functions are vectorized; that is, you can apply
them directly to vectors and matrices as well as scalars. The sqrt func-
tion is an example of this feature:

x = [81 144];
sqrt(x)
ans =

9 12

y = randi(100,2)
y =

82 13
91 92

sqrt(y)
ans =

9.0554 3.6056
9.5394 9.5917

Addition/subtraction and multiplication/division with scalars
also work with vectors and matrices:

x + 10
ans =

91 154

y * 2
ans =

164 26
182 184

However, other math operations between vectors and matrices
are more complicated. Assume that you have an investment portfo-
lio with two positions (numShares) and their current market prices
(mktVals). The data are stored in two column vectors:

numShares = [100;200]
numShares =

100
200

mktVals = [38;65]
mktVals =

38
65

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 13

�

� �

�

Working with MATLAB® Data 13

The portfolio value is (100 × $38) + (200 × $65) or $16,800. An
intuitive way to calculate that value is to multiply numShares times
mktVals but that produces an error:

portVal = numShares * mktVals
Error using *
Inner matrix dimensions must agree.

This example illustrates the need for array operations. When two
vectors or matrices are the same size, you can operate on their cor-
responding elements. In MATLAB notation, this requires the use of
“dot” notation:

Multiplication: .*
Division: ./
Exponentiation: .ˆ

Examples:

portVal = numShares .* mktVals
portVal =

3800
13000

% The positions' values can be summed in the same calculation using
the sum function:

portValTotal = sum(numShares .* mktVals)
portValTotal =

16800

% Division with ./ reverses the multiplication
portVal ./ numShares
ans =

38
65

% Element by element matrix multiplication (versus matrix
multiplication)

a = [1 2; 3 4]
a =

1 2
3 4

b = [5 6; 7 8]
b =

5 6
7 8

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 14

�

� �

�

14 Foundations of Computational Finance with MATLAB®

c = a .* b
c =

5 12
21 32

% Vector and matrix exponentiation
% Exponentiation with ˆ works on square matrices but not on other
sized vectors and matrices

x = [1 2;3 4];
xˆ2
ans =

7 10
15 22

x = [1 2 3];
xˆ2
Error using ˆ
One argument must be a square matrix and the other must be a scalar.
Use POWER (.ˆ) for elementwise power.

% Use .ˆ for element-by-element exponentiation
x = [1 2 3]:
x.ˆ2
ans =

1 4 9

Array multiplication and division proceed element by element
so the arrays must be the same size. Matrix multiplication and divi-
sion do not require same-sized arrays but they do require row-column
compatibility. This is usually expressed as shown in Table 1.6.

In words, the number of rows in the second matrix must equal the
number of columns in the first matrix. If that condition is satisfied,
matrix multiplication uses the standard * (star) notation:

% 2 x 3
a = [1 2 3; 4 5 6]
a =

1 2 3
4 5 6

Table 1.6 Row-column Compatibility

Matrix A Matrix B Result

Size: m × n n × p m × p

Example: 2 × 3 3 × 1 2 × 1

Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 15

�

� �

�

Working with MATLAB® Data 15

% 3 x 1
b = [7 8 9]'
b =

7
8
9

% Solution is 2 x 1
a * b
ans =

50
122

Reshaping Arrays

You’re likely to encounter array data stored differently than the
row-column shape you need for a particular analysis. The MATLAB
reshape function allows you to rearrange the data, provided the
new shape has the same number of elements as the original shape.
Suppose that you receive the data in a 10 × 1 vector but a more
logical layout would be a 2 × 5 matrix. The reshape function
syntax is:

reshape(original_array, desired number of rows, desired number of columns)

% A is the original 10 x 1 matrix
A = rand(10,1);

% Reshape to 5 x 2
B = reshape(A,5,2)
B =

0.8147 0.0975
0.9058 0.2785
0.1270 0.5469
0.9134 0.9575
0.6324 0.9649

The reshape function has other features. You can reshape the
original data into additional dimensions, assuming you have suffi-
cient data points. For example, you could reshape the A matrix into
three dimensions (row, column, depth) with an optional fourth argu-
ment (2, in this example):

