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Introduction

Why You Should Read This Book

If you’re planning a career in corporate or investment finance or
already working in one of those areas, you’re probably proficient
with financial calculators and spreadsheets. Those technologies
have proven their value, and it’s likely they will remain essential
tools for many years. (I still use a 30-year-old Hewlett Packard 12C
calculator regularly and it works perfectly, albeit a bit slower than
newer models.)

But the nature of data and analytics are changing, and those
changes are influencing financial analysis and management. Tradi-
tional financial data still drive decisions, but those data are being
supplemented by increasing volumes of nontraditional information
and new computational tools. Consider these headlines from recent
years, which are just a small sample of the articles on these themes:

• “Stop Using Excel, Finance Chiefs Tell Staffs” (Wall Street
Journal, 1/22/1017)

• “The Quants Run Wall Street Now” (Wall Street Journal, article
series in May 2017)

• “At New Digital Lenders, Math Rules” (New York Times,
1/19/2016)

• “Leveraging Data to Own the Engaged Customer” (Utility Ana-
lytics, 11/4/2015)

• “The Morning Ledger: The Rising Profile of Financial Plan-
ning and Analysis” (Wall Street Journal, 12/22/2015)

• “How Computers Trawl a Sea of Data for Stock Picks” (Wall
Street Journal, 4/1/2015)

• “As Big Data and AI Take Hold, What Will It Take to Be an
Effective Executive?” (Wall Street Journal, 1/23/2015)

xiii
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xiv Introduction

I believe this paradigm shift requires a new approach to financial
analysis and management. Specifically, finance professionals must
supplement their calculators and spreadsheets with more flexible
and powerful computational platforms. These platforms can work
with the new data models while still providing the tools needed for
traditional financial analysis. As the headlines suggest, remaining
competitive in financial analysis and management will require
an understanding of and skill with computational finance. This
knowledge will allow you to access data from multiple sources,
develop customized financial analytics, and then distribute your
tools and findings across a variety of platforms.

The Intended Reader

Transitioning to the new paradigm is a challenge, though, because
it means learning about computational finance. Other authors have
addressed this topic, but they focused on advanced material for
readers who combine extensive math, statistics, programming, and
finance backgrounds, such as financial engineers and academics.

In contrast, I wrote this book for readers seeking an introduc-
tory text that links traditional finance material to the MATLAB
computational platform. This includes upper-level undergraduate
finance students, graduate students, finance practitioners, and
those with STEM backgrounds seeking to learn about finance. My
assumption is that your background will be: (1) A business student or
finance professional who is comfortable with finance theory but has
modest computer programming experience beyond spreadsheets,
or (2) A STEM student or professional who has a more extensive
programming background but less experience with finance.

I’m also assuming you have completed first courses in linear alge-
bra and statistics and will have access to MATLAB and the required
MATLAB Toolboxes. Many universities have MATLAB licenses, but if
you must buy the software, it’s very inexpensive for students, and the
MATLAB Home edition makes it readily affordable for nonacademic
users. (Pricing details are available on the mathworks.com site.)

Why MATLAB®?

That’s a fair question, because there are a host of programming
languages being used in finance. But there’s a question-and-answer

http://mathworks.com


Trim Size: 6in x 9in McCarthy flast.tex V1 - 04/26/2018 8:05pm Page xv

�

� �

�

Introduction xv

dialogue I’ve seen numerous times on web message boards for
quantitative and computational finance that helps answer the
question. It goes something like this:

Q. I’m thinking of getting into quantitative finance (or applying
to a quant educational program) and need advice on programming
languages. Should I start with MATLAB or Python? R or S? C++ or
Java?

A. Yes.
The answer is a bit snarky, so the respondent usually explains that

learning a programming language is not a one-and-done lifetime
proposition. People change employers during their careers and the
new employer might emphasize a different language. Computer
technologies and programming languages evolve, too, and it’s
necessary to keep up with those changes, as those of us who started
programming with punched cards and card readers can attest.

I have no business affiliation with The MathWorks but I believe
the MATLAB software is well-suited for an introduction to computa-
tional finance for several reasons:

• It’s an integrated development environment that combines
a code editor, compiler, debugger, interpreter, and graphics
capability in a well-designed graphical user interface.

• It’s relatively easy to develop basic MATLAB skills. Of course, it
takes time and effort to learn any computer language but the
program’s consistent syntax usage and extensive documenta-
tion improve user productivity.

• The finance-related MATLAB Toolboxes provide access to
multiple financial functions running tested algorithms, which
can save many programming hours and much frustration.
Additional MATLAB Toolboxes can make it easier to move
into other areas, such as big data analytics, as well.

• MATLAB is used in numerous financial firms, other industries,
and over 5,000 universities. If you’re a student, your school
probably has a MATLAB license.

• Prices for students and educators have always been low, and
several years ago The MathWorks began offering inexpensive
personal licenses.

• Users can access multiple training and support channels
through general and specialized books, online and live
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training courses, and formal and informal (community) sup-
port resources. I’ve completed several of the online training
programs offered by The MathWorks, and they were very good.

• Finally, I believe the knowledge and skills developed in learn-
ing MATLAB make it easier to subsequently learn other pro-
gramming languages.

How to Use This Book

Part I introduces the MATLAB syntax and how to use the program.
If you’re new to MATLAB or need a review, start with those chapters.
For a deeper introduction, you can supplement that material with
the resources online The MathWorks offers, including the no-cost
MATLAB Onramp course at matlabacademy.mathworks.com. That
course uses an interactive format and takes about two hours to com-
plete. Other online tutorials can be found at www.mathworks.com/
support/learn-with-matlab-tutorials.html. If you have the time and
funds, the MATLAB Fundamentals course is an excellent in-depth
introduction.

Part II demonstrates how MATLAB can be used as a computa-
tional platform in finance. The material in Chapter 5, “The Time
Value of Money,” has general applications throughout the remain-
ing chapters, so I suggest reviewing that material. The text reviews
the underlying finance material being discussed in each chapter and
includes suggestions for further reading.

Finally, practice using the program interactively or programmat-
ically by entering commands in the MATLAB Command window as
you work through the examples. Learning to use software is some-
what like learning to drive. Reading a book on safe driving gives you
an intellectual perspective but it makes driving sound deceptively
easy. Coding—like getting behind the steering wheel and pulling into
high-speed traffic for the first time—is best experienced hands-on.
Fortunately, writing code is a lot less nerve-wracking than highway
driving.

Font Conventions

The book uses several different font styles to help you distinguish the
material:

Bold: Function names, reserved keywords, matrices, and vectors

http://www.mathworks.com/support/learn-with-matlab-tutorials.html
http://www.mathworks.com/support/learn-with-matlab-tutorials.html
http://matlabacademy.mathworks.com
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Monospaced italic: Command window inputs. Example:

x = 7

Monospaced: MATLAB output and responses. Example:

x =
7

Monospaced starting with %: Code comment lines that
do not execute

Normally spaced lines starting with %: Text comments

About the Author

I have worked as a freelance finance writer since the mid-1980s, and
during that time I have written for many of the financial service
industry’s leading publications. These include Bloomberg Wealth
Manager, CFA Institute Magazine, Institutional Investor online, Financial
Planning, Journal of Accountancy, and the Journal of Financial Planning.
Earlier in my career I published a technology book for financial
advisors, The Financial Advisor’s Analytical Toolbox (Irwin), and one
for consumers, Fast Forward MBA in Personal Finance (Wiley). I have
also written numerous print and web articles for custom publishers
and many of the largest U.S. and international financial services
firms. My primary experience as a writer and the focus for many
of my articles has been explaining complex finance topics and
technologies to readers.

My first exposure to MATLAB was in the mid-1990s when I was
doing research for my first book, which included a discussion of the
software’s financial modeling capabilities. My use of the program
intensified while I was studying for a PhD in finance, and I believe
my experience at that time supports the premise for this book. The
lack of available resources to link finance theory with the requisite
computer programming made that aspect of the work more difficult
than it needed to be. I chose not to finish my dissertation and left
school to write full-time, but I continued to use the software and
periodically work through new financial mathematics and MATLAB
texts to stay current. I am a MathWorks Certified MATLAB Asso-
ciate and am working toward The MathWorks Certified MATLAB
Professional designation.
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MathWorks Information

The material in this book was developed using the MATLAB R2016B,
2017A, and 2017B releases and MATLAB Toolboxes for the same
releases.

For MATLAB and Simulink product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: mathworks.com
How to buy: www.mathworks.com/store
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1C H A P T E R

Working with MATLAB® Data

1.1 Introduction

MATLAB® is an abbreviation of “matrix laboratory,” and while
the ability to work with matrices is still an essential part of the
program, the software also works with numerous other data types.
This chapter examines several of the different data types you are
likely to encounter and the functions needed to manipulate them.

This material and the subsequent chapters assume you know how
to open MATLAB, enter commands in the Command Window, and
create and identify variables and their types in the Workspace. If you
lack those skills, consider working through the MATLAB Onramp
training program, which is available free online in The MathWorks®

MATLAB Academy (matlabacademy.mathworks.com) and takes just
a few hours to complete.

Key concepts introduced in this chapter include:

• MATLAB array types
• Flexible data structures

Software required for this chapter: MATLAB base program.

1.2 Arrays

An array is a data series arranged in rows and columns. The usual
notations to denote the number of rows and columns are r × c (rows

3

http://matlabacademy.mathworks.com
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4 Foundations of Computational Finance with MATLAB®

Table 1.1 MATLAB Data Terminology

Term Size Example

Scalar 1 × 1 (1 row by 1 column) 7

Row vector 1 × n (1 row by n columns) [1 2 3]

Column vector m × 1 (m rows by 1 column)

⎡
⎢
⎢
⎢
⎢
⎣

1

2

3

⎤
⎥
⎥
⎥
⎥
⎦

Matrix m × n (m rows by n columns)
⎡
⎢
⎢
⎣

1 3

2 4

⎤
⎥
⎥
⎦

by columns) or m × n (also signifying rows by columns). Table 1.1
shows the MATLAB terminology used to distinguish arrays.

The term array in MATLAB is potentially confusing because the
program allows for aggregating multiple data types in arrays, so it’s
often easiest to think of an array as a container for holding multiple
values in one variable (except for scalars, which have one value).
In some instances, those values are of the same type: numbers or
characters (letters, for example), but other array types can hold
different value types within one variable. Table 1.2 summarizes the
more common array types; subsequent sections cover each type
in more detail.

1.2.1 Numerical Arrays

Recall that scalars in MATLAB are 1 × 1 arrays, row vectors are 1 × n,
and column vectors measure m × 1. You can create a scalar by enter-
ing a numeric value at the input prompt (all inputs shown in italic):

7
ans =

7

Usually, it’s more practical to assign the input to a variable so you
can reuse it:

x = 7
x =

7
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Table 1.2 MATLAB Array Types

Array Type Description Example

Cell Cells can contain any data type
including strings, numbers, or
combinations of the two.

Row vector cell array:

{1, ‘a’, ‘text’, 1:10}

2 × 2 cell array matrix:

{1, ‘a’; ‘text’, 1:10}

Character Sequence of characters, typically short
pieces of text

‘a b c’

Dates and times Used to represent dates, times, and
durations. Covered in Chapter 2.

Datetime(‘1-Jan-2016’)

Duration(6,1,15) [6 hours,
1 minute, 15 seconds]

Logical False (0) or true (1) values in response
to a logical evaluation of a
relationship (x > y, for example)

val = 5 < 3

val =

logical
0

String Stores text “Hello” (note use of
double quote marks
versus singles for
character array)

Structure Groups logically related data into data
containers called fields. Each field
can contain any data type.

Structure Name: Employee

Fields:
Employee.LastName

Employee.FirstName

Employee.HireDate

Note that you can’t enter a character by itself because MATLAB
won’t recognize it:

a
Undefined function or variable 'a'

You can enter 'a' within single quote marks and it will be
assigned to the ans variable, but again, that’s not very useful for later
reference. It’s generally good practice to create named variables
with your work to avoid retyping the data, should you need to reuse
them later.

The variable-naming rules for MATLAB are straightforward:

• Start with a letter.
• Use only letters, numbers, and underscores.
• Keep the name’s length under 63 characters.
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This book’s convention will be to use mixed cases with variables
and functions whenever it’s practical. In those instances, names will
begin with a lowercase letter. Insert an uppercase letter for improved
readability if the name contains two or more words:

myVariable = value

MATLAB provides several methods for creating vectors from the
Command window. Enter the numbers within square brackets for a
row vector:

Row Vector

x = [1 2 3 4]
x =

1 2 3 4

Column Vector

Separate the elements with semicolons or add an apostrophe to trans-
pose a row vector:

x = [1; 2; 3; 4]
x =

1
2
3
4

or

x = [1 2 3 4]'
x =

1
2
3
4

Matrix

The vector-creation techniques also apply to matrices. Put square
brackets around the elements and separate rows with semicolons.
Here’s a 2 × 3 example:

x = [1 2 3; 3 4 5]
x =

1 2 3
3 4 5
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The transpose operator functions the same way as with vectors:

x'
x =

1 4
2 5
3 6

Concatenation

You can concatenate (join) compatibly sized vectors to create matri-
ces by enclosing the vectors in square brackets. Also, note the text’s
use of comment lines that begin with %, which is the same syntax
for MATLAB comments. Comment lines do not run as commands or
inputs—their purpose is to provide documentation for users.

a = [1 2 3];
b = [4 5 6];
% Horizontal concatenation
c = [a b]
c =

1 2 3 4 5 6

% Vertical concatenation
d = [a;b]
d =

1 2 3
4 5 6

MATLAB generates an error code if you try to concatenate
incompatibly sized vectors (or matrices):

x = [9; 10]
x =

9
10

% Stack d over x
y = [d; x]

Error using vertcat
Dimensions of matrices being concatenated are not consistent.

Vector Generation Functions

Several methods and functions allow you to create vectors and matri-
ces more efficiently than entering each element manually, as shown
in Table 1.3.
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Table 1.3 Functions that Create Vectors

Method / Function Description Examples

colon operator (:) Creates a vector from x to y
in increments of dt.
Default dt value = 1.

Format: z = x:dt:y

z = 1: 5

z =
1 2 3 4 5

z = 1:3:10

z =
1 4 7 10

linspace Creates a vector with a set
number of elements

z = linspace(x, y,
numberElements)

z = linspace(1,2,3)

z =
1.00 1.50 2.00

ones Creates an array with each
element equal to 1; can
also generate matrices

% 1 x 2 vector

z = ones(1,2)

z =
1
% 2 x 2 matrix

z = ones(2)

z =
1 1
1 1

zeros Creates an array with each
element equal to 0; can
also generate matrices

% 1 x 2 vector

x = zeros(1,2)

x =
0 0

% 2 x 2 matrix

x = zeros(2)

x =
0 0

0 0

eye Creates an identity matrix
with ones on the diagonal
and zeros elsewhere

z = eye(2)

z =
1 0

0 1
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Random-Number Generation Functions

Subsequent chapters review investment risk, and probabilities will
factor into those discussions. MATLAB includes several functions
that produce arrays of random numbers as shown in Table 1.4.

Table 1.4 Functions that Generate Random Numbers

Function Description Examples

rand(size) Generates a uniformly
distributed random
number or
sequence of
numbers between
0 and 1

% Single value

x = rand()

x =
0.9649

% 1 x 2 Vector

x = rand(1,2)

x =
0.1576 0.9706

% 2 x 2 Matrix

x = rand(2)

x =
0.4854 0.1419

0.8003 0.4218

randi(maximumValue)

randi(maximumValue,n)

randi(maximumValue,r,c)

Generates uniformly
distributed random
integers between 1
and maximumValue

% Random scalar between
1 and 100

x = randi(100)

x =
83

% 1 x 2 random vector
between 1 and 100

x = randi(100,1,2)

x =
70 32

% 2 x 2 random
matrix between 1 and 100

x = randi(100,2)

x =
96 44

4 39

(continued)
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Table 1.4 (continued )

Function Description Examples

randn(size) Generates a normally
distributed random
number or
sequence of
numbers

% Normally distributed
random scalar

x = randn

x =
0.3129

% Normally distributed
random 1 x 2 vector

x = randn(1,2)

x =
-0.8649 -0.0301

% Normally distributed
random 2 x 2 matrix

x = randn(2)

x =
-0.1649 1.0933

0.6277 1.1093

It’s worth noting that these results are pseudorandom numbers.
The explanation of a pseudorandom versus a genuine random
number is technical, but essentially, pseudorandom numbers are
based on an algorithm whose sequence can be replicated if you
repeat the initial settings. The MATLAB documentation has details
on how the program produces values for the random number
generator functions.

1.2.2 Math Calculations with Scalars, Vectors, and Matrices

MATLAB can perform extensive mathematical operations on data.
The array’s structure—scalar, vector, or matrix—will influence the
operations’ applications.

Scalars

Scalars’ operations include addition, subtraction, multiplication, divi-
sion, and exponentiation plus numerous more specialized function
calls. Table 1.5 lists the notation for the most common operations.
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Table 1.5 Common Scalar Operations

Operation Symbol Example

Addition + Numerical: 100 + 200
Variable: x + y

Character: ‘a’ + 1
Date:
datetime(‘1-Jan-2018’) + 5

Subtraction (or negation) − Same as addition plus negation

Multiplication * 100 * 200
x * y

x * 5

Division (by) / 10 / 5 = 2
x / y

Division (into) \ 10 \ 5 = 0.50
x \ y

Exponentiation ^ 2^3 = 8
x^y

Square root Function: sqrt() sqrt(144) = 12

To avoid conflict, these operators follow a precedence from high-
est to lowest:

Parentheses: ( )
Exponentiation: ^
Negation: −
Multiplication and division: *, /, and \
Addition and subtraction: +, −

For example, (2 + 6) * 3 is not equal to 2 + 6 * 3:

(2 + 6)* 3
ans =

24

2 + 6 * 3
ans =

20
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Vectors and Matrices

Many MATLAB math functions are vectorized; that is, you can apply
them directly to vectors and matrices as well as scalars. The sqrt func-
tion is an example of this feature:

x = [81 144];
sqrt(x)
ans =

9 12

y = randi(100,2)
y =

82 13
91 92

sqrt(y)
ans =

9.0554 3.6056
9.5394 9.5917

Addition/subtraction and multiplication/division with scalars
also work with vectors and matrices:

x + 10
ans =

91 154

y * 2
ans =

164 26
182 184

However, other math operations between vectors and matrices
are more complicated. Assume that you have an investment portfo-
lio with two positions (numShares) and their current market prices
(mktVals). The data are stored in two column vectors:

numShares = [100;200]
numShares =

100
200

mktVals = [38;65]
mktVals =

38
65
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The portfolio value is (100 × $38) + (200 × $65) or $16,800. An
intuitive way to calculate that value is to multiply numShares times
mktVals but that produces an error:

portVal = numShares * mktVals
Error using *
Inner matrix dimensions must agree.

This example illustrates the need for array operations. When two
vectors or matrices are the same size, you can operate on their cor-
responding elements. In MATLAB notation, this requires the use of
“dot” notation:

Multiplication: .*
Division: ./
Exponentiation: .ˆ

Examples:

portVal = numShares .* mktVals
portVal =

3800
13000

% The positions' values can be summed in the same calculation using
the sum function:

portValTotal = sum(numShares .* mktVals)
portValTotal =

16800

% Division with ./ reverses the multiplication
portVal ./ numShares
ans =

38
65

% Element by element matrix multiplication (versus matrix
multiplication)

a = [1 2; 3 4]
a =

1 2
3 4

b = [5 6; 7 8]
b =

5 6
7 8
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c = a .* b
c =

5 12
21 32

% Vector and matrix exponentiation
% Exponentiation with ˆ works on square matrices but not on other
sized vectors and matrices

x = [1 2;3 4];
xˆ2
ans =

7 10
15 22

x = [1 2 3];
xˆ2
Error using ˆ
One argument must be a square matrix and the other must be a scalar.
Use POWER (.ˆ) for elementwise power.

% Use .ˆ for element-by-element exponentiation
x = [1 2 3]:
x.ˆ2
ans =

1 4 9

Array multiplication and division proceed element by element
so the arrays must be the same size. Matrix multiplication and divi-
sion do not require same-sized arrays but they do require row-column
compatibility. This is usually expressed as shown in Table 1.6.

In words, the number of rows in the second matrix must equal the
number of columns in the first matrix. If that condition is satisfied,
matrix multiplication uses the standard * (star) notation:

% 2 x 3
a = [1 2 3; 4 5 6]
a =

1 2 3
4 5 6

Table 1.6 Row-column Compatibility

Matrix A Matrix B Result

Size: m × n n × p m × p

Example: 2 × 3 3 × 1 2 × 1



Trim Size: 6in x 9in McCarthy c01.tex V1 - 04/26/2018 8:05pm Page 15

�

� �

�

Working with MATLAB® Data 15

% 3 x 1
b = [7 8 9]'
b =

7
8
9

% Solution is 2 x 1
a * b
ans =

50
122

Reshaping Arrays

You’re likely to encounter array data stored differently than the
row-column shape you need for a particular analysis. The MATLAB
reshape function allows you to rearrange the data, provided the
new shape has the same number of elements as the original shape.
Suppose that you receive the data in a 10 × 1 vector but a more
logical layout would be a 2 × 5 matrix. The reshape function
syntax is:

reshape(original_array, desired number of rows, desired number of columns)

% A is the original 10 x 1 matrix
A = rand(10,1);

% Reshape to 5 x 2
B = reshape(A,5,2)
B =

0.8147 0.0975
0.9058 0.2785
0.1270 0.5469
0.9134 0.9575
0.6324 0.9649

The reshape function has other features. You can reshape the
original data into additional dimensions, assuming you have suffi-
cient data points. For example, you could reshape the A matrix into
three dimensions (row, column, depth) with an optional fourth argu-
ment (2, in this example):


