

C# 7.0
A L L - I N - O N E

C# 7.0
A L L - I N - O N E

by John Paul Mueller,
Bill Sempf, and Chuck Sphar

C# 7.0 All-in-One For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2018 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without
written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE
IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017958295

ISBN: 978-111-9-42811-4; ISBN 978-111-9-42810-7 (ebk); ISBN ePDF 978-111-9-42812-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Book 1: The Basics of C# Programming . 5
CHAPTER 1: Creating Your First C# Console Application . 7
CHAPTER 2:	 Living	with	Variability —	Declaring	Value-Type	Variables 23
CHAPTER 3: Pulling Strings . 45
CHAPTER 4: Smooth Operators . 75
CHAPTER 5:	 Getting	into	the	Program Flow . 89
CHAPTER 6:	 Lining	Up	Your	Ducks	with	Collections . 119
CHAPTER 7: Stepping through Collections . 149
CHAPTER 8: Buying Generic . 177
CHAPTER 9: Some Exceptional Exceptions . 201
CHAPTER 10: Creating Lists of Items with Enumerations . 223

Book 2: Object-Oriented C# Programming 233
CHAPTER 1:	 Object-Oriented	Programming —	What’s It	All	About? 235
CHAPTER 2: Showing Some Class . 243
CHAPTER 3:	 We	Have	Our	Methods . 257
CHAPTER 4:	 Let	Me	Say	This	about	this . 283
CHAPTER 5:	 Holding	a	Class	Responsible . 301
CHAPTER 6:	 Inheritance:	Is	That	All I Get? . 329
CHAPTER 7:	 Poly-what-ism? . 357
CHAPTER 8:	 Interfacing	with	the Interface . 385
CHAPTER 9:	 Delegating	Those	Important	Events . 411
CHAPTER 10:	Can	I	Use	Your	Namespace	in	the	Library? . 435
CHAPTER 11:	Improving	Productivity	with	Named	and	Optional	Parameters 459
CHAPTER 12: Interacting with Structures . 469

Book 3: Designing for C# . 483
CHAPTER 1:	 Writing	Secure	Code . 485
CHAPTER 2:	 Accessing	Data . 499
CHAPTER 3: Fishing the File Stream . 521
CHAPTER 4: Accessing the Internet . 543
CHAPTER 5: Creating Images . 559
CHAPTER 6:	 Programming	Dynamically! . 571

Book 4: A Tour of Visual Studio . 583
CHAPTER 1:	 Getting	Started	with	Visual	Studio . 585
CHAPTER 2: Using the Interface . 597
CHAPTER 3:	 Customizing	Visual	Studio . 623

Book 5: Windows Development with WPF 641
CHAPTER 1:	 Introducing	WPF . 643
CHAPTER 2:	 Understanding	the Basics	of	WPF . 653
CHAPTER 3:	 Data	Binding	in	WPF . 681
CHAPTER 4:	 Practical	WPF . 705

Book 6: Web Development with ASP.NET 721
CHAPTER 1:	 Looking	at	How	ASP.NET	Works	with	C# . 723
CHAPTER 2:	 Building	Web	Applications . 735
CHAPTER 3:	 Controlling	Your	Development	Experience . 753
CHAPTER 4:	 Leveraging	the	.NET	Framework . 783

Index . 801

Table of Contents vii

Table of Contents
INTRODUCTION . 1

About	This	Book .1
Foolish Assumptions .2
Icons	Used	in	This	Book .2
Beyond	the	Book .3
Where	to	Go	from	Here .4

BOOK 1: THE BASICS OF C# PROGRAMMING 5

CHAPTER 1: Creating Your First C# Console Application 7
Getting	a	Handle	on	Computer	Languages,	C#,	and	.NET 7

What’s	a	program? .8
What’s	C#? .8
What’s	.NET? .9
What	is	Visual	Studio	2017?	What	about	Visual	C#? 10

Creating Your First Console Application .11
Creating the source program .11
Taking	it	out	for	a	test	drive .16

Making	Your	Console	App	Do	Something .17
Reviewing	Your	Console	Application .18

The	program	framework .18
Comments .19
The	meat	of	the	program .20

Introducing	the	Toolbox	Trick .21
Saving	code	in	the	Toolbox .21
Reusing	code	from	the	Toolbox .22

CHAPTER 2:	 Living	with	Variability —	Declaring	
Value-Type Variables . 23
Declaring	a	Variable .24
What’s	an	int? .25

Rules	for	declaring	variables .25
Variations	on	a	theme:	Different	types	of	int 26

Representing	Fractions .27
Handling	Floating-Point	Variables .28

Declaring	a	floating-point	variable .29
Examining	some	limitations	of	floating-point	variables 30

Using	the	Decimal	Type:	Is	It	an	Integer	or	a	Float? 31
Declaring	a	decimal .32
Comparing	decimals,	integers,	and	floating-point	types 32

viii C# 7.0 All-in-One For Dummies

Examining	the	bool	Type:	Is	It	Logical? .33
Checking	Out	Character	Types .33

The	char	variable	type .34
Special chars .34
The	string	type .35

What’s	a	Value	Type? .36
Comparing	string	and	char .37
Calculating	Leap	Years:	DateTime .38
Declaring	Numeric	Constants .40
Changing	Types:	The	Cast .41
Letting	the	C#	Compiler	Infer	Data	Types .42

CHAPTER 3: Pulling Strings . 45
The	Union	Is	Indivisible,	and	So	Are	Strings .46
Performing Common Operations on a String .48
Comparing Strings .48

Equality	for	all	strings:	The	Compare()	method 49
Would	you	like	your	compares	with	or	without	case? 52

What	If	I	Want	to	Switch	Case? .53
Distinguishing	between	all-uppercase	and	
all-lowercase	strings .53
Converting	a	string	to	upper-	or	lowercase .54

Looping through a String .54
Searching Strings .55

Can	I	find	it? .55
Is	my	string	empty? .56

Getting	Input	from	the	Command	Line .57
Trimming	excess	white	space .57
Parsing numeric input . .57
Handling	a	series	of	numbers .60
Joining an array of strings into one string .62

Controlling	Output	Manually .62
Using	the	Trim()	and	Pad()	methods .63
Using	the	Concatenate()	method .65
Let’s	Split()	that	concatenate	program .67

Formatting Your Strings Precisely .68
StringBuilder:	Manipulating	Strings	More	Efficiently 73

CHAPTER 4: Smooth Operators . 75
Performing Arithmetic .75

Simple operators .75
Operating	orders .76
The	assignment	operator .77
The	increment	operator .78

Table of Contents ix

Performing	Logical	Comparisons —	Is	That	Logical? 79
Comparing	floating-point	numbers:	Is	your	float	
bigger	than	mine? .80
Compounding	the	confusion	with	compound	
logical operations .81

Matching	Expression	Types	at	TrackDownAMate.com 83
Calculating the type of an operation .84
Assigning types .85
Changing	how	an	operator	works:	Operator	overloading 86

CHAPTER 5:	 Getting	into	the	Program Flow . 89
Branching	Out	with	if	and	switch .90

Introducing	the	if	statement .91
Examining the else statement .94
Avoiding	even	the	else .95
Nesting if statements .96
Running	the	switchboard .99

Here	We	Go	Loop-the-Loop .101
Looping for a while .102
Doing	the	do . . . while	loop .106
Breaking	up	is	easy	to	do .106
Looping until you get it right .107
Focusing on scope rules .112

Looping	a	Specified	Number	of	Times	with for 112
An example .113
Why	do	you	need	another	loop? .114

Nesting Loops .115
Don’t	goto	Pieces .116

CHAPTER 6: Lining Up Your Ducks with Collections 119
The	C#	Array .120

The	argument	for	the	array .120
The	fixed-value	array .121
The	variable-length	array .122
The	Length	property .125
Initializing an array .126

Processing Arrays by Using foreach .126
Sorting	Arrays	of	Data .128
Using var for Arrays . .132
Loosening Up with C# Collections .133
Understanding	Collection	Syntax .134

Figuring	out	<T> .135
Going generic .135

x C# 7.0 All-in-One For Dummies

Using Lists .136
Instantiating an empty list .136
Creating a list of type int .137
Creating	a	list	to	hold	objects .137
Converting	between	lists	and	arrays .138
Counting list elements .138
Searching lists .138
Performing	other	list	tasks .138

Using	Dictionaries .139
Creating	a	dictionary .139
Searching	a	dictionary .139
Iterating	a	dictionary .140

Array	and	Collection	Initializers .141
Initializing arrays .141
Initializing collections .141

Using Sets .142
Performing	special	set	tasks .143
Creating a set .143
Adding	items	to	a	set .144
Performing a union .144
Performing an intersection .145
Performing	a	difference .147

On	Not	Using	Old-Fashioned	Collections .147

CHAPTER 7: Stepping through Collections . 149
Iterating	through	a	Directory	of	Files .149

Using	the	LoopThroughFiles	program .150
Getting	started .151
Obtaining the initial input .151
Creating	a	list	of	files .153
Formating the output lines .154
Displaying	the	hexadecimal	output .155

Iterating foreach Collections: Iterators .157
Accessing	a	collection:	The	general	problem 157
Letting	C#	access	data	foreach	container .159

Accessing	Collections	the	Array	Way:	Indexers 160
Indexer	format .161
An	indexer	program	example .161

Looping	Around	the	Iterator	Block .165
Creating	the	required	iterator	block	framework 166
Iterating	days	of	the	month:	A	first	example 168
What	a	collection	is,	really .170
Iterator syntax gives up so easily .171
Iterator	blocks	of	all	shapes	and	sizes .173

Table of Contents xi

CHAPTER 8: Buying Generic . 177
Writing	a	New	Prescription:	Generics .178

Generics	are	type-safe .178
Generics	are	efficient .179

Classy	Generics:	Writing	Your	Own .179
Shipping	packages	at	OOPs .180
Queuing at OOPs: PriorityQueue .181
Unwrapping	the	package .186
Touring	Main() .188
Writing	generic	code	the	easy	way .189
Saving PriorityQueue for last .190
Using	a	(nongeneric)	Simple	Factory	class .193
Tending	to	unfinished	business .195

Revising	Generics .197
Variance .198
Contravariance .199
Covariance .200

CHAPTER 9: Some Exceptional Exceptions . 201
Using	an	Exceptional	Error-Reporting	Mechanism 202

About	try	blocks .203
About	catch	blocks .203
About	finally	blocks .204
What	happens	when	an	exception	is	thrown 205

Throwing	Exceptions	Yourself .207
Knowing	What	Exceptions	Are	For .207
Can	I	Get	an	Exceptional	Example? .208

Knowing	what	makes	the	example	exceptional 210
Tracing	the	stack .210

Assigning	Multiple	catch	Blocks .211
Planning	Your	Exception-Handling	Strategy .214

Some	questions	to	guide	your	planning .214
Guidelines	for	code	that	handles	errors	well 215
How	to	analyze	a	method	for	possible	exceptions 216
How	to	find	out	which	methods	throw	which	exceptions 218

Grabbing Your Last Chance to Catch an Exception 219
Throwing	Expressions .220

CHAPTER 10: Creating Lists of Items with Enumerations 223
Seeing	Enumerations	in	the	Real	World .224
Working	with	Enumerations .225

Using	the	enum	keyword .225
Creating enumerations with initializers .226
Specifying	an	enumeration	data	type .227

Creating	Enumerated	Flags .228
Defining	Enumerated	Switches .230

xii C# 7.0 All-in-One For Dummies

BOOK 2: OBJECT-ORIENTED C# PROGRAMMING 233

CHAPTER 1:	 Object-Oriented	Programming —	
What’s It	All	About? . 235
Object-Oriented	Concept	#1:	Abstraction .235

Preparing	procedural	trips .236
Preparing	object-oriented	trips .237

Object-Oriented	Concept	#2:	Classification .238
Why	Classify? .238
Object-Oriented	Concept	#3:	Usable	Interfaces 239
Object-Oriented	Concept	#4:	Access	Control .240
How	C#	Supports	Object-Oriented	Concepts .241

CHAPTER 2: Showing Some Class . 243
Defining	a	Class	and	an	Object .244

Defining	a	class .244
What’s	the	object? .245

Accessing	the	Members	of	an	Object .246
An	Object-Based	Program	Example .247
Discriminating	between	Objects .249
Can	You	Give	Me	References? .249
Classes	That	Contain	Classes	Are	the	Happiest	Classes	
in	the	World .252
Generating	Static	in	Class	Members .253
Defining	const	and	readonly	Data	Members .255

CHAPTER 3: We Have Our Methods . 257
Defining	and	Using	a	Method .257
A	Method	Example	for	Your	Files .259
Having	Arguments	with	Methods .267

Passing	an	argument	to	a	method .267
Passing	multiple	arguments	to	methods .268
Matching	argument	definitions	with	usage 270
Overloading	a	method	doesn’t	mean	giving	it	too	
much	to	do .271
Implementing	default	arguments .272

Returning	Values	after	Christmas .275
Returning	a	value	via	return	postage .276
Defining	a	method	with	no	value .277

Returning	Multiple	Values	Using	Tuples .279
Using	a	single-entry	tuple .279
Relying	on	the	Create()	method .280
Using	a	multi-entry	tuple .281
Creating tuples with more than two items 282

Table of Contents xiii

CHAPTER 4: Let Me Say This about this . 283
Passing	an	Object	to	a	Method .283
Defining	Methods .285

Defining	a	static	method .286
Defining	an	instance	method . .287
Expanding	a	method’s	full	name .289

Accessing the Current Object .290
What	is	the	this	keyword? .292
When	is	this	explicit? .293
What	happens	when	you	don’t	have	this? .296

Using Local Functions .298

CHAPTER 5: Holding a Class Responsible . 301
Restricting	Access	to	Class	Members .301

A	public	example	of	public	BankAccount .302
Jumping	ahead —	other	levels	of	security .305

Why	You	Should	Worry	about	Access Control 306
Accessor	methods .307
Access	control	to	the	rescue —	an	example 307
So	what? .311

Defining	Class	Properties .312
Static properties . .313
Properties	with	side	effects .314
Letting	the	compiler	write	properties	for you 314
Accessors with access levels .315

Getting	Your	Objects	Off	to	a	Good	Start —	Constructors 315
The	C#-Provided	Constructor .316
Replacing	the	Default	Constructor .317

Constructing something .319
Initializing	an	object	directly	with	an		initializer 321
Seeing	that	construction	stuff	with		initializers 322
Initializing an object without a constructor 323

Using	Expression-Bodied	Members .324
Creating	expression-bodied	methods .325
Defining	expression-bodied	properties .325
Defining	expression-bodied	constructors	and	destructors 325
Defining	expression-bodied	property	accessors 326
Defining	expression-bodied	event	accessors 326

CHAPTER 6:	 Inheritance:	Is	That	All I Get? . 329
Class Inheritance .330
Why	You	Need	Inheritance .332
Inheriting	from	a	BankAccount	Class	(a	More	Complex	Example) . . . 333

xiv C# 7.0 All-in-One For Dummies

IS_A	versus	HAS_A —	I’m	So	Confused_A .336
The	IS_A	relationship .337
Gaining	access	to	BankAccount	by using containment 338
The	HAS_A	relationship . .339

When	to	IS_A	and	When	to	HAS_A .340
Other	Features	That	Support	Inheritance .340

Substitutable classes .341
Invalid	casts	at	runtime .341
Avoiding	invalid	conversions	with	the	is	operator 342
Avoiding	invalid	conversions	with	the	as	operator 343

The	object	Class .344
Inheritance	and	the	Constructor .345

Invoking	the	default	base	class	constructor 346
Passing arguments to the base class constructor 347
Getting	specific	with	base .349

The	Updated	BankAccount	Class .350

CHAPTER 7:	 Poly-what-ism? . 357
Overloading	an	Inherited	Method .358

It’s	a	simple	case	of	method	overloading .358
Different	class,	different	method .359
Peek-a-boo —	hiding	a	base	class	method 359
Calling	back	to	base . .364

Polymorphism .366
Using	the	declared	type	every	time	(Is	that	so	wrong?) 368
Using	is	to	access	a	hidden	method		polymorphically 369
Declaring	a	method	virtual	and	overriding	it 371
Getting	the	most	benefit	from		polymorphism 374

The	Class	Business	Card:	ToString() .374
C#	During	Its	Abstract	Period .374

Class factoring .375
The	abstract	class:	Left	with	nothing	but	a	concept 380
How	do	you	use	an	abstract	class? .381
Creating	an	abstract	object —	not! .383

Sealing a Class .383

CHAPTER 8:	 Interfacing	with	the Interface . 385
Introducing	CAN_BE_USED_AS .385
Knowing	What	an	Interface	Is .387

How	to	implement	an	interface .388
How	to	name	your	interface .389
Why	C#	includes	interfaces .389
Mixing	inheritance	and	interface	implementation 389
And	he-e-e-re’s	the	payoff .390

Table of Contents xv

Using an Interface .391
As	a	method	return	type .391
As the base type of an array or collection .391
As a more general type of object reference 392

Using	the	C#	Predefined	Interface	Types .392
Looking	at	a	Program	That	CAN_BE_USED_AS	an	Example393

Creating your own interface at home in your spare time 393
Implementing	the	incomparable	IComparable<T>	interface 395
Putting it all together .396
Getting	back	to	the	Main()	event .400

Unifying	Class	Hierarchies .401
Hiding	Behind	an	Interface .403
Inheriting an Interface .406
Using	Interfaces	to	Manage	Change	in	Object-Oriented	
Programs .407

Making	flexible	dependencies	through		interfaces 408
Abstract	or	concrete:	When	to	use	an	abstract	class	
and	when	to	use	an	interface .408
Doing	HAS_A	with	interfaces .409

CHAPTER 9: Delegating Those Important Events 411
E.T.,	Phone	Home —	The	Callback	Problem .412
Defining	a	Delegate .412
Pass	Me	the	Code,	Please —	Examples .414

Delegating	the	task .415
First,	a	simple	example .415

A	More	Real-World	Example .417
Getting an overview of the bigger example 417
Putting the app together .418
Looking	at	the	code .421
Tracking	the	delegate	life	cycle .423

Shh!	Keep	It	Quiet —	Anonymous	Methods .426
Stuff	Happens —	C#	Events .427

The	Observer	design	pattern .427
What’s	an	event?	Publish/Subscribe .427
How	a	publisher	advertises	its	events .428
How	subscribers	subscribe	to	an	event .429
How	to	publish	an	event .429
How	to	pass	extra	information	to	an	event	handler 430
A	recommended	way	to	raise	your	events 431
How	observers	“handle”	an	event .432

xvi C# 7.0 All-in-One For Dummies

CHAPTER 10:	Can	I	Use	Your	Namespace	in	the	Library? 435
Dividing	a	Single	Program	into	Multiple	Source	Files 436
Dividing	a	Single	Program	into	Multiple	Assemblies 437

Executable	or	library? .437
Assemblies .438
Executables . .439
Class libraries .439

Putting Your Classes into Class Libraries .440
Creating the projects for a class library .440
Creating	a	stand-alone	class	library .440
Adding	a	second	project	to	an	existing		solution 442
Creating classes for the library .443
Using a test application to test a library .444

Going	Beyond	Public	and	Private:	More	Access	Keywords 446
Internal: For CIA eyes only .446
Protected:	Sharing	with	subclasses .449
Protected	internal:	Being	a	more	generous	protector 451

Putting Classes into Namespaces .452
Declaring	a	namespace .453
Relating	namespaces	to	the	access	keyword	story 455
Using	fully	qualified	names .456

CHAPTER 11: Improving Productivity with Named
and Optional Parameters . 459
Exploring Optional Parameters .460

Reference	types .462
Output parameters .464

Looking	at	Named	Parameters .464
Dealing	with	Overload	Resolution . .465
Using	Alternative	Methods	to	Return	Values .466

Working	with	out	variables .466
Returning	values	by	reference .467

CHAPTER 12: Interacting with Structures . 469
Comparing Structures to Classes .470

Considering	struct	limits .470
Understanding	the	value	type	difference .470
Determining	when	to	use	struct	versus	class 471

Creating Structures .472
Defining	a	basic	struct .472
Including	common	struct	elements .473

Using	Structures	as	Records .479
Managing	a	single	record .479
Adding	structures	to	arrays .480
Overriding	methods .481

Table of Contents xvii

BOOK 3: DESIGNING FOR C# . 483

CHAPTER 1: Writing Secure Code . 485
Designing	Secure	Software .486

Determining	what	to	protect .486
Documenting	the	components	of	the		program 486
Decomposing	components	into	functions .487
Identifying	potential	threats	in	functions .487
Rating	the	risk .488

Building	Secure	Windows	Applications .488
Authentication	using	Windows	login .489
Encrypting information .492
Deployment	security .493

Building	Secure	Web	Forms	Applications .493
SQL	Injection	attacks .494
Script exploits .495
Best	practices	for	securing	Web	Forms		applications 497

Using System .Security .498

CHAPTER 2: Accessing Data . 499
Getting	to	Know	System.Data .500
How	the	Data	Classes	Fit	into	the	Framework 502
Getting	to	Your	Data .502
Using	the	System.Data	Namespace .503

Setting	up	a	sample	database	schema .503
Connecting	to	a	data	source .504
Working	with	the	visual	tools .510
Writing	data	code .513
Using	the	Entity	Framework .516

CHAPTER 3: Fishing the File Stream . 521
Going	Where	the	Fish	Are:	The	File	Stream .521

Streams .522
Readers	and	writers .522

StreamWriting	for	Old	Walter .524
Using the stream: An example .525
Revving	up	a	new	outboard	StreamWriter 528
Finally,	you’re	writing! .531
Using	some	better	fishing	gear:	The	using	statement 532

Pulling	Them	Out	of	the	Stream:	Using	StreamReader 536
More	Readers	and	Writers .540
Exploring	More	Streams	than	Lewis	and	Clark 542

xviii C# 7.0 All-in-One For Dummies

CHAPTER 4: Accessing the Internet . 543
Getting to Know System .Net .544
How	Net	Classes	Fit	into	the	Framework .545
Using the System .Net Namespace .547

Checking	the	network	status .547
Downloading	a	file	from	the	Internet .549
Emailing a status report .552
Logging	network	activity .555

CHAPTER 5: Creating Images . 559
Getting	to	Know	System.Drawing .560

Graphics .560
Pens .561
Brushes .561
Text .561

How	the	Drawing	Classes	Fit	into	the	Framework 563
Using	the	System.Drawing	Namespace .564

Getting	started .564
Setting up the project .565
Handling	the	score .566
Creating an event connection .567
Drawing	the	board .568
Starting a new game .570

CHAPTER 6: Programming Dynamically! . 571
Shifting	C#	Toward	Dynamic	Typing .572
Employing	Dynamic	Programming	Techniques 574
Putting	Dynamic	to	Use .576

Classic examples .577
Making	static	operations	dynamic .577
Understanding	what’s	happening	under	the	covers 578

Running	with	the	Dynamic	Language	Runtime 579
Dynamic	Ruby .580
Dynamic	C# .581

BOOK 4: A TOUR OF VISUAL STUDIO . 583

CHAPTER 1: Getting Started with Visual Studio 585
Versioning the Versions .586

Community	edition .586
Professional	edition .588
Enterprise	edition .589
MSDN .590

Table of Contents xix

Installing	Visual	Studio .590
Breaking	Down	the	Projects .592

Exploring	the	New	Project	dialog	box . .593
Understanding	solutions	and	projects .594

CHAPTER 2: Using the Interface . 597
Designing	in	the	Designer .597

Windows	Presentation	Foundation	(WPF) .598
Windows	Forms .600
Web	Forms .601
Class	Designer .602

Paneling	the	Studio .605
Solution Explorer .605
Properties .608
The	Toolbox .609
Server Explorer .610
Class View .612

Coding	in	the	Code	Editor .612
Exercising	the	Code	Editor .613
Exploring	the	auxiliary	windows .614

Using	the	Tools	of	the	Trade .616
The	Tools	menu .616
Building .618

Using	the	Debugger	as	an	Aid	to	Learning .618
Stepping	through	code .618
Going	to	a	particular	code	location .619
Watching	application	data .620
Viewing application internals .621

CHAPTER 3: Customizing Visual Studio . 623
Setting Options .624

Environment .625
Language .626
Neat	stuff .627

Using Snippets .628
Using snippets .628
Using	surround	snippets .630
Making	snippets .631
Deploying	snippets .632
Sharing snippets .633

Hacking	the	Project	Types .634
Hacking	project	templates .634
Hacking	item	templates .638

xx C# 7.0 All-in-One For Dummies

BOOK 5: WINDOWS DEVELOPMENT WITH WPF 641

CHAPTER 1: Introducing WPF . 643
Understanding	What	WPF	Can	Do .643
Introducing	XAML .645
Diving	In!	Creating	Your	First	WPF	Application 646

Declaring	an	application-scoped	resource 648
Making	the	application	do	something .649

Whatever	XAML	Can	Do,	C#	Can	Do	Better! .651

CHAPTER 2:	 Understanding	the Basics	of	WPF 653
Using	WPF	to	Lay	Out	Your	Application .654
Arranging Elements with Layout Panels .655

The	Stack	Panel .655
The	Wrap	Panel .657
The	Dock	Panel .658
Canvas .659
The	Uniform	Grid .660
The	Grid .661
Putting	it	all	together	with	a	simple	data	entry	form 668
Panels of honorable mention .670

Exploring	Common	XAML	Controls . .671
Display-only	controls .671
Basic input controls .673
List-based	controls .676

CHAPTER 3: Data Binding in WPF . 681
Getting	to	Know	Dependency	Properties .681
Exploring	the	Binding	Modes .682
Investigating	the	Binding	Object .683

Defining	a	binding	with	XAML .683
Defining	a	binding	with	C# .686

Editing,	Validating,	Converting,	and	Visualizing	Your	Data 687
Validating	data .692
Converting	your	data .696

Finding	Out	More	about	WPF	Data	Binding .704

CHAPTER 4: Practical WPF . 705
Commanding	Attention .705

Traditional	event	handling .706
ICommand .707
Routed	commands .708

Using	Built-In	Commands . .708

Table of Contents xxi

Using	Custom	Commands .711
Defining	the	interface .711
Creating	the	window	binding .712
Ensuring	that	the	command	can	execute .713
Performing	the	task . .714

Using	Routed	Commands .716
Defining	the	Command	class .716
Making	the	namespace	accessible .716
Adding	the	command	bindings .717
Developing	a	user	interface .717
Developing	the	custom	command	code	behind 718

BOOK 6: WEB DEVELOPMENT WITH ASP.NET 721

CHAPTER 1: Looking at How ASP.NET Works with C# 723
Breaking	Down	Web	Applications .724
Questioning the Client .726

Scripting the client .727
Getting	information	back	from	the	client .728
Understanding	the	weaknesses	of	the	browser 728

Dealing	with	Web	Servers .730
Getting	a	PostBack	(Hint:	It’s	not	a	returned	package)731
It’s	a	matter	of	state .734

CHAPTER 2: Building Web Applications . 735
Working	in	Visual	Studio .736

Two	project	approaches .736
Creating	a	standard	project .737
Creating a website .748

Developing	with	Style .749
Coding	behind .750
Building	in	n-tier .751
Modeling	the	View	Controller .752

CHAPTER 3: Controlling Your Development Experience 753
Showing	Stuff	to	the	User .754

Labels	versus	plain	old	text .754
Images .757
Panels	and	multiviews .758
Tables .759

Getting Some Input from the User .760
Using text input controls .760
Using	single-item	selection	controls .762
Using	multiple-item	selection	controls .764
Using	other	kinds	of	input	controls .766
Submitting input with submit buttons .766

xxii C# 7.0 All-in-One For Dummies

Data	Binding .767
Setting	up	your	markup	for	binding .767
Data	binding	using	the	code-behind .771
Using	commonly	bound	controls .773

Styling Your Controls .775
Setting control properties .775
Binding	styles	with	CSS .776

Making	Sure	the	Site	Is	Accessible .777
Constructing User Controls .779

Making	a	new	phone	number	User	Control 779
Using your new control .780

CHAPTER 4: Leveraging the .NET Framework . 783
Surfing	Web	Streams .784

Intercepting the request .784
Altering content sent to clients .788

Securing	ASP.NET .789
Changing trusts .790
Fixing problems .790

Managing	Files .791
Baking	Cookies .792

Coding	for	client-side	storage .793
How	ASP.NET	manages	cookies	for	you .795

Tracing	with	TraceContext .796
Navigating	with	Site	Maps .798

Navigating	a	site	with	SiteMap . .800

INDEX . 801

Introduction 1

Introduction

C# is an amazing language! You can use this single language to do every-
thing from desktop development to creating web applications and even
web-based application programming interfaces (APIs). While other devel-

opers have to overcome deficiencies in their languages to create even a subset of
the application types that C# supports with aplomb, you can be coding your appli-
cation, testing, and then sitting on the beach enjoying the fruits of your efforts.
Of course, any language that does this much requires a bit of explanation, and C#
7.0 All-in-One For Dummies is your doorway to this new adventure in development.

So, why do you need C# 7.0 All-in-One For Dummies specifically? This book stresses
learning the basics of the C# language before you do anything else. With this in
mind, the book begins with all the C# basics in Books 1 through 3, helps you get
Visual Studio 2017 installed in Book 4, and then takes you through more advanced
development tasks, including basic web development, in Books 5 through 6. Using
this book helps you get the most you can from C# 7.0 in the least possible time.

About This Book
Even if you have past experience with C#, the new features in C# 7.0 will have you
producing feature-rich applications in an even shorter time than you may have
before. C# 7.0 All-in-One For Dummies introduces you to all these new features.
For example, you discover the new pattern-matching techniques that C# 7.0
provides. You also discover the wonders of using tuples and local functions. Even
the use of literals has improved, but you’ll have to look inside to find out how.
This particular book is designed to make using C# 7.0 fast and easy; it removes
the complexity that you may have experienced when trying to learn about these
topics online.

To help you absorb the concepts, this book uses the following conventions:

 » Text that you’re meant to type just as it appears in the book is in bold. The
exception is when you’re working through a step list: Because each step is
bold, the text to type is not bold.

2 C# 7.0 All-in-One For Dummies

 » Words for you to type that are also in italics are meant as placeholders; you
need to replace them with something that works for you. For example, if you
see “Type Your Name and press Enter,” you need to replace Your Name with
your actual name.

 » I also use italics for terms I define. This means that you don’t have to rely on
other sources to provide the definitions you need.

 » Web addresses and programming code appear in monofont. If you’re reading
a digital version of this book on a device connected to the Internet, you can
click the live link to visit a website, like this: www.dummies.com.

 » When you need to click command sequences, you see them separated by a
special arrow, like this: File ➪ New File, which tells you to click File and then
click New File.

Foolish Assumptions
You might have a hard time believing that I’ve assumed anything about you —
after all, I haven’t even met you yet! Although most assumptions are indeed fool-
ish, I made certain assumptions to provide a starting point for the book.

The most important assumption is that you know how to use Windows, have a
copy of Windows properly installed, and are familiar with using Windows appli-
cations. If installing an application is still a mystery to you, you might find this
book a bit hard to use. While reading this book, you need to install applications,
discover how to use them, and create simple applications of your own.

You also need to know how to work with the Internet to some degree. Many of
the materials, including the downloadable source, appear online, and you need
to download them in order to get the maximum value from the book. In addition,
Book 6 assumes that you have a certain knowledge of the Internet when working
through web-based applications and web-based services.

Icons Used in This Book
As you read this book, you encounter icons in the margins that indicate material of
special interest (or not, as the case may be!). Here’s what the icons mean:

www.dummies.com/

Introduction 3

Tips are nice because they help you save time or perform some task without a
lot of extra work. The tips in this book are timesaving techniques or pointers to
resources that you should try so that you can get the maximum benefit when
 performing C#-related tasks.

I don’t want to sound like an angry parent or some kind of maniac, but you should
avoid doing anything that’s marked with a Warning icon. Otherwise, you might
find that your configuration fails to work as expected, you get incorrect results
from seemingly bulletproof processes, or (in the worst-case scenario) you lose
data.

Whenever you see this icon, think advanced tip or technique. You might find these
tidbits of useful information just too boring for words, or they could contain the
solution you need to get a C# application running. Skip these bits of information
whenever you like.

If you don’t get anything else out of a particular chapter or section, remember the
material marked by this icon. This text usually contains an essential process or a
bit of information that you must know to work with C#.

Beyond the Book
This book isn’t the end of your C# learning experience — it’s really just the begin-
ning. John Mueller provides online content to make this book more flexible and
better able to meet your needs. Also, you can send John email. He’ll address your
book-specific questions and tell you how updates to C# or its associated add-ons
affect book content through blog posts. Here are some cool online additions to
this book:

 » Cheat sheet: You remember using crib notes in school to make a better mark on
a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides you
with some special notes about tasks that you can do with C# that not every other
person knows. To find the cheat sheet for this book, go to www.dummies.com
and search for C# 7.0 All-in-One For Dummies Cheat Sheet. It contains really neat
information such as how to figure out which template you want to use.

 » Updates: Sometimes changes happen. For example, I might not have seen an
upcoming change when I looked into my crystal ball during the writing of this
book. In the past, this possibility simply meant that the book became outdated
and less useful, but you can now find updates to the book at www.dummies.com.

www.dummies.com/
www.dummies.com/

4 C# 7.0 All-in-One For Dummies

In addition to these updates, check out the blog posts with answers to
reader questions and demonstrations of useful book-related techniques
at http://blog.johnmuellerbooks.com/.

 » Companion files: Hey! Who really wants to type all the code in the book
manually? Most readers prefer to spend their time actually working with C#,
creating amazing new applications that change the world, and seeing the
interesting things they can do, rather than typing. Fortunately for you, the
examples used in the book are available for download, so all you need to do is
read the book to learn C# development techniques. You can find these files at
www.dummies.com. You can also download Online Chapters 1–7. To find the
source code and online chapters, search this book’s title at www.dummies.com
and locate the Downloads tab on the page that appears.

Where to Go from Here
Anyone who is unfamiliar with C# should start with Book 1, Chapter 1 and move
from there to the end of the book. This book is designed to make it easy for you to
discover the benefits of using C# from the outset. Later, after you’ve seen enough
C# code, you can install Visual Studio and then try the programming examples
found in the first three minibooks.

This book assumes that you want to see C# code from the outset. However, if you
want to interact with that code, you really need to have a copy of Visual Studio
2017 installed. (Some examples will not work at all with older Visual Studio ver-
sions.) With this in mind, you may want to skip right to Book 4 to discover how to
get your own copy of Visual Studio 2017. To help ensure that everyone can partici-
pate, this book focuses on the features offered by Visual Studio 2017 Community
Edition, which is a free download. That’s right, you can discover the wonders of
C# 7.0 without paying a dime!

The more you know about C#, the further you can start in the book. If all you’re
really interested in is an update of your existing skills, check out Book 1, Chapter 1
to discover the changes in C#. Then, scan the first three minibooks looking for
points of interest. Install C# by using the instructions in Book 4, Chapter 1, and
then move on toward the advanced techniques found in later chapters.

http://blog.johnmuellerbooks.com/
www.dummies.com/
www.dummies.com/

1The Basics of C#
Programming

Contents at a Glance
CHAPTER 1: Creating Your First C# Console Application 7

CHAPTER 2:	 Living	with	Variability —	Declaring	
Value-Type Variables . 23

CHAPTER 3: Pulling Strings . 45

CHAPTER 4: Smooth Operators . 75

CHAPTER 5:	 Getting	into	the	Program Flow . 89

CHAPTER 6:	 Lining	Up	Your	Ducks	with	Collections 119

CHAPTER 7: Stepping through Collections . 149

CHAPTER 8: Buying Generic . 177

CHAPTER 9: Some Exceptional Exceptions . 201

CHAPTER 10: Creating Lists of Items with Enumerations 223

CHAPTER 1 Creating Your First C# Console Application 7

Creating Your First C#
Console Application

This chapter explains a little bit about computers, computer languages —
including the computer language C# (pronounced “see sharp”) — and
Visual Studio 2017. You then create a simple program written in C#.

Getting a Handle on Computer
Languages, C#, and .NET

A computer is an amazingly fast but incredibly stupid servant. Computers will do
anything you ask them to (within reason); they do it extremely fast — and they’re
getting faster all the time.

Unfortunately, computers don’t understand anything that resembles a human
language. Oh, you may come back at me and say something like, “Hey, my tele-
phone lets me dial my friend by just speaking his name.” Yes, a tiny computer
runs your telephone. So that computer speaks English. But that’s a computer
 program that understands English, not the computer itself.

Chapter 1

IN THIS CHAPTER

 » Getting a quick introduction to
programming

 » Creating a simple console application

 » Examining the console application

 » Saving code for later

8 BOOK 1 The Basics of C# Programming

The language that computers truly understand is machine language. It’s possible,
but extremely difficult and error prone, for humans to write machine language.

Humans and computers have decided to meet somewhere in the middle. Program-
mers create programs in a language that isn’t nearly as free as human speech, but
it’s a lot more flexible and easier to use than machine language. The languages
occupying this middle ground — C#, for example — are high-level computer lan-
guages. (High is a relative term here.)

What’s a program?
What is a program? In a practical sense, a Windows program is an executable file
that you can run by double-clicking its icon. For example, Microsoft Word, the
editor used to write this book, is a program. You call that an executable program, or
executable for short. The names of executable program files generally end with the
extension .exe. Word, for example, is Winword.exe.

But a program is something else as well. An executable program consists of one or
more source files. A C# source file, for instance, is a text file that contains a sequence
of C# commands, which fit together according to the laws of C# grammar. This
file is known as a source file, probably because it’s a source of frustration and
anxiety.

Uh, grammar? There’s going to be grammar? Just the C# kind, which is much
easier than the kind most people struggled with in junior high school.

What’s C#?
The C# programming language is one of those intermediate languages that
 programmers use to create executable programs. C# combines the range of the
powerful but complicated C++ (pronounced “see plus plus”) with the ease of use
of the friendly but more verbose Visual Basic. (Visual Basic’s newer .NET incar-
nation is almost on par with C# in most respects. As the flagship language of
.NET, C# tends to introduce most new features first.) A C# program file carries
the extension .cs.

Some people have pointed out that C sharp and D flat are the same note, but
you shouldn’t refer to this new language as “D flat” within earshot of Redmond,
Washington.

C# is

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C#

Co
ns

ol
e

A
pp

lic
at

io
n

CHAPTER 1 Creating Your First C# Console Application 9

 » Flexible: C# programs can execute on the current machine, or they can be
transmitted over the web and executed on some distant computer.

 » Powerful: C# has essentially the same command set as C++ but with the
rough edges filed smooth.

 » Easier to use: C# error-proofs the commands responsible for most C++
errors, so you spend far less time chasing down those errors.

 » Visually oriented: The .NET code library that C# uses for many of its capabili-
ties provides the help needed to readily create complicated display frames
with drop-down lists, tabbed windows, grouped buttons, scroll bars, and
background images, to name just a few.

.NET is pronounced “dot net.”

 » Internet-friendly: C# plays a pivotal role in the .NET Framework, Microsoft’s
current approach to programming for Windows, the Internet, and beyond.

 » Secure: Any language intended for use on the Internet must include serious
security to protect against malevolent hackers.

Finally, C# is an integral part of .NET.

This book is primarily about the C# language. If your primary goal is to use Visual
Studio, program Windows 8 or 10 apps, or ASP.NET, the For Dummies books on
those topics go well with this book. You can find a good amount of information
later in this book on how to use C# to write Windows, web, and service applications.

What’s .NET?
.NET began several years ago as Microsoft’s strategy to open the web to mere
mortals like you and me. Today, it’s bigger than that, encompassing everything
Microsoft does. In particular, it’s the new way to program for Windows. It also
gives a C-based language, C#, the simple, visual tools that made Visual Basic so
popular.

A little background helps you see the roots of C# and .NET. Internet programming
was traditionally very difficult in older languages such as C and C++. Sun Micro-
systems responded to that problem by creating the Java programming language.
To create Java, Sun took the grammar of C++, made it a lot more user friendly, and
centered it around distributed development.

When programmers say “distributed,” they’re describing geographically dis-
persed computers running programs that talk to each other — via the Internet in
many cases.

10 BOOK 1 The Basics of C# Programming

When Microsoft licensed Java some years ago, it ran into legal difficulties with
Sun over changes it wanted to make to the language. As a result, Microsoft more
or less gave up on Java and started looking for ways to compete with it.

Being forced out of Java was just as well because Java has a serious problem:
Although Java is a capable language, you pretty much have to write your entire
program in Java to get the full benefit. Microsoft had too many developers and too
many millions of lines of existing source code, so Microsoft had to come up with
some way to support multiple languages. Enter .NET.

.NET is a framework, in many ways similar to Java’s libraries — and the C# lan-
guage is highly similar to the Java language. Just as Java is both the language itself
and its extensive code library, C# is really much more than just the keywords
and syntax of the C# language. It’s those things empowered by a well-organized
library containing thousands of code elements that simplify doing about any kind
of programming you can imagine, from web-based databases to cryptography to
the humble Windows dialog box.

Microsoft would claim that .NET is much superior to Sun’s suite of web tools
based on Java, but that’s not the point. Unlike Java, .NET doesn’t require you to
rewrite existing programs. A Visual Basic programmer can add just a few lines to
make an existing program web-knowledgeable (meaning that it knows how to get
data off the Internet). .NET supports all the common Microsoft languages — and
hundreds of other languages written by third-party vendors. However, C# is the
flagship language of the .NET fleet. C# is always the first language to access every
new feature of .NET.

What is Visual Studio 2017?
What about Visual C#?
(You sure ask lots of questions.) The first “Visual” language from Microsoft was
Visual Basic. The first popular C-based language from Microsoft was Visual C++.
Like Visual Basic, it had Visual in its name because it had a built-in graphical
user interface (GUI — pronounced “GOO-ee”). This GUI included everything you
needed to develop nifty-gifty C++ programs.

Eventually, Microsoft rolled all its languages into a single environment — Visual
Studio. As Visual Studio 6.0 started getting a little long in the tooth, developers
anxiously awaited version 7. Shortly before its release, however, Microsoft decided
to rename it Visual Studio .NET to highlight this new environment’s relationship
to .NET.

That sounded like a marketing ploy to a lot of people — until they started delving
into it. Visual Studio .NET differed quite a bit from its predecessors — enough to

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C#

Co
ns

ol
e

A
pp

lic
at

io
n

CHAPTER 1 Creating Your First C# Console Application 11

warrant a new name. Visual Studio 2017 is the ninth-generation successor to the
original Visual Studio .NET. (Book 4 is full of Visual Studio goodness, including
instructions for customizing it. You may want to use the instructions in Book 4,
Chapter 1 to install a copy of Visual Studio before you get to the example later in
this chapter. If you’re completely unfamiliar with Visual Studio, then reviewing
all of Book 4 is helpful.)

Microsoft calls its implementation of the language Visual C#. In reality, Visual C#
is nothing more than the C# component of Visual Studio. C# is C#, with or with-
out Visual Studio. Theoretically, you could write C# programs by using any text
editor and a few special tools, but using Visual Studio is so much easier that you
wouldn’t want to try.

Okay, that’s it. No more questions. (For now, anyway.)

Creating Your First Console Application
Visual Studio 2017 includes an Application Wizard that builds template programs
and saves you a lot of the dirty work you’d have to do if you did everything from
scratch. (The from-scratch approach is error prone, to say the least.)

Typically, starter programs don’t really do anything — at least, not anything use-
ful. However, they do get you beyond that initial hurdle of getting started. Some
starter programs are reasonably sophisticated. In fact, you’ll be amazed at how
much capability the App Wizard can build on its own, especially for graphical
programs.

This starter program isn’t even a graphical program, though. A console applica-
tion is one that runs in the “console” within Windows, usually referred to as the
DOS prompt or command window. If you press Ctrl+R and then type cmd, you see
a command window. It’s the console where the application will run.

The following instructions are for Visual Studio. If you use anything other than
Visual Studio, you have to refer to the documentation that came with your envi-
ronment. Alternatively, you can just type the source code directly into your C#
environment.

Creating the source program
To start Visual Studio, press the Windows button on your keyboard and type Visual
Studio. Visual Studio 2017 appears as one of the available options. You can access

12 BOOK 1 The Basics of C# Programming

the example code for this chapter in the \CSAIO4D\BK01\CH01 folder in the down-
loadable source, as explained in the Introduction.

Complete these steps to create your C# console app:

1. Open Visual Studio 2017 and click the Create New Project link, shown in
Figure 1-1.

Visual Studio presents you with lots of icons representing the different types of
applications you can create, as shown in Figure 1-2.

2. In this New Project window, click the Console App (.NET Framework) icon.

Make sure that you select Visual C# — and under it, Windows — in the Project
Types pane; otherwise Visual Studio may create something awful like a Visual
Basic or Visual C++ application. Then click the Console App (.NET Framework)
icon in the Templates pane.

Visual Studio requires you to create a project before you can start entering
your C# program. A project is a folder into which you throw all the files that go
into making your program. It has a set of configuration files that help the
compiler do its work. When you tell your compiler to build (compile) the
program, it sorts through the project to find the files it needs in order to
re-create the executable program.

FIGURE 1-1:
Creating a new

project starts you
down the road to
a better Windows

application.

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C#

Co
ns

ol
e

A
pp

lic
at

io
n

CHAPTER 1 Creating Your First C# Console Application 13

Visual Studio 2017 provides support for both .NET Framework and .NET Core
applications. A .NET Framework application is the same as the C# applications
supported in previous versions of Windows; it runs only in Windows and isn’t
open source. A .NET Core application can run in Windows, Linux, and Mac
environments and relies on an open source setup. Although using .NET Core
may seem ideal, the .NET Core applications also support only a subset of the
.NET Framework features, and you can’t add a GUI to them. Microsoft created
the .NET Core for these uses:

• Cross platform development

• Microservices

• Docker containers

• High performance and scalable applications

• Side-by-side .NET application support

3. The default name for your first application is App1, but change it this time
to Program1 by typing in the Name field.

The default place to store this file is somewhere deep in your Documents
directory. For most developers, it’s a lot better to place the files where you can
actually find them and interact with them as needed, not necessarily where
Visual Studio wants them.

FIGURE 1-2:
The Visual Studio

App Wizard is
eager to create
a new program

for you.

14 BOOK 1 The Basics of C# Programming

4. Type C:\CSAIO4D\BK01\CH01 Location field to change the location of this
project.

5. Click the OK button.

After a bit of disk whirring and chattering, Visual Studio generates a file named
Program.cs. (If you look in the window labeled Solution Explorer, shown in
Figure 1-3, you see some other files; ignore them for now. If Solution Explorer
isn’t visible, choose View ➪ Solution Explorer.)

C# source files carry the extension .cs. The name Program is the default name
assigned for the program file.

The contents of your first console app appear this way (as shown in Figure 1-3):

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

FIGURE 1-3:
Visual Studio
 displays the
 project you

just created.

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C#

Co
ns

ol
e

A
pp

lic
at

io
n

CHAPTER 1 Creating Your First C# Console Application 15

namespace Program1

{

 class Program

 {

 static void Main(string[] args)

 {

 }

 }

}

You can manually change the location of the project with every project. However,
you have a simpler way to go. When working with this book, you can change the
default program location. To make that happen, follow these steps after you finish
creating the project:

1. Choose Tools ➪ Options.

The Options dialog box opens. You may have to select the Show All Options box.

2. Choose Projects and Solutions ➪ General.

3. Select the new location in the Projects Location field and click OK.

(The examples assume that you have used C:\CSAIO4D for this book.)

You can see the Options dialog box in Figure 1-4. Leave the other fields in the proj-
ect settings alone for now. Read more about customizing Visual Studio in Book 4
and in Online Chapter 2, which you find by going to www.dummies.com, searching
this book’s title, and locating the Downloads tab on the page that appears.

FIGURE 1-4:
Changing the

default project
location.

www.dummies.com

16 BOOK 1 The Basics of C# Programming

Along the left edge of the code window, you see several small plus (+) and minus
(–) signs in boxes. Click the + sign next to using This expands a code region,
a handy Visual Studio feature that minimizes clutter. Here are the directives that
appear when you expand the region in the default console app:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

Regions help you focus on the code you’re working on by hiding code that you
aren’t. Certain blocks of code — such as the namespace block, class block, meth-
ods, and other code items — get a +/– automatically without a #region directive.
You can add your own collapsible regions, if you like, by typing #region above
a code section and #endregion after it. It helps to supply a name for the region,
such as Public methods. This code section looks like this:

#region Public methods

... your code

#endregion Public methods

This name can include spaces. Also, you can nest one region inside another, but
regions can’t overlap.

For now, using System; is the only using directive you really need. You can delete
the others; the compiler lets you know whether you’re missing one.

Taking it out for a test drive
Before you try to create your application, open the Output window (if it isn’t
already open) by choosing View ➪ Output. To convert your C# program into an
executable program, choose Build ➪ Build Program1. Visual Studio responds with
the following message:

------ Build started: Project: Program1, Configuration: Debug Any CPU ----

Program1 -> C:\CSAIO4D\BK01\CH01\Program1\Program1\bin\Debug\Program1.exe

========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped =========

The key point here is the 1 succeeded part on the last line.

As a general rule of programming, succeeded is good; failed is bad. The bad —
the exceptions — is covered in Chapter 9 of this minibook.

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C#

Co
ns

ol
e

A
pp

lic
at

io
n

CHAPTER 1 Creating Your First C# Console Application 17

To execute the program, choose Debug ➪ Start. The program brings up a black
console window and terminates immediately. (If you have a fast computer, the
appearance of this window is just a flash on the screen.) The program has seem-
ingly done nothing. In fact, this is the case. The template is nothing but an empty
shell.

An alternative command, Debug ➪ Start Without Debugging, behaves a bit better
at this point. Try it out.

Making Your Console App Do Something
Edit the Program.cs template file until it appears this way:

using System;

namespace Program1

{

 public class Program

 {

 // This is where your program starts.

 static void Main(string[] args)

 {

 // Prompt user to enter a name.

 Console.WriteLine("Enter your name, please:");

 // Now read the name entered.

 string name = Console.ReadLine();

 // Greet the user with the name that was entered.

 Console.WriteLine("Hello, " + name);

 // Wait for user to acknowledge the results.

 Console.WriteLine("Press Enter to terminate...");

 Console.Read();

 }

 }

}

Don’t sweat the stuff following the double or triple slashes (// or ///) and don’t
worry about whether to enter one or two spaces or one or two new lines. However,
do pay attention to capitalization.

Choose Build ➪ Build Program1 to convert this new version of Program.cs into the
Program1.exe program.

18 BOOK 1 The Basics of C# Programming

From within Visual Studio 2017, choose Debug ➪ Start Without Debugging. The
black console window appears and prompts you for your name. (You may need to
activate the console window by clicking it.) Then the window shows Hello, fol-
lowed by the name entered, and displays Press Enter to terminate Press-
ing Enter closes the window.

You can also execute the program from the DOS command line. To do so, open a
Command Prompt window and enter the following:

CD \C#Programs\Program1\bin\Debug

Now enter Program1 to execute the program. The output should be identical to
what you saw earlier. You can also navigate to the \C#Programs\Program1\bin\
Debug folder in Windows Explorer and then double-click the Program1.exe file.

To open a Command Prompt window, try choosing Tools ➪ Command Prompt.
If that command isn’t available on your Visual Studio Tools menu, open a copy
of Windows Explorer, locate the folder containing the executable as shown in
Figure 1-5, and then choose File ➪ Open Command Prompt. You see a command
prompt where you can execute the program.

Reviewing Your Console Application
In the following sections, you take this first C# console app apart one section at a
time to understand how it works.

The program framework
The basic framework for all console applications starts as the following:

FIGURE 1-5:
Windows

Explorer provides
a quick way to

open a command
prompt.

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C#

Co
ns

ol
e

A
pp

lic
at

io
n

CHAPTER 1 Creating Your First C# Console Application 19

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Program1

{

 public class Program

 {

 // This is where your program starts.

 public static void Main(string[] args)

 {

 // Your code goes here.

 }

 }

}

The program starts executing right after the statement containing Main() and
ends at the closed curly brace (}) following Main(). (You find the explanation for
these statements in due course. Just know that they work as they should for now.)

The list of using directives can come immediately before or immediately after the
phrase namespace Program1 {. The order doesn’t matter. You can apply using to
lots of things in .NET. You find an explanation for namespaces and using in the
object-oriented programming chapters in Book 2.

Comments
The template already has lots of lines, and the example code adds several other
lines, such as the following (in boldface):

// This is where your program starts.

public static void Main(string[] args)

C# ignores the first line in this example. This line is known as a comment.

Any line that begins with // or /// is free text, and C# ignores it. Consider // and
/// to be equivalent for now.

Why include lines if the computer ignores them? Because comments explain your
C# statements. A program, even in C#, isn’t easy to understand. Remember that
a programming language is a compromise between what computers understand
and what humans understand. These comments are useful while you write the

20 BOOK 1 The Basics of C# Programming

code, and they’re especially helpful to the poor sap — possibly you — who tries to
re-create your logic a year later. Comments make the job much easier.

Comment early and often.

The meat of the program
The real core of this program is embedded within the block of code marked with
Main(), like this:

// Prompt user to enter a name.

Console.WriteLine("Enter your name, please:");

// Now read the name entered.

string name = Console.ReadLine();

// Greet the user with the name that was entered.

Console.WriteLine(“Hello, “ + name);

Save a ton of routine typing with the C# Code Snippets feature. Snippets are great
for common statements like Console.WriteLine. Press Ctrl+K,X to see a pop-up
menu of snippets. (You may need to press Tab once or twice to open the Visual
C# folder or other folders on that menu.) Scroll down the menu to cw and press
Enter. Visual Studio inserts the body of a Console.WriteLine() statement with
the insertion point between the parentheses, ready to go. When you have a few
of the shortcuts, such as cw, for, and if, memorized, use the even quicker tech-
nique: Type cw and press Tab twice. (Also try selecting some lines of code, press-
ing Ctrl+K, and then pressing Ctrl+S. Choose something like if. An if statement
surrounds the selected code lines.)

The program begins executing with the first C# statement: Console.WriteLine.
This command writes the character string Enter your name, please: to the
console.

The next statement reads in the user’s answer and stores it in a variable (a kind
of workbox) named name. (See Chapter 2 of this minibook for more on these stor-
age locations.) The last line combines the string Hello, with the user’s name and
outputs the result to the console.

The final three lines cause the computer to wait for the user to press Enter before
proceeding. These lines ensure that the user has time to read the output before
the program continues:

Cr
ea

ti
ng

 Y
ou

r
Fi

rs
t

C#

Co
ns

ol
e

A
pp

lic
at

io
n

CHAPTER 1 Creating Your First C# Console Application 21

// Wait for user to acknowledge the results.

Console.WriteLine("Press Enter to terminate...");

Console.Read();

This step can be important, depending on how you execute the program and
depending on the environment. In particular, running your console app inside
Visual Studio, or from Windows Explorer, makes the preceding lines necessary —
otherwise, the console window closes so fast you can’t read the output. If you
open a console window and run the program from there, the window stays open
regardless.

Introducing the Toolbox Trick
The key part of the program you create in the preceding section consists of the
final two lines of code:

// Wait for user to acknowledge the results.

Console.WriteLine("Press Enter to terminate...");

Console.Read();

The easiest way to re-create those key lines in each future console application you
write is described in the following sections.

Saving code in the Toolbox
The first step is to save those lines in a handy location for future use: the Toolbox
window. With your Program1 console application open in Visual Studio, follow
these steps:

1. In the Main() method of class Program, select the lines you want to
save — in this case, the three lines mentioned previously.

2. Make sure the Toolbox window is open on the left. (If it isn’t, open it by
choosing View ➪ Toolbox.)

3. Drag the selected lines into the General tab of the Toolbox window and
drop them. (Or copy the lines and paste them into the Toolbox.)

The Toolbox stores the lines there for you in perpetuity. Figure 1-6 shows the
lines placed in the Toolbox.

22 BOOK 1 The Basics of C# Programming

Reusing code from the Toolbox
Now that you have your template text stored in the Toolbox, you can reuse it in all
console applications you write henceforth. Here’s how to use it:

1. In Visual Studio, create a new console application as described in the
section “Creating the source program,” earlier in this chapter.

2. Click in the editor at the spot where you’d like to insert some Toolbox text.

3. With the Program.cs file open for editing, make sure the Toolbox window
is open.

If it isn’t, see the procedure in the preceding “Saving code in the Toolbox”
section.

4. In the General tab of the Toolbox window (other tabs may be showing),
find the saved text you want to use and double-click it.

The selected item is inserted at the insertion point in the editor window.

With that boilerplate text in place, you can write the rest of your application
above those lines. That’s it. You now have a finished console app. Try it for about
30 seconds. Then you can check out Chapter 2 of this minibook.

FIGURE 1-6:
Setting up the
Toolbox with
some handy

saved text for
future use.

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 23

Living with Variability —
Declaring Value-Type
Variables

The most fundamental of all concepts in programming is that of the variable.
A C# variable is like a small box in which you can store things, particularly
numbers, for later use. (The term variable is borrowed from the world of

mathematics.)

Unfortunately for programmers, C# places several limitations on variables —
limitations that mathematicians don’t have to consider. However, these limits are
in place for a reason. They make it easier for C# to understand what you mean by
a particular kind of variable and for you to find mistakes in your code. This chapter
takes you through the steps for declaring, initializing, and using variables. It also
introduces several of the most basic data types in C#.

Chapter 2

IN THIS CHAPTER

 » Using C# variables, such as integers,
as a storage locker

 » Declaring other types of variables —
dates, characters, strings

 » Handling numeric constants

 » Changing types and letting the
compiler figure out the type

24 BOOK 1 The Basics of C# Programming

Declaring a Variable
Mathematicians work with numbers in a precise manner, but in a way that C#
could never understand. The mathematician is free to introduce the variables as
needed to present an idea in a particular way. Mathematicians use algorithms,
a set of procedural steps used to solve a problem, in a way that makes sense to
other mathematicians to model real-world needs. Algorithms can appear quite
complex, even to other humans, much less C#. For example, the mathematician
may say this:

x = y2 + 2y + y
if k = y + 1 then
x = k2

Programmers must define variables in a particular way that’s more demanding
than the mathematician’s looser style. A programmer must tell C# the kind of
value that a variable contains and then tell C# specifically what to place in that
variable in a manner that C# understands. For example, a C# programmer may
write the following bit of code:

int n;

n = 1;

The first line means, “Carve off a small amount of storage in the computer’s
memory and assign it the name n.” This step is analogous to reserving one of
those storage lockers at the train station and slapping the label n on the side. The
second line says, “Store the value 1 in the variable n, thereby replacing whatever
that storage location already contains.” The train-locker equivalent is, “Open the
train locker, rip out whatever happens to be in there, and shove a 1 in its place.”

The equals symbol (=) is called the assignment operator.

The mathematician says, “n equals 1.” The C# programmer says in a more precise
way, “Store the value 1 in the variable n.” (Think about the train locker, and you
see why that’s easier for C# to understand.) C# operators, such as the assignment
operator, tell the computer what you want to do. In other words, operators are
verbs and not descriptors. The assignment operator takes the value on its right
and stores it in the variable on the left. You discover more about operators in
Chapter 4 of this minibook.

Li
vi

ng
 w

it
h

Va
ri

ab
ili

ty
 —

D
ec

la
ri

ng
 V

al
ue

-T
yp

e
Va

ri
ab

le
s

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 25

What’s an int?
In C#, each variable has a fixed type. When you allocate one of those train lockers,
you have to pick the size you need. If you pick an integer locker, for instance, you
can’t turn around and hope to stuff the entire state of Texas in it — maybe Rhode
Island, but not Texas.

For the example in the preceding section of this chapter, you select a locker that’s
designed to handle an integer — C# calls it an int. Integers are the counting
numbers 1, 2, 3, and so on, plus 0 and the negative numbers –1, –2, –3, and so on.

Before you can use a variable, you must declare it, which means creating a vari-
able with a specific name (label) using code and optionally assigning a value to
that variable. After you declare a variable as int, it can hold integer values, as this
example demonstrates:

// Declare a variable named n - an empty train locker.

int n;

// Declare an int variable m and initialize it with the value 2.

int m = 2;

// Assign the value stored in m to the variable n.

n = m;

The first line after the comment is a declaration that creates a little storage area, n,
designed to hold an integer value. The initial value of n is not specified until it is
assigned a value, so this locker is essentially empty. The second declaration not only
declares an int variable m but also initializes it with a value of 2, all in one shot.

The term initialize means to assign an initial value. To initialize a variable is to
assign it a value for the first time. You don’t know for sure what the value of a
variable is until it has been initialized. Nobody knows. It’s always an error to use
a variable before you initialize it.

The final statement in the program assigns the value stored in m, which is 2, to
the variable n. The variable n continues to contain the value 2 until it is assigned
a new value. (The variable m doesn’t lose its value when you assign its value to n.
It’s like cloning m.)

Rules for declaring variables
You can initialize a variable as part of the declaration, like this:

// Declare another int variable and give it the initial value of 1.

int p = 1;

26 BOOK 1 The Basics of C# Programming

This is equivalent to sticking a 1 into that int storage locker when you first rent it,
rather than opening the locker and stuffing in the value later.

Initialize a variable when you declare it. In most (but not all) cases, C# initializes
the variable for you — but don’t rely on it to do that. For example, C# does place
a 0 into an uninitialized int variable, but the compiler will still display an error if
you try to use the variable before you initialize it. You may declare variables any-
where (well, almost anywhere) within a program.

However, you may not use a variable until you declare it and set it to some value.
Thus the last two assignments shown here are not legal:

// The following is illegal because m is not assigned

// a value before it is used.

int n

int m;

n = m;

// The following is illegal because p has not been

// declared before it is used.

p = 2;

int p;

Finally, you cannot declare the same variable twice in the same scope (a function,
for example).

Variations on a theme:
Different types of int
Most simple numeric variables are of type int. However, C# provides a number of
twists to the int variable type for special occasions.

All integer variable types are limited to whole numbers. The int type suffers from
other limitations as well. For example, an int variable can store values only in the
range from roughly –2 billion to 2 billion.

A distance of 2 billion inches is greater than the circumference of the Earth. In
case 2 billion isn’t quite large enough for you, C# provides an integer type called
long (short for long int) that can represent numbers almost as large as you can
imagine. The only problem with a long is that it takes a larger train locker: A long
consumes 8 bytes (64 bits) — twice as much as a garden-variety 4-byte (32-bit)
int. C# provides several other integer variable types, as shown in Table 2-1.

Li
vi

ng
 w

it
h

Va
ri

ab
ili

ty
 —

D
ec

la
ri

ng
 V

al
ue

-T
yp

e
Va

ri
ab

le
s

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 27

As explained in the section entitled “Declaring Numeric Constants,” later in this
chapter, fixed values such as 1 also have a type. By default, a simple constant such
as 1 is assumed to be an int. Constants other than an int must be marked with
their variable type. For example, 123U is an unsigned integer, uint.

Most integer variables are called signed, which means they can represent negative
values. Unsigned integers can represent only positive values, but you get twice
the range in return. As you can see from Table 2-1, the names of most unsigned
integer types start with a u, while the signed types generally don’t have a prefix.

You don’t need any unsigned integer versions in this book.

Representing Fractions
Integers are useful for most calculations. However, many calculations involve
fractions, which simple integers can’t accurately represent. The common equa-
tion for converting from Fahrenheit to Celsius temperatures demonstrates the
problem, like this:

// Convert the temperature 41 degrees Fahrenheit.

int fahr = 41;

int celsius = (fahr - 32) * (5 / 9)

TABLE 2-1	 Size and Range of C# Integer Types
Type Bytes Range of Values In Use

sbyte 1 –128 to 127 sbyte sb = 12;

byte 1 0 to 255 byte b = 12;

short 2 –32,768 to 32,767 short sh = 12345;

ushort 2 0 to 65,535 ushort ush = 62345;

int 4 –2 billion to 2 billion int n = 1234567890;

uint 4 0 to 4 billion (exact values listed in the
Cheat Sheet on this book’s website)

uint un = 3234567890U

long 8 –1020 to 1020 — “a whole lot” long l = 123456789012L

Ulong 8 0 to 2 × 1020 long ul = 123456789012UL

28 BOOK 1 The Basics of C# Programming

This equation works just fine for some values. For example, 41 degrees Fahrenheit
is 5 degrees Celsius.

Okay, try a different value: 100 degrees Fahrenheit. Working through the equa-
tion, 100–32 is 68; 68 times 5 9 is 37 when using integers. However, a closer answer
is 37.78. Even that’s wrong because it’s really 37.777 . . . with the 7s repeating
forever.

An int can represent only integer numbers. The integer equivalent of 37.78 is 37.
This lopping off of the fractional part of a number to get it to fit into an integer
variable is called integer truncation.

Truncation is not the same thing as rounding. Truncation lops off the fractional
part. Goodbye, Charlie. Rounding picks the closest integer value. Thus, truncating
1.9 results in 1. Rounding 1.9 results in 2.

For temperatures, 37 may be good enough. It’s not like you wear short-sleeve
shirts at 37.7 degrees but pull on a sweater at 37 degrees. But integer truncation is
unacceptable for many, if not most, applications.

Actually, the problem is much worse than that. An int can’t handle the ratio 5 9
either; it always yields the value 0. Consequently, the equation as written in this
example calculates celsius as 0 for all values of fahr.

Handling Floating-Point Variables
The limitations of an int variable are unacceptable for some applications. The
range generally isn’t a problem — the double-zillion range of a 64-bit-long inte-
ger should be enough for almost anyone. However, the fact that an int is limited
to whole numbers is a bit harder to swallow.

In some cases, you need numbers that can have a nonzero fractional part. Math-
ematicians call these real numbers. (Somehow that always seemed like a ridiculous
name for a number. Are integer numbers somehow unreal?)

Note that a real number can have a nonzero fractional part — that is, 1.5 is a real
number, but so is 1.0. For example, 1.0 + 0.1 is 1.1. Just keep that point in mind as
you read the rest of this chapter.

Fortunately, C# understands real numbers. Real numbers come in two flavors:
floating-point and decimal. Floating-point is the most common type. You can
find a description of the decimal type in the section “Using the Decimal Type: Is It
an Integer or a Float?” later in this chapter.

Li
vi

ng
 w

it
h

Va
ri

ab
ili

ty
 —

D
ec

la
ri

ng
 V

al
ue

-T
yp

e
Va

ri
ab

le
s

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 29

Declaring a floating-point variable
A floating-point variable carries the designation float, and you declare one as
shown in this example:

float f = 1.0;

After you declare it as float, the variable f is a float for the rest of its natural
instructions.

Table 2-2 describes the two kinds of floating-point types. All floating-point vari-
ables are signed. (There’s no such thing as a floating-point variable that can’t
represent a negative value.)

You might think that float is the default floating-point variable type, but actu-
ally the double is the default in C#. If you don’t specify the type for, say, 12.3, C#
calls it a double.

The Accuracy column in Table 2-2 refers to the number of significant digits that
such a variable type can represent. For example, 5 9 is actually 0.555 . . . with an
unending sequence of 5s. However, a float variable is said to have six significant
digits of accuracy — which means that numbers after the sixth digit are ignored.
Thus 5 9 may appear this way when expressed as a float:

0.5555551457382

Here you know that all the digits after the sixth 5 are untrustworthy.

The same number — 5 9 — may appear this way when expressed as a double:

0.55555555555555557823

The double packs a whopping 15 to 16 significant digits.

TABLE 2-2	 Size and Range of Floating-Point Variable Types
Type Bytes Range of Values Accuracy to Number of Digits In Use

float 8 1.5 * 10–45 to 3.4 * 1038 6 to 7 float f = 1.2F;

double 16 5.0 * 10–324 to 1.7 * 10308 15 to 16 double d = 1.2;

30 BOOK 1 The Basics of C# Programming

Use double variable types unless you have a specific reason to do otherwise. For
example, here’s the equation for converting from Fahrenheit to Celsius tempera-
tures using floating-point variables:

double celsius = (fahr - 32.0) * (5.0 / 9.0)

Examining some limitations
of floating-point variables
You may be tempted to use floating-point variables all the time because they
solve the truncation problem so nicely. Sure, they use up a bit more memory. But
memory is cheap these days, so why not? But floating-point variables also have
limitations, which you discover in the following sections.

Counting
You can’t use floating-point variables as counting numbers. Some C# structures
need to count (as in 1, 2, 3, and so on). You know that 1.0, 2.0, and 3.0 are counting
numbers just as well as 1, 2, and 3, but C# doesn’t know that. For example, given
the accuracy limitations of floating-points, how does C# know that you aren’t
actually saying 1.000001?

Whether you find that argument convincing, you can’t use a floating-point vari-
able when counting things.

Comparing numbers
You have to be careful when comparing floating-point numbers. For example, 12.5
may be represented as 12.500001. Most people don’t care about that little extra
bit on the end. However, the computer takes things extremely literally. To C#,
12.500000 and 12.500001 are not the same numbers.

So, if you add 1.1 to 1.1, you can’t tell whether the result is 2.2 or 2.200001. And
if you ask, “Is doubleVariable equal to 2.2?” you may not get the results you
expect. Generally, you have to resort to some bogus comparison like this: “Is
the absolute value of the difference between doubleVariable and 2.2 less than
.000001?” In other words, “within an acceptable margin of error.”

Modern processors play a trick to make this problem less troublesome than it
otherwise may be: They perform floating-point arithmetic in an especially long
double format — that is, rather than use 64 bits, they use a whopping 80 bits (or
128-bits in newer processors). When rounding off an 80-bit float into a 64-bit
float, you (almost) always get the expected result, even if the 80-bit number was
off a bit or two.

Li
vi

ng
 w

it
h

Va
ri

ab
ili

ty
 —

D
ec

la
ri

ng
 V

al
ue

-T
yp

e
Va

ri
ab

le
s

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 31

Calculation speed
Integers are always faster than floats to use because integers are less complex. Just
as you can calculate the value of something using whole numbers a lot faster than
using those pesky decimals, so can processors work faster with integers faster.

Intel processors perform integer math using an internal structure called a general-
purpose register that can work only with integers. These same registers are used
for counting. Using general-purpose registers is extremely fast. Floating-point
numbers require use of a special area that can handle real numbers called the
Arithmetic Logic Unit (ALU) and special floating-point registers that don’t work
for counting. Each calculation takes longer because of the additional handling that
floating-point numbers require.

Unfortunately, modern processors are so complex that you can’t know precisely
how much time you save by using integers. Just know that using integers is gen-
erally faster, but that you won’t actually see a difference unless you’re performing
a long list of calculations.

Not-so-limited range
In the past, a floating-point variable could represent a considerably larger range
of numbers than an integer type. It still can, but the range of the long is large
enough to render the point moot.

Even though a simple float can represent a very large number, the number of
significant digits is limited to about six. For example, 123,456,789F is the same
as 123,456,000F. (For an explanation of the F notation at the end of these num-
bers, see “Declaring Numeric Constants,” later in this chapter.)

Using the Decimal Type:
Is It an Integer or a Float?

As explained in previous sections of this chapter, both the integer and floating-
point types have their problems. Floating-point variables have rounding problems
associated with limits to their accuracy, while int variables just lop off the frac-
tional part of a variable. In some cases, you need a variable type that offers the
best of two worlds:

 » Like a floating-point variable, it can store fractions.

 » Like an integer, numbers of this type offer exact values for use in computations —
for example, 12.5 is really 12.5 and not 12.500001.

32 BOOK 1 The Basics of C# Programming

Fortunately, C# provides such a variable type, called decimal. A decimal variable
can represent a number between 10–28 and 1028 — which represents a lot of zeros!
And it does so without rounding problems.

Declaring a decimal
Decimal variables are declared and used like any variable type, like this:

decimal m1 = 100; // Good

decimal m2 = 100M; // Better

The first declaration shown here creates a variable m1 and initializes it to a value of
100. What isn’t obvious is that 100 is actually of type int. Thus, C# must convert
the int into a decimal type before performing the initialization. Fortunately, C#
understands what you mean — and performs the conversion for you.

The declaration of m2 is the best. This clever declaration initializes m2 with the
decimal constant 100M. The letter M at the end of the number specifies that the
constant is of type decimal. No conversion is required. (See the section “Declaring
Numeric Constants,” later in this chapter.)

Comparing decimals, integers,
and floating-point types
The decimal variable type seems to have all the advantages and none of the dis-
advantages of int or double types. Variables of this type have a very large range,
they don’t suffer from rounding problems, and 25.0 is 25.0 and not 25.00001.

The decimal variable type has two significant limitations, however. First, a
decimal is not considered a counting number because it may contain a fractional
value. Consequently, you can’t use them in flow-control loops, as explained in
Chapter 5 of this minibook.

The second problem with decimal variables is equally serious or even more so.
Computations involving decimal values are significantly slower than those involv-
ing either simple integer or floating-point values. On a crude benchmark test of
300,000,000 adds and subtracts, the operations involving decimal variables were
approximately 50 times slower than those involving simple int variables. The rel-
ative computational speed gets even worse for more complex operations. Besides
that, most computational functions, such as calculating sines or exponents, are
not available for the decimal number type.

Li
vi

ng
 w

it
h

Va
ri

ab
ili

ty
 —

D
ec

la
ri

ng
 V

al
ue

-T
yp

e
Va

ri
ab

le
s

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 33

Clearly, the decimal variable type is most appropriate for applications such as
banking, in which accuracy is extremely important but the number of calculations
is relatively small.

Examining the bool Type: Is It Logical?
Finally, a logical variable type, one that can help you get to the truth of the matter.
The Boolean type bool can have two values: true or false.

Former C and C++ programmers are accustomed to using the int value 0 (zero) to
mean false and nonzero to mean true. That doesn’t work in C#.

You declare a bool variable this way:

bool thisIsABool = true;

No conversion path exists between bool variables and any other types. In other
words, you can’t convert a bool directly into something else. (Even if you could,
you shouldn’t because it doesn’t make any sense.) In particular, you can’t convert
a bool into an int (such as false becoming 0) or a string (such as false becom-
ing the word “false”).

Checking Out Character Types
A program that can do nothing more than spit out numbers may be fine for
mathematicians, accountants, insurance agents with their mortality figures, and
folks calculating cannon-shell trajectories. (Don’t laugh. The original computers
were built to generate tables of cannon-shell trajectories to help artillery
gunners.) However, for most applications, programs must deal with letters as
well as numbers.

C# treats letters in two distinctly different ways: individual characters of type
char (usually pronounced char, as in singe or burn) and strings of characters — a
type called, cleverly enough, string.

34 BOOK 1 The Basics of C# Programming

The char variable type
The char variable is a box capable of holding a single character. A character con-
stant appears as a character surrounded by a pair of single quotation marks, as in
this example:

char c = 'a';

You can store any single character from the Roman, Hebrew, Arabic, Cyrillic, and
most other alphabets. You can also store Japanese katakana and hiragana charac-
ters, as well as many Japanese and Chinese kanjis.

In addition, char is considered a counting type. That means you can use a char
type to control the looping structures described in Chapter 5 of this minibook.
Character variables do not suffer from rounding problems.

The character variable includes no font information. So you may store in a char
variable what you think is a perfectly good kanji (and it may well be) — but when
you view the character, it can look like garbage if you’re not looking at it through
the eyes of the proper font.

Special chars
Some characters within a given font are not printable, in the sense that you don’t
see anything when you look at them on the computer screen or printer. The most
obvious example of this is the space, which is represented by the character ' '
(single quotation mark, space, single quotation mark). Other characters have no
letter equivalent — for example, the tab character. C# uses the backslash to flag
these characters, as shown in Table 2-3.

TABLE 2-3	 Special Characters
Character Constant Value

'\n' New line

'\t' Tab

'\0' Null character

'\r' Carriage return

'\\' Backslash

Li
vi

ng
 w

it
h

Va
ri

ab
ili

ty
 —

D
ec

la
ri

ng
 V

al
ue

-T
yp

e
Va

ri
ab

le
s

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 35

The string type
Another extremely common variable type is the string. The following examples
show how you declare and initialize string variables:

// Declare now, initialize later.

string someString1;

someString1 = "this is a string";

// Or initialize when declared - preferable.

string someString2 = "this is a string";

A string constant, often called a string literal, is a set of characters surrounded
by double quotation marks. The characters in a string can include the special
characters shown in Table 2-3. A string cannot be written across a line in the C#
source file, but it can contain the newline character, as the following examples
show (see boldface):

// The following is not legal.

string someString = "This is a line

and so is this";

// However, the following is legal.

string someString = "This is a line\nand so is this";

When written out with Console.WriteLine, the last line in this example places
the two phrases on separate lines, like this:

This is a line

and so is this

A string is not a counting type. A string is also not a value-type — no “string”
exists that’s intrinsic (built in) to the processor. A computer processor under-
stands only numbers, not letters. The letter A is actually the number 65 to the
processor. Only one of the common operators works on string objects: The +
operator concatenates two strings into one. For example:

string s = "this is a phrase"

 + " and so is this";

These lines of code set the string variable s equal to this character string:

"this is a phrase and so is this"

36 BOOK 1 The Basics of C# Programming

The string with no characters, written "" (two double quotation marks in a row),
is a valid string, called an empty string (or sometimes a null string). A null
string ("") is different from a null char ('\0') and from a string containing any
amount of space, even one ("").

Best practice is to initialize strings using the String.Empty value, which means
the same thing as "" and is less prone to misinterpretation:

string mySecretName = String.Empty; // A property of the String type

By the way, all the other data types in this chapter are value types. The string type,
however, is not a value type, as explained in the following section. Chapter 3 of
this minibook goes into much more detail about the string type.

What’s a Value Type?
The variable types described in this chapter are of fixed length — again with
the exception of string. A fixed-length variable type always occupies the same
amount of memory. So if you assign a = b, C# can transfer the value of b into a
without taking extra measures designed to handle variable-length types. In addi-
tion, these kinds of variables are stored in a special location called the stack as
actual values. You don’t need to worry about the stack; you just need to know that
it exists as a location in memory. This characteristic is why these types of vari-
ables are called value types.

The types int, double, and bool, and their close derivatives (like unsigned int)
are intrinsic variable types built right into the processor. The intrinsic variable
types plus decimal are also known as value types because variables store the
actual data. The string type is neither — because the variable actually stores a
sort of “pointer” to the string’s data, called a reference. The data in the string is
actually off in another location. Think of a reference type as you would an address
for a house. Knowing the address tells you the location of the house, but you must
actually go to the address to find the physical house.

The programmer-defined types explained in Chapter 8 of this minibook, known
as reference types, are neither value types nor intrinsic. The string type is a
reference type, although the C# compiler does accord it some special treatment
because string types are so widely used.

Li
vi

ng
 w

it
h

Va
ri

ab
ili

ty
 —

D
ec

la
ri

ng
 V

al
ue

-T
yp

e
Va

ri
ab

le
s

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 37

Comparing string and char
Although strings deal with characters, the string type is amazingly different
from the char. Of course, certain trivial differences exist. You enclose a character
with single quotation marks, as in this example:

'a'

On the other hand, you put double quotation marks around a string:

"this is a string"

"a" // So is this -- see the double quotes?

The rules concerning strings are not the same as those concerning characters.
For one thing, you know right up front that a char is a single character, and
that’s it. For example, the following code makes no sense, either as addition or as
concatenation:

char c1 = 'a';

char c2 = 'b';

char c3 = c1 + c2

Actually, this bit of code almost compiles — but with a completely different mean-
ing from what was intended. These statements convert c1 into an int consisting
of the numeric value of c1. C# also converts c2 into an int and then adds the two
integers. The error occurs when trying to store the results back into c3 — numeric
data may be lost storing an int into the smaller char. In any case, the operation
makes no sense.

A string, on the other hand, can be any length. So concatenating two strings, as
shown here, does make sense:

string s1 = "a";

string s2 = "b";

string s3 = s1 + s2; // Result is "ab"

As part of its library, C# defines an entire suite of string operations. You find these
operations described in Chapter 3 of this minibook.

38 BOOK 1 The Basics of C# Programming

Calculating Leap Years: DateTime
What if you had to write a program that calculates whether this year is a leap year?

The algorithm looks like this:

It’s a leap year if

 year is evenly divisible by 4

 and, if it happens to be evenly divisible by 100,

 it’s also evenly divisible by 400

NAMING CONVENTIONS
Programming is hard enough without programmers making it harder. To make your
C# source code easier to wade through, adopt a naming convention and stick to it. As
much as possible, your naming convention should follow that adopted by other C#
programmers:

• The names of things other than variables start with a capital letter, and vari-
ables start with a lowercase letter. Make these names as descriptive as possible —
which often means that a name consists of multiple words. These words should be
capitalized but butted up against each other with no underscore between them — for
example, ThisIsALongName. Names that start with a capital are Pascal-cased, from
the way a 1970s-era language called Pascal named things.

• The names of variables start with a lowercase letter. A typical variable name
looks like this: thisIsALongVariableName. This variable naming style is called
camel-casing because it has humps in the middle.

Prior to the .NET era, it was common among Windows programmers to use a conven-
tion in which the first letter of the variable name indicated the type of the variable. Most
of these letters were straightforward: f for float, d for double, s for string, and so
on. The only one that was even the slightest bit different was n for int. One exception
to this rule existed: For reasons that stretch way back into the Fortran programming
language of the 1960s, the single letters i, j, and k were also used as common names
for an int, and they still are in C#. This style of naming variables was called Hungarian
notation, after Charles Simonyi, a famous Microsoftie who went to the International
Space Station as a space tourist. (Martha Stewart packed his sack lunch.)

Hungarian notation has fallen out of favor, at least in .NET programming circles. With
recent Visual Studio versions, you can simply rest the cursor on a variable in the debug-
ger to have its data type revealed in a tooltip box. That makes the Hungarian prefix a bit
less useful, although a few folks still hold out for Hungarian.

Li
vi

ng
 w

it
h

Va
ri

ab
ili

ty
 —

D
ec

la
ri

ng
 V

al
ue

-T
yp

e
Va

ri
ab

le
s

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 39

You don’t have enough tools yet to tackle that in C#. But you could just ask the
DateTime type (which is a value type, like int):

DateTime thisYear = new DateTime(2011, 1, 1);

bool isLeapYear = DateTime.IsLeapYear(thisYear.Year);

The result for 2016 is true, but for 2017, it’s false. (For now, don’t worry about
that first line of code, which uses some things you haven’t gotten to yet.)

With the DateTime data type, you can do something like 80 different operations,
such as pull out just the month; get the day of the week; add days, hours, minutes,
seconds, milliseconds, months, or years to a given date; get the number of days in
a given month; and subtract two dates.

The following sample lines use a convenient property of DateTime called Now to
capture the present date and time, and one of the numerous DateTime methods
that let you convert one time into another:

DateTime thisMoment = DateTime.Now;

DateTime anHourFromNow = thisMoment.AddHours(1);

You can also extract specific parts of a DateTime:

int year = DateTime.Now.Year; // For example, 2007

DayOfWeek dayOfWeek = DateTime.Now.DayOfWeek; // For example, Sunday

If you print that DayOfWeek object, it prints something like “Sunday.” And you can
do other handy manipulations of DateTimes:

DateTime date = DateTime.Today; // Get just the date part.

TimeSpan time = thisMoment.TimeOfDay; // Get just the time part.

TimeSpan duration = new TimeSpan(3, 0, 0, 0); // Specify length in days.

DateTime threeDaysFromNow = thisMoment.Add(duration);

The first two lines just extract portions of the information in a DateTime. The next
two lines add a duration (length of time) to a DateTime. A duration differs from
a moment in time; you specify durations with the TimeSpan class, and moments
with DateTime. So the third line sets up a TimeSpan of three days, zero hours, zero
minutes, and zero seconds. The fourth line adds the three-day duration to the
DateTime representing right now, resulting in a new DateTime whose day compo-
nent is three greater than the day component for thisMoment.

40 BOOK 1 The Basics of C# Programming

Subtracting a DateTime from another DateTime (or a TimeSpan from a DateTime)
returns a DateTime:

TimeSpan duration1 = new TimeSpan(1, 0, 0); // One hour later.

// Since Today gives 12:00:00 AM, the following gives 1:00:00 AM:

DateTime anHourAfterMidnight = DateTime.Today.Add(duration1);

Console.WriteLine("An hour after midnight will be {0}", anHourAfterMidnight);

DateTime midnight = anHourAfterMidnight.Subtract(duration1);

Console.WriteLine("An hour before 1 AM is {0}", midnight);

The first line of the preceding code creates a TimeSpan of one hour. The next line
gets the date (actually, midnight this morning) and adds the one-hour span to it,
resulting in a DateTime representing 1:00 a.m. today. The next-to-last line sub-
tracts a one-hour duration from 1:00 a.m. to get 12:00 a.m. (midnight).

Declaring Numeric Constants
There are very few absolutes in life; however, C# does have an absolute: Every
expression has a value and a type. In a declaration such as int n, you can easily
see that the variable n is an int. Further, you can reasonably assume that the type
of a calculation n + 1 is an int. However, what type is the constant 1?

The type of a constant depends on two things: its value and the presence of an
optional descriptor letter at the end of the constant. Any integer type less than 2
billion is assumed to be an int. Numbers larger than 2 billion are assumed to be
long. Any floating-point number is assumed to be a double.

Table 2-4 demonstrates constants that have been declared to be of a particular
type. The case of these descriptors is not important; 1U and 1u are equivalent.

TABLE 2-4	 Common Constants Declared along with Their Types
Constant Type

1 int

1U unsigned int

1L long int (avoid lowercase l; it’s too much like the digit 1)

1.0 double

1.0F float

Li
vi

ng
 w

it
h

Va
ri

ab
ili

ty
 —

D
ec

la
ri

ng
 V

al
ue

-T
yp

e
Va

ri
ab

le
s

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 41

Changing Types: The Cast
Humans don’t treat different types of counting numbers differently. For example,
a normal person (as distinguished from a C# programmer) doesn’t think about
the number 1 as being signed, unsigned, short, or long. Although C# considers
these types to be different, even C# realizes that a relationship exists between
them. For example, this bit of code converts an int into a long:

int intValue = 10;

long longValue;

longValue = intValue; // This is OK.

An int variable can be converted into a long because any possible value of an int
can be stored in a long — and because they are both counting numbers. C# makes
the conversion for you automatically without comment. This is called an implicit
type conversion.

A conversion in the opposite direction can cause problems, however. For example,
this line is illegal:

long longValue = 10;

int intValue;

intValue = longValue; // This is illegal.

Some values that you can store in a long don’t fit in an int (4 billion, for example).
If you try to shoehorn such a value into an int, C# generates an error because data
may be lost during the conversion process. This type of bug is difficult to catch.

Constant Type

1M decimal

true bool

false bool

'a' char

'\n' char (the character newline)

'\x123' char (the character whose numeric value is hex 123)1

"a string" string

"" string (an empty string); same as String.Empty

1“hex” is short for hexadecimal (numbers in base 16 rather than in base 10).

42 BOOK 1 The Basics of C# Programming

But what if you know that the conversion is okay? For example, even though
longValue is a long, maybe you know that its value can’t exceed 100 in this par-
ticular program. In that case, converting the long variable longValue into the int
variable intValue would be okay.

You can tell C# that you know what you’re doing by means of a cast:

long longValue = 10;

int intValue;

intValue = (int)longValue; // This is now OK.

In a cast, you place the name of the type you want in parentheses and put it imme-
diately in front of the value you want to convert. This cast forces C# to convert
the long named longValue into an int and assumes that you know what you’re
doing. In retrospect, the assertion that you know what you’re doing may seem
overly confident, but it’s often valid.

A counting number can be converted into a floating-point number automatically,
but converting a floating-point into a counting number requires a cast:

double doubleValue = 10.0;

long longValue = (long)doubleValue;

All conversions to and from a decimal require a cast. In fact, all numeric types
can be converted into all other numeric types through the application of a cast.
Neither bool nor string can be converted directly into any other type.

Built-in C# methods can convert a number, character, or Boolean into its string
equivalent, so to speak. For example, you can convert the bool value true into the
string “true”; however, you cannot consider this change a direct conversion. The
bool true and the string "true" are completely different things.

Letting the C# Compiler Infer Data Types
So far in this book — well, so far in this chapter — when you declared a variable,
you always specified its exact data type, like this:

int i = 5;

string s = "Hello C#";

double d = 1.0;

Li
vi

ng
 w

it
h

Va
ri

ab
ili

ty
 —

D
ec

la
ri

ng
 V

al
ue

-T
yp

e
Va

ri
ab

le
s

CHAPTER 2 Living with Variability — Declaring Value-Type Variables 43

You’re allowed to offload some of that work onto the C# compiler, using the var
keyword:

var i = 5;

var s = "Hello C# 4.0";

var d = 1.0;

Now the compiler infers the data type for you — it looks at the stuff on the right
side of the assignment to see what type the left side is.

For what it’s worth, Chapter 3 of this minibook shows how to calculate the type of
an expression like the ones on the right side of the assignments in the preceding
example. Not that you need to do that — the compiler mostly does it for you. Sup-
pose, for example, you have an initializing expression like this:

var x = 3.0 + 2 - 1.5;

The compiler can figure out that x is a double value. It looks at 3.0 and 1.5 and
sees that they’re of type double. Then it notices that 2 is an int, which the com-
piler can convert implicitly to a double for the calculation. All the additional terms
in x’s initialization expression end up as double types. So the inferred type of x is
double.

But now, you can simply utter the magic word var and supply an initialization
expression, and the compiler does the rest:

var aVariable = <initialization expression here>;

If you’ve worked with a scripting language such as JavaScript or VBScript, you may
have gotten used to all-purpose-in-one data types. VBScript calls them Variant
data types — and a Variant can be anything at all. But does var in C# signify a
Variant type? Not at all. The object you declare with var definitely has a C# data
type, such as int, string, or double. You just don’t have to declare what it is.

What’s really lurking in the variables declared in this example with var? Take a
look at this:

var aString = "Hello C# 3.0";

Console.WriteLine(aString.GetType().ToString());

The mumbo jumbo in that WriteLine statement calls the String.GetType()
method on aString to get its C# type. Then it calls the resulting object’s

44 BOOK 1 The Basics of C# Programming

ToString() method to display the object’s type. Here’s what you see in the con-
sole window:

System.String

The output from this code proves that the compiler correctly inferred the type of
aString.

Most of the time, the best practice is to not use var. Save it for when it’s neces-
sary. Being explicit about the type of a variable is clearer to anyone reading your
code than using var.

You see examples later in which var is definitely called for, and you use it part of
the time throughout this book, even sometimes where it’s not strictly necessary.
You need to see it used, and use it yourself, to internalize it.

You can see var used in other ways: with arrays and collections of data, in
Chapter 6 of this minibook, and with anonymous types, in Book 2. Anonymous?
Bet you can’t wait.

What’s more, a type in C# 4.0 and later is even more flexible than var: The
dynamic type takes var a step further.

The var type causes the compiler to infer the type of the variable based on
expected input. The dynamic keyword does this at runtime, using a set of tools
called the Dynamic Language Runtime. You can find more about the dynamic type
in Chapter 6 of Book 3.

CHAPTER 3 Pulling Strings 45

Pulling Strings

For many applications, you can treat a string like one of the built-in value-
type variable types such as int or char. Certain operations that are otherwise
reserved for these intrinsic types are available to strings:

Int i = 1; // Declare and initialize an int.

string s = "abc"; // Declare and initialize a string.

In other respects, as shown in the following example, a string is treated like a
user-defined class (Book 2 discusses classes):

string s1 = new String();

string s2 = "abcd";

int lengthOfString = s2.Length;

Which is it — a value type or a class? In fact, String is a class for which C# offers
special treatment because strings are so widely used in programs. For example,
the keyword string is synonymous with the class name String, as shown in this
bit of code:

String s1 = "abcd"; // Assign a string literal to a String obj.

string s2 = s1; // Assign a String obj to a string variable.

Chapter 3

IN THIS CHAPTER

 » Pulling and twisting a string with C#

 » Matching searching, trimming,
splitting, and concatenating strings

 » Parsing strings read into the program

 » Formatting output strings manually
or using the String.Format() method

46 BOOK 1 The Basics of C# Programming

In this example, s1 is declared to be an object of class String (spelled with an
uppercase S) whereas s2 is declared as a simple string (spelled with a lowercase s).
However, the two assignments demonstrate that string and String are of the same
(or compatible) types.

In fact, this same property is true of the other intrinsic variable types, to a more
limited extent. Even the lowly int type has a corresponding class Int32, double
has the class Double, and so on. The distinction here is that string and String
truly are the same thing.

The rest of the chapter covers Strings and strings and all the tasks you can
accomplish by using them.

The Union Is Indivisible, and So Are Strings
You need to know at least one thing that you didn’t learn before the sixth grade:
You can’t change a string object after creating it. Even though you may see text
that speaks of modifying a string, C# doesn’t have an operation that modifies
the actual string object. Plenty of operations appear to modify the string that
you’re working with, but they always return the modified string as a new object
instead. The new string contains the modified text and has the same name as the
existing string, but it really is a new string.

For example, the operation "His name is " + "Randy" changes neither of the two
strings, but it generates a third string, "His name is Randy". One side effect of
this behavior is that you don’t have to worry about someone modifying a string
that you create. Consider this example program:

using System;

// ModifyString -- The methods provided by class String do

// not modify the object itself. (s.ToUpper() doesn’t

// modify 's'; rather it returns a new string that has

// been converted.)

namespace ModifyString

{

 class Program

 {

 public static void Main(string[] args)

 {

 // Create a student object.

 Student s1 = new Student();

 s1.Name = "Jenny";

Pu
lli

ng
 S

tr
in

gs

CHAPTER 3 Pulling Strings 47

 // Now make a new object with the same name.

 Student s2 = new Student();

 s2.Name = s1.Name;

 // "Changing" the name in the s1 object does not

 // change the object itself because ToUpper() returns

 // a new string without modifying the original.

 s2.Name = s1.Name.ToUpper();

 Console.WriteLine("s1 - " + s1.Name + ", s2 - " + s2.Name);

 // Wait for user to acknowledge the results.

 Console.WriteLine("Press Enter to terminate...");

 Console.Read();

 }

 }

 // Student -- You just need a class with a string in it.

 class Student

 {

 public String Name;

 }

}

Book 2 fully discusses classes, but for now, you can see that the Student class
contains a data variable called Name, of type String. The Student objects s1 and
s2 are set up so the student Name data in each points to the same string data.
ToUpper() converts the string s1.Name to all uppercase characters. Normally,
this would be a problem because both s1 and s2 point to the same object. How-
ever, ToUpper() does not change Name — it creates a new, independent uppercase
string and stores it in the object s2. Now the two Students don’t point to the same
string data. Here’s some sample output from this program:

s1 - Jenny, s2 - JENNY

Press Enter to terminate...

This property of strings is called immutability (meaning unchangeability).

The immutability of strings is also important for string constants. A string such
as "this is a string" is a form of a string constant, just as 1 is an int constant.
A compiler may choose to combine all accesses to the single constant "this is
a string". Reusing string constants can reduce the footprint of the resulting
program (its size on disc or in memory) but would be impossible if anyone could
modify the string.

48 BOOK 1 The Basics of C# Programming

Performing Common Operations
on a String

C# programmers perform more operations on strings than Beverly Hills plastic
surgeons do on Hollywood hopefuls. Virtually every program uses the addition
operator that’s used on strings, as shown in this example:

string name = "Randy";

Console.WriteLine("His name is " + name); // + means concatenate.

The String class provides this special operator. However, the String class also
provides other, more direct methods for manipulating strings. You can see the
complete list by looking up “String class” in the Visual Studio Help Index, and
you’ll meet many of the usual suspects in this chapter. Among the string-related
tasks I cover here are the ones described in this list:

 » Comparing strings — for equality or for tasks like alphabetizing

 » Changing and converting strings in various ways: replacing part of a string,
changing case, and converting between strings and other things

 » Accessing the individual characters in a string

 » Finding characters or substrings inside a string

 » Handling input from the command line

 » Managing formatted output

 » Working efficiently with strings using the StringBuilder

Comparing Strings
It’s common to need to compare two strings. For example, did the user input the
expected value? Or maybe you have a list of strings and need to alphabetize them.
Best practice calls for avoiding the standard == and != comparison operators and
to use the built-in comparison functions because strings can have nuances of
difference between them, and these operators don’t always work as expected. In
addition, using the comparison functions makes the kind of comparison you want
clearer and makes your code easier to maintain. The article at https://docs.
microsoft.com/en-us/dotnet/csharp/programming-guide/strings/how-to-
compare-strings provides some additional details on this issue, but the following
sections tell you all you need to know about comparing two strings.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/how-to-compare-strings
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/how-to-compare-strings
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/how-to-compare-strings

Pu
lli

ng
 S

tr
in

gs

CHAPTER 3 Pulling Strings 49

Equality for all strings:
The Compare() method
Numerous operations treat a string as a single object — for example, the
Compare() method. Compare(), with the following properties, compares two
strings as though they were numbers:

 » If the left string is greater than the right string, Compare(left, right)
returns 1.

 » If the left string is less than the right string, it returns –1.

 » If the two strings are equal, it returns 0.

The algorithm works as follows when written in notational C# (that is, C# without
all the details, also known as pseudocode):

compare(string s1, string s2)

{

 // Loop through each character of the strings until

 // a character in one string is greater than the

 // corresponding character in the other string.

 foreach character in the shorter string

 if (s1's character > s2's character when treated as a number)

 return 1

 if (s2's character < s1's character)

 return -1

 // Okay, every letter matches, but if the string s1 is longer,

 // then it's greater.

 if s1 has more characters left

 return 1

 // If s2 is longer, it's greater.

 if s2 has more characters left

 return -1

 // If every character matches and the two strings are the same

 // length, then they are "equal."

 return 0

}

Thus, "abcd" is greater than "abbd", and "abcde" is greater than "abcd". More
often than not, you don’t care whether one string is greater than the other, but
only whether the two strings are equal. You do want to know which string is bigger
when performing a sort.

50 BOOK 1 The Basics of C# Programming

The Compare() method returns 0 when two strings are identical (as shown by the
code in boldface type in the following listing). The following test program uses the
equality feature of Compare() to perform a certain operation when the program
encounters a particular string or strings. BuildASentence prompts the user to
enter lines of text. Each line is concatenated to the previous line to build a single
sentence. This program ends when the user enters the word EXIT, exit, QUIT, or
quit. (You’ll see after the code what the code in bold does.)

using System;

// BuildASentence -- The following program constructs sentences

// by concatenating user input until the user enters one of the

// termination characters. This program shows when you need to look for

// string equality.

namespace BuildASentence

{

 public class Program

 {

 public static void Main(string[] args)

 {

 Console.WriteLine("Each line you enter will be "

 + "added to a sentence until you "
 + "enter EXIT or QUIT");

 // Ask the user for input; continue concatenating

 // the phrases input until the user enters exit or

 // quit (start with an empty sentence).

 string sentence = "";

 for (; ;)

 {

 // Get the next line.

 Console.WriteLine("Enter a string ");

 string line = Console.ReadLine();

 // Exit the loop if line is a terminator.

 string[] terms = { "EXIT", "exit", "QUIT", "quit" };

 // Compare the string entered to each of the

 // legal exit commands.

 bool quitting = false;

 foreach (string term in terms)

 {

 // Break out of the for loop if you have a match.

 if (String.Compare(line, term) == 0)

 {

 quitting = true;

 }

Pu
lli

ng
 S

tr
in

gs

CHAPTER 3 Pulling Strings 51

 }

 if (quitting == true)

 {

 break;

 }

 // Otherwise, add it to the sentence.

 sentence = String.Concat(sentence, line);

 // Let the user know how she's doing.

 Console.WriteLine("\nyou've entered: " + sentence);
 }

 Console.WriteLine("\ntotal sentence:\n" + sentence);

 // Wait for user to acknowledge the results.

 Console.WriteLine("Press Enter to terminate...");

 Console.Read();

 }

 }

}

After prompting the user for what the program expects, the program creates an
empty initial sentence string called sentence. From there, the program enters an
infinite loop.

The controls while(true) and for(;;) loop forever, or at least long enough for
some internal break or return to break you out. The two loops are equivalent,
and in practice, you’ll see them both. (Looping is covered in Chapter 5 of this
minibook.)

BuildASentence prompts the user to enter a line of text, which the program reads
using the ReadLine() method. Having read the line, the program checks to see
whether it is a terminator by using the code in boldface in the preceding example.

The termination section of the program defines an array of strings called terms
and a bool variable quitting, initialized to false. Each member of the terms
array is one of the strings you’re looking for. Any of these strings causes the pro-
gram to end.

The program must include both "EXIT" and "exit" because Compare() consid-
ers the two strings to be different by default. (The way the program is written,
these are the only two ways to spell exit. Strings such as "Exit" and "eXit" aren’t
recognized as terminators.) You can also use other string operations to check for
various spellings of exit. You see how to perform this task in the next section.

52 BOOK 1 The Basics of C# Programming

The termination section loops through each of the strings in the array of target
strings. If Compare() reports a match to any of the terminator phrases, quitting
is set to true. If quitting remains false after the termination section and line
is not one of the terminator strings, it is concatenated to the end of the sentence
using the String.Concat() method. The program outputs the immediate result
so that the user can see what’s going on. Iterating through an array is a clas-
sic way to look for one of various possible values. (The next section shows you
another way, and Book 2 gives you an even cooler way.) Here’s a sample run of
the BuildASentence program:

Each line you enter will be added to a

sentence until you enter EXIT or QUIT

Enter a string

Programming with

You've entered: Programming with

Enter a string

 C# is fun

You've entered: Programming with C# is fun

Enter a string

 (more or less)

You've entered: Programming with C# is fun (more or less)

Enter a string

EXIT

Total sentence:

Programming with C# is fun (more or less)

Press Enter to terminate...

Would you like your compares
with or without case?
The Compare() method used in the previous example considers "EXIT" and
"exit" different strings. However, the Compare() method has a second version
that includes a third argument. This argument indicates whether the comparison
should ignore the letter case. A true indicates “ignore.”

The following version of the lengthy termination section in the BuildASentence
example sets quitting to true whether the string passed is uppercase, lowercase,
or a combination of the two:

 // Indicate true if passed either exit or quit,

 // irrespective of case.

Pu
lli

ng
 S

tr
in

gs

CHAPTER 3 Pulling Strings 53

 if (String.Compare("exit", source, true) == 0) ||

 (String.Compare("quit", source, true) == 0)

 {

 quitting = true;

 }

}

This version is simpler than the previous looping version. This code doesn’t need
to worry about case, and it can use a single conditional expression because it now
has only two options to consider instead of a longer list: any spelling variation of
QUIT or EXIT.

What If I Want to Switch Case?
You may be interested in whether all the characters (or just one) in a string are
uppercase or lowercase characters. And you may need to convert from one to the
other.

Distinguishing between all-uppercase
and all-lowercase strings
You can use the switch statement (see Chapter 5 of this minibook) to look for a
particular string. Normally, you use the switch statement to compare a counting
number to some set of possible values; however, switch does work on string
objects as well. This version of the termination section in BuildASentence uses
the switch construct:

switch(line)

{

 case "EXIT":

 case "exit":

 case "QUIT":

 case "quit":

 return true;

}

return false;

This approach works because you’re comparing only a limited number of strings.
The for loop offers a much more flexible approach for searching for string values.
Using the case-less Compare() in the previous section gives the program greater
flexibility in understanding the user.

54 BOOK 1 The Basics of C# Programming

Converting a string to upper- or lowercase
Suppose you have a string in lowercase and need to convert it to uppercase. You
can use the ToUpper() method:

string lowcase = "armadillo";

string upcase = lowcase.ToUpper(); // ARMADILLO.

Similarly, you can convert uppercase to lowercase with ToLower().

What if you want to convert just the first character in a string to uppercase? The
following rather convoluted code will do it (but you can see a better way in the last
section of this chapter):

string name = "chuck";

string properName =

 char.ToUpper(name[0]).ToString() + name.Substring(1, name.Length - 1);

The idea in this example is to extract the first char in name (that’s name[0]), con-
vert it to a one-character string with ToString(), and then tack on the remainder
of name after removing the old lowercase first character with Substring().

You can tell whether a string is uppercased or lowercased by using this scary-
looking if statement:

if (string.Compare(line.ToUpper(CultureInfo.InvariantCulture),

 line, false) == 0) ... // True if line is all upper.

Here the Compare() method is comparing an uppercase version of line to line
itself. There should be no difference if line is already uppercase. The Culture
Info.InvariantCulture property tells Compare() to perform the comparison
without considering culture. You can read more about it at https://msdn.micro
soft.com/library/system.globalization.cultureinfo.invariantculture.
aspx. If you want to ensure that the string contains all lowercase characters, stick
a not (!) operator in front of the Compare() call. Alternatively, you can use a loop,
as described in the next section.

Looping through a String
You can access individual characters of a string in a foreach loop. The following
code steps through the characters and writes each to the console — just another
(roundabout) way to write out the string:

https://msdn.microsoft.com/library/system.globalization.cultureinfo.invariantculture.aspx
https://msdn.microsoft.com/library/system.globalization.cultureinfo.invariantculture.aspx
https://msdn.microsoft.com/library/system.globalization.cultureinfo.invariantculture.aspx

Pu
lli

ng
 S

tr
in

gs

CHAPTER 3 Pulling Strings 55

string favoriteFood = "cheeseburgers";

foreach(char c in favoriteFood)

{

 Console.Write(c); // Could do things to the char here.

}

Console.WriteLine();

You can use that loop to solve the problem of deciding whether favoriteFood is
all uppercase. (See the previous section for more about case.)

bool isUppercase = true; // Assume that it’s uppercase.

foreach(char c in favoriteFood)

{

 if(!char.IsUpper(c))

 {

 isUppercase = false; // Disproves all uppercase, so get out.

 break;

 }

}

At the end of the loop, isUppercase will either be true or false. As shown in the
final example in the previous section on switching case, you can also access indi-
vidual characters in a string by using an array index notation.

Arrays start with zero, so if you want the first character, you ask for index [0]. If
you want the third, you ask for index [2].

char thirdChar = favoriteFood[2]; // First 'e' in "cheeseburgers"

Searching Strings
What if you need to find a particular word, or a particular character, inside a
string? Maybe you need its index so that you can use Substring(), Replace(),
Remove(), or some other method on it. In this section, you see how to find indi-
vidual characters or substrings using favoriteFood from the previous section.

Can I find it?
The simplest task is finding an individual character with IndexOf():

int indexOfLetterS = favoriteFood.IndexOf('s'); // 4.

56 BOOK 1 The Basics of C# Programming

Class String also has other methods for finding things, either individual charac-
ters or substrings:

 » IndexOfAny() takes an array of chars and searches the string for any of
them, returning the index of the first one found.

char[] charsToLookFor = { 'a', 'b', 'c' };

int indexOfFirstFound = favoriteFood.IndexOfAny(charsToLookFor);

That call is often written more briefly this way:

int index = name.IndexOfAny(new char[] { 'a', 'b', 'c' });

 » LastIndexOf() finds not the first occurrence of a character but the last.

 » LastIndexOfAny() works like IndexOfAny(), but starting at the end of the
string.

 » Contains() returns true if a given substring can be found within the target
string:

if(favoriteFood.Contains("ee")) ... // True

 » And Substring() returns the string (if it’s there), or empty (if not):

string sub = favoriteFood.Substring(6, favoriteFood.Length - 6);

Is my string empty?
How can you tell if a target string is empty ("") or has the value null? (null
means that no value has been assigned yet, not even to the empty string.) Use the
IsNullOrEmpty() method, like this:

bool notThere = string.IsNullOrEmpty(favoriteFood); // False

Notice how you call IsNullOrEmpty(): string.IsNullOrEmpty(s). You can set a
string to the empty string in these two ways:

string name = "";

string name = string.Empty;

Pu
lli

ng
 S

tr
in

gs

CHAPTER 3 Pulling Strings 57

Getting Input from the Command Line
A common task in console applications is getting the information that the user
types when the application prompts for input, such as an interest rate or a name.
The console methods provide all input in string format. Sometimes you need to
parse the input to extract a number from it. And sometimes you need to process
lots of input numbers.

Trimming excess white space
First, consider that in some cases, you don’t want to mess with any white space
on either end of the string. The term white space refers to the characters that don’t
normally display on the screen — for example, space, newline (or \n), and tab
(\t). You may sometimes also encounter the carriage return character, \r.You can
use the Trim() method to trim off the edges of the string, like this:

// Get rid of any extra spaces on either end of the string.

random = random.Trim();

Class String also provides TrimFront() and TrimEnd() methods for getting more
specific, and you can pass an array of chars to include in the trimming process.
For example, you might trim a leading currency sign, such as '$'. Cleaning up a
string can make it easier to parse. The trim methods return a new string.

Parsing numeric input
A program can read from the keyboard one character at a time, but you have to
worry about newlines and so on. An easier approach reads a string and then parses
the characters out of the string.

Parsing characters out of a string is necessary at times, but some programmers
abuse this technique. In some cases, they’re too quick to jump into the middle of
a string and start pulling out what they find there. This is particularly true of C++
programmers because that’s the only way they could deal with strings — until the
addition of a string class.

The ReadLine() method used for reading from the console returns a string
object. A program that expects numeric input must convert this string. C# pro-
vides just the conversion tool you need in the Convert class. This class provides

58 BOOK 1 The Basics of C# Programming

a conversion method from string to each built-in variable type. Thus, this code
segment reads a number from the keyboard and stores it in an int variable:

string s = Console.ReadLine(); // Keyboard input is string data

int n = Convert.ToInt32(s); // but you know it’s meant to be a number.

The other conversion methods are a bit more obvious: ToDouble(), ToFloat(),
and ToBoolean(). ToInt32() refers to a 32-bit, signed integer (32 bits is the size
of a normal int), so this is the conversion method for ints. ToInt64() handles
the size of a long.

When Convert() encounters an unexpected character type, it can generate unex-
pected results. Thus, you must know for sure what type of data you’re processing
and ensure that no extraneous characters are present.

Although you don’t know much about methods yet (see Book 2), here’s one any-
way. The IsAllDigits() method returns true if the string passed to it consists of
only digits. You can call this method prior to converting a string into an integer,
assuming that a sequence of nothing but digits is a legal number.

Here’s the method:

// IsAllDigits -- Return true if all characters

// in the string are digits.

public static bool IsAllDigits(string raw)

{

 // First get rid of any benign characters at either end;

 // if there's nothing left, you don't have a number.

 string s = raw.Trim(); // Ignore white space on either side.

 if (s.Length == 0) return false;

 // Loop through the string.

 for(int index = 0; index < s.Length; index++)
 {

 // A nondigit indicates that the string probably isn’t a number.

 if (Char.IsDigit(s[index]) == false) return false;

 }

 // No nondigits found; it's probably okay.

 return true;

}

To be truly complete, you need to include the decimal point for floating-point
variables and include a leading minus sign for negative numbers.

Pu
lli

ng
 S

tr
in

gs

CHAPTER 3 Pulling Strings 59

The method IsAllDigits() first removes any harmless white space at either end
of the string. If nothing is left, the string was blank and could not be an inte-
ger. The method then loops through each character in the string. If any of these
characters turns out to be a nondigit, the method returns false, indicating that
the string is probably not a number. If this method returns true, the probability
is high that you can convert the string into an integer successfully. The follow-
ing code sample inputs a number from the keyboard and prints it back out to the
console.

using System;

// IsAllDigits -- Demonstrate the IsAllDigits method.

namespace IsAllDigits

{

 class Program

 {

 public static void Main(string[] args)

 {

 // Input a string from the keyboard.

 Console.WriteLine("Enter an integer number");

 string s = Console.ReadLine();

 // First check to see if this could be a number.

 if (!IsAllDigits(s)) // Call the special method.

 {

 Console.WriteLine("Hey! That isn't a number");

 }

 else

 {

 // Convert the string into an integer.

 int n = Int32.Parse(s);

 // Now write out the number times 2.

 Console.WriteLine("2 * " + n + " = " + (2 * n));
 }

 // Wait for user to acknowledge the results.

 Console.WriteLine("Press Enter to terminate...");

 Console.Read();

 }

 // Place IsAllDigits here...

 }

}

The program reads a line of input from the console keyboard. If IsAllDigits()
returns false, the program alerts the user. If not, the program converts the
string into a number using an alternative to Convert.ToInt32(aString) — the

60 BOOK 1 The Basics of C# Programming

Int32.Parse(aString) call. Finally, the program outputs both the number and
two times the number (the latter to prove that the program did, in fact, convert
the string as advertised). Here’s the output from a sample run of the program:

Enter an integer number

1A3

Hey! That isn't a number

Press Enter to terminate...

You could let Convert() try to convert garbage and handle any exception it may
decide to throw. However, a better-than-even chance exists that it won’t throw
an exception but will just return incorrect results — for example, returning 1
when presented with 1A3. You should validate input data yourself.

You could instead use Int32.TryParse(s, n), which returns false if the parse
fails or true if it succeeds. If it does work, the converted number is found in the
second parameter, an int that I named n. This method won’t throw exceptions.
See the next section for an example.

Handling a series of numbers
Often, a program receives a series of numbers in a single line from the keyboard.
Using the String.Split() method, you can easily break the string into a number
of substrings, one for each number, and parse them separately.

The Split() method chops a single string into an array of smaller strings using
some delimiter. For example, if you tell Split() to divide a string using a comma
(,) as the delimiter, "1,2,3" becomes three strings, "1", "2", and "3". (The
delimiter is whichever character you use to split collections.) The following pro-
gram uses the Split() method to input a sequence of numbers to be summed. The
code in bold shows the Split() method-specific code.

using System;

// ParseSequenceWithSplit; Input a series of numbers separated by commas,

// parse them into integers and output the sum.

namespace ParseSequenceWithSplit

{

 class Program

 {

 public static void Main(string[] args)

 {

 // Prompt the user to input a sequence of numbers.

 Console.WriteLine(

 "Input a series of numbers separated by commas:");

Pu
lli

ng
 S

tr
in

gs

CHAPTER 3 Pulling Strings 61

 // Read a line of text.

 string input = Console.ReadLine();

 Console.WriteLine();

 // Now convert the line into individual segments

 // based upon either commas or spaces.

 char[] dividers = {',', ' '};

 string[] segments = input.Split(dividers);

 // Convert each segment into a number.

 int sum = 0;

 foreach(string s in segments)

 {

 // Skip any empty segments.

 if (s.Length > 0)

 {

 // Skip strings that aren't numbers.

 if (IsAllDigits(s))

 {

 // Convert the string into a 32-bit int.

 int num = 0;

 if (Int32.TryParse(s, out num))

 {

 Console.WriteLine("Next number = {0}", num);

 // Add this number into the sum.

 sum += num;

 }

 // If parse fails, move on to next number.

 }

 }

 }

 // Output the sum.

 Console.WriteLine("Sum = {0}", sum);

 // Wait for user to acknowledge the results.

 Console.WriteLine("Press Enter to terminate...");

 Console.Read();

 }

 // Place IsAllDigits here...

 }

}

The ParseSequenceWithSplit program begins by reading a string from the key-
board. The program passes the dividers array of char to the Split() method to
indicate that the comma and the space are the characters used to separate indi-
vidual numbers. Either character will cause a split there.

62 BOOK 1 The Basics of C# Programming

The program iterates through each of the smaller subarrays created by Split()
using the foreach loop statement. The program skips any zero-length subar-
rays. (This would result from two dividers in a row.) The program next uses the
IsAllDigits() method to make sure that the string contains a number. (It won’t
if, for instance, you type ,.3 with an extra nondigit, nonseparator character.)
Valid numbers are converted into integers and then added to an accumulator, sum.
Invalid numbers are ignored. Here’s the output of a typical run:

Input a series of numbers separated by commas:

1,2, a, 3 4

Next number = 1

Next number = 2

Next number = 3

Next number = 4

Sum = 10

Press Enter to terminate...

The program splits the list, accepting commas, spaces, or both as separators. It
successfully skips over the a to generate the result of 10. In a real-world pro-
gram, however, you probably don’t want to skip over incorrect input without
comment. You almost always want to draw the user’s attention to garbage in the
input stream.

Joining an array of strings into one string
Class String also has a Join() method. If you have an array of strings, you can
use Join() to concatenate all the strings. You can even tell it to put a certain
 character string between each item and the next in the array:

string[] brothers = { "Chuck", "Bob", "Steve", "Mike" };

string theBrothers = string.Join(":", brothers);

The result in theBrothers is "Chuck:Bob:Steve:Mike", with the names sepa-
rated by colons. You can put any separator string between the names: ", ", "\t",
" ". The first item is a comma and a space. The second is a tab character. The
third is a string of several spaces.

Controlling Output Manually
Controlling the output from programs is an important aspect of string manipu-
lation. Face it: The output from the program is what the user sees. No matter

Pu
lli

ng
 S

tr
in

gs

CHAPTER 3 Pulling Strings 63

how elegant the internal logic of the program may be, the user probably won’t be
impressed if the output looks shabby.

The String class provides help in directly formatting string data for output. The
following sections examine the Pad(), PadRight(), PadLeft(), Substring(), and
Concat() methods.

Using the Trim() and Pad() methods
In the “Trimming excess white space” section, you see how to use Trim() and its
more specialized variants, TrimFront() and TrimEnd(). This section discusses
another common method for formatting output. You can use the Pad methods,
which add characters to either end of a string to expand the string to some prede-
termined length. For example, you may add spaces to the left or right of a string
to left- or right-justify it, or you can add "*" characters to the left of a currency
number, and so on. The following small AlignOutput program uses both Trim()
and Pad() to trim up and justify a series of names (the code specific to Trim() and
Pad()appears in bold):

using System;

using System.Collections.Generic;

// AlignOutput -- Left justify and align a set of strings

// to improve the appearance of program output.

namespace AlignOutput

{

 class Program

 {

 public static void Main(string[] args)

 {

 List<string> names = new List<string> {"Christa ",

 " Sarah",

 "Jonathan",

 "Sam",

 " Schmekowitz "};

 // First output the names as they start out.

 Console.WriteLine("The following names are of "

 + "different lengths");

 foreach(string s in names)

 {

 Console.WriteLine("This is the name '" + s + "' before");
 }

 Console.WriteLine();

