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Foreword

As a proud University of Southampton alumnus, I am delighted to have the privilege of writing
a few introductory words. My own journey through the ranks of the Royal Navy, and especially
in naval aviation, leadership, and the exploitation of technology, has taught me the advantage
and fun to be had in challenging convention.
Meanwhile, it is the sheer scale of the emerging new technologies that makes today such an

exciting time. And the Internet has unlocked access to diverse technical knowledge. So, now
no one has an excuse for inhabiting a warm and comfortable technology stovepipe! The true
strength in technical creativity now involves the willingness to mix knowledge, without fear
or favor.
The design of drones explores this genuinely new frontier. Why? Because, as this guide

book makes clear, the approach is a subtle mix of skills, based of course on aerodynamics and
airplane design. But also law, regulation, autonomy, disposability, low cost, unorthodoxy, as
well as novel construction, automation, integration, and artificial intelligence. In other words,
the chance to think very differently, across numerous domains. For example, mix biology and
3D printing, and you have drone biodegradability options.
Conventional aviation industries and aircraft manufacturers are not best suited to this

exploratory approach, because they do not have the freedoms of behavior built into their
leadership and management, or their business plans. Nor are their shareholders interested,
until the firm is going bust.
So, exciting ideas and courage will come from “left field,” and this is your chance to think

differently and be part of that.

Source: Courtesy of Sir George Zambellas.

Admiral Sir George Zambellas GCB DSC DL FRAeS
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Series Preface

Unmanned air vehicles can now be seen in many applications from domestic, industrial,
government/official to military. The range of configurations includes fixed wing, multi-
rotorcraft, adaptive wing, and space re-entry vehicles, in both remotely piloted and
autonomous modes of operation. As a result there are many classes of unmanned air vehicles
in existence, and many types within each class, developed by many manufacturers. They
are all capable of carrying some form of payload, including sensors, and of relaying sensor
information to the ground – their primary use. They should all be designed and tested to meet
the accepted airworthiness requirements for certification, although perhaps not all are.
This book is a welcome addition to the literature of unmanned air vehicles concentrating as

it does on a particular class, that of small, fixed wing subsonic vehicles capable of carrying
significant payloads – a class with little associated literature and a class that is likely to expand
in the future. There are configurations in this class that are readily available to members of the
public and small businesses who use them as observation or surveillance platforms to com-
plement their business activities. The book has been written by authors with long experience
of the development of this class from concept through design, build and test and operation
in a teaching environment. This experience shows in the clear explanations assisted by many
relevant diagrams. The book stresses the need for a robust design process for the airframe,
the systems and the software tool set used to support designers. The completeness of the text
results in a handbook on how to design, build and fly small fixed wing Unmanned Air Vehicles.
The Aerospace Series has continued to provide practical, topical and relevant information

for people working in the field of aerospace design and development, including engineering
professionals and operators, allied professions such as commercial and legal executives, and
also engineers in academia. In this instance the book is especially suitable for final year grad-
uates and those entering the industry and intending to start a career in the field of unmanned
vehicles.

Peter Belobaba, Jonathan Cooper and Allan Seabridge
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Preface

Unmanned air vehicles (sometimes uninhabited air vehicles or even systems, UAVs or UASs)
are becoming an increasingly common sight across the globe. Originally the preserve of
very secretive military organizations, they are now in routine use by film crews, farmers,
search and rescue teams, hobbyists, and so on. Most of the technological difficulties in
building a system that can start, take off, fly a mission, and return without human intervention
have been overcome, and the wider adoption of these technologies is now mostly a matter
of cost, public acceptance, and regulatory approval. The only remaining technological
challenges essentially concern the degree of on-board autonomy and decision making such
vehicles can provide. If secure and robust communications to a ground-based pilot can be
maintained to provide decision-making capabilities, very ambitious missions can be quite
readily accomplished. On-board decision making is less well advanced but developments
continue apace.
The origins of our interest in UAVs stem from the many years we have spent in the business

of design, both practical and academic, teaching, and research. This has exposed us to a great
deal of related activity in the aerospace andmarine sectors, whose processes have changed con-
siderably over the time we have been involved. A reoccurring theme throughout has been rapid
evolution in the software toolset used to support designers, and it is in this area we have been
principally engaged. Central to our views is a way of looking at engineering design that distin-
guishes between synthesis (the business of generating new or changed descriptions of artifacts)
and analysis (where one uses the laws of physics, experiments, and past experience to assess
the likely or actual performance of the designed artifact). It is by the use of formal analysis
and experimentation to ascribe value to an artifact that engineering design distinguishes itself
from other forms of design. Thus, to be useful in the world of engineering design, tools must
either help describe the product or process being designed, analyze it, or support the delivery
and integration of these processes – all else is just bureaucracy: design should always be seen
as a decision-making process.
In this book we focus on one particular aspect of the rapidly growing area of UAV tech-

nology: the design, construction, and operation of low-cost, fixed-wing UAVs in the 2–150 kg
maximum take-off weight (MTOW) class flying at low subsonic speeds. Such vehicles can
offer long-endurance, robust platforms capable of operating for 10 h or more on budgets well
below $100 000, often less than $10 000. They can carry significant payloads and operate
from relatively simple ground facilities. In what follows, an approach to designing and build-
ing such UAVs, developed over many years at the University of Southampton, is set out.
While there are, no doubt, many other valid ways of producing UAVs, the one described here
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works for us, providing effective low-cost platforms for teaching, research, and commercial
exploitation.

Andrew J. Keane, András Sóbester and James P. Scanlan
Southampton, UK, 2017
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1
Preliminaries

Fixed-wing aircraft have now been successfully designed and flown for over 100 years.
Aero-modelers have been flying quite large aircraft at low subsonic speeds for decades,
sometimes at scales as large as one-third the full size. Given the accumulated experience, it
is therefore a relatively straightforward task to design, build, and fly a workable fixed-wing
unmanned air vehicle (UAV) platform, armed with one of the many textbooks available on
aircraft design (perhaps the most famous of these being that by Torenbeek [1], though there
are many others). Even a cursory search of the Web will reveal hundreds of UAVs, many
of them fixed-wing, and a number being offered for sale commercially. What is much less
simple is to quickly make robust and reliable airframes in a repeatable manner at low cost,
tailored to specific missions and suitable for commercial-grade operations.
If one has to rely on the craft skills of a highly gifted model-maker to construct an air-

craft, costs rapidly rise, timescales lengthen, and repeatability becomes difficult to ensure.
The use of bespoke molds and various forms of composites allows a much higher standard
of airframe, but the initial production costs become then high and the ability to alter designs
becomes very limited. Conversely, by using commodity off-the-shelf components combined
with computer-aided design (CAD)-based digital manufacture, craft skills can be eliminated,
costs lowered, and repeatability guaranteed. Clearly, if one has always to manually adapt an
existing design to come up with a specification for a new aircraft, much design flexibility is
lost; if, instead, lightweight decision support tools are linked to sophisticated parametric CAD
models, high-quality design concepts can be rapidly developed to specific needs.
This is the fundamental design philosophy adopted by the UAV team at the University of

Southampton (Figure 1.1) and forms the guiding approach of this book. The basic idea is to
work in a digital, online world, buying parts where possible and manufacturing custom items
only where absolutely necessary – essentially the aim is to source a kit of components either
from part suppliers or companies offering online CAD-based manufacture, which then simply
requires assembly to produce the finished aircraft. This means that the resulting UAVs are of
a high and repeatable quality with as much emphasis on smart design as possible. This phi-
losophy has become possible largely because of a revolution in bespoke digital manufacturing
capabilities afforded by advanced CAD, Internet-based sourcing, low-cost computer numerical
controlled (CNC)machining, and the widespread availability of 3D printing of functional com-
ponents. In particular, the use of SLS nylon and metal has transformed the way in which main

Small Unmanned Fixed-wing Aircraft Design: A Practical Approach, First Edition.
Andrew J. Keane, András Sóbester and James P. Scanlan.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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Figure 1.1 The University of Southampton UAV team with eight of our aircraft, March 2015. See also
https://www.youtube.com/c/SotonUAV and https://www.sotonuav.uk/.

fuselage components and bespoke aircraft fittings can now be made. The core aims throughout
our work have been to seek

1. low costs with highly repeatable and robust products,
2. rapid conversion of design changes into flying aircraft to meet new requirements, and
3. flexible payload systems

combined with

4. duplication of all flight critical systems,
5. sufficiently sophisticated avionics to allow fully autonomous takeoff, flight, and landing,
6. large and strong fixtures and joints to provide tolerance of uneven landing sites and

day-to-day ground handling, and
7. low take-off and landing speeds to minimize risks of damage during operations.

These aims ensure long-lived and robust commercial-grade aircraft, which can survive hun-
dreds of flight cycles and thousands of flight hours – something that model aircraft never see.

1.1 Externally Sourced Components

To test our evolving design environments and build capabilities, a range of aircraft types have
been considered. In all cases, these started with the knowledge that some of the major air-
frame components have to be externally sourced and that one has therefore to work with what

https://www.youtube.com/c/SotonUAV
https://www.sotonuav.uk/
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is readily available in appropriate sizes. The following list of such components forms a key
starting point for what follows. To maintain low costs, some things simply have to be sourced
off the shelf:

1. Engines. Either petrol or glow-plug internal combustion engines ranging from 10 up to
200 cc (cm3) in single-, twin-, three-, and four-cylinder configurations;

2. Electric motors. Usually rare-earth permanent magnet motors with digital speed
controllers – which are available in a wide range of sizes;

3. Starters and generators. External or in-built starters, direct drive or coupled via drive belts;
4. Propellers. Pusher and tractor propellers available in wood, nylon, and carbon-fiber-

reinforced plastic (CFRP) with between two and six blades;
5. Batteries. NiMH, LiFe, or LiPo aircraft-grade batteries;
6. Receiver/transmitter systems for primary flight control. High end aero-modeler systems

from companies such as Futaba (which now support two-way transmission of data including
rpm, temperature, and geographical positioning system (GPS) sensors on the aircraft);

7. Autopilots. Many are available, but we use Arduino and SkyCircuits1 systems (including
ground stations and software environments);

8. Servos and actuators. High-quality, high-torque, metal-geared aero-modeler items;
9. Undercarriages and wheels. High-quality aero-modeler items, typically including suspen-

sion and sometimes a retract capability.

At larger take-off weights, items such as propellers and undercarriages are more difficult to
source, and then it is sometimes necessary to have bespoke items made by specialist suppli-
ers – even so, it is desirable to use companies with sufficient turnover and expertise so that
costs can be controlled and quality maintained. Given a ready supply of such items and the
intention to build a conventional fixed-wing monoplane, the primary layout choices available
to the designer then concern the number and positioning of engines/motors and the choice of
fuselage/empennage type.

1.2 Manufacturing Methods

As already noted, a key requirement for the manufacture of the UAVs being considered here
is that ideally no craft skills be needed in construction. Thus the focus is on

• advanced parametric CAD-based geometry design;
• logical and CAD-based design of wiring looms including all plug/socket physical details

with manufacture by dedicated specialists;
• numerically controlled digital manufacture involving

– 3D printing – selective laser-sintered (SLS) nylon or metal and fused depositionmodeling
(FDM) ABS,

– laser-cut wood and plastic,
– hot-wire-cut foam (foam parts sometimes being covered by outsourcing to specialists);

• use of stock-sized materials such as off-the-shelf CFRP tubular sections.

1 See http://www.skycircuits.com/.

http://www.skycircuits.com/

