

Helping Kids
with Coding

by Camille McCue, PhD
Sarah Guthals, PhD

Helping Kids with Coding For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018935055

ISBN 978-1-119-38067-2 (pbk); ISBN 978-1-119-38066-5 (ebk); ISBN 978-1-119-38058-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction. . 1

Part 1: Getting Started with Coding. . 5
CHAPTER 1:	 Welcome To (Or Back To) Coding. . 7
CHAPTER 2:	 Understanding the Big Ideas . . 19
CHAPTER 3:	 Figuring Out Programming Languages. . 41

Part 2: Getting Your Hands on Code. . 61
CHAPTER 4:	 Working with Words. . 63
CHAPTER 5:	 Knowing Where You Are. . . and Where You’re Going 81
CHAPTER 6:	 Getting Fancy with Graphics and Sound. . 107

Part 3: There IS Math on This Test! . . 125
CHAPTER 7:	 Tackling These Ever-Changing Variables. . 127
CHAPTER 8:	 Computing Using Math. . 145
CHAPTER 9:	 Helping with Logic Operations. . 167
CHAPTER 10:	Getting Loopy . . 185
CHAPTER 11:	Adding Lists. . 201
CHAPTER 12:	Coding Subprograms. . 221

Part 4: Applying What You Know . . 237
CHAPTER 13:	Fixing Problems by Debugging. . 239
CHAPTER 14:	Creating a Webpage. . 255
CHAPTER 15:	Building a Mobile Game. . 289
CHAPTER 16:	Programming Simple Electronics. . 317

Part 5: The Part of Tens. . 337
CHAPTER 17:	Ten Do’s and Don’ts for Selecting a Kids Coding Curriculum. 339
CHAPTER 18:	Ten Ways to Keep the Coding Learning Going. 349

Index. . 357

Table of Contents v

Table of Contents
INTRODUCTION . . 1

About This Book. . 1
Foolish Assumptions. . 2
Icons Used in This Book. . 3
Where to Go from Here. . 3

PART 1: GETTING STARTED WITH CODING. 5

CHAPTER 1:	 Welcome To (Or Back To) Coding . . 7
Why Kids Are Coding. . 8

What are they learning?. . 8
How are they learning?. . 9
What does it mean down the road?. . 10

Why You Need to Know Coding. . 11
Fear and loathing (of coding). . 11
You may already know more than you think 12

Where Do You Come In?. . 13
In the classroom . . 13
Camp or after-school coach. . 15
Mentor. .16

Working with Young Coders. .18

CHAPTER 2:	 Understanding the Big Ideas . . 19
Seeing the Big Picture in Coding. . 19
Acting Out the Big Picture, Unplugged. . 20

Dramatizing a noncoding process . . 21
Walking through some daily tasks . . 22

Creating an Algorithm. . 23
Turning a picture into words. . 23
One possible vacuuming algorithm in code 24

Representing Algorithms. . 26
Acting it out . . 27
Drawing a picture . . 27
Creating a storyboard. . 28
Building a flowchart . . 28
Writing pseudocode . . 30
Commenting the bones. . 31

Organizing with Sequence, Selection, and Repetition. 33
Sequence . . 34
Selection. . 35
Repetition. . 36

Including Randomness in Your Coding . . 38

vi Helping Kids with Coding For Dummies

CHAPTER 3:	 Figuring Out Programming Languages. 41
What You Want in a Language. . 42
Free Languages for Tots and Kids. . 42

The Foos. . 42
Think & Learn Code-a-Pillar. . 43
Daisy the Dinosaur . . 43
Scratch Jr. . . 44

Free Languages for Youth and Tweens. . 45
Scratch. . 45
Hopscotch. . 47
Kodu . . 47

Languages for Teens and Older . . 48
Alice. . 48
MIT App Inventor 2. . 49
Python. . 50
JavaScript . . 53
Java . . 55

Other Awesome (Not-So-Free) Languages. . 58
MicroWorlds EX. . 58
Tynker. . 58
GameSalad. . 58

PART 2: GETTING YOUR HANDS ON CODE 61

CHAPTER 4:	 Working with Words . . 63
Communicating with Text . . 63
Showing Text Onscreen. . 64

Using pseudocode. . 64
Using Scratch. . 64
Using Python . . 65
Using HTML . . 66
Using JavaScript in an app. . 66
Using Java. . 68

Words In, Words Out. . 69
Using Scratch. . 70
Using Python . . 71
Using HTML and JavaScript . . 71
Using JavaScript in an app. . 72

Combining Text Onscreen. . 74
Using pseudocode. . 75
Using Scratch. . 75
Using Python and other languages. . 75

Formatting Text Onscreen. . 77
A Mad Libs Example . . 78

Table of Contents vii

CHAPTER 5:	 Knowing Where You Are. . . and
Where You’re Going. . 81
Acting Out Position, Unplugged . . 82
Setting and Finding Position . . 85

Using pseudocode. . 85
Using Scratch to set position. . 86
Using Scratch to find position. . 87
Using JavaScript. . 87

Positioning Objects Randomly. . 93
Using Scratch. . 93
Using JavaScript. . 94

Setting and Finding Direction . . 95
Using pseudocode. . 95
Using Scratch. . 96

Setting Object Direction Randomly. . 97
Using Scratch. . 97

Turning. . 98
Using pseudocode. . 98
Using Scratch. . 98

Acting Out Motion, Unplugged. . 99
Making an Object Move. . 100

Using pseudocode. . 100
Using Scratch. . 101
Using JavaScript. . 103

Asteroid Blaster. . 104

CHAPTER 6:	 Getting Fancy with Graphics and Sound 107
Sizes of Images and Sounds, Unplugged. . 108

Activities surrounding images and sounds. 108
Knowing your sizes. . 109

Using Graphics in Your Programs. . 109
Image file types. . 109
Creating images. . 110
Finding images on the web . . 111
Importing a JPEG or PNG in Scratch. . 114
Importing a GIF in Scratch. . 116
Importing a JPEG, PNG, or GIF in JavaScript. 117

Adding Sound to Your Programs. . 117
Sound file types. . 118
Creating original sounds. .118
Finding sounds on the web. . 119
Importing sounds into Scratch . . 120
Importing audio into JavaScript. . 121

Creating a Sound Board. . 122

viii Helping Kids with Coding For Dummies

PART 3: THERE IS MATH ON THIS TEST!. . 125

CHAPTER 7:	 Tackling These Ever-Changing Variables 127
Acting Out Variables, Unplugged . . 127

Variable parts. . 128
Dramatizing variables. . 130

I Do Declare (And Initialize) . . 132
Using pseudocode. . 132
Using Scratch. . 133
Using Python . . 134
Using JavaScript. . 135
Using Java. . 136

Checking on Variable Values. . 137
Using Scratch. . 138
Using Python . . 138
Using JavaScript. . 138
Using Java. . 140

Incrementing and Decrementing Variables. . 140
Using pseudocode. . 140
Using Scratch. . 141
Using Python . . 141
Using JavaScript. . 142
Using Java. . 142

Creating a Stock Ticker. . 142

CHAPTER 8:	 Computing Using Math. . 145
Acting Out Math, Unplugged. . 145

Number types . . 146
Dramatizing math. . 146

Doing Simple Math. . 149
Using pseudocode. . 149
Using Scratch. . 149
Using Python . . 150

Doing Advanced Math Operations. . 150
Using pseudocode. . 151
Using Scratch. . 152
Using Python . . 153

Oh So Mod — Using the Mod Operation. . 156
Using pseudocode. . 157
Using Scratch. . 157
Using Python . . 157

Ordering Those Operations (PEMDAS). . 157
Using Scratch. . 158
Using Python . . 158

Table of Contents ix

Rounding . . 159
Rounding via casting in Java. . 160
Rounding decimals to integers via methods. 160

Generating and Using Random Numbers. . 162
Using pseudocode. . 162
Using Scratch. . 162
Using Python . . 163

Coding a Crypto Code Maker. . 163

CHAPTER 9:	 Helping with Logic Operations. . 167
Simple Logic, Unplugged . . 167
Programming Simple Conditionals. . 169

In pseudocode. . 169
In Scratch . . 169
In Python. . 170
In JavaScript . . 170
In Java . . 172

Advanced Logic, Unplugged. . 174
Coding Compound Conditionals (aka, AND, NOT,
and OR Will Get You Pretty Far!). . 176

In pseudocode. . 177
Compound conditionals in Scratch. . 177
In Python. . 179
In JavaScript . . 181
In Java . . 181

Rock, Paper, Scissors. . 182

CHAPTER 10:	Getting Loopy . . 185
Loops, Unplugged. . 185

Repeat fun, unplugged. . 186
Random loop conditions, unplugged. . 186

Loop Types and Structures . . 187
Infinite loops. .188
Actions repeated in loops. . 188
Conditions of loops. . 188
Using pseudocode. . 189
Using Scratch. . 191
Using Python . . 193

Nesting Loops . . 196
Using pseudocode. . 196
Using Scratch. . 197
Using Python . . 198

Coding the Classic Fibonacci Sequence. . 199

x Helping Kids with Coding For Dummies

CHAPTER 11:	Adding Lists. . 201
Lists, Unplugged . . 201
Introducing Lists . . 203

Using pseudocode. . 203
Using Scratch. . 205
Using Java. . 208

Sorting Lists . . 215
Selection sort: An easy sorting algorithm 215
Common application: Arranging numbers in order. 216

Searching Lists. . 217
Linear versus binary searching algorithms. 217
Common application: Finding a phone number. 218

CHAPTER 12:	Coding Subprograms. . 221
Subprograms, Unplugged . . 221
Starting with Pseudocode . . 223
Creating a Spirograph with Subprograms. . 224

Pseudocode. . 225
Scratch. . 225
JavaScript . . 227
Java . . 228

Coding Subprograms with Parameters. . 230
Scratch code block with parameters . . 230
JavaScript, with parameters. . 233
Java, with parameters. . 234

PART 4: APPLYING WHAT YOU KNOW . . 237

CHAPTER 13:	Fixing Problems by Debugging. . 239
Debugging, Unplugged. . 240
Finding Common Syntax Errors. .242

Scoping errors. . 242
Typing errors . . 243
Incorrect data types . . 244

Finding Common Semantic Errors . . 245
Infinite loops. .245
Off by one. . 246

Strategies for Debugging. . 248
Turning sections on and off. . 248
Testing sample data . . 251
Adding output messages. . 251

Walking Away. . 253

Table of Contents xi

CHAPTER 14:	Creating a Webpage. . 255
Getting Set Up. . 255
Creating a Basic Webpage Layout. . 261

The skeleton: HTML basics. . 262
The aesthetics: CSS. . 265

Getting Fancy with Color and Graphics. . 272
Adding color to your page. . 272
Introducing graphics. . 276

Adding Hyperlinks. . 278
Going Interactive with JavaScript. . 280

Adding buttons . . 280
Changing your page with buttons. . 282

Combining HTML, CSS, and JavaScript. . 283

CHAPTER 15:	Building a Mobile Game. . 289
Getting Started with MIT App Inventor . . 289

Community and support within MIT App Inventor. 291
The layout of MIT App Inventor. . 292

Using an Emulator versus a Real Device . . 294
Using the Android Emulator . . 294
Using a real Android device. . 295
Testing on the emulator and Android device. 295

Designing Mobile Apps. . 302
Adding the Components in Design View. . 303
Coding Your Mobile App. . 306

Getting your puppy moving. . 306
Setting up your start screen and variables 308
Coding random placement of items. . 309
Coding collision with items . . 311
Levels, timers, and final score. . 312

Distributing Your Apps. . 315

CHAPTER 16:	Programming Simple Electronics. 317
Gathering Your Hardware . . 317

The micro:bit board. . 318
Buying the board and components . . 318

Accessing the Software. . 320
Navigating the interface. . 320
Writing and using a program. . 321

Don’t Wake Baby Gadget. . 324
Flowcharting the program. . 324
Writing the code . . 326
Downloading code to the micro:bit . . 333
Connecting hardware components . . 333
Testing the device. . 334

Trying Wacky and Fun Variations . . 335

xii Helping Kids with Coding For Dummies

PART 5: THE PART OF TENS. . 337

CHAPTER 17:	Ten Do’s and Don’ts for Selecting a
Kids Coding Curriculum . . 339
DO Find the Right Entry Level . . 340

Getting started in elementary grades. . 340
Getting started in the middle grades. . 341
Getting started in high school grades. .341

DON’T Assume Cost Equals Quality . . 343
DO Balance Lessons with Free Exploration. . 344
DON’T Instantly Dismiss Teaching Languages 344
DO Consult CSTA for Guidance. . 346
DON’T Buy “Coding” Toys for Babies . . 346
DO Emphasize the Soft Skills. . 346
DON’T Let Kids Get Stuck in a Loop . . 347
DO Present the Bigger Picture. . 347
DON’T Stereotype Coders . . 347

CHAPTER 18:	Ten Ways to Keep the Coding Learning Going. 349
Unplugged . . 349
Research Pioneers of Computing. . 350
Go Lateral from Code. . 351
Language Tracking . . 351
Smart Home Projects . . 352
Include Outside Passions. . 352
Open-Source Projects. . 353
Group Projects. . 354
Community Support. . 354
Portfolios . . 355

INDEX. . 357

Introduction 1

Introduction

Welcome to the world of computer programming! Whether you’re an
expert at programming or you’ve never written a line of code in your
life, you can coach young people in learning the basics of coding. Just

like learning to read, cook, or drive, basic principles define the discipline of cod-
ing, and the broader discipline from which coding is derived: computer science.
This book coaches you step-by-step through the concepts and commands you
need to help the kids in your life learn to program!

About This Book
Coding is fast becoming a skill that every child needs to be educated for in the
21st Century. Knowing how to code means possessing a skill that allows the
children you’re coaching to create things that are highly useful in modern
society — apps, websites, analysis tools, and more. Helping kids learn how to code
also means you’re assisting them in developing a skill that is highly marketable
and sets them apart from peers at school and later, in their careers.

But coding is taught at only a small fraction of schools, and often only at the high
school level. This book offers you an easy-to-understand, but comprehensive,
overview of all the coding fundamentals you need to teach. We largely avoid a the-
oretical approach to the material, instead offering you hands-on, practical con-
tent and methods of instructing your kids in coding. Like content in all For
Dummies titles, this book is clear, concise, and organized in an easy-access format.

Helping Kids with Coding For Dummies is structured in a progressive sequence, with
introductory topics preceding more challenging topics. The book builds in com-
plexity, but you can dive straight in to any chapter, to discover more about that
topic at any time. You already know about variables but need a bit of guidance in
assisting your kid with loops? Then head straight to Chapter 10 for help.

As you explore each chapter, keep in mind the following structure:

»» Each chapter begins with hands-on, away-from-computer activities. These
games and “act-it-out” skits get you and your coders thinking about the big
ideas before you dive into the code.

»» Each chapter has guidance in writing code snippets in pseudocode, followed
by many popular programming languages. Pseudocode is literally “fake code”
that stands in conceptually for real code but doesn’t really run on a computer.

»» Each chapter ends with a small project that features the theme of the chapter.
Projects are written in a variety of languages, but you can adapt them to any
language in which you want to write them. You don’t need to buy any
software to use the featured programming languages.

»» Programming code is shown in monofont.

»» Command sequences using onscreen menus use the command arrow. For
example, when working in Scratch, you can open a new project as follows:
From the menu bar, choose File  ➪   New.

Foolish Assumptions
In this book, we make some assumptions (possibly foolish assumptions!) regard-
ing you getting started in your role as a coding coach:

»» You are a parent, a teacher, an after-school guide, a summer mentor, a tutor,
a coach, or other guide who is interested in helping youth learn to code.

»» You have patience, a sense of humor, or both! Learning coding yourself — and
helping young coders develop and improve their own skills — requires some
of these.

We’ve also made some assumptions with regard to the coding work you’ll be doing:

»» You possess at least a little experience in typing on a computer keyboard,
navigating a computer interface, and using a trackpad or mouse. Your
background may be in using a Windows-based PC, a Macintosh, or both.

»» You’re capable of using a web browser such as Safari, Chrome, or Firefox, and
you can type a URL to access a website such as Scratch.com and Code.org.

»» You’re comfortable with performing basic math, such as adding and subtract-
ing, and performing basic logical operations, such as comparing two numbers.

2 Helping Kids with Coding For Dummies

»» You can spell reasonably well, and you can locate and correct misspellings in
your code. Programming languages often provide error messages as clues to
help you track down misspellings, so you’re not entirely on your own here! But
you have to spell everything in your code correctly to get your program to run
as you want.

Icons Used in This Book
The Tip icon indicates tips and shortcuts that you can use to make your work
easier. These tips may apply to away-from-computer activities or to actual cod-
ing. Tips applying to issues that pop up often may be repeated in several places
through the book.

The Remember icon calls your attention to important ideas you want to keep in
mind while performing a task.

The Warning icon advises you to watch out, informing you of critical information
that helps you steer clear.

The Technical Stuff icon marks slightly more in-depth nuts and bolts of program-
ming, some of which might be helpful in achieving coding success.

Where to Go from Here
The programming concepts you use and coach are mostly universal. Because each
concept features hands-on activities and pseudocode, you can teach these ideas to
children as young as early elementary. But really, any age is the right age to start
working on programming concepts, and there’s never any wrong age to learn
something new!

Progressing from away-from-computer concepts and pseudocode to at-the-
computer coding can be done at any time when your young coder expresses inter-
est. The programming snippets in this book are presented in some of the most
popular languages used by novice coders, used from kindergarten through high
school. All the languages are free, and all have stood the test of time with regard
to their ease-of-use. Scratch is a popular way to get started, but for many

Introduction 3

programming purists, Scratch’s drag-and-drop puzzle pieces are inauthentic —
their preference is any text-based language such as Python, JavaScript, or Java.
Samples of all these languages are included in each chapter.

Don’t forget to check out the cheat sheet that goes with this book. You can find
what programming languages we recommend for each age group, all the projects
we’ve created for this book, and more. Go to www.dummies.com and search by this
book’s title.

Regardless of which activities and programming languages you explore with your
young coders, remember to cultivate curiosity, praise achievement, and encourage
leveling up. And above all, have fun!

4 Helping Kids with Coding For Dummies

http://www.dummies.com

1Getting Started
with Coding

IN THIS PART . . .

Find out why kids are coding and how you fit into their
journey.

Get the big picture of coding.

Find out which languages are the best for kids you’re
teaching.

Meet Steve Jobs, Steve Wozniack, Ada Lovelace, and
Guido van Rossum.

CHAPTER 1 Welcome To (Or Back To) Coding 7

Chapter 1
Welcome To (Or Back To)
Coding

Who are you and where do you fit into the brave new world of coding? You
may be a newbie programmer who wants to learn or “level up” coding
skills to coach the next generation of kiddos to programming success.

Or perhaps you’re a seasoned programmer who wants to “dial it down” and
explore a good starting point for kid coders. Or perhaps you’re someone in
between — you’ve coded in a past school or career experience — maybe in a
language that’s lost steam — and now you’re returning to the practice to learn the
newest tricks of the trade.

Whoever you are and whatever your goal, we’re excited to welcome you to (or back
to) coding!

In this chapter, you find out why kids are coding and why so much attention is
currently focused in education on the discipline of computer programming. We
also talk about the range of roles you can play in the teaching and learning of
computer science, and identify strategies you can employ when working as a cod-
ing teacher, parent, or coach.

IN THIS CHAPTER

»» Why kids are coding

»» Why you need to know coding

»» Where do you come in?

»» Working with young coders

8 PART 1 Getting Started with Coding

Why Kids Are Coding
Literacy has been a societal goal for centuries, with conscientious parents and
teachers working to ensure that the children in their charge learn the skills neces-
sary to succeed in their careers and in life. Until the 1970s, literacy meant master-
ing the traditional three “R’s” of “reading, ‘riting, and ‘rithmetic” (spelling was
considered less necessary). As technology started becoming commonplace, com-
puters started appearing in educational settings, and tech literacy became viewed
as the fourth literacy.

Fast-forwarding to the 21st century, technology has become so ubiquitous that not
only is tech literacy a skill that makes you educated, it’s a skill that makes you
highly marketable in the workplace. While tech literacy can include general skills
such as word processing, generating spreadsheets, and creating slideshow pre-
sentations, the real skills lie in computer programming, or coding. That’s because
coding allows people to be not just users of technology, but producers of it
(at least on the software end of things).

Schools are recognizing that to prepare kids for their futures, a good education
must include coding instruction. In some countries, including the United Kingdom
and Canada, coding instruction is a national directive. In others, such as the
United States, fewer than 10 percent of schools teach coding. To fill in the gaps,
many online courses, after-school programs, and summer camps are providing
kids instruction in coding. Just like learning to ski or learning a foreign language,
learning the basics of coding is best accomplished at a young age: Every learning
experience is “new and different” and it’s easy to get back up when you fall down.
Regardless of who is delivering the instruction, kids everywhere are coding — and
you can help facilitate that learning with the kids in your life using the guidance
provided in this book!

What are they learning?
Kids are learning more than just coding. They’re devising solutions to problems,
building games, and creating programs that do the routine and redundant work
humans don’t want to do. There’s a lot kids have to learn to perform those tasks.
Here’s a quick rundown of what they’re learning:

»» Computational thinking: Computational thinking is the reasoning and
planning you perform “in your head” when translating a problem and solution
into a process that a computer can perform.

CHAPTER 1 Welcome To (Or Back To) Coding 9

»» Algorithmic thinking: Algorithmic thinking is mapping out an organized,
efficient set of steps, which you can use and reuse to perform a task.

»» Communicating in a foreign language: No, not an international language
that’s native to a country or people on Earth. But they are learning to commu-
nicate in a language that’s not their native tongue — the language of comput-
ers. And they have to learn new words, new punctuation, and new rules for
establishing successful communication.

»» Patience and resilience: No matter what you’re making — a computer
program, a musical performance, or a gourmet meal — patience is required
to learn a new skill, and resilience is required to bounce back from challenges
to master that skill.

»» Creativity: Contrary to popular belief, coding is not the cold, calculating
discipline you may think it is. From inventing novel solutions to a problem, to
inventing new video games, creativity is inherent in the coding process.

»» Troubleshooting: Troubleshooting, or debugging code, means tracing and
retracing your steps — sometimes by isolating and testing smaller sections of
code, sometimes by tracing through the syntax, and sometimes by testing
sample data to example the output — to find and fix problems.

How are they learning?
Kids are coding on their tablets, laptops, and desktops, using a variety of widely
available software tools, many of which are free! They are using books, online
resources, and tutorials in web and video formats, and discussions with friends to
guide them.

Unlike the early days of coding, many of the programming languages and envi-
ronments kids are using are visual in nature. Many offer tile or block-based for-
mats in which kids can drag and assemble code blocks together like interlocking
puzzle pieces to create programs. This type of structure allows kids to tinker
without worrying about spelling commands correctly, syntax (grammar), or
punctuation. Modern, introductory languages often feature built-in “assets” such
as character costumes and sound effects. And they usually provide some sort of
error reporting to help kids in their debugging.

If you tried coding before the 21st century, you probably learned text-based, also
known as “line” coding; the new, visual ways of coding are most likely foreign to
you. You may have used languages such as Basic, Pascal, COBOL, or FORTRAN.
While these languages have mostly faded away in popularity, they were powerful

10 PART 1 Getting Started with Coding

tools and popular in their heyday. Other “older” languages you may have used
which are still around today include C, Python, Visual Basic, Ruby, Lua, and R. If
you had the opportunity to tackle some serious coding, you may have worked with
C++, Java, or JavaScript — some of the past and current heavy hitters in the coding
world. The main kid-friendly language of yesteryear was Logo, what you may
recall as the “turtle” language. Invented by MIT professor Seymour Papert, Logo
and its derivatives were popular in schools, and still exist in several modern incar-
nations today. “Turtle” languages were about as close as most kids got to non-
text based coding prior to Y2K. Fortunately, the more kid-friendly coding
environments now available provide a lower floor for entering easily into the
world of programming.

Some purists are not fond of “kid” computer languages, especially those that are
block-based, expressing concerns that this structure is not realistic, nor profes-
sional. They worry that these types of environments are not sufficiently authentic
to lay proper foundations for future coding. However, research indicates that
exploration in these languages still build the desired programming skills culti-
vated by working in more traditional, text-based, coding environments.

What does it mean down the road?
Your efforts in helping kids get started with coding lay the foundations for them
to pursue more challenging programming activities in the future. You can help
them build content skills, confidence, and the mindset required to succeed at cod-
ing. Whether they choose a career in computer science, or just dabble in writing
small programs for various projects, your positive guidance and support
contributes to developing an educated and confident young person. Who knows,
you might even be responsible for cultivating the next Grace Hopper or Bill Gates!

COMPUTERS IN SCHOOLS
Kids have been coding since the first computers appeared in schools in the 1970s.
Camille’s school, Boone Elementary in San Antonio, Texas, received a teletype computer
on which she had a 15-minute rotation once a week (although she often found ways to
obtain additional time on the device). Operating essentially as a dumb terminal, the
computer sent and received information over a simple telephone line, issuing drill-and-
practice style math problems printed on giant rolls of form feed paper. Students would
press the resistant, plastic buttons to input their answers. Following the completion of a
problem set, the computer would respond with a score — at which time you would leap
with joy if you earned 100%, or finagle more time to attempt another set if you had
failed to reach the magical perfect score. Those were the days!

CHAPTER 1 Welcome To (Or Back To) Coding 11

Why You Need to Know Coding
You have this book in hand, but you may still be asking yourself why you need to
know coding. Why should you learn to code when your young coder has a teacher
or a camp instructor or a YouTube video guide?

You should learn to code for many reasons:

»» The more you know, the better you can help. More content knowledge and
more relevant experience on your end leads to better ability to coach your
young coder. This is especially true when it comes to troubleshooting code:
kids make the same mistakes you make; if you’ve “been there, done that,” you
can help them find and fix their errors.

»» The more you code, the more you can empathize with your coder.
Sharing the joy and frustration of coding is part of being a good coach. The
more you experience these emotions yourself, the better you are at under-
standing and appreciation the mindset and affective disposition of your kid.

»» It’s the fourth literacy. Maybe coding was offered when you were in school.
Maybe it wasn’t. Either way, it’s here now and it’s here to stay — and as the
“fourth literacy,” you need to learn it to be fully educated and a full participant
in today’s world.

»» It’s quality time with your kids. If you’re a parent, you do a lot with your
kids, but sometimes that “doing” is spent more passively than you’d like
(driving to soccer practice, buying school supplies at Walmart). Learning
something new (coding!) and working together on an app or website provides
a great opportunity for you to spend quality time with your kids.

»» Doing so allows you to practice what you preach. You’re a teacher, a
parent, a coach. . . and you’re also a role model. If you don’t already know how
to code, it may be a challenge to encourage someone else to do so. As they
say at Nike, Just Do It!

Fear and loathing (of coding)
One of your biggest challenges in learning to code may be your own fear and self-
doubt. Perhaps you think you’re “not smart enough.” Another challenge may be a
genuine dislike or disinterest in code. Like any new endeavor, there is often a
sense of concern that you won’t be capable of learning something new. Maybe you
won’t like it. Maybe it’s too much work.

12 PART 1 Getting Started with Coding

It may be worthwhile to note that a lot of other people who came before you
shared the same fears (and loathing, of course) of coding. Like learning any new
field — playing piano, ice-skating, speaking Mandarin, cooking, gardening,
sewing — there is a learning curve in which the introductory phases are not espe-
cially fun or rewarding. But hopefully the experiences leading up to adulthood
have shown you that, over time, sticking to the process of learning a new skill
eventually results in elevated abilities and satisfaction in a job well done.

Computer programmers are not smarter than you are; they’ve just been at it lon-
ger! Like you, they started with introductory coding, building their skills a bit at a
time, learning new programming languages and writing many programs until
they built a solid base of coding knowledge and skills. Congratulations on taking
the first step of learning to code and coaching the next generation to early suc-
cesses in the world of computer science.

You may already know
more than you think
If you’re panicking that you suddenly need a degree in computer science to learn
coding to successfully help the kids in your life. . . don’t! You may already know
more about coding and its underlying principles than you think. Just ask yourself
a few questions:

»» Are you good at learning new languages? Because coding uses its own
languages featuring vocabulary, grammar, and syntax — you may find that
learning to code is a snap!

»» Are you good at planning and organizing? Because coding is about using
concise, reusable instructions, start-to-finish — you may find that learning to
code is familiar and easy!

»» Are you confident about tinkering with your computer or mobile device to
learn and use new features? Because coding is about commanding your
technology devices to bend to your will — you may find that learning to code
is easy and empowering!

»» Are you excited by new challenges? Because coding energizes you to invent
something tangible from nothing more than an idea in your head. You may
find that learning to code is an exciting new adventure!

Sarah has taught hundreds of adults to code for the purpose of engaging the kids
in their lives in coding. You can do it, too!

CHAPTER 1 Welcome To (Or Back To) Coding 13

Where Do You Come In?
You come in by guiding and supporting young people in their coding endeavors, as
a classroom teacher, a camp or after-school coach, or a parent/mentor. You do not
have to be an expert coder — just an interested and caring adult who is willing to
co-learn and support your kids in their pursuit of the computer science mission!
Here are some ways you can accomplish these feats.

In the classroom
You can select a variety of coding experiences for a classroom setting depending
on factors including grade level, available technology, and expected contact time.
In the classroom setting — which is more formal than other settings — where you
may meet with students multiple times over a quarter, semester, or full school
year, you likely have time to work on developing both a breadth (covering many
topics) and depth of programming skills among your students (providing students
time to grow a greater complexity of skills within a topic of focus). You want to
choose a programming environment, a curriculum, and appropriate technology
tools for getting kids coding in your classroom.

Programming environments
You can choose several excellent programming environments for coding instruc-
tion. Most are free, but be sure to check online for the latest information and
updates on each product.

»» Everyone, away from the computer: Not all computer programming
work needs to occur on a computer. Both Computer Science Unplugged
(csunplugged.org) and Code.org provide extensive, hands-on, away-from-the-
computer activities to teach computational thinking concepts. These activities
are superb lead-ins to their technology analogues, and are likely to be hits in
their own right!

»» PreK: Daisy the Dinosaur and Bee-Bots are perfect for three and four year
olds. Both feature a very limited set of commands, along with cute characters
for the pre-reading crowd. Bee-Bots also has the advantage of providing a
physical device for students to program and navigate around a playmat that
you spread on the ground. The coding paradigm of both is drag-and-drop
tiles. Daisy is available in the App Store for use on iPhone and iPad devices.
Bee-Bots can be used on Mac and Windows platforms, as well as iPhones
and iPads.

14 PART 1 Getting Started with Coding

»» K-Grade 1: Scratch Jr. and the Foos are both coding environments that visually
pop and are extremely rich in pre-reader coding experiences. The Foos
presents a series of puzzles that increase in complexity, while Scratch Jr. offers
a more open-ended exploration space. The coding paradigm of both is
drag-and-drop tiles. Both the Foos and Scratch Jr. run on mobile devices
(iOS and Android) and in web browsers.

»» Grades 2–5: Scratch and Tynker offer deep, exciting, coding experiences
through which students can explore critical coding concepts, express their
creativity, and share their work publicly. The coding paradigm of both is
drag-and-drop tiles. Both run online and can also be downloaded and used in
an offline environment.

»» Grade 6 and up: Python, JavaScript, and GameSalad environments are all
quite different, but they’re a step up in complexity and offer real-world
programming experiences to your young coder. Python is used in a variety of
contexts, including commanding robots. JavaScript provides interactivity on
websites, occupying a special place in web pages formatted using HTML and
CSS. This book also addresses the use of Python and JavaScript in coding for
the micro:bit electronics board — a great tool for applying your code to
Internet of Things (IoT) devices. GameSalad facilitates creation of authentic
game apps that can be sold in the App Store and Google Play store (but you
have to pay to obtain a GameSalad license).

»» Grade 9 and up: Java, C++, and Swift are considered professional coding
languages that your coder can migrate to as she elevates her programming
prowess. They are used for authentic programs and for writing software for
IoT devices. Java is currently the language used on the AP Computer Science A
exam — your coder is probably going to see this before she leaves high
school. C++ is used in a variety of applications, such as databases and video
gaming. Swift is Apple’s powerful and easy-to-use programming platform.

App Inventor is a drag-and-drop teaching language for mobile devices. It
provides a higher degree of complexity than other “easy to use” environ-
ments, while at the same time offering the use of Application Programming
Interfaces (API), which are pre-written software that allows two applications to
talk to each other. App Inventor permits your coder to do cool, “real” things
such as integrate Google Maps and GPS location in apps.

Turn to Chapter 3 for more detailed information about each of these programming
environnments and others that may be of interest to your young coders.

Choosing curriculum
The curriculum you select for your classroom depends on a variety of factors. You
may be required to follow school or district guidelines created by educators other

CHAPTER 1 Welcome To (Or Back To) Coding 15

than yourself. Or perhaps you must adhere to standards set at the state level, or
the national level by a group such as CSTA (Computer Science Teachers Associa-
tion) or ISTE (International Society for Technology in Education).

Remember, coding is about creating authentic products that perform real tasks.
Crafting your curriculum in a project-based model helps ensure students are
doing the type of work that professional computer programmers perform. Try to
create and customize activities in which students make real products, producing
products including websites, online games, and apps. Encourage and support their
innovations in crafting inventive graphics, multiple levels, and other customiza-
tions that make each child’s program stand apart from her peers.

Most curriculum is shaped by a scope and sequence that ensures learners grow in
their coding skills to meet key goals, with short-term benchmarks established
along the way. Classroom teachers still have the opportunity, and the responsibil-
ity, to differentiate instruction for students of varying ability levels to appropri-
ately challenge each student to rise above his current level. Create tiered options
in which each student can create programs that match his skill set. Your coding
experience and understanding of each individual child can help you customize the
coding experience to create a successful learning environment for your entire
classroom community. For specific coding curricula and associated grade level
designations, check out Part 5.

Training and professional development (PD) for specific curricula are offered by
organizations and universities. For example, the University of Texas at Austin
(Camille’s alma mater!) provides online and in-person PD for its UTeach AP Com-
puter Science Principles course. The College of St. Scholastica offers an all online,
four-course certification in CS Education. Such PD can result in credit to educators
for things like raises or certifications.

Camp or after-school coach
With the increased attention on coding, more and more after-school programs
and summer camps are popping up everywhere. If you’re an instructor in such a
program, you have a unique role in helping the young coders in your charge. You
probably don’t see the kids as consistently as a classroom teacher. And there may
be greater variation in the experience and ability level of your kid community. But
it’s also probable that you’re not locked into a highly structured curriculum.

Whatever the content and format of your workplace, remember to teach students
first and coding second. Take time to learn each coder’s interests, experience, and
programming goals. Ideally, take a few notes on each participant, update them
following each coding session, and review them prior to your next meeting.

16 PART 1 Getting Started with Coding

Reminding yourself regularly of how each coder is progressing can help you to
assist him in moving forward and reaching his goals.

As frequently as possible, communicate progress to your coder’s parent or guard-
ian. Include samples of the work product, especially links to completed programs
the coder’s family can view online!

Mentor
Mentors foster and grow coding abilities in youth through a variety of informal
contexts. Perhaps you’re a parent, friend, or co-worker of someone with a child
who wants to learn coding. Or perhaps you’re the teacher whom “everyone comes
to see” when students need assistance on special projects they’re tackling. Maybe
you’re a professional programmer who volunteers your time at Girl Scouts or Boys
Scouts workshops. (Both groups have coding badges that kids can earn!) Mentors
often work on an as-needed basis helping kids grow their coding skills or track
down an extra-hard-to-find-bug. They typically maintain a long-term partner-
ship with the kids they mentor, suggesting new projects, languages, and courses
to pursue. As a mentor, you may also be asked to write letters of recommendation
about the coders in your charge, attesting to their coding interests and abilities, to
help them gain admittance to special programs in high school or university.

STEVE WOZNIAK AND STEVE JOBS:
STARTING THE PERSONAL COMPUTER
REVOLUTION
Commonly known as the Apple Guys, Steve Wozniak and Steve Jobs started the per-
sonal computer revolution, working on a great idea out of a garage. The products they
designed and brought to life made home computing possible, easy, and relatively inex-
pensive for the first time in human history.

Both men were born in the 1950s and grew up during the decade when several elec-
tronics and computing firsts occurred: The first integrated circuit and the first computer
modem were invented, the programming language FORTRAN was developed, and the
first transistor radio was produced by Texas Instruments. These advancements set the
stage for the work Wozniak and Jobs initiated in the early 1970s.

Introduced by a common friend who knew they liked electronics and loved pranks,
Wozniak and Jobs initiated a working relationship with their creation of a digital tone

CHAPTER 1 Welcome To (Or Back To) Coding 17

generator. Known as the Blue Box — a rather illegal device — when connected to a
telephone, it allowed users to make free phone calls, even internationally! More
importantly, Jobs and Wozniak found that they enjoyed collaborating on technology
projects, and both had a vision that computers weren’t just for big businesses. They
believed that an affordable, desktop-size computer could exist in every home, and that
it could be used for everything from creating artwork, to managing budget spread-
sheets, to playing games. The two men began designing and building their initial home
computers, with Jobs focusing on the business and marketing side of the venture, and
Wozniak (or “Woz” as he is called) focusing on the engineering design and technology.

Once Jobs and Woz realized there was demand for the first personal computers they
built and sold, they landed an investor and the Apple Computer Company was
launched! Known for their exceptional design qualities including an easy-to-use
graphical user interface (GUI) and simple, elegant casings, Apple computing devices
quickly established a permanent foothold in the world of home computers. As new
versions of Apple’s computing products emerged, the company grew and spawned new
products — iPods, iPads, and iPhones — as well as exciting Mac stores where people,
young and old, can purchase Apple products and learn how to use them.

When Jobs and Woz started the computer revolution, they envisioned having a com-
puter on every desktop. If you have a Mac desktop, a MacBook laptop, or an Apple
mobile device, then you’ve helped make their dream a reality! As Steve Jobs once said,
“The people who are crazy enough to think they can change the world are the ones who do.”

Photo credit: https://alumni.berkeley.edu/california-magazine/spring-2015-
dropouts-and-drop-ins/silicon-valley-s-merry-prankster-put-his

https://alumni.berkeley.edu/california-magazine/spring-2015-dropouts-and-drop-ins/silicon-valley-s-merry-prankster-put-his
https://alumni.berkeley.edu/california-magazine/spring-2015-dropouts-and-drop-ins/silicon-valley-s-merry-prankster-put-his

18 PART 1 Getting Started with Coding

Working with Young Coders
There are wide range of dispositions when it comes to kids getting started with
coding. . .here are a few of the personality types you may encounter:

»» The skydiver type: This type of kid wants to dive right in, trying every line of
code, without any specific plan of action associated with his efforts. While we
applaud confidence and creativity at the computer, we would encourage you
to steer this kid towards thinking and planning prior to coding and executing.
A few years ago, a new child at Camille’s school was very proud of his Scratch
“expertise” — which turned out to be dragging hundreds of Scratch tiles and
assembling them in nonsensical ways in the program workspace. It took
several months to help him learn how to evolve from chaotic habits to
conceptualizing an idea and translating it into functional code. Helping this
type of child to work procedurally and incrementally, taking pride in complet-
ing a project start-to-finish, are behaviors you want to foster.

»» The rational actor: This kiddo wants to learn a new concept and then try out
the associated code at the computer, one step at a time. This type of learner
usually experiences success, but may struggle when confronted with an
information gap in which she needs a command that she hasn’t previously
encountered. Helping this child to branch out and research on her own,
employing a bit of grit in finding a solution, is a habit you want to coach and
develop.

»» The happy passenger: This child is a bit tentative to try coding — even if he is
a game-player or social media guru! He may seem in command of tech until
he has to pop the hood and get into the mechanics of writing actual code. He
has some tech-savvy, but until this point, he was just happy to be along for the
ride. You need to help him understand that you’re going to support his efforts
to transitioning from a tech user, to a tech maker — through learning to code.

»» The next Bill Gates: This kid loves coding, knows everything about coding,
wants to do more coding, watches Silicon Valley, has built her own computer,
and has already applied to the Stanford Computer Science undergrad
program. Continue to cheer for this kid, help clear the runway for her by
removing trivial obstacles (which often exist in school settings), and actively
seek projects, competitions, and peer programmers (who may be older) as
partners for her.

Regardless of which kids and which coder personalities you encounter (likely all
of them!), meet them where they are, and help lift them up to the next level. You
have an important role in fostering their coding foundations and building both the
hard and soft skills of a coder. Onwards!

CHAPTER 2 Understanding the Big Ideas 19

Chapter 2
Understanding the
Big Ideas

This chapter helps you better understand the big concepts in coding, or
computer programming: giving instructions to a computer so that it can
perform a task. You see the big picture of writing a program before you

focus on the specific details of writing lines of code.

Seeing the Big Picture in Coding
Learning to program a computer is similar in many ways to playing football. You
have to first think about the goal of the program. Then you focus on the big
picture, or game plan, to develop the key parts of the program.

For example, the goal of football is outscoring your opponent. The big picture of
football may include kicking the football, running with the football, avoiding
getting tackled, and moving the football to the end zone. Drilling down into special
plays and perfecting fancy footwork comes after players cement their under-
standing of the goal and the big picture.

IN THIS CHAPTER

»» Coaching for coding

»» Thinking algorithmically

»» Commenting to plan and document
programs

»» Understanding sequencing,
repetition, and selection

20 PART 1 Getting Started with Coding

In coding, the goal is to complete a process that would not easily be accomplished
without a computer. This may be providing an airplane simulation game or a tool
for searching for a home overseas. The big picture involves all the large parts of
the program that contribute to achieving the goal. Creating an airplane simulation
may consist of providing a user a virtual airplane, giving controls to fly the plane,
providing environments for the plane to fly in, and making the plane react accord-
ing to user input. Creating a tool for searching for a home overseas may consist of
providing the user a map, building areas onscreen to enter information about the
desired attributes of the home, and creating a search mechanism based on user-
input attributes.

How can you represent the big picture? You can act it out, or draw pictures, or
write words to describe the important parts. Each of these activities is unplugged —
they don’t require the use of a computer — and each one helps you plan out your
computer program before you sit down to begin coding.

Ask your young coders to think of something they’re good at, such as baking
cookies, playing Minecraft, or taking care of the family pet. Then ask them to
think about their special skill and how they would explain it, in very simple
terms, to an alien who has just stopped in to visit Earth. What are the most
important parts of understanding how to go from ingredients to yummy baked
cookies? What are the big picture ideas you need to know to complete a successful
dog walk?

Acting Out the Big Picture, Unplugged
Too many times, people dive into a project by focusing on the details before map-
ping out the big picture. Camille once had a scary assignment in fifth grade in
which she made this mistake! When asked to write a summary of The Red Badge of
Courage, she panicked and tried to write a detail from every page of the book,
somehow stitching them together, but not making any sense at all. It was an awful
three hours of tears at the dinner table. What she should have done was take a step
back and write a 30-second movie trailer version of the book, hitting the high-
lights and the most important parts that captured only the main ideas.

Thinking about coding in terms of typing commands on a computer without step-
ping back to consider the big picture of what you want the program to do is a rec-
ipe for disaster. Plan before you code!

CHAPTER 2 Understanding the Big Ideas 21

Dramatizing a noncoding process
One way of understanding the big picture of a computer program is to act it out,
without any computer at all. Invite your young coder to try acting out an everyday
activity that is not computer related.

One possibility is dramatizing the process of washing socks (as if asking a kid to
wash her own socks wouldn’t be drama enough!). For example:

1.	 Ask your young coder to take off her socks (or dig them out of the
laundry basket!).

2.	 Put the socks in the washing machine and pretend to wash them.

3.	 Take them out of the wash and move them to the dryer where you
pretend to dry them.

4.	 Remove the socks from the dryer (all clean and dry!) and ask her to put
them on her feet.

Although you call this process “doing laundry” or “washing socks,” you can have
her act it out so that she can see the process actually involves more steps (see
Figure 2-1).

“Drive to the intersection and turn right” is an example of a similar task you may
perform when writing code for a car race video game. Although this single phrase
describes the big picture, you need to drill down to more specific steps in order to
accomplish the bigger task. For example, you need to move forwards 150 pixels
and then make a square turn (also called a 90 degree turn) to the right (or to the
left). When coding these actions in a programming language, you can use a
sequence of commands that looks something like forward 150 right turn 90.

Acting out a big picture doesn’t have to involve props, but it’s often helpful to use
them with new programmers. Making concrete connections to everyday objects
and processes can help your kid form a mental model that she can refer to when
she writes a computer program.

FIGURE 2-1:
Acting out a

process, such as
washing socks,

helps kids better
understand steps

in a process.

22 PART 1 Getting Started with Coding

Walking through some daily tasks
You can step through a number of daily tasks to help a young learner grasp the
concept of process. Brainstorm a list of everyday processes with your child and
then ask him to demonstrate the big picture of each process. Here are some
you can try:

»» Get up in the morning.

1.	 Alarm clock rings.

2.	 Wake up.

3.	 Swing legs over the side of bed.

4.	 Stand up.

»» Feed the dog.

1.	 Call the dog.

2.	 Scoop the dog food from the bag.

3.	 Place food in the bowl.

»» Perform a cannonball.

1.	 Stand at the edge of the pool with arms outstretched.

2.	 Leap up and out over the water while tucking legs into your chest.

3.	 Hit the water, tushie first.

4.	 Cheer with joy as displaced water booms into the air, splattering everyone
in a 3-meter radius.

»» Make a smoothie.

1.	 Gather the fruit.

2.	 Put fruit into the blender.

3.	 Add ice.

4.	 Mix.

5.	 Pour into a glass.

Get creative and see how many processes you can act out! Remember, you don’t
have to actually use the real materials to act out a process. As in charades, you can
use your imagination!

CHAPTER 2 Understanding the Big Ideas 23

Creating an Algorithm
Think about the steps you use to perform any type of process — for example, get-
ting up in the morning, performing a layup in basketball, or washing socks in the
laundry. You probably perform the same actions every time. That’s because a spe-
cific set of steps, from start to finish, define that process. Anyone who performs
the same process probably uses those same steps, or a series of steps, that are
nearly identical. Those steps are called an algorithm.

An algorithm is a step-by-step set of instructions to be followed in completing a
task, especially by a computer.

Computers are fast, and they don’t get bored or annoyed with doing complicated
math or performing the same tasks over and over again. But they aren’t especially
smart, and they don’t think for themselves (yet!), so it’s up to the human operator
of the computer to give it an algorithm so that it knows how to perform a process.

Turning a picture into words
One algorithm kids have likely performed in the household (or that adult family
members wish they would perform!) applies to vacuuming. Unless you are living
with a random vacuumer — someone who uses no specific pattern when attacking
the carpets with the household Hoover — then you probably see a pattern used to
vacuum rooms. What does the vacuuming algorithm look like? As a picture, it
probably looks something like Figure 2-2.

FIGURE 2-2:
A visual

representation
of a common

vacuuming
algorithm.

24 PART 1 Getting Started with Coding

Turning the picture into words requires thinking about each step, from start-to
finish, that the designated vacuumer needs to do to clean the room. These words,
in order, may look like the following steps:

1.	Position the vacuum in one corner of the room.

2.	Plug in the vacuum.

3.	Turn on the vacuum.

4.	Push the vacuum in a straight line.

5.	If you hit a wall, make a corner turn towards unvacuumed area.

6.	Push forward a little.

7.	Make a corner turn towards unvacuumed area.

8.	Repeat Steps 4 through 7 until you reach the wall opposite your starting
point.

9.	If you’ve reached the wall opposite your starting point, then turn off the
vacuum.

10.	Unplug vacuum.

The step-by-step vacuuming process is a common algorithm for cleaning up your
carpet, but the zigzag pattern isn’t the only possible one. What other vacuuming
patterns can you think of? What about patterns that start with the vacuum in the
center of the room, such as a spiral pattern, or a pattern that looks like the spokes
of a wheel?

What would the algorithm look like for each of these vacuuming patterns in
Figure 2-3? Try to write them!

One possible vacuuming algorithm in code
Your young coder may already be asking, “So how can I turn this picture algo-
rithm into code?” Here is a simple program in Scratch that shows one possible
vacuuming algorithm. (For more on Scratch, see Chapter 3.)

FIGURE 2-3:
A spiral or a

starburst pattern
can be the basis

for alternative
vacuuming
algorithms.

CHAPTER 2 Understanding the Big Ideas 25

The Scratch stage shows the room where the vacuuming takes place. On the stage
are three objects: a front wall, a back wall, and a vacuum. The vaccum is initially
positioned in the lower-left corner of the stage. Vaccuming progresses from the
left wall (where the x-coordinate is large and negative) to the right wall (where
the x-coordinate is large and positive). The front and back walls are used as indi-
cators to know which direction to turn the vacuum. The vacuuming algorithm
executes in a forever loop: If the vacuum touches the front wall, it turns right; if
the vacuum touches the back wall, it turns left. The following command is used to
find out whether the vacuum has reached the wall opposite the starting point:

if x position of vacuum > 220

When it does, the vacuuming process is complete, and the program ends by exe-
cuting a stop all command, as shown in Figure 2-4.

Don’t worry about the details of how to write the code; just see whether you can
trace the algorithm. Notice at the start of the program that the vacuuming event
begins when the green flag is clicked and that the starting conditions of the vac-
uum are also set at the start of the program: The vacuum points in the direction
of 0 degrees — the front of the room — and (outside of the program) the user
manually positions the starting point of the vacuum.

In later chapters, you can work more on translating algorithms into code. This
chapter focuses on helping your coder assemble different types of commands
together into a larger program that performs a task.

FIGURE 2-4:
The vacuuming

algorithm written
in Scratch.

