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1

Abbreviations

ADAs	 antidrug antibodies
ADC	 antibody–drug conjugate
ADCC	 antibody‐dependent cell‐mediated cytotoxicity
CDR	 complementary‐determining region
Fab	 antigen binding fragment
Fc	 cystallizable fragment
NMR	 nuclear magnetic resonance
PEG	 polyethyleneglycol
PTM	 posttranslational modification

1.1  Introduction

Biotherapeutics, also known as biologics, include protein‐based and nucleic 
acid‐based drugs that are commonly derived by recombinant expression in 
living organisms although a few are made by chemical synthesis. This book 
focuses on the characterization of protein‐based biotherapeutics, exploring 
the various analytical technologies that have enabled in‐depth molecular 
characterization while discussing current triumphs and limitations.

The first human protein therapeutic derived from recombinant DNA tech­
nology was human insulin (Humulin®) created at Genentech, developed by Eli 
Lilly, and approved by the US Food and Drug Administration (FDA) in 1982. 
Since that time, major advancements in both recombinant DNA technology 

Introduction to Biotherapeutics
Jennie R. Lill

Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA



1  Introduction to Biotherapeutics2

and recombinant protein production have contributed to the development of 
several hundred biotherapeutics [1] including relatively simple molecules such 
as interferons, insulin, and the human growth hormone to more complexly 
engineered moieties including ADCs such as trastuzumab emtansine [2] and 
brentuximab vedotin [3].

Unlike conventional small molecule (chemical) drugs such as aspirin, antibi­
otics, and various chemo‐therapeutics, the manufacturing process for bio­
therapeutics is typically far more cumbersome as they are larger compounds 
with more complex structures and their production can be extremely sensitive 
to changes in fermentation and environmental conditions. In addition, bio­
therapeutics are often less stable than many small molecules and can be prone 
to aggregation [4] or deamidation, oxidation, and other modifications [5]. 
Since the manufacturing of biotherapeutics is often dependent upon the host 
cells of living organisms, complex process development is required to ensure 
reproducible fermentations, isolation, and characterization [6].

1.2  Types of Biotherapeutics and Manufacturing 
Systems

There are several different types of marketed biotherapeutics including 
antibody‐based drugs, anticoagulants, blood factors, bone morphogenetic 
proteins, engineered protein scaffolds, enzymes, Fc (cystallizable fragment) 
fusion proteins, growth factors, hormones, interferons, interleukins, and 
thrombolytics (Figure 1.1).

Recombinant
proteins Antibodies

Optional
modifications

Fab
fragment

Anticoagulants
Blood factors
Bone morphogenetic
Proteins
Enzymes
Growth factors
Hormones
Interferons
Interleukins
Thrombolytics

IgG

Conjugate PEG
Engineer protein

Engineer glycosylation

Bispecific
Conjugate drug

Conjugate radionuclide

Conjugate PEG

Fc

Receptor
Ligand
Peptide

Fc fusion
proteins

Figure 1.1  Various categories of the main types of biotherapeutics currently marketed. 
Source: Carter [7]. Reproduced with permission of Elsevier.
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Antibody‐based drugs represent the largest and most rapidly expanding 
class of biotherapeutics [1]. Figure 1.2 shows the diverse mechanisms by which 
the antibody structure can be modified to increase its biotherapeutic 
potential.

Humanized and other chimeric versions of these antibodies now dominate 
the market [11] and in the past 5 years have accounted for nearly 30% of all 
approvals. Various antibody isotypes are now being explored to provide a 
wealth of functional diversity that is present through the various IgG subclasses 
that can be exploited to improve clinical safety and performance by increasing 
stability, reducing adverse events, modulating effector functions, and by the 
engagement of two antigens by a single antibody [8]. Several variants that have 
been Fc engineered for reduced effector function have entered the clinic, for 
example, Eculizumab, a novel engineered IgG isotype, IgG2m4, with reduced 
Fc functionality. IgG2m4 is engineered based on the IgG2 isotype with four key 
amino acid residue changes derived from IgG4 (H268Q, V309L, A330S, and 
P331S). This antibody was demonstrated to have an overall reduction in com­
plement and Fc gamma receptor binding in in vitro binding analyses while 
maintaining the normal in vivo serum half‐life in rhesus [12].

Biosimilars (biologically identical antibodies, for example) and so‐called 
biobetters (moieties with improved properties such as pharmacodynamic (PD) 
and pharmacokinetic (PK) readouts, higher potency, longer half‐lives, and less 
immunogenicity, for example) are also starting to emerge, which presents new 
challenges in terms of testing for the presence of liabilities such as degradative 
properties, changes in immunogenicity through addition of novel contaminant 
proteins from new manufacturing processes, and so on. New formats such as 
glucagon‐like peptide 1GLP fused proteins, for example, Eperzan (albiglutide) 
[13], and PEGylated proteins such as Plegridy (e.g., peginterferon beta‐1a) [14] 
offer improved PK or PD properties but also increased analytical challenges 
due to their larger masses and increased heterogeneity.

Typically, expression of non‐mAb biotherapeutics has been performed in 
Escherichia coli or a noneukaryotic system. This has many advantages for bio­
therapeutics that are not reliant on PTMs for their optimal activity. Over the 
years, however, there has been a gradual increase in the prevalence of mam­
malian expression systems. Of the mammalian expression systems, the Chinese 
hamster ovary (CHO) cell‐based model (reviewed by Krawitz and Sandoval in 
Ref. [11]) remains the most employed expression system with a smaller per­
centage of therapeutics manufactured in other mammalian cell lines such as 
the murine myeloma line, NSO, and baby hamster kidney cells [15, 16]. 
Nonmammalian eukaryotic expression systems such as yeast [17] are also uti­
lized, each again presenting their own challenges with regard to the correct 
PTM of the protein, occasionally adding to adverse properties [18, 19].

More recently transgenic animal production systems (e.g., expression of 
recombinant products in the animals’ milk [19, 20], rabbits, and goats) have 
been explored as a means of biopharmaceutical production although to date 
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Heavy chain

Light chain
Variable region
Constant region

Crosslink regions
from two mAbs

Insert DNA for mAb
variable region fused
to signaling peptide
into T cell to induce
expression of CAR

Carbohydrate

(a) Glycomodified mAb

(b)

(c)
(d)

(e)

(f)

(g)

Alter amino
acids in
constant
region

Use different
human mAb
isotype
(e.g., IgG4)

Link isotope
to mAb with
stable linker

Link drug
to mAb with
cleavable linker

Figure 1.2  Monoclonal antibody (mAb) structure can be modified on the basis of the 
desired mechanism of action. Immunoglobulin G1 (IgG1) is the most effective naturally 
occurring human IgG isotype at mediating antibody‐dependent cell‐mediated cytotoxicity 
(ADCC). Glycomodified afucosylated mAbs (part a) (such as Obinutuzumab) demonstrate 
enhanced binding to IgG Fc receptors (FcγRs) and enhanced ADCC. In addition antibody‐
dependent cellular phagocytosis, a process mediated by macrophages, can also occur [8]. 
Afucosylated mAbs are produced using cell lines that lack the enzymes responsible for 
fucosylation. Modifying the amino acid sequence of mAb Fc (part b), as was done to 
produce ocaratuzumab [9], can also result in enhanced binding to FcγRs and enhanced 
ADCC. For mechanisms of action in which ADCC is not desirable, IgG4 may be a more 
appropriate isotype, as IgG4 mAbs do not mediate ADCC to the same degree as IgG1 (part 
c) although this isotype can still engage macrophage effector function via nanomolar 
affinity binding to FcγRI. Nivolumab, an IgG4 mAb that blocks programmed cell death 
protein 1 (PD1) on T cells, is one such example. Producing radioimmunoconjugates involves 
linking the radioisotope to the mAb. A stable linker is most desirable (part d) to limit the 
leakage of the free radioactive isotope. Conversely, optimal antibody–drug conjugates 
(ADCs) use a cleavable linker (part e). To avoid nonspecific toxicity, it is desirable for drugs 
used in ADCs to be cytotoxic once inside the target cell but nontoxic when bound to the 
mAb in the circulation. Linkers that are pH‐sensitive or enzymatically cleaved are now a 
standard component of ADCs. Chimeric antigen receptor (CAR) T cells get their specificity 
from mAb variable regions but are a form of gene, not protein, therapy. They are produced 
by inserting DNA coding for the mAb variable region fused to DNA coding for signaling 
peptides into T cells (part f ). Some bispecific antibodies lack a functional constant region so 
that they do not nonspecifically crosslink activating receptors and activate T cells (part g). 
The lack of a constant region on such constructs results in a short half‐life, thus requiring 
continuous infusion to achieve the desired exposure. Source: Weiner [10]. Reproduced with 
permission of Nature Publishing Group.
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there are many challenges associated with this type of biotherapeutic produc­
tion with few benefits. Throughout this book the challenges of characterizing 
both the biotherapeutic moiety itself and the contaminant proteins such as 
CHO‐derived proteins are discussed.

1.3  Types of Analyses Performed

Throughout this book a variety of analytical procedures are described. Many of 
them have been implemented for characterizing biotherapeutic molecules for as 
long as these moieties have existed. Others have evolved as the need arises. One 
such example of developing such sets of tools to answer a newly arisen problem 
is for the de novo sequencing of antibodies [21, 22]. Occasionally antibodies are 
discovered that are of great interest for preclinical testing, for which the cDNA 
or any genetic information is not available. In these scenarios, researchers have 
to sequence antibodies at the protein level, one amino acid at a time, and then 
reverse engineer the antibodies to the nucleotide level. In Chapter 6 Castellana 
and Guthals provide technical details and review the innovative approaches 
employed to quickly gain sequence information through a de novo approach.

As well as sequence information at the amino acid level, PTM profiling is 
also an important element in characterizing biotherapeutics [23]. There are a 
plethora of cotranslational modifications and PTMs that play key roles in the 
folding of proteins, in their secretion, and in their ultimate stability and effec­
tor functionality in vivo.

Glycosylation is important both for antibody secretion by B‐cells and for 
in vivo antibody effector function. Glyco‐engineering is a rapidly growing field, 
whereby glycosylation sites and composites are engineered to produce 
antibodies with specific glycoforms which may have an effect on therapeutic 
efficacy. Obinutuzumab (Gazyva®) [24], for example, is a humanized therapeu­
tic monoclonal antibody that binds to an epitope on the B cell antigen, CD20. 
This antibody is engineered in a platform that allows control of the proteins’ 
glycosylation, in this case the platform enforces the overexpression of two 
glycosylation enzymes MGAT3 and the golgi mannosidase 2. This results in 
the generation of antibodies with bisected nonfucosylated sugars, thereby 
increasing the antibodies’ ability to activate natural killer cells. This means that 
Obinutuzumab can induce cell death through a dual mechanism of action, 
both by the antibody directly binding to B cells and by antibody‐mediated 
cytotoxicity by recruiting the immune system to attack B cells. Some types 
of  glycosylation are sometimes not beneficial. For example, Cetuximab, a 
chimeric mouse–human IgG1 monoclonal antibody against the epidermal 
growth factor receptor (EGFR) approved for use in colorectal cancer and squa­
mous‐cell carcinoma of the head and neck has a high prevalence of hypersen­
sitivity reactions which has been attributed to cross reactivity to a V domain 
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glycosylation site. In some patients severe adverse events have been observed 
including anaphylaxis, which was found to be due to the generation of patient‐
specific antibodies to the galactose‐alpha‐1,3‐galactose modification [25].

Protein terminal modifications have the effect of modifying a protein’s func­
tion, half‐life, or cellular localization. Pyroglutamate formation, for example, is 
a highly prevalent modification whereby glutamine and glutamate at the N 
termini of recombinant monoclonal antibodies can cyclize spontaneously to 
pyroglutamate (pE) in vitro [26]. Proteolytic processing is also an irreversible 
modification that affects the vast majority of proteins, often with great func­
tional consequences. Intracellular proteolytic processing has distinct effects on 
the functionality of proteins and can either abrogate or antagonize function, 
modify half‐life, or also determine cellular localization. During protein synthe­
sis, manufacturing, purification, and storage proteolysis events can occur, 
thereby changing a protein’s functionality or stability [27]. Either through 
direct mass spectrometric analysis as reviewed in Chapter 2, through a variety 
of historic analytical techniques such as gel electrophoresis or Edman degrada­
tion, or by employing a variety of new biochemical‐based methodologies 
for determining the termini of recombinant proteins as reviewed in Chapter 3, 
the determination of proteolytic processing remains a key analytical need for 
the characterization of biotherapeutic moieties.

Beyond linear sequence determination, structural analyses are also instru­
mental in the overall characterization of biotherapeutics. The biomolecular 
architecture is a vital component in dictating the specificity and overall effi­
cacy of therapeutic proteins. The higher order structure (HOS) of a protein 
includes the secondary, tertiary, and quaternary structures of a protein that are 
required for its function. There is a diverse range of biophysical methods 
including circular dichroism, isothermal calorimetry, which are available for 
the characterization of a protein HOS, each of them with associated benefits 
and limitations. Related to conformational analysis is structural analysis as it 
pertains to epitope and paratope mapping. Again, several well‐established 
techniques such as nuclear magnetic resonance (NMR) [28] and X‐ray crystal­
lography as well as some newer techniques such as mass spectrometric‐based 
structural tools [29] including hydrogen deuterium exchange are described in 
Chapters 4 and 5.

1.4  Future perspectives

Nature has provided us with various types of protein scaffolds to explore as 
frameworks for building new types of biotherapeutics and there is a growing 
field of using these scaffolds as alternatives to antibodies [30]. Each of these 
types of engineered molecular structures offers new advantages in terms of 
stability and specificity. One example of this is the cystine knot mini proteins/
peptides (knottins); these are peptide‐based alternative molecules to 
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monoclonal antibodies which are raised/designed against tumor‐associated 
receptors and other antigens of interest. Knottins contains a disulfide‐bonded 
core that exhibits a high level of resistance to proteolysis and increased thermal 
stability. Knottins emerged as an attractive molecular candidate for drug devel­
opment as they fill the niche between small molecule drug design and protein 
biologics. Knottins have the potential to bind clinical targets with both high 
selectivity and affinity [31]. There are several naturally occurring knottins that 
have been approved as biotherapeutics for the treatment of pain [32] and irri­
table bowel syndrome and for tumor imaging purposes [33].

Elucidating disulfide bonding patterns of any biomolecules, but in particular a 
structure which relies on disulfide bonding patterns for their folding, stability, and 
activity, is an important part of molecular characterization. A variety of techniques 
can be employed for doing this from simple intact molecular weight measurement 
to more complex top‐down proteomic protocols [34] and these methodologies 
continue to mature as more of these types of molecules emerge on the market.

Another growth area for biotherapeutics is increasing the molecules’ in vivo 
half‐life. For therapeutics that involves frequent or uncomfortable delivery, for 
example, injectable ocular therapeutics, or to make drugs that have poor PD 
properties more tolerable, there is a strong drive to create molecules that have 
increased in vivo stability (and potentially decreased immunogenicity). Some 
common mechanisms of molecular half‐life extension include the generation 
of Fc fusion proteins, the formulation of biomolecules into various different 
nanoparticle systems, or the addition of stabilizing peptides. For a comprehen­
sive list of these efforts please refer to Table 1.1.

The addition of albumin to stabilize the half‐life of proteins has also been 
explored. Albumin is the most abundant plasma protein in humans and mice 
and is highly soluble, extremely stable, and has a circulatory half‐life of ~20 
days in man [36]. By fusing albumin to therapeutic proteins, these molecules 
become less susceptible to renal filtration and circulatory clearance and one of 
the main reasons albumim has a long half‐life is due to its ability to bind to 
FcRn. Association, conjugation, or fusion of therapeutic drugs to albumin has 
been shown to correlate with superior PK.

In addition to albumin addition, PEGylation, the process of adding poly­
ethyleneglycol (PEG) chains to a molecule by incubating a reactive derivative 
of PEG with the biomolecule of interest, also appears to work universally for 
improving therapeutic protein in vivo half‐life [37]. PEGylation also increases 
the molecule’s hydrodynamic size, thereby prolonging its time in circulation 
by reducing renal clearance. In addition, PEGylation can also make hydro­
phobic drugs with poor PK properties more water‐soluble. There are a num­
ber of PEGylated molecules on the market and many companies are exploring 
this concept on a wider range of biotherapeutics [38, 39]. Characterizing these 
modified proteins, such as albumin‐conjugated or PEGylated species, 
brings  along increased analytical challenges, some of which are covered 
by  Bakalarski et  al. in Chapter  2 and by Ellerman et  al. in Chapter  4. 
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Table 1.1  The circulatory half‐life of a therapeutic protein can be extended by several 
strategies depending upon the endogenous clearance mechanism of the drug.

Protease degradation
Novel/alternative delivery strategies 
avoiding need to extend half‐life

N‐terminal acetylation or C‐terminal 
amidation

Controlled‐release depot (subcutaneous, 
intramuscular, intravenous); e.g. 
Bydureon–poly(lactic‐co‐glycolic acid) 
(PLGA) microspheres (Alkermes)

Nonnatural amino acids at labile sites
Cyclization using disulfide bonds
Microspheres or nanoparticles

Increase size/hydrodynamic volume to 
prevent clearance by kidneys

Increase size/hydrodynamic volume to 
prevent clearance by kidneys and attach 
to protein with a long half‐life

Di‐ or multimers Attach to Fc (the natural antibody 
constant region)

Attach PEG—conjugation Genetic fusion; e.g. Enbrel (Amgen), 
Mimetibody™ (Centocor), SynFusion 
(Biogen Idec/Syntonix)

Advanced PEGylation—modification of 
peptides (and prodrugs) by attaching with 
specific polymer chains

Covalent attachment (site‐specific) 
(CovX/Pfizer)

Site‐specific PEGylation (polytherics)—
enables more selective PEGylation, reducing 
likelihood of protein deactivation upon 
conjugation and reducing immunogenicity

Attach to human serum albumin

Glyco‐PEGylation (Neose) Genetic fusion, albufuse® (Novozymes 
Biopharma/GSK/Teva/CSL)

Releasable PEGylation (Enzon) Conjugation (Novozymes Biopharma, 
ConjuChem, Cardiovax)

Protein “rPEG”—genetic fusion Albumin binding peptides/proteins/
affinity tags (Genentech/Roche, Ablynx, 
Philochem, Affibody, Adnexus/BMS)

Poly‐glycine Albumin binding single domain 
antibodies fused to bioactive peptides 
(GSK/Domantis, Ablynx, Haptogen/
Wyeth/Pfizer)

PASylation (XL‐protein) Albumin binding fatty acids (Novo 
Nordisk)

XTEN (Amunix)
Other
Hyaluronic acid (Novozymes)
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PEG polymers themselves are often highly heterogeneous and the increase in 
molecular weight that occurs when biomolecules are PEGylated means that 
more specialized mass spectrometric techniques or other analytical methods 
need to be employed [40]. With an increase in these types of complex mole­
cules being developed for improved drug stability, the analytical challenges 
posed with their characterization also increase in complexity.

In addition to analyzing the intact biomolecules both in vitro and in vivo 
for  assessing molecular stability, PK and PD properties, additional types of 
analyses to assess traits such as immunogenicity are starting to emerge. All bio­
therapeutics, including monoclonal antibodies and their derivatives, are immu­
nogenic to varying degrees in various patients, with chimeric antibodies 
representing more of an immunogenic risk than humanized antibodies. These 
mouse human chimeric antibodies can induce some patients to develop antid­
rug antibody (ADA) responses [41]. Certain factors are known to influence 
biotherapeutic immunogenicity including structural homology with respect to 
human amino acid sequences and various PTMs. Although frameworks can be 
designed to minimize the potential for immunogenicity, the complementarity‐
determining regions (CDRs) of antibodies and other variable domains of bio­
therapeutics can be highly sequence variable making it difficult to predict how 
immunogenic a regent maybe [42]. Several companies have adopted strategies 
to assess immunogenicity retrospectively for therapeutics that have shown an 
ADA response [43]. Prospectively, a T cell activation assay, whereby CD4 + T cells 
are monitored for activation by antigen‐presenting cells (APCs) loaded 

Table 1.1  (Continued)

Increase size/hydrodynamic volume to 
prevent clearance by kidneys

Increase size/hydrodynamic volume to 
prevent clearance by kidneys and attach 
to protein with a long half‐life

Hydroxyethyl Starch (HESylation®—
Fresenius Kabi)
Polysialic acid (PolyXen®—Xenetic 
Biosciences)
Elastin‐like polypeptide (ELP) technology 
(Phase Bio Pharmaceuticals Inc.)

Source: Sleep [35]. Reproduced with permission of Elsevier.
These include the reduction in the endogenous degradation of the drug; slow release/depot 
formulations; increasing the hydrodynamic volume of the drug by attachment of a large bulky 
polymer or extension of the therapeutic protein by addition of a linear but unstructured protein; 
or the addition of a large structured protein which additionally can take advantage of the 
FcRn‐mediated recycling.
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with biotherapeutics, can be employed along side a major histocompatibil­
ity complex associated peptide proteomics (MAPPs) assay. The MAPPs 
assay  involves the in silico prediction of DR4 or other MHC class II peptide 
presentation using one of several programs such as SYPETHI, NETMHC, and 
so on. These algorithms predict potential T cell epitopes derived from the 
therapeutic protein. Additional analyses whereby MHC class II complexes are 
immune‐precipitated from cells, peptides isolated and analyzed by mass 
spectrometry are also sometimes performed to complement the results from 
in silico predictions. These types of analyses are starting to be incorporated into 
early molecular assessment workflows to minimize the potential risk of adverse 
immunogenicity of new molecules prior to ADAs being reported.

In addition to these types of analyses, additional complexities arise due to 
chemically modified/conjugated biotherapeutics. Antibody–drug conjugates 
and antibody–antibiotic conjugates are gaining momentum in the clinic and 
these hybrid molecules that are composed of an antibody, a cleavable linker, 
and a chemotherapeutic or potent antibiotic molecule raise their own set of 
analytical challenges. In Chapter 7, Liu describes the importance of measuring 
drug‐to‐antibody ratios (DARs) [44] and the types of chromatographies and 
mass spectrometric techniques employed for characterizing these complex 
molecules. Liu describes the applications of increasingly diversified mass spec­
trometric techniques employed for characterizing the integrity of ADCs from 
the perspective of production to in vitro and in vivo testing as well as in terms 
of elucidating the mechanisms of ADC biotransformations.

So, now we have a variety of different biotherapeutic material in the research 
environment, manufacturing, and the clinic. How do we organize such materi­
als? Prior to official lot validation that occurs once a biomolecule hits our pipe­
line, how do we ensure that the antigens we are using for immunization are 
from the same batch of cells, have been purified in the same manner and 
already characterized for correct protein sequence, folding, and structure? 
Biorepositories [45, 46] are growing in popularity and necessity in biotechnol­
ogy companies. Official curation, stable storage, and easy retrieval of various 
lots of cDNAs, antigens, antibodies, ADCs and all the associated modifications 
are now becoming commonplace to allow researchers more consistency in the 
quality and reproducibility of their assay and other results.

As analytical technologies increase in sensitivity and complexity, low‐level 
heterogeneity of therapeutic biomolecules that were previously unknown 
becomes revealed. Many of these modifications will be irrelevant in terms of 
the protein’s stability or function; however, when reporting such heterogeneity 
to the FDA and other regulatory bodies one has to take care to not provide 
information that might be misconstrued. So how sensitive should the analysis 
be? At what percentile of the overall nonmodified protein should a mutation or 
modification be before it is reported or deemed important for functionality? 
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Some of the techniques involved in the molecular assessment of therapeutic 
biomolecules are described by Phung et al. in Chapter 11. These are all ques­
tions that analytical chemists and biochemists face as we embark on the design 
of new biotherapeutic moieties and see the emergence of biosimilars.
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Abbreviations

CCS	 collisional cross section
CHCA	 alpha‐cyano‐4‐hydroxycinnamic acid
DC	 direct current
DHB	 2,5‐dihydroxybenzoic acid
EMR	 extended mass range
ESI	 electrospray ionization
FAIMS	 field asymmetric ion mobility spectrometry
HPLC	 high‐performance liquid chromatography
IEC	 ion exchange chromatography
IMS	 ion mobility spectrometry
ISD	 in‐source decay
MALDI	 matrix assisted laser desorption ionization
MS	 mass spectrometry
MS/MS	 tandem mass spectrometry
m/z	 mass‐to‐charge ratio
PSM	 peptide–spectral match
QTOF	 quadrupole time of flight
RF	 radio frequency
SEC	 size exclusion chromatography
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2.1  Introduction

A mass spectrometer in its most simplistic terms is an instrument capable 
of determining the mass of individual atoms or molecules. In reality one meas­
ures the mass (m)‐to‐charge (z) ratio (m/z) of an ion and since atoms of each 
element have different masses, the accumulative molecular composition of a 
molecule (e.g., a protein) can be determined by its m/z.

Antibodies and other recombinant proteins are one of the leading types of 
therapeutic moieties for the treatment of human disease and often have advan­
tages over traditional small molecule‐based drugs in that they are highly spe­
cific and typically exhibit fewer off‐target side effects. All therapeutic related 
biomolecules, whether they are antigens to generate immunization campaigns 
or the actual therapeutic protein itself, may exhibit heterogeneity due to vari­
ous modifications, either synthetically induced or naturally occurring during 
the manufacturing process [1].

N‐terminal heterogeneity, generated from either truncated or elongated 
termini from exposure to aberrant proteolysis events during the secretion 
process, is a common observation on recombinant proteins [2, 3]. Co‐ or 
posttranslational modifications (PTMs) on proteins due to expression in and 
purification from eukaryotic expression systems can occur and often their 
presence or absence can be indicative of suboptimal manufacturing processes 
and potentially affect the molecule’s activity or stability. Kinases in their 
active conformation, for example, are often auto‐phosphorylated [4]; for IgG 
antibodies, glycosylation status is important for dictating correct Fc effector 
function [5]. Due to these inherent heterogeneities extensive analytical 
characterization is imperative to ensure reproducible, reliable, and safe pro­
duction of these therapeutic proteins. The fastest, easiest, most accurate, and 
arguably most sophisticated analytical method to measure each of these 
events is through intact molecular weight mass measurements using mass 
spectrometry (MS).

2.1.1  Ionization

The first step in the mass spectrometric analysis of proteins is ionization. After 
purification and often dialysis into an appropriate MS‐compatible buffer (e.g., 
a composition of an organic solvent such as methanol or acetonitrile in combi­
nation with water and an ion pairing reagent), the samples are introduced into 
the mass spectrometer [6]. To facilitate entry into the mass analyzer, samples 
must be ionized using one of several techniques; the most common types of 
ionization for large biomolecules are (i) matrix assisted laser desorption ioni­
zation (MALDI) [7], where a sample is spotted onto a MALDI plate for subse­
quent analysis, and (ii) electrospray ionization (ESI) [8, 9] whereby the sample 
is injected via either direct infusion or elution from an orthogonal analytical 
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device such as a high‐performance liquid chromatograph (HPLC) into an ESI 
source. Ionization is a critical step in the mass spectrometric analysis of any 
molecule, as it is this process that converts the molecule(s) of interest from a 
liquid or solid phase into a gaseous state, which is then amenable to introduc­
tion into and detection by the mass analyzer. The methods described herein 
are considered “soft” ionization techniques, as the actual process of ionization 
is amenable to keeping the biomolecule of interest intact (and thus retaining 
molecular weight information) during its conversion to a gaseous ion and entry 
into the mass spectrometer.

2.1.1.1  Matrix Assisted Laser Desorption Ionization
MALDI is a soft ionization technique typically coupled to MS that was first 
described by Hillenkamp and Karas [7] and a schematic of a typical MALDI ioni­
zation process is depicted in Figure 2.1. During MALDI analysis, the molecule of 
interest is cocrystallized with an organic matrix which is chosen based on the 
nature and size of the analyte. For example, intact mass measurement on a MALDI 
instrument is most often performed using 3,5‐dimethoxy‐4‐hydroxycinnamic 
acid (a.k.a sinapinic acid) to minimize fragmentation, whereas peptides are com­
monly analyzed in the presence of alpha‐cyano‐4‐hydroxycinnamic acid (CHCA) 
or 2,5‐dihydroxybenzoic acid (DHB) matrices. The matrix absorbs ultraviolet 
light generated from a laser (most typically a nitrogen laser light at a wavelength 
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Figure 2.1  MALDI ionization. The uncharged analyte is mixed with an uncharged matrix 
molecule. After receiving energy via the laser pulse the now charged matrix donates a 
proton to the analyte via desorption, therefore allowing the analyte to become charged. 
The charged analyte is guided through the MALDI mass spectrometer for m/z analysis.


