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Preface

Protein carbonylation has attracted the interest of a great number of laboratories 
since its pioneering studies at the Earl Stadtman’s lab at NIH started in the 
early 1980s. Since then, detecting protein carbonyls in situations of oxidative 
stress has become a highly efficient tool to uncover biomarkers of oxidative 
damage in normal and altered cell physiology. Carbonylated proteins suffer 
from structural alterations that can impair function or, in certain cases, can 
have a regulatory role. For these reasons, identification of carbonylated 
proteins and the site of carbonylation are essential pieces in elucidating the 
mechanism of altered cellular function occurring under endogenous or 
exogenous oxidative stresses.

In this book, research groups from several areas of interest have contributed 
to update the knowledge on the detection, analyses, and identification of 
carbonylated proteins and the sites where these modifications occur.

I am sure that the scientific community will benefit from these reviews since 
they deal with specific, detailed technical approaches to study the formation 
and detection of protein carbonyls. Moreover, the biological impact of such 
modifications in metabolic, physiologic, and structural functions and how these 
alterations can help us understand the downstream effects on cell function are 
discussed.

Finally, I want to express my gratitude to Rodney Levine for his help in 
designing the book and convincing the authors to contribute a chapter. Without 
him this book would not have been as successful as the final result shows.
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1

1.1  Introduction

Stem cells maintain tissue integrity and homeostasis by regenerating damaged 
or lost cells throughout life. Impaired stem cell function may promote defective 
response to stress, aging, and cancer. Work in the past decade has uncovered 
the critical role that redox signaling plays in the biology of stem cells. A major 
part of this work has taken place in blood‐forming (hematopoietic) stem 
cells  (HSCs) that are broadly used as a model system for adult stem cells. 
This chapter overviews the investigations of redox regulation of stem cells in 
the past decade.

Reactive Oxygen Species Signaling 
from the Perspective of the Stem Cell
Saghi Ghaffari1,2,3,4 and Raymond Liang1

1Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, 
New York, NY, USA
2Division of Hematology, Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 
New York, NY, USA
3Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
4Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
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1  Reactive Oxygen Species Signaling from the Perspective of the Stem Cell2

1.2  ROS Regulation

ROS are generated from the reduction of molecular oxygen by one electron. 
ROS species are composed mainly of superoxide anions (O2

−), hydrogen 
peroxide (H2O2), and hydroxyl radicals (OH−). The superoxide anion is highly 
reactive and is rapidly reduced to H2O2 by the antioxidant enzyme superoxide 
dismutase (SOD) [1]. H2O2 can be further reduced to H2O and O2 by cellular 
antioxidants. ROS react adversely with and damage DNA, lipids, and pro­
teins, the cumulative effects of which may cause cellular alterations or death. 
Overall ROS‐mediated damage to macromolecules is thought to contribute 
to the physiological effects of aging [2]. ROS are also considered to be 
essential components in multiple biological processes as second messengers 
intimately implicated in the physiological regulation of signaling pathways 
[3]. Alterations of ROS generation versus scavenging, that is creating the 
redox milieu, may lead to disease as a result of either too much direct ROS 
damage (e.g., DNA mutations) or perhaps by impaired function of physiologi­
cally relevant ROS‐dependent signaling pathways (e.g., myeloproliferative 
disorder; see succeeding text).

The main source of ROS in the cell is mitochondrial respiration. The genera­
tion of proton motive force by the electron transport chain—which leads to 
ATP production through ATP synthase in a process known as oxidative phos­
phorylation—is responsible for mitochondrial respiration. However, a small 
fraction, approximately 0.1–0.2% of O2, consumed by mitochondria form ROS 
through the premature electron flow to O2 mainly through complexes I and III 
[4]. The cell type, the environment, and ultimately the activity of mitochondria 
can influence greatly the precise proportion of ROS generated from mitochon­
drial respiration [5]. Thus, modulations of mitochondrial activity as well as 
metabolism in general regulate ROS levels; for instance, reduced ROS levels 
are achieved by decreasing the rate of mitochondrial respiration via minimiz­
ing oxidative phosphorylation. Furthermore, processes that regenerate oxi­
dized glutathione, such as the pentose phosphate pathway, repress ROS levels. 
Another major source of ROS, in addition to mitochondria, is the membrane‐
bound protein NADPH oxidase (NOX), which consumes NADPH to generate 
O2 and subsequently H2O2. NOX generation of ROS has antimicrobial effects 
in host defense. In addition, NOX are also important for producing ROS in 
non‐phagocytic cells to influence cellular signaling including growth factor 
(GF) signaling [6]. This includes increased NOX4‐mediated ROS production 
in stem cells [7]. Notably differentiation of mesenchymal stem cells (MSCs) 
toward adipocytes or neuron‐like cells has also been shown to employ NOX4‐
mediated H2O2 signaling as well as mitochondrial ROS [8, 9]. Elevated ROS in 
MSCs on the other hand reduces their engraftment potential and induces 
apoptosis after transplantation [7, 10].

Under normal physiological conditions, the generation of ROS is tightly 
regulated by the ROS scavenging system. ROS scavengers are antioxidant 
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enzymes that can neutralize ROS by directly reacting with and accepting elec­
trons from ROS. When ROS production outpaces ROS scavenging, an exces­
sive accumulation of ROS occurs, leading to oxidative stress and adverse effects 
on multiple cellular components including proteins, lipids, and nucleotides. 
To counteract this, the cell contains multiple types of antioxidants specific to 
different species of ROS, which helps to prevent pathological levels of ROS and 
to repair oxidative damage to cellular components. These include SOD, cata­
lase, peroxiredoxins (PRX), thioredoxin (TRX), glutathione peroxidase (GPX), 
and glutathione reductase (GR). Glutathione, a tripeptide, is one of the most 
abundant antioxidants synthesized by the cell. Oxidized proteins and H2O2 are 
reduced by glutathione through the glutaredoxin and TRX system. Other key 
antioxidants include SOD and catalase, which reduce O2

− and H2O2, respectively. 
The subcellular localization of antioxidants at areas of high ROS generation, 
such as within the mitochondria, may further enhance the efficiency of ROS 
scavenging.

1.3  ROS Signaling

Despite their deleterious properties, cumulating evidence in the past three 
decades has established ROS as pivotal signals in cell fate regulation [11, 12]. 
There is little doubt that oxygen radicals serve as signaling messengers that 
variably influence cellular behavior [13, 14]. ROS reaction with proteins such 
as transcription factors, kinases, and phosphatases alters processes that regulate 
cell cycle, apoptosis, quiescence, or differentiation [15–17]. GF and oncogenic 
signaling [18–23] are some examples of ROS signaling. ROS also influence 
transcriptional activity and likely epigenetics [24–26]. The main ROS species 
involved in intracellular signaling are Hydrogen peroxide (H2O2) mostly due to 
their relatively longer half‐life and ability to easily diffuse through membranes 
relative to other types of ROS [27]. H2O2 is also among ROS species with 
substrate specificity that generates reversible oxidation that is likely to trigger 
signaling cascade in in vivo physiological settings [12].

ROS signal via direct modification of proteins by amino acid oxidation, the 
most common of which is oxidation of cysteine residues [28]. ROS signaling to 
amino acids can cause functional changes in a range of proteins. Proteins 
directly modified by ROS—known as redox sensors—undergo a conforma­
tional change as a result of oxidative modification that influences their func­
tion, stability, subcellular localization, interactions with other proteins, and 
other critical processes. A major example is provided by ROS modulation of 
protein tyrosine phosphatases (PTP) [1]. It has been shown recently that 
ROS‐mediated inhibition of PTP1B (encoded by PTPN1) in oncogenic‐induced 
senescent cells results in the upregulation of cell cycle inhibitor p21CIP, cell 
cycle arrest, and senescence by a mechanism involving miRNAs. These studies 
showed that argonaute that regulates miRNA loading is a target of PTP1B 
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whose repression results in tyrosine phosphorylation of argonaute and reduced 
loading of miRNAs targeting p21CIP leading to cell cycle arrest and senescence [29]. 
These studies illustrate the extent of ROS signaling impact and further reiterate 
the function of ROS as rheostat in cell signaling [30]; in addition by establish­
ing a link between ROS, inhibition of phosphatases, and regulation of miRNAs, 
these studies expand the scope of ROS‐mediated modulations of signaling 
pathways.

ROS regulation of protein function is complicated by many feedback loops. 
While ROS can modify protein function, a growing network of proteins modu­
lates ROS levels. These include PTEN and sirtuins (SIRTs) (specifically SIRT1 
and SIRT3), ataxia telangiectasia mutated (ATM), p38 mitogen‐activated pro­
tein kinase (MAPK), mammalian target of rapamycin (mTOR), and protein 
kinase B (AKT) protein kinases as well as the multifunctional apurinic/
apyrimidinic (AP) endonuclease1/redox factor‐1 (APE/Ref‐1) protein. 
Transcription factors such as nuclear factor kappa B (NFκB) mediate ROS 
transactivation of the hypoxia‐inducible factor 1 alpha (HIF‐1α) [31]; Forkhead 
box O (FOXO) family; nuclear factor (erythroid‐derived 2)‐like 2, also known 
as NFE2L2 or NRF2; PR domain containing 16 (PRDM16); and p53 tumor sup­
pressor [32–37]. Among these, many proteins considered as redox sensors that 
also modulate ROS levels have key functions in the regulation of stem cell fate 
(reviewed in [13, 38]) (Figure 1.1). For instance, changes of ROS and p53 activity 
by thioredoxin‐interacting protein (TXNIP) may be implicated in hematopoi­
etic stem cell (HSC) function specifically with age [39]. The polycomb group 
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Figure 1.1  Redox sensors critical for stem cell fate: ROS regulation of signaling molecules 
and transcription factors and their effect on ROS regulation.
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member BMI1 also regulates stem cell function, modulates ROS levels, and 
is  implicated in regulating mitochondrial function [40–42]. Some of these 
have  also been implicated in the regulation of mitochondrial biogenesis or 
metabolism.

1.4  ROS and Stem Cells

Current findings raise the possibility that ROS modulations influence signaling 
pathways that ultimately impinge on key transcription factors. In turn these 
factors readjust ROS levels by regulating the expression of antioxidant, 
metabolic, and mitochondrial genes. Transcription factors that are essential 
for stem cell machinery and critical for cellular redox state include HIF, FOXO, 
PRDM16, NRF2, and p53. This model postulates that ROS function as rheostat 
especially in cells that are highly sensitive to levels of ROS [30] such as stem 
cells that maintain low ROS levels.

1.4.1  Adult Stem Cells

Adult stem cells including stem cells of the hematopoietic system, skin, muscle, 
brain, and intestine share two key properties: (i) they are capable of self‐renewing 
divisions to generate other stem cells and (ii) are multipotent, able to give rise 
to all cells within their tissue of origin. Adult stem cells replace differentiated 
cells and replenish damaged and lost tissue during fetal life and throughout life 
after birth. Adult stem cells with very few exceptions are mainly quiescent 
under homeostatic conditions as has been definitively shown for stem cells of 
the skin and hematopoietic system [43–46] (reviewed in Ref. [30]). Quiescence 
of stem cells is critical for their self‐renewal property. In response to damage or 
loss and in contrast to homeostasis, stem cells proliferate extensively to regen­
erate their tissue of origin. To adapt to either quiescence or the highly prolifera­
tive state, stem cells have adopted metabolic plasticity. While the precise nature 
of the stem cell metabolic program remains elusive, levels of ROS appear to 
both reflect the stem cell metabolic state and have profound effects on stem 
cell behavior [13]. This is of major importance since perturbations in stem cell 
properties are associated with degenerative diseases and aging.

Multipotent hematopoietic progenitors in Drosophila exhibit higher ROS 
levels relative to their downstream progenies [47]. This property is shared with 
mammalian myeloid blood progenitors relative to their upstream HSC. In this 
in vivo drosophila model, burst of endogenous ROS in hematopoietic progeni­
tors primes the larval lymph gland for differentiation [47]. In agreement with 
an in vivo ROS function in mediating hematopoietic cell fate, accumulated 
ROS in primary hematopoietic progenitors in the context of loss of transcrip­
tion factor FOXO3 leads to myeloproliferation [48]. In mammals, stem cells of 
the hematopoietic system contain low ROS levels [49]. Among major known 



1  Reactive Oxygen Species Signaling from the Perspective of the Stem Cell6

HSC regulators of ROS are transcription factors FOXO (FOXO3) and ATM 
protein kinase. FOXOs are evolutionarily conserved regulators of redox state 
that inhibit oxidative stress in quiescent cells by direct transcription of anti­
oxidant genes including SOD and catalase [50–56]. FOXO’s control of the 
redox homeostasis is also via the pentose phosphate pathway [57]. The redox 
control contributes to FOXO regulation of aging and longevity [53–55]. In the 
hematopoietic system, in addition to stem cells, FOXO3 regulates redox state 
in primary erythroblasts and myeloid progenitors [48, 58].

Increased ROS in HSC is associated with HSC differentiation and increased 
production of their immediate progenitors [49]. Notably, HSC are highly 
enriched in glutathione S‐transferase enzymes that mediate detoxification of 
xenobiotics and defense against environmental stress and cellular damage [59]. 
Dormant HSCs are acutely sensitive to oxidative stress, a cellular state insti­
gated by an imbalance between the generation and the detoxification of ROS 
[33, 36, 37, 60–62]. In many cases unbalanced ROS accumulation is associated 
with impaired HSC function in vivo [60, 63, 64]. Some of the main examples 
are provided by ATM kinase (Atm)−/− HSC, loss of Foxo1/3/4 (Forkhead box O 
1/3/4) transcription factors, or just Foxo3 deletion [33, 36, 37, 60]. In many 
cases such as in Atm−/− HSC, increased ROS levels mediate defects of stem cell 
activity [60]. However, in contrast to ATM−/− HSC, elevated ROS do not 
mediate the defective long‐term repopulation activity—that is, the ultimate 
measurement of in vivo blood stem cell activity—of Foxo3−/− HSC [60, 65]. 
ATM and FOXO3 are in a cross talk in which ATM enzymatic activity and 
expression are regulated by FOXO3 [48, 66]; FOXO3 is required for HSC mito­
chondrial metabolism [65], while the role of ATM in mitochondrial regulation 
of HSC is less clear. Control of redox balance and metabolic gene transcription 
by FOXO3 is also implicated in the maintenance of neural stem cells (NSCs) 
[57, 67]. However NSCs require high ROS to maintain their self‐renewal and 
the regulation neurogenesis properties [68]. Although FOXOs are also critical 
for embryonic stem cell (ESC) pluripotency, this function does not seem to be 
through regulation of oxidative stress in ESCs [69].

NRF2 is a ubiquitously expressed transcription factor and a master regulator 
of antioxidant response and mitochondrial biogenesis. Loss of NRF2 results in 
relative expansion of HSCs and increased generation of their progenitors with­
out any impact on HSC self‐renewal. This has been attributed to cell intrinsic 
hyper‐proliferation and is associated with modulations of cell migration and 
homing [70]. Unexpectedly the defective HSC function in these mice is associ­
ated with normal ROS levels; on the other hand ROS levels are increased upon 
restoration of NRF2−/− HSC function [71]. In addition, enhanced NRF2 signal­
ing increases hematopoietic stem and progenitor cell function [70, 71] and 
mitigates irradiation‐induced myelosuppression and mortality [71]. These 
studies suggest that despite the association that is commonly observed between 
ROS levels and HSC function [63, 72–77], elevated ROS do not always result in 
HSC defective function; these conclusions are analogous to that derived from 
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Foxo3−/− HSC studies [65, 70, 78]. Current findings point to unhealthy mito­
chondria rather than ROS as potential mediators of stem cell defects [65, 79] in 
the case of Foxo3−/− HSC. Given the importance of both NRF2 and FOXO3 for 
mitochondrial function [65, 72–75, 80], it is conceivable that lack of association 
between ROS elevation and defective HSC function phenotype might indicate 
active involvement of mitochondria in NRF2−/− HSC as has been proposed for 
Foxo3−/− HSC [65]. Similar NRF2 functions are described in lung stem cells. 
In mouse and human airway basal stem cells (ABSCs), intracellular flux from 
low to moderate ROS levels is required for stem cell self‐renewal and prolifera­
tion. The stem cell self‐renewal involves modulations of ROS levels that activate 
NRF2 and Notch pathways [81]. NRF2 bears interesting functions in cancer 
stem cells that involve its interactions with the cell cycle inhibitor p21 (Cdkn1a) 
that competes with Keap1 for NRF2 binding [82, 83] and stabilizes NRF2 in 
TGF‐beta‐responsive squamous cell carcinoma stem cells [84]. This binding 
increases glutathione metabolism and NRF2 antioxidant response that render 
cells drug resistant. Decreasing NRF2 increases drug‐induced apoptosis in 
these cancer stem cells without significantly modifying their low cycling profile 
[84]. In resting drosophila intestinal stem cells, NRF2 (CncC) is constitutively 
active in maintaining low ROS levels [85]. Increased degradation of NRF2 by 
Keap1 enhances intestinal stem cell proliferation. Loss of NRF2 increases ROS 
levels and accelerates age‐related degeneration of the intestinal epithelium.

These studies raise the possibility that HSC defects are not directly mediated 
by ROS elevation when mitochondrial function is defective [70, 71, 78, 86–92]. 
In these settings as observed in Foxo3−/− and Nrf2−/− HSC, ROS elevation might 
only be secondary to changes in mitochondrial function, a signal that might 
be indicating the unhealthy state of mitochondria and mediating only some 
(e.g., DNA damage) of stem cell defects [65, 70, 71, 93]. ROS elevation in 
hematopoietic progenitors induces myeloproliferation in vivo [48]. Importantly, 
scavenging ROS in vivo improves myeloproliferation in the context of human 
leukemias [94, 95].

1.4.2  Embryonic Stem Cells

ESCs originate from the inner cell mass of the mammalian blastocyst and 
possess the ability to differentiate all three germ layers of the embryo under 
defined in vitro conditions [96]. ESCs are highly resistant to oxidative stress [97] 
but, undergo apoptosis when exposed continuously to high ROS levels. Their 
genomic integrity and clonal recovery is maintained when cultured under 
physiological oxygen levels (2%) [98], whereas prolonged hypoxic environment 
leads to increased ROS and apoptosis [99].

ESCs have a shortened G1 cell cycle phase which enable them to self‐renew 
rapidly. ESC self-renewal relies mainly on glycolysis and the pentose phosphate 
pathway, with oxidative phosphorylation clearly suppressed [100–104]. The 
rapid generation of ATP and the precursors for nucleotide biosynthesis by 
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glycolysis and the pentose phosphate pathway, respectively, enable the rapid 
DNA replication and ESC growth [105]. Undifferentiated pluripotent ESC in 
contrast to their lineage‐committed progenies relies on enhanced lactate pro­
duction and an uncoupling of electron transport chain flux from ATP produc­
tion, suggesting their dependence on glycolysis. This is associated with an 
immature mitochondrial morphology and a more reduced redox environment, 
further supporting the notion that ESC avoids dependence on mitochondrial 
metabolism [104, 106]. Forced activation of oxidative phosphorylation by 
knockdown of uncoupling protein 2 (UCP2), that limits pyruvate entry into the 
mitochondrial oxidative phosphorylation pathway, as well as by metabolites 
that activate this pathway leads to loss of stem cell properties and increased 
differentiation or apoptosis [104]. Enhancing glycolysis or inhibition of oxida­
tive phosphorylation may also be achieved through hypoxia‐induced HIF acti­
vation that results in improved proliferation and maintenance of ESCs while 
repressing differentiation similar to experiments described earlier [107, 108]. 
In all cases, improved stem cell maintenance is associated with decreased ROS 
levels. The high sensitivity of mouse ESC to endogenous ROS is in part medi­
ated by deacetylase sirtuin 1 (SIRT1) coordination of p53 activity toward (inhi­
bition) antioxidants with its regulation of pluripotency factor Nanog expression 
[109]. These functions might also be related to SIRT1 regulation of ESC mito­
chondria [110]. These findings support the idea that ESC fate may be directly 
modified by ROS modulation of metabolism. They also suggest that in ESC as 
in cancer cells glycolysis supports the biosynthetic demands of highly prolifera­
tive cells [105].

The study of ROS and metabolism in stem cell fate regulation has led to 
improved differentiation and reprogramming protocols including induced 
pluripotent stem cell (iPSC) generation [111, 112]. The reprogramming pro­
cess reverts a fully differentiated somatic cell to a pluripotent stem cell state. 
The degree of activation of mitochondrial metabolism is implicated in mouse 
ESC fate determination. Differentiation of ESCs toward the cardiac lineage has 
specifically benefited from metabolic and ROS studies [102, 113, 114]. During 
the iPSC reprogramming process, metabolic rewiring from oxidative phospho­
rylation to glycolysis might precede the activation of other required steps [100] 
consistent with transcriptional regulation of multiple metabolic genes by the 
key reprogramming factor OCT4 [115]. Further in support of this, iPSC gen­
eration via small molecules modulates the transition to aerobic glycolysis [116]. 
In addition, conditions that support low O2 levels improve the efficiency of 
reprogramming and continued maintenance of iPSCs [117]. Glycolysis may 
also reduce the ROS levels: in iPSCs many ROS scavenging pathways are 
enhanced, and mitochondrial O2 consumption is suppressed under hypoxia, 
leading to diminished levels of ROS. Collectively these findings raise the pos­
sibility that increased ROS levels interfere with reprogramming efficiency [118]. 
Consistent with this notion, increased ROS levels during reprogramming cause 
damage to DNA [119].
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1.5  ROS, Metabolism, and Epigenetic Influence

Many metabolic intermediates influence posttranslational modifications of 
histones and therefore the epigenetic landscape of stem cells. ROS‐mediated 
changes in the concentrations of various metabolic intermediates modulate 
glycolysis and oxidative phosphorylation metabolic activity and therefore 
might influence epigenetic regulation [24–26]. This may be relevant to the 
regulation of stem cell fate [120–125]. For instance, the methylation of CpG 
islands in DNA requires S‐adenosyl methionine (SAM) that is generated 
through threonine metabolism upregulated in ESCs. Demethylation ensues 
through a series of hydroxylation of the methyl group catalyzed by ten‐eleven 
translocase (TET) enzymes that requires alpha ketoglutarate (αKG) and O2 as 
substrates [126, 127]. Acetylation of histone‐tail lysines requires acetyl‐CoA, 
the TCA cycle metabolite. Similarly, the SIRTs that are deacetylases for his­
tones and other proteins require nicotinamide adenine dinucleotide (NAD). 
The tight regulation of generation of metabolites might employ ROS that 
directly influence the interactions of transcription factors and histone acetyl­
transferases [15]. Given the SIRTs and  TET critical enzymatic functions in 
HSCs, ROS‐mediated regulation of metabolites might be implicated [122, 123, 
128–130]. How mechanistically nutrient availability and metabolic flux control 
stem cell histone and epigenetic landscape remains relatively unknown.

Manipulating metabolic pathways with either genetic approaches or pharma­
cological interventions can directly influence stem cell quiescence, self‐renewal, 
or differentiation [87, 104, 131]. Direct modulation by ROS of metabolic 
enzymes or other proteins that are implicated in nutrient sensing pathways 
determines the metabolic flux [132–134]. In these contexts ROS signaling 
may mediate cross talk between metabolism and pathways that determine stem 
cell fate decisions. In addition, ROS‐independent mechanisms via abundant 
metabolites may change the epigenetic landscape. Metabolic enzymes may also 
exert functions other than catalyzing metabolic reactions [24, 25, 135–137]. 
These alternatives have been poorly characterized in stem cells. Collectively, 
these studies highlight the intricate relationship between ROS and mitochondria 
in regulating stem cell fate.

1.6  Stem Cells and Mitochondria

Increasing evidence suggests that mitochondria are central to the regulation of 
stem cell fate. HSCs have relatively high numbers of mitochondria that are 
overall inactive. As a result mitochondrial respiration is low in HSCs relative to 
downstream progenitors [138, 139]. A key function of mitochondria in HSCs 
was recently demonstrated by studies of mitochondrial permeability transition 
pore (mPTP) [140]. The closure of mPTP in the heart embryo accelerates 
myocyte differentiation [141] and is associated with decreased ROS levels. 
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Modulations of ROS‐independent mPTP also impact myocyte differentiation, 
indicating that the effect of mPTP might be mediated by ROS. Interestingly, 
the induction of mPTP is also involved in increased ROS upon exposure of 
bone marrow stem cells to ambient air and found to be the source of reduced 
stem cell harvest for bone marrow transplantation [140]. The induction of 
mPTP is thought to be at the source of “ischemia–reperfusion damage” that is 
initiated by a burst of oxygen radicals rapidly produced by mitochondria [142, 
143], resulting in mitochondrial swelling and OXPHOS uncoupling [144], 
leading to necrosis [145]. Transient mPTP opening may function in a regula­
tory capacity and induce stem cells to differentiate. ROS regulation of mPTP is 
mediated by the control of cyclophilin D and p53. Oxidative stress facilitates 
recruitment of mitochondrial CypD to the inner membrane and promotes 
mPTP. Moreover, p53 also induces mPTP opening. Under normal physiologi­
cal conditions, low amounts of p53 suppress ROS, whereas high amounts of 
p53 induce ROS accumulation in response to cellular stress. Thus, these 
opposing responses might depend on the cellular levels of p53 [146]. The p53 
regulation of ROS also occurs in stem cells [140]. The generation of p53‐
induced genes (PIGs) leads to ROS production, mitochondrial oxidative dam­
age, and apoptosis. Another p53 target gene, phosphate‐activated mitochondrial 
glutaminase (GLS2), protects against oxidative stress and regulates energy 
supply. GLS2 converts glutamine to glutamate, regulates GSH synthesis and 
energy production, and is key to glutamine metabolism. By promoting GSH‐
dependent antioxidant defense, p53‐induced GLS2 controls intracellular ROS 
levels. Therefore by linking glutamine metabolism, energy supply, and ROS 
levels, p53 plays a relatively unique function in cellular metabolism that might 
be important in oncogenesis [147]. HSCs show low levels of ROS and are 
enriched for glycolytic metabolites [138, 139, 148]. Similar analyses in NSCs 
and MSCs also revealed a preference for aerobic glycolysis and repression of 
oxidative phosphorylation [57, 76, 77]. Multiple factors are implicated in glyco­
lytic and pentose phosphate pathway dependence of adult stem cells and more 
specifically of HSCs, including the low energy requirements of quiescence, the 
need to minimize oxidative stress from mitochondrial ROS, and their location 
within a hypoxic niche [49, 149]. Evidence of this comes from the genetic abla­
tion of HIFs, which causes activation of oxidative phosphorylation and an 
increase in ROS, resulting in the subsequent loss of quiescence and the self‐
renewal properties of HSCs [150, 151]. In HSC, Meis1 regulates both HIF1α 
and HIF2α [63, 139]. Data suggest that Meis1 is an important regulator of HSC 
metabolism upstream of HIF [63]. Conditional deletion of M2 isoform of pyru­
vate kinase (PKM2) or lactate dehydrogenase (LDH)A, that are critical enzymes 
of glycolysis, further underline the importance of glycolytic metabolism for 
normal HSC and leukemic stem cells and regulated by ROS [78]. Increased 
ROS as a result of loss of LDHA partially mediates Ldha−/− blood stem and 
progenitor cells’ defective functions [78]. Activated HSCs exit from quiescence 
to replenish downstream blood lineages that coincides with a shift from 
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glycolysis to oxidative phosphorylation. This metabolic requirement is illus­
trated by functional studies of key regulators of pyruvate oxidation and entry 
to mitochondria, such as pyruvate dehydrogenase kinase (PDK) and PTEN‐
like mitochondrial phosphatase (PTPMT1) [87, 131]. Loss of PDK in mice 
results in increased activation of oxidative phosphorylation, loss of HSC quies­
cence, ROS accumulation and exhaustion of the HSC pool, highlighting the 
importance of PDK and glycolysis for maintaining HSC function [131]. 
Deletion of PTPMT1, which favors glycolysis, leads to their expansion of the 
HSC pool in mice but prevents differentiation into downstream lineages [87]. 
These studies underscore how the balance between oxidative phosphorylation 
and glycolysis is essential for HSC maintenance and differentiation. They also 
point to mitochondria as a critical regulator of HSC activity [152].

Mitochondrial involvement in stem cell fate is likely to act beyond a switch 
to oxidative phosphorylation from aerobic glycolysis. Mitochondria are highly 
dynamic organelles at the center of major signaling pathways. They control 
cellular processes such as Ca2+ signaling, ROS production, iron metabolism, 
and apoptosis. Mitochondrial morphologies, oxidative phosphorylation, and 
subcellular localizations are influenced by and reflect their activity. Normally, 
actively respiring mitochondria elongated shapes and are densely packed with 
cristae. Folded cristae provide increased surface to accommodate electron 
transport chain complexes [153]. In ESCs, the mitochondrial network is punc­
tate, with individual mitochondrion that is small and rounded in shape with 
low numbers of swollen cristae [101, 103, 104], indicating an immature and 
inactive mitochondrial network. ESC mitochondria have a low respiratory 
capacity but a relatively high mitochondrial membrane potential, an important 
component of the proton motive force [103, 104, 154]. High mitochondrial 
membrane potential can be an indicator of increased electron transport chain 
activity, whereas low mitochondrial membrane potential is associated with 
lower amounts of respiration, and complete loss of mitochondrial membrane 
potential can trigger apoptosis [155]. Similar to ESCs, HSCs also contain rela­
tively immature mitochondria, suggesting low mitochondrial activity in HSC. 
As a consequence, HSCs exhibit lower respiratory rate and a low mitochon­
drial membrane potential when compared with downstream progenitors [139, 
156]. The difference in mitochondrial membrane potential between ESCs and 
HSCs may represent the proliferative and primed to differentiate nature of 
ESCs, in contrast to HSCs that are mostly quiescent. Although adult stem cells’ 
mitochondria relative to more differentiated cells are metabolically inactive 
and produce limited ATP, functional mitochondria are required for adult stem 
cells’ proper maintenance. Deficiencies or mutations in genes important for 
stem cell mitochondrial function are associated with loss of HSC quiescence 
and in vivo repopulation capacity [86, 88–90, 157, 158]. Interestingly, in almost 
all these models, ROS levels are relatively increased and rescued with N‐acetyl­
cysteine (NAC), a glutathione precursor that reduces ROS levels. Collectively, 
these results identify ROS as a key (although not unique) sensing mechanism 
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for stem cell to gauge mitochondrial health and activity. The need to constantly 
survey and maintain the health and numbers of mitochondria within stem cells 
may be central to stem cell biology. This function is partially filled by the 
mitophagy machinery that ensures clearance of damaged mitochondria, by 
transcription factors such as PGC1α that control mitochondrial biogenesis 
[159], and potentially by mitochondrial dynamics that are intimately linked to 
mitochondrial metabolism [153]. In agreement with this model, human stem 
cell‐like mammary cells segregate young versus old mitochondria asymmetri­
cally in their progenies to maintain stem cell properties [160].

Additional metabolic checkpoints likely to regulate stem cell fate include 
mitochondrial fatty acid oxidation mediated by the PML–PPARδ axis. Fatty 
acid oxidation promotes HSC asymmetrical cell division [161]. In HSC, fatty 
acid oxidation supports the generation of acetyl‐CoA [161], which is fed into 
the TCA cycle whose production of citrate leads ultimately to the generation 
of NADPH. In turn, NADPH refills the reduced glutathione pools to further 
control ROS levels [64]. Collectively, recent findings [71, 78, 162] raise the 
possibility that unbalanced ROS accumulation, independent of deteriorating 
HSC functions, might be an indicator of the unhealthy state of mitochondria 
in HSC.

1.7  ROS and Stem Cell Aging

Aging is a progressive loss of physiological integrity and is considered the 
primary risk factor for many late‐onset diseases [163, 164]. Stem cell decline is 
thought to be a major contributor to the aging process [165, 166]. Long‐lived 
stem cells accumulate damaged molecules with age that compromise their 
repair processes and function and impair their capacity to regenerate lost or 
injured tissues. Although highly complex mechanisms are in play, the discovery 
of evolutionarily conserved developmental pathways that might mitigate aging 
effects have heightened the hope that healthy aging and delaying age‐related 
diseases might be an achievable goal.

The free radical theory of aging posits that aging is caused by ROS‐mediated 
damage to macromolecules, cells, and tissues [2]. Increasing evidence however 
has implicated mitochondria rather than ROS in the aging process [167–169]. 
Although mitochondria have been implicated in the regulation of stem cells, 
the role of mitochondria in stem cell aging remains unclear. Mitochondrial 
DNA mutations alter HSC function but do not appear to mediate the HSC 
aging [138]. Additional work on mitochondrial metabolism in stem cells should 
illuminate regulation of stem cell function by mitochondria and its relationship 
to stem cell aging and malignant transformation.

The NAD that serves as a redox regulator has been implicated in the organ­
ismal aging process. NAD could also potentially be involved in stem cell aging 
[167–169]. The NAD–NADH ratio is a measure of cellular redox status and 
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implicated in the maintenance of the glycolytic flux. NAD activates several 
enzymes including silent information regulator 2 (Sir2) that is a deacetylase 
for histones and other proteins [170]. Sir2 is a key regulator of life span in 
several organisms. SIRT1 of the SIRT family is the closest homolog of yeast 
Sir2 in mammals and has critical functions in the regulation of metabolism, 
genome stability, DNA repair, chromatin remodeling, and stress response 
[170, 171]. Specifically, SIRT1 is key in controlling mitochondrial homeosta­
sis by regulating the expression of oxidative phosphorylation enzymes and 
PGC1 that is critical for mitochondrial gene expression [168]. SIRTs are also 
implicated in blood‐forming stem cells and their aging [122, 123, 129]. One of 
SIRT1 protein substrates is FOXO3 [172, 173]. Particularly, loss of SIRT1 
leads to a phenotype associated with hallmarks of stem cell aging, some of 
which are mediated by relative loss of FOXO3 activity in Sirt1 mutant HSC 
[122]. SIRT1 has many additional substrates including p53 and HIF1 that are 
critical for stem cell function; thus SIRT1 may regulate stem cells through a 
panel of key stem cell proteins [174]. Another SIRT family member (of 7 SIRTs 
in mammals), SIRT3, protects old HSC from stress‐induced damage [129]. 
Finally, SIRT7 is required for mitochondrial protein folding stress response 
and HSC regenerative capacity [130]. These studies identify SIRTs as major 
regulators of HSC and ROS and/or mitochondria in HSC [122, 129, 130] and 
collectively raise the  possibility that SIRT regulation of ROS and/or mito­
chondria might be implicated in HSC aging and NAD modulations might 
influence this process.

1.8  Concluding Remarks

Redox modulations in stem cells may provide a means to coordinate stem 
cell  fate with metabolism and mitochondria. A greater understanding of 
mechanisms that control redox state in stem cells, their relation to stem cell 
mitochondrial metabolism, and fundamental stem cell processes might lead 
to novel approaches and potential compounds for therapeutic interventions 
in aging and diseases of stem cells. Development of improved probes and 
tools for detection and measurements of ROS species and metabolites in 
highly limited numbers of adult stem cells will provide a major step in that 
direction.
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2.1  Introduction

Posttranslational modifications (PTMs) play a major role in cell signaling; one 
of the better known cases being kinase and phosphatase‐mediated phospho­
rylation of proteins. Redox signaling involves numerous PTMs as well, but in 
this instance modifications are initiated by oxidation and reduction of methionyl 
and cysteinyl residues (Figure  2.1) at the surface of specific proteins [1, 2], 
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