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This book explores recent advances in mass spectrome-
try and related technology, and the innovative approaches 
used in measuring and characterizing peptides and pro-
teins as part of bringing new medicines to patients in 
need. Qin and Mike have brought together a wide range 
of leading scientists to provide a clear picture of the vari-
ety and depth of technology and techniques.

As you will see in each chapter, fundamental LC–MS 
knowledge has been used in each innovative advance. 
Sample preparation techniques for peptides and proteins 
rely on the core of historic approaches used for small 
molecule drug analyses but have been expanded to 
address a host of requirements related to protein struc-
ture, including reduction and alkylations, acid dissocia-
tion, protein digestion, and the specificity possible with 
immunocapture. Liquid chromatography techniques 
from regular to ultrahigh‐performance approaches and 

downward to micro‐ and nanoflow are covered, as well 
as utilization of 2‐D chromatography. Triple quadrupole 
and high‐resolution mass spectrometers, with their 
recent advances in sensitivity and selectivity, are promi-
nent in the discussions as their advances are central to 
making possible many advances in peptide and protein 
analyses.

I hope that the readers find this book to be an engaging 
learning experience; one that provides insights and 
causes a cascade to the discovery of further advances in 
peptide and protein analysis by liquid chromatography 
mass spectrometry.

Mark E. Arnold
Bioanalytical Solution Integration LLC

mark.arnoldcs@gmail.com
www.linkedin.com/in/markearnoldphd

Foreword
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We had a discussion on LCMS analysis of proteins for 
drug development dating back to the early 2000s. At that 
time, Qin’s group at Abbott Laboratories had just pub-
lished a manuscript in analytical chemistry for an LCMS 
bioanalytical method for a small protein (MW > 10 kDa). 
Through the years, multiple discussions on the topic 
continued at various conferences, including conversa-
tions held at several Annual Land O’Lakes Bioanalytical 
Conferences where Mike was invited to give lectures. 
Although mass spectrometry protein analysis has been a 
popular topic in proteomic research for several decades, 
it was only in the late 2000s it started to receive increas-
ing attention of scientists in drug development. In this 
book, we present 16 chapters from industry leaders who 
have first‐hand experience in developing new mass spec-
trometry technologies, knowing the issues and needs of 
the analysis in drug discovery and development, forming 
assay strategies, and interpreting assay results with their 
respective project teams.

The authors of Chapters 1–4 have experience and 
expertise with mass spectrometry instrumentation as 
well as with analytical research and development. 
Johannes and James from Waters discussed extensively 
the history and theory of ion mobility mass spectrometry 
and its application in protein analysis. As they pointed 
out, “The next few years should see significant improve-
ments in both the technology, and the informatics and 
workflows to use the information generated from ion 
mobility mass spectrometry for both qualitative and 
quantitative analyses.” In Chapters 2 and 3, Jessica, Zhiqi, 
and their colleagues discuss the characteristics and capa-
bilities of high‐resolution mass spectrometry, especially, 
the Thermo Orbitrap mass spectrometry and its 
 application in protein therapeutics bioanalysis and the 
characterization of posttranslational modifications in 
therapeutic proteins. In Chapter  4, Suma and her col-
leagues from SCIEX discuss the workflow of quantitative 
analysis of proteins using mass spectrometry, especially 
the triple quadrupole time‐of‐flight mass spectrometry 
system. Although the benefit of using low flow liquid 
chromatography mass spectrometry has been well under-

stood theoretically and widely used in the  proteomic 
research area, the application of this technology in quan-
titative analysis of proteins in biological matrix is still not 
widely accepted. In Chapter 5, Shane and Gary describe 
the success and routine usage of New Objective’s inte-
grated nanoflow LC column and nanoelectrospray emit-
ter system for the bioanalysis of proteins in biological 
matrices with excellent assay ruggedness and high assay 
throughputs. Jiang at Shire is one of the industry leaders 
in drug discovery mass spectrometry. Jiang comments 
that understanding relative expression and structure–
function relationship of the splice isoforms are essential 
for the discovery and development of more specific ther-
apeutics and biomarkers. In Chapter  6, Jiang describes 
the advanced mass spectrometry characterization of gene 
splice variants in conjunction with high‐throughput tran-
scriptomics as an example of protein mass spectrometry 
analysis in proteomic research for supporting drug dis-
covery. Bradley and Michael from Lilly are among the 
pioneers in mass spectrometry biomarker analysis. In 
Chapter  7, they provide a comprehensive review of the 
immunoaffinity mass spectrometry technology and its 
application in protein biomarkers and biotherapeutics 
characterization. Immunogenicity refers to immune 
responses of humans or animals to antigens, such as bio-
therapeutics. The technologies, methodology, and regu-
latory requirements for the immunogenicity test evolved 
rapidly in recent years. In Chapter 8, Jianing and her cow-
orkers at BMS describe recent advances in using immu-
nocapture LCMS for immunogenicity assessment from 
“semiquantitative analysis of antidrug antibody” to 
“assisting the method development of cell‐based neutral-
izing antibody assays.” Keqi is well known in the mass 
spectrometry field for his design of mass spectrometry 
ionization sources and ion optics for high ion transfer 
efficiency. In Chapter  9, Xuejiang Guo and Keqi from 
PNNL discuss recent advances in methodology and mass 
spectrometry instrumentation for the sensitive and high‐
throughput mass spectrometry biomarker analysis. In 
Chapter 10, Tong‐Yuan and his coworkers at JNJ describe 
the mass spectrometry ligand binding assay reagent 
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 characterization, which is one of the fast growing areas in 
the bioanalytical scientific field and has shown significant 
impacts on improving ligand binding bioanalytical assays. 
In Chapter 11, Stanley and his coworkers at JNJ describe 
the recent advances in using high‐resolution mass spec-
trometry in improving selectivity for the mass spectrom-
etry bioanalysis of proteins in biological matrices. In 
Chapter 12, Hongyan and his coworkers at Amgen dis-
cuss the advantages and their assay development strategy 
of LCMS quantitative analysis of therapeutic monoclonal 
antibodies (mAbs) in biological matrices in supporting 
preclinical studies. In Chapter  13, Michael at PPD dis-
cusses generic peptide strategies (he is one of the pio-
neers who developed this approach) for LC–MS 
bioanalysis of human monoclonal antibody drugs and 
drug candidates. The advantages of this strategy include 
significant cost saving and accelerated progress for drug 
discovery and early drug development. In Chapter 14, Y‐J 
and his coworkers at Celgene describe comprehensively 
the strategy and methodology of mass spectrometry 
 support of antidrug conjugate (ADC) drug development, 
one of the most active areas recently in drug develop-
ment. In Chapter  15, Long and Qin at BMS provide a 

 survey of the sample preparation strategies for LCMS 
protein bioanalysis, which range from traditional organic 
solvent protein precipitation, solid‐phase extraction to 
more advanced chemical derivatization, and immuno-
capture sample preparation. In Chapter 16, Wei and his 
coworkers at BMS describe the mass spectrometry char-
acterizations of protein therapeutics in drug manufactur-
ing process to ensure the quality and integrity of dug 
product ingredients.

We would like to take this opportunity to thank all the 
authors for their diligent work in describing the advances 
in the protein mass spectrometry analysis in supporting 
from early‐stage basic researches to delivering the safe, 
efficacious drug to patient bedside. We also would like to 
thank Wiley for the opportunity to bring this book to our 
readers, which will further stimulate the advances of 
mass spectrometry technology and methodology to ben-
efit patients’ lives.

Mike S. Lee and Qin C. Ji
December 2016

Princeton, NJ
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1.1  Introduction

The use of ion mobility as an analytical technique to detect 
and separate biomolecules dates back to the break of the 
century with the application of the method for proteomics 
(Valentine et al. 2006; McLean et al. 2005; Gabryelski and 
Froese 2003), glycomics (Taraszka et  al. 2001; Jin et  al. 
2005; Hoaglund et al. 1997), and metabolomics (Dwivedi 
et al. 2008). It is a technique that separates gas-phase ions 
based upon their mobility in a buffer gas. This separation 
is related to ion size, shape, as well as m/z, and charge. The 
basis for separation by traditional drift tube ion mobility 
at a low electric limit can be derived from the Mason–
Schamp equation:
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where K = drift velocity vd/electric field strength E, μ = 
reduced mass of the ion (neutral given by  
(mneutralmion)/(mneutral + mion), kB = Boltzmann constant, 
T = temperature, z = charge state of the analyte ion, e = 
charge on an electron, N = number density of the drift 
gas, and Ω = average collision cross section. The hyphen-
ation of ion mobility spectrometry (IMS) with MS is 
often referred to as ion mobility–mass spectrometry 
(IM–MS). The most common mass analyzer coupled 
with IMS comprises a time-of-flight (TOF) instrument 
due to the inherent high sampling rate, although other 
mass detection systems have been described (Kanu et al. 
2008). Four different methods of ion mobility separation 
are currently used in combination with MS, including 
drift-time ion mobility spectrometry (DTIMS), aspira-
tion ion mobility spectrometry (AIMS), differential 
mobility spectrometry (DMS), also called field-asym-
metric waveform ion mobility spectrometry (FAIMS), 
and traveling-wave ion mobility spectrometry (TWIMS). 
A description of these methods is beyond the scope of 

this chapter, particularly since they have been reviewed 
in great detail elsewhere (Kanu et  al. 2008; Lanucara 
et al. 2014).

The innovative demonstration of protein conformer 
separation by means of IMS by Clemmer et al. 1995 has 
prompted instrumental IM–MS designs and the broader 
application of IMS as an analytical tool. The designs by 
Pringle et al. 2007 and Baker et al. 2007, both orthogonal 
acceleration time-of-flight (oa-TOF) based IM–MS plat-
form, but utilizing different IMS geometries, have been 
commercialized and applied for numerous applications 
and include drug metabolism/metabolites (Dear et  al. 
2010), lipids (Kliman et al. 2011), trace impurities (Eckers 
et  al. 2007), carbohydrates (Vakhrushev et  al. 2008, 
Schenauer et al. 2009), macromolecular protein species 
and viruses (Ruotolo et al. 2005, Bereszczak et al. 2014), 
metal-based anticancer drugs (Williams et al. 2009), and 
PEGylated conjugates (Bagal et al. 2008). In this chapter, 
the application of IMS for the identification, quantifica-
tion, and characterization of proteins is illustrated by 
application examples that demonstrate the benefits of 
integrating IMS into the analytical schema in terms of 
increased resolution and sensitivity, as well as those 
obtained from collision cross section measurements.

1.2  Traveling-Wave Ion Mobility 
Mass Spectrometry

The principle of TWIMS is briefly discussed as it forms 
the basis of subsequent sections. A schematic of the 
device is shown in Figure 1.1. Details can be found in 
the papers of Pringle et al. 2007 and Giles et al. 2004. Ions 
are formed by electrospray ionization (ESI) in the source 
and subsequently pass through a quadrupole for mass 
selection before injection into the ion mobility cell. Unlike 
our other instruments, which use a uniform electric field 
across the cell for ion mobility experiments, so-called 
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drift tube IMS, this device uses traveling-wave (T-wave) 
technology. The T-wave cell consists of a stacked-ring 
radio frequency (RF) ion guide, which incorporates a 
repeating sequence of transient voltages applied to the 
ring electrodes. These voltage pulses result in a traveling 
electric field that propels ions through the background 
gas present in the mobility cell. The total time taken for 
an ion to drift through the cell depends on its mobility, as 
well as the wave period and height, and the gas pressure. 
Ions with high mobility are better able to keep up with 
traveling waves and are pushed more quickly through the 
cell. Ions with low mobility crest over the waves more 
often and have to wait for subsequent waves to push them 
forward, resulting in longer drift times. To measure an 
arrival time distribution (ATD), ions are gated into the 
mobility cell using an up-front stacked-ring RF device 
that traps ions before releasing them into the IMS cell. 
The oa-TOF pulses in an asynchronous manner, sending 
ions that have exited the mobility cell into the TOF mass 
analyzer and finally to the detector. The sum of all 
detected ions is the ion mobility chromatogram, or 
mobilogram. Selecting a peak in the ion mobility chroma-
togram displays the underlying TOF mass spectrum. 
Resolution enhancements to the device are recently 
described (Giles et al. 2011).

1.3  IM–MS and LC–IM–MS Analysis 
of Simple and Complex Mixtures

1.3.1 Cross Section and Structure

By measuring the mobility of an ion, information about 
the rotationally averaged collision cross section, which 
is given by shape and size, can be determined. The rela-
tionship between the mobility of an ion and its collision 
cross section has been derived in detail using kinetic 
theory (Mason and McDaniel 1988). When all experi-
mental IM parameter values are held constant, a 

 dependence of the ion mobility constant results only 
from the average cross section with K ~ 1/Ω (Bowers 
et al.; Henderson et al. 1999; Verbeck et al. 2002), where 
K = drift velocity vd/electric field strength E and 
Ω = average collision cross section. A detailed descrip-
tion of kinetic theory is beyond the scope of this discus-
sion. Ruotolo et al. 2005 were among the first describing 
the use of IM–MS to decipherer protein complex struc-
ture. The analysis of the Trp RNA-binding attenuation 
protein (TRAP) provided compelling evidence that 
many features of protein assemblies, including quater-
nary structure, can be preserved in the absence of sol-
vent molecules. The researchers made use of TWIMS 
coupled to a modified TOF mass spectrometer to meas-
ure the CCS of four charge states of an 11-mer complex, 
demonstrating that the lowest charge state exhibited the 
largest CCS, with a value in close agreement to that esti-
mated for a ring structure determined by X-ray crystal-
lography. To investigate the sensitivity of the various 
conformers to changes in internal energy, they exam-
ined collision cross sections of the apo TRAP complex 
as a function of activation energy by manipulating their 
acceleration in the atmospheric pressure interface of the 
instrument, shown in Figure 1.2. The experiment illus-
trated that when an internal energy is imparted to 22+ 
ions, an expansion of the collapsed state occurred, while 
for 19+ ions they could partially drive the structural 
transitions observed for the ring structure as a function 
of protein charge state. IM–MS has proved to be 
extremely useful for the structural analysis of proteins 
and protein assemblies as illustrated in a number of 
recent reviews (Lanucara et al. 2014; Zhong et al. 2012; 
Uetrecht et al. 2010; Snijder and Heck 2014).

Collision cross section measurements and structure 
IM–MS experiments are not restricted to the analysis of 
large molecules but have been applied to other molecule 
classes and applications as well. For example, Valentine 
et al. 1999 used IMS to measure collision cross sections 
for 660 peptide ions generated by tryptic digestion pro-
teins. Measured cross sections were compiled into a data-
base that contains peptide molecular weight and sequence 
information and can be used to generate average intrinsic 
contributions to cross section for different amino acid 
residues. This was achieved by relating unknown contri-
butions of individual residues to the sequences and cross 
sections of database peptides. Size parameters were 
combined with information about amino acid composi-
tion to calculate cross sections for database peptides. 
Figures 1.3(a) and (b) summarize the work showing cross 
sections as a function of molecular weight for the singly 
and doubly charged database peptides, respectively 
(Valentine et al. 1999). A strong correlation of increasing 
cross section with increasing molecular weight was 
observed, suggesting that  (predicted) cross section can be 

Helium cell

Trap Transfer

Ion mobility
separation

Figure 1.1 Triwave ion mobility optics detail comprising a trap, 
helium cell, ion mobility separator and transfer. (Source: Williams 
et al. 2012. Reproduced with permission of GIT.)



1 Contemporary Protein Analysis by Ion Mobility Mass Spectrometry 3

used as an additional search parameter for peptide iden-
tification. A follow-up study proposed that the method 
that employs intrinsic amino acid size parameters to 
obtain ion mobility predictions can be used to rank 

candidate peptide ion assignments. Intrinsic amino acid 
size parameters were determined for doubly charged 
peptide ions from the complete annotated yeast pro-
teome. The use of the predictive enhancement as a means 
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Figure 1.2 Ion mobility data for selected charge states of apo-TRAP (19+, 21+, and 22+) as a function of activation energy (175, 125, 
and 50 V) applied in the high-pressure, sampling cone region of the instrument. The light gray and dark gray dashed lines represent the 
collision cross sections for collapsed and ring structures. (Source: Ruotolo et al. 2005. Reproduced with permission of The American 
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to aid peptide ion identification was discussed and a 
simple peptide ion scoring scheme presented.

1.3.2 Separation

The work of Clemmer and coworkers (Liu et  al. 2007; 
Valentine et al. 2001, 2006) demonstrates the use of IMS 
for the separation and profiling of plasma proteins. The 
integration of IMS into an LC–MS schema is described to 
increase the separation power of a platform. The setup 
comprised off-line strong cation exchange (SCX) and in-
line LC–IM–MS separation of trypsin digested plasma 
proteins. The SCX–LC–IM–MS setup is described in 
great detail as well as how the additional IMS separation 
dimension increased the available experimental peak 
capacity. The experimental two-dimensional LC–IM peak 
capacity was estimated to be ~6000–9000 obtained from a 
partial tr(td) base-peak plot derived from a single LC–IM–
MS analysis, which greatly exceeds that of a single LC or 
IMS experiment. Also discussed is the use and creation of 
a relational table or database that comprises physico-
chemical analyte information such as SCX retention time 
tr,SCX, reversed-phase (RP) retention time tr,RP, drift time 
td, and m/z. This information can be stored in a multidi-
mensional space as shown in Figure 1.4. Knowledge of the 
positions of peaks will further corroborate assignments of 
other data sets. In addition, the accumulation of data pro-
vides valuable information for future work that would aim 
to predict SCX retention times, LC retention times, and 
mobilities based on sequences and charge states. The 
 contribution of IM for the identification peptides as an 
additional search and identification parameter has been 
discussed in detail (Valentine et  al. 1999, 2011). These 
concepts have been applied by Thalassinos et  al. 2012 
for  the identification and quantitation of peptides and 

proteins across two similar mammalian species and Paglia 
et  al. 2014 for the identification of the key metabolites 
potentially involved in cancer. The increase in system peak 
capacity, experimentally derived, for a multidimensional 
LC IM–MS system has been described and demonstrated 
by Rodríguez-Suárez et al. 2013.

Ion mobility-assisted data-independent analysis (DIA) 
LC–MS (Geromanos et al. 2009; Distler et al. 2014a) can 
be seen as an extension to the work of Clemmer and co-
workers. Here, however, IMS is additionally used to align 
precursor and product ions to increase the specificity of a 
DIA workflow using TWIMS. In other words, it not only 
increases system peak capacity but also enhances the 
selectivity of DIA. In this experiment, to maximize 
duty  cycle, peptide precursor ions are not isolated by 
the quadrupole mass analyzer positioned in front of the 
TWIMS cell. The ions undergo separation first in 
the mobility section and are either not fragmented or col-
lision induced dissociated (CID) in the transfer region. 
This process is repeated at a fixed frequency, thereby gen-
erating so-called low and elevated energy precursor and 
product ion spectra, respectively. Thus, precursor and 
product ions share identical td, which can be used to 
entangle the multiplexed product ion spectra. Briefly, pre-
cursor and product ion mass extracted chromatograms 
are created in the tr and td domains. Precursor and prod-
uct ion that share the same drift and retention time are 
correlated, which simplifies the multiplexed CID spectra 
prior to a database search for identification of peptides 
and proteins. As an example, Yang et  al. 2014 applied 
label-free LC–IM–DIA–MS to demonstrate that RSL3 
binds to and inhibits GPX4, which regulates ferroptotic 
cancer cell death. Figure 1.5 contains a 3D representation 
of the isotopic clusters of peptide ILAFPCNQFGK from 
GPX4 analyzed by LC–DIA–IM–MS. Detection and 
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Figure 1.4 3D dot plot representation of the positions 
of peaks (in the retention time, drift time, and m/z 
dimensions) that are obtained from the 1 × 105 most 
intense features (light gray) observed during the 
triplicate LC–IMS–MS analyses of all SCX fractions 
associated with Sample 1. Superimposed on the plot 
are the positions for >10,000 features that have been 
assigned to peptides (dark gray). The arrows indicate 
some of the precursor ion positions of peptides 
identified for the four proteins labeled. This 
representation is intended to provide the reader with 
the impression that the possible existence of 
abundant protein in plasma could be tested at many 
positions in the map and therefore upon comparison 
there should be little ambiguity regarding its 
detection, whereas a low-abundance protein may be 
represented at only a single position, leading to 
uncertainty about its detection. (Source: Liu et al. 2007. 
Reproduced with permission of Springer.).
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identification was conducted by dedicated software. The 
results shown in Figure 1.5 illustrate the presence of GPX4 
with RSL3 active probe treatment and its absence when 
the probe was inactive or a competitor was present. It was 
derived and concluded that RSL3 to inhibit GPX4, a pro-
tein essential for cancer cell viability. Numerous applica-
tions describe the use of LC–DIA–IM–MS for the 
label-free quantification, as described in a recent review 
describing DIA and its application (Distler et al. 2014b).

1.3.3 Sensitivity

A more recent application of IM–MS is described by 
Helm et  al. 2014 who used the technique to increase 
MS/MS sensitivity in untargeted data-dependent analysis 
(DDA) and targeted parallel reaction monitoring (PRM) 
such as proteomic LC–MS experiments on a commercial 
hybrid quadrupole –  ion mobility –  time-of-flight mass 
spectrometer. This technique, as will be demonstrated, 
enhances the duty cycle of the oa-TOF analyzer and thus 
sensitivity. Briefly, as shown previously, TWIMS separa-
tion is strongly dependent upon ion charge z. Moreover, 
ions are nested for a given charge state by mass and drift 
time. This charge state separation and nesting can be used 
to discriminate against single charge background and to 
exclusively select multiply charged peptides for tandem 
MS. Subsequently, precursor ions are sequentially selected 
by the quadrupole mass analyzer and fragmented by CID 
in the first stacked-ring ion guide of the triwave device 
and prior to reaching the ion mobility cell. Product ions 
are trapped within this first travelling wave region of the 
triwave device and gated into the high-pressure ion mobil-
ity cell where they are separated according to their gas-
phase mobility within the cell. As a result, as illustrated in 
Figure 1.6, fragment ions of the same mobility exit the cell 
as a series of compact packets. Hence, by synchronizing 

the pusher pulse that accelerates the fragment ions into 
the oa-TOF mass analyzer with the arrival of product ions 
from the TWIMS cell into the pusher region, fragment 
ions are sequentially injected into the TOF analyzer with 
greatly enhanced duty cycle (~100%) across the mass 
scale. This synchronization leads to a concomitant 
increase in sensitivity, which is reflected by the results 
shown in Figure 1.7, where the percent identified DDA 
spectra versus amount protein digest on column is con-
trasted. On average, a 10-fold increase in peptide MS/MS 
sensitivity can be observed (Helm et al. 2014). Since the 
ion mobility time frame is in the order of milliseconds, it 
nests well between the second time frame of liquid chro-
matography and that of the oa-TOF mass spectrometer 
that operates in the microsecond time frame.

An example of an IM-enabled targeted high-resolution 
multiple reaction monitoring (HR-MRM) experiment is 
shown in Figure 1.8. In HR-MRM, the last quadrupole of a 
tandem quadrupole instrument is substituted with a high-
resolution mass analyzer to allow parallel detection of all 
product ions in a single, high-resolution, accurate mass 
experiment. Here, unlike the previously described experi-
ment, peptide precursor masses, including internal stand-
ards, are predefined, along with their retention time and CID 
collision energy profile. The principle of product ion enrich-
ment to increase duty cycle and MS/MS sensitivity is identi-
cal. In this particular example, a number of putative 
cardiovascular disease plasma proteins were quantified 
(Domanski et  al. 2012). As an example, shown in the top 
pane of Figure 1.8, are the summed product ion extracted 
mass chromatograms of ATEHLSTLSEK from 
Apolipoprotein A-1 and its labeled internal standard analog, 
as well as product ion spectra of both peptides. The calibra-
tion curve of heavy labeled ATEHLSTLSE[K] is shown in the 
bottom pane of Figure 1.8 from which an Apolipoprotein A-I 
serum concentration of 1.403 mg/mL can be calculated.  
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Figure 1.5 Confirmation of GPX4 binding to an active affinity probe. (a) Cell lysates prepared from cells treated with active probe (A), 
inactive probe (I), or active probe in the presence of competitor (A + C) that were affinity purified by α-fluorescein antibodies and probed 
for GPX4 by western blot using GPX4-specific antibody. (b) 3D visualization of isotopic clusters of peptide ILAFPCNQFGK from GPX4 as 
analyzed by LC–DIA–IM–MS. (Source: Yang et al. 2014. Reproduced with permission of Elsevier.)
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Figure 1.7 Increased MS/MS sensitivity expressed as number of 
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Figure 1.6 Principle IM-enabled DDA with asynchronous pusher operation (a) and synchronization of a pusher pulse with product ion 
drift time (b).


