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Introduction

High-precision mass spectrometric analyses are gaining popularity in many
scientific disciplines, including metabolic kinetic studies in nutrition and pedi-
atrics. Innovations in mass spectrometry and tracer administration techniques
have made mass spectrometers the instruments of choice for the analysis of
isotopic compounds. Techniques for measurements of deuterium and 18O, as
well as for 13C isotopic analysis, have progressed. In particular, the coupling of
liquid chromatography with isotope ratio mass spectrometry (LC-IRMS) has
introduced new, highly sensitive analysis opportunities and opened new avenues
for nutritional and pediatric research. An increasing number of researchers
that use LC–IRMS in metabolic research have indicated the robustness of this
technique; however, LC-IRMS is suitable for only 13C-isotopic measurements
due to the lack of an existing LC interface for the introduction of other elements
into the IRMS. A major challenge for the future, therefore, is the development of
a technique that will enable the measurement of all common elements.

Although novel techniques have been developed and existing techniques have
been improved, there are still new experimental disciplines left to uncover. The
coupling of LC to IRMS was a major step toward further unraveling metabolic
kinetics; this innovation was made feasible by the direct measurement of carbon
isotopes in a wide range of low-molecular-weight compounds and macro-
molecules, ranging from naturally abundant to highly enriched samples. Strength
of LC–IRMS lies in the straightforward analysis of underivatized components;
its main drawbacks are the relatively low sensitivity (nanogram range) and its
restriction to only 13C-isotopic samples. The low sensitivity can be a problem
when measuring components in low concentrations, such as vitamins and
hormones, or when samples are small, for example, in preterm infants or small
rodents. Improvements in the sensitivity and robustness of LC–MS/MS systems
have opened up new possibilities for studying macromolecules, such as peptides,
hormones, vitamins, and small proteins, but a wide range of applications must
still be developed in several disciplines using this technique.

Also, recently developed techniques, such as infrared spectroscopy for the
measurement of isotopically labeled compounds, are gaining popularity in many
biomedical applications. The most important advantages of these new tech-
niques, relative to IRMS, are their low costs and simplicity. Novel developments
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for these instruments are based on the wavelength-scanned cavity ring down
spectroscopy (WS-CRDS analyzer). These instruments are as precise as IRMS
but use less sample (e.g., when measuring 13C values in CO2). This technique
requires little or no sample preparation, the analysis time is short (a few minutes),
and minimal skill is needed to operate the machines; however, these instruments
still need to be thoroughly tested in biomedical research applications.

Even with the advances made thus far, there are still many topics in metabolic
kinetic studies that have yet to be elucidated. However, the growing availabil-
ity and decreasing costs of stable isotopes will make it increasingly possible to
broadly explore human metabolic kinetics worldwide.

The aim of this book is to present the relevance of mass spectrometry and sta-
ble isotope methodology in nutritional and pediatric research. Applications for
the use of stable isotopes with mass spectrometry cover carbohydrate, fat, pro-
tein, and specific amino acid metabolism, energy expenditure, and the synthesis
of specific peptides and proteins.

The main focus of these studies is on the interactions between nutrients,
endogenous metabolism within the body, and how these factors affect the health
of a growing infant. Considering that the early imprinting of metabolic processes
has huge effects on metabolism (and thus functional outcome) later in life,
research in this area is important and is advancing rapidly.

The book should be a guideline for scientists, analytical chemists, biochemists,
clinical chemists, and pediatricians, as well as for medical graduate students and
lecturers involved in metabolic studies in life sciences.

This book shows the availability of modern analytical techniques and how to
apply these techniques in practice and covers the entire range of available mass
spectrometric techniques used for metabolic studies.

The chapters show applications of study models as well as provide detailed infor-
mation about tracer administration, sampling, the selected analytical techniques,
and calculations.
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𝛿, ‰ delta per mil
13C carbon-13
14C carbon-14
18O oxygen-18
AA amino acids
AAP American Academy of Pediatrics
ADMA asymmetric dimethylarginine
ADP air displacement plethysmography
AgNO3 silver nitrate
AGT alanine:glyoxylate aminotransferase
AI adequate intake
AMS accelerator mass spectrometry
APCI atmospheric pressure chemical ionization
APE atom percent excess
APPI atmospheric pressure photoionization
ASL argininosuccinate lyase
ASR absolute synthesis rate
ASS argininosuccinate synthase
AUCs area under the curves
AV arteriovenous
BCAA branched chain amino acids
BMI body mass index
Br bromine
BSIA bulk stable isotope analysis
BUN blood urea nitrogen
BW birth weight
CE cholesterol esters
CF cystic fibrosis
CFA coefficient of fat absorption
CKD chronic kidney disease
Cl chlorine
CO2 carbon dioxide
CP cerebral palsy
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DHA docosahexaenoic acid
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EAR estimated average requirement
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ECW extracellular water
EGP endogenous glucose production
EI electron ionization
EL endothelial lipase
EOP endogenous oxalate production
ESI electrospray ionization
ESPGHAN European Society for Pediatric Gastroenterology, Hepatology

and Nutrition
ESRD end-stage renal disease
eV electron volt
FDA Food and Drug Administration
FFA free fatty acids
FFM free fat mass
FIA flow injection analysis
FIA-IRMS flow injection analysis-isotope ratio mass spectrometry
FID flame ionization detector
FPLC fast protein liquid chromatography
FQ food quotient
FSR fractional synthesis rate
FT-ICR-MS Fourier transform-ion cyclotron resonance-mass

spectrometry
FTIR Fourier transform infrared spectrometry
FWHM full width at half maximum
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GALT galactose-1-phophate uridyltransferase
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1.1 Introduction

Interest in the use of light-stable isotopes (i.e., Carbon-13 or 13C; Nitrogen-15
or 15N; deuterium or 2H; Oxygen-18 or 18O) has become widespread over the
past 20 years in archeology [1], climatology [2], biochemistry [3], geochemistry
[4], forensics [5, 6], and food adulteration [7, 8]. These various scientific domains
share a striking commonality, which is the use of similar analytical approaches
to look at the level of light-stable isotopes in various chemical components and
matrices, either at natural abundance or after tracer incorporation. Among these
domains, particularly in nutritional and pediatric studies, the combination of
modern mass spectrometry (MS) and light-stable isotopes has been very effective
for studying the effect of diet and disease on protein, carbohydrate, lipid, and
energy metabolism. In vivo assessment of specific pathways using stable isotopes
is unique and offers powerful insights about metabolic pathways and changes in
metabolic fluxes in clinical studies.

In practice, once the nutritional hypothesis is defined, the clinical investigator
needs to find an adequate model that can compensate for the metabolic complex-
ity of the in vivo processes. It becomes obvious that the isotopic data generated
has to be combined with physiological inputs, which results in information
that characterizes metabolic changes and individual needs (i.e., from pregnancy
[9] to elderly women [10]). As with studies in adults or in pregnant women, in
pediatric studies, light-stable isotopes are used to study various metabolisms
(i.e., carbohydrate, protein, lipids, and energy) [11, 12]. However, pediatric
studies are limited by several parameters, such as (1) ethical and technical
constraints around collecting biological fluids (i.e., breath, plasma, saliva, urine,
and feces) especially in neonates and infants; (2) the low amount of biomaterial

Mass Spectrometry and Stable Isotopes in Nutritional and Pediatric Research, First Edition. Edited by Henk Schierbeek.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.



�

� �

�

2 1 Mass Spectrometry Techniques for In Vivo Stable Isotope Approaches

collected; (3) the invasiveness of the methods (the study protocol must be
non- or semi-invasive, limiting kinetic studies and accessibility to tissues); and
(4) difficulty recruiting and convincing parents to enroll their infants, limiting
the number of subjects per study and increasing the pressure on the analytical
precision of the method used. Consequently, the biological samples are precious
and the choice of analytical technique/method is crucial. Both must be integrated
in the clinical workflow from the beginning, to design fit-for-purpose analytical
stable isotope approaches to deliver the clinical outcome with the expected
precision to detect an effect.

The information obtained with stable isotopes in metabolic studies provides
meaningful insights compared to a simple concentration measurement in
blood. Briefly, stable isotope tracers allow the calculation of metabolic fluxes
between organs and give a dynamic view on metabolism rather than a static
one as measured by analyte concentrations [13]. For example, these tracers
enable quantification of the sum of a dynamic process of several physiologic
mechanisms such as carbohydrate absorption and digestion, hepatic glucose
production by the liver, peripheral tissue uptake (i.e., muscle, gut, and brain), and
other biochemical pathways such as the glycolysis/oxidation. To glean deeper
scientific insights and decipher small effects of nutrients or to characterize
phenotypes (i.e., lean, obese with or without type 2 diabetes [14]), stable isotopes
offer a unique tool for better understanding glucose homeostasis compared to
glycemic response [15, 16].

MS is the most versatile and comprehensive analytical technique that can be
used to tackle multiple scientific questions in several fields, including physics,
pharmaceutical sciences, medicine, environmental sciences, and nutrition (to
mention a few). Modern MS is a common tool that is used in many laboratories,
but the number of teams able to examine the incorporation and dilution of
light-stable isotopes for pediatric and nutritional studies is limited. With the
increased recognition of the unique metabolic information gathered from the use
of light-stable isotope tracer methods in metabolic studies, MS instruments have
become the field’s workhorse. In parallel to MS, other techniques, such as nuclear
magnetic resonance (NMR) [17], magnetic resonance spectroscopy [18], Fourier
transform infrared red spectroscopy [19], or cavity ring-down spectroscopy [20]
are also used to measure light-stable isotopes in various in vivo applications, but
these techniques are less common. Typically, these instruments do not achieve
the sensitivity and precision that can be obtained with MS instruments.

We focus here on modern MS approaches that enable us to examine light-stable
isotope levels in organic molecules, in particular isotope ratio mass spectrome-
try (IRMS) and modern (organic) MS. The diversity of peripherals such as gas
chromatography (GC), liquid chromatography (LC), or elemental analyzer (EA)
hyphenated to MS instruments illustrates the variety of molecules to analyze. The
molecules of interest in nutritional and pediatric studies are mostly amino acids,
simple carbohydrates, lipids (such as cholesterol, fatty acids, and triglycerides),
urea, ammonia, water, organic acids, glycerol, breath CO2, and macromolecules
such as proteins and DNA.
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The goal of this chapter is to provide a general overview and summary of the
capabilities of various MS techniques in combination with light-stable isotopes
for in vivo assessment of metabolic fluxes. It is neither a historical overview nor is
it a detailed instrumental and methodological summary of all the isotopic tech-
niques used for nutritional and pediatric studies.

1.2 Nomenclature for Light-Stable Isotope Changes

1.2.1 Natural Abundance

Many chemical elements have more than one isotope. Molecules and ions with
different isotopes of the same chemical element possess slightly different physi-
cal and chemical properties. Light-stable isotopes occur naturally at abundances
of approximately 1.11% for 13C, 0.37% for 15N, 0.20% for 18O, and 0.015% for 2H.
However, isotope ratios are not constant on earth and can vary depending on
the location on earth. There are some exchanges between the ocean, biosphere,
and lithosphere due to kinetic and equilibrium isotope effects, leading to subtle
but significant variations in nature [2]. Isotopic fractionation between light and
heavy isotopes occurs when chemical reactions are not completed or when mul-
tiple products are formed, and those isotopes are unevenly distributed among the
reactants and products. Isotopic fractionations can be quantitatively predicted
only when the mass balances, kinetics, and equilibrium isotope effects associated
with all the relevant reactions are well described [21]. For isotopic analysis, iso-
topic fractionation is a critical parameter to look at during chemical reactions.
Rieley discussed this effect and showed that mass balance equations can be used
to obtain the true isotopic abundance [22].

In plants, during photosynthesis, metabolized products become relatively
depleted in 13C compared to environmental CO2. A variation of the 13C/12C
ratio in different plant species is observed. On the one hand, there are plants
(i.e., cereal grains, rice, sugar beets, and beans) that only use the three-carbon
pathway (C3-plants) for carbon fixation, and they have a 13C/12C ratio (expressed
as 𝛿13C) of about −28‰ VPDB (Vienna Pee Dee Belemnite). On the other hand,
C4-plants (i.e., corn, millet, sugar cane, and many grasses) also use C4 carbon
fixation and are more enriched in 13C. Their 13C/12C ratio (𝛿13C) is about −13‰
VPDB [23].

In clinical studies, the variation of natural isotopic abundances due to diet can
lead to subtle variations that may increase the variability of the study results. It is
therefore recommended that during a clinical study with stable isotopes, subjects
should follow clear instructions about diet and lifestyle [24].

1.2.2 Tracer

In the last few decades, the use of light-stable isotopes was preferred to radioiso-
topes for biomedical and metabolic studies, as they lacked radiation emission
and are safer to handle. This is particularly relevant for the pediatric population,
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where the use of radioisotopes is extremely limited for safety reasons. Several
different stable isotope tracers can be safely administered to children. For
example, [15N]-glycine and [1-13C]-leucine were simultaneously administered in
preterm infants for measuring whole-body protein turnover [25, 26]. Cogo et al.
infused [13C]-palmitic acid and [2H3]-leucine for 3 h and [2H5]-glycerol for 5 h to
measure protein turnover and lipolysis in critically ill children who were 10 years
old [27]. This concept of multiple tracer administration is only achievable if the
samples are analyzed with MS or NMR instruments.

As defined by Wolfe and Chinkes, a tracer is “a compound that is chemically
and functionally identical to the naturally occurring compound of interest
(tracee) but is distinct in some way that enables detection” [28]. 13C and 15N
tracers are commonly employed to trace amino acids, whereas, by design, lipids
and small carbohydrates can be artificially enriched with 13C, deuterium, or both.
Therefore, many components labeled with light-stable isotopes (i.e., tracers) have
been produced and are now commercially available. Deuterium-labeled tracers
are generally the cheapest of the light-stable isotope tracers. The major drawback,
however, is that deuterium atoms are labile (i.e., exchangeable with unlabeled
and surrounding hydrogen atoms). Deuterium-labeled water (heavy water) is
an excellent tracer for measuring total body water (and body composition) and,
when associated with 18-Oxygen (2H2

18O), allows for the assessment of total
energy expenditure (TEE) [29–31], among other applications. Although there is
a widespread use of the double-labeled water method, the availability of water
enriched with 18O at 10 at% or 98 at% (as isotopic purity) is low due to its limited
worldwide production, making it very expensive (about 10 times higher than
deuterium-enriched water). Furthermore, the reactivity of oxygen with many
other components makes it very challenging to manufacture 18O tracers.

1.2.3 Isotopic Ratio and Isotopic Enrichment Measurements

Of note, there is no single expression of isotopic enrichment in metabolic studies,
as reported by Wolfe and Chinkes [28]. Expressions will vary with the mass spec-
trometers used (IRMS instruments vs organic mass spectrometers), the level of
variation in the isotopes, and the metabolic models used to assess the final clinical
outcomes.

1.2.3.1 Delta Notation Measured by Isotope Ratio Mass Spectrometry
The abundances of isotopic ratios, such as 13C/12C, 18O/16O, 2H/1H, and 15N/14N,
are always measured relative to the isotope ratio of a specifically selected refer-
ence material. The reference standard materials are VPDB for carbon [32], Vienna
Standard Mean Ocean Water (VSMOW or VSMOW2) for oxygen and hydrogen,
and laboratory air for nitrogen [33]. Since these primary reference materials are
quite limited or do not exist anymore, other easily accessible international stable
isotope reference materials are also commercially available from the International
Atomic Energy Agency (IAEA, Vienna, Austria) in different isotopic values.
𝛿 values are unitless numbers such as the isotope ratios itself, but due to the

small differences measured, 𝛿 values are usually expressed in parts per thousand,
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per mil, or ‰ (equation 1.1).

𝛿,‰ = [(Rsample − Rstandard)∕Rstandard] × 1000, (1.1)

where R is the ratio between the minor (heavier) isotope of the element to the
major (lighter) isotope (i.e., 13C/12C).

Of note, most organic components at natural abundance are depleted in the
heavy isotope form relative to the reference standard, leading to negative 𝛿 values.

In some metabolic applications that use labeled water (i.e., 2H2O) to measure
body composition or use double-labeled water (i.e., 2H2

18O) to assess total energy
expenditure, the parts per million (ppm) unit is also reported. In this case, the
transformation is as follows (equation 1.2):

ppm = (1,000,000∕(1 + (1∕(((𝛿2H∕1000) + 1) × 0.00015576)))), (1.2)

where 𝛿
2H is the per mil 2H with respect to the international reference VSMOW

or VSWOW2. The factor 0.00015576 is the 2H/1H ratio of VSMOW [34].

1.2.3.2 Expressions of Isotopic Enrichment
In metabolic studies, once the tracer has been administered, the tracer-to-tracee
ratio (TTR) is commonly used to report the isotopic enrichment. Alternative units
reported in peer-reviewed papers are atom percent excess (APE, %) or molar per-
cent excess (MPE, %). These units represent the amount of tracer as a ratio of
the sum of tracer and tracee. As described by Wolfe and Chinkes [28], the tracer
and tracee are indistinguishable from a metabolic point of view but distinguish-
able by using MS, measuring different isotopologues (i.e., components differing
only in their isotopic composition such as [1-13C]-leucine vs [1-12C]-leucine).
TTR is calculated based on mass spectrometer data using the following formula
(equation 1.3):

TTR = (rsa − rbk) × (1 − A)n, (1.3)

where rsa is the ratio of tracer/tracee in the sample (after administration of the
tracer), rbk is the ratio of tracer/tracee in a background sample (before adminis-
tration of the tracer), “A” is a skew correction factor that varies with the isotope,
and “n” is the number of labeled atoms. For the 13C tracer, A is 0.0111, whereas for
the 15N tracer, A is 0.0037, as A is equal to the natural abundance of the element.

Finally, TTR can also be transformed into MPE or into APE using
equations (1.4) and (1.5):

APE,% = TTR∕(1 + TTR) × 100, (1.4)
MPE,% = APE × n(Ctotal)∕n(Clabeled), (1.5)

where Ctotal is the total number of carbons in the molecule of interest and Clabeled
is the number of carbons labeled in the molecules.

The APE and MPE expressions are similar when no extra carbons are added
to the compound of interest as in liquid chromatography–isotope ratio mass
spectrometry (LC–IRMS). However, in gas chromatography–combustion
isotope ratio mass spectrometry (GC–C-IRMS), the compounds are mostly
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derivatized, implying that the additional carbon needs to be taken into account
to obtain the enrichment of the intact molecule [35].

Of course, there are other possible transformations of isotopic enrichments that
can be used in specific metabolic models. As example, for measuring the frac-
tional synthesis rate (FSR) or the absolute fractional synthesis (ASR) in muscle
after infusion of a stable isotope tracer (i.e., with 13C6-phenylalanine), the isotopic
ratio of phenylalanine extracted from muscle biopsy, as measured by IRMS (i.e.,
𝛿

13C, ‰), can be transformed into a TTR value using equation (1.6):

TTR,% = 0.0112372 × (0.001 × 𝛿sa + 1) × 100, (1.6)

where 𝛿sa is the isotopic abundance (IRMS data) of the sample [36].
To calculate the isotopic enrichment using gas chromatography–mass spec-

trometry (GC–MS) or liquid chromatography–mass spectrometry (LC–MS),
the baseline unlabeled sample and labeled samples (after administration of
the tracer) are subtracted (as described by Wolfe) or can be assessed using a
mathematical matrix of mass isotopomer distribution, as reported by Fernandez
et al. [37], to determine the true isotopomer distribution.

1.2.3.3 Normalization of Isotopic Ratio Expressed with 𝜹 Unit
In order to calibrate raw 𝛿 values to international references so that interlabora-
tory comparisons can be carried out, it is crucial to transform raw 𝛿 values (data
from the IRMS instrument) into normalized 𝛿 values for accurate and comparable
isotopic determination. In this context, a specific protocol (known as isotopic
normalization) needs to be put in place during isotopic analysis. The requirements
for isotope normalization have increased dramatically not only with the commer-
cialization of new technology to compare technique performance but also due to
the broad types of applications and the increasing number of laboratories that can
carry out isotopic analysis. Paul et al. described different approaches to normalize
isotopic ratios [38]; normalization with two or more certified standards produces
less errors than normalization carried out with only one. In most metabolic tracer
studies, isotopic normalization is not mandatory (but advised), since an excess of
isotopic enrichment (see Section 1.2.3.2) is the appropriate way to express results.

1.3 Mass Spectrometry Techniques

The basic principle of MS is to produce ions from organic molecules, to separate
these ions by their mass-to-charge ratio (m/z), and to detect them qualitatively
and quantitatively by their respective m/z and abundance. As schematically rep-
resented in Figure 1.1, different options exist to measure light-stable isotopes
with MS.

1.3.1 Isotope Ratio Mass Spectrometry

The measurement of natural isotopic abundances and tiny variations of isotopic
enrichments in organic molecules requires a very specific technique known
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Electron impact (EI)
Chemical ionization 
(CI)
Electrospray ioni-
zation (ESI)

Single quadrupole (MS)
Triple quadrupole
(MS/MS)
Ion trap (ITMS)
Time of flight (TOF)
Magnetic sector (IRMS)

Gas chromatography 
(GC)
Liquid chromatography 
(LC)
Elemental analyzer (EA)

Channel electron multiplier
Multicollectors (Faraday cups)

Separation mode Ion source Analyzer Detector

Figure 1.1 Typical elements (i.e., separation mode, ion source, analyzer, and detector) used to
measure light-stable isotopes in metabolic studies.

as IRMS. The isotope ratio mass spectrometer, initially developed by Nier, is
based on a multicollector magnetic sector mass spectrometer [39]. The theory
and practice of IRMS are reviewed in detail elsewhere [40, 41] and will not be
reviewed here. Briefly, the isotope ratio mass spectrometer is made of several
modules, such as a tight-electron impact ion source, a magnetic sector, and
several Faraday cups to simultaneously monitor several ions. To determine small
differences in isotopic ratios, parameters such as sensitivity, signal stability, and
counting statistics are key parameters that enable high-precision measurements
[42]. The IRMS device, or the so-called “gas-IRMS,” is designed to measure
the isotope ratio of light-stable isotopes, such as 13C, 15N, 18O, 34S, and 2H, of
organic molecules that were previously transformed into gases, such as CO2,
N2, CO, SO2, and H2. Continuous-flow-IRMS is the most common approach
(as opposed to the dual isotope system with off-line conversion of organic
molecules), due to the ease of sample transformation. Several interfaces are
used to produce these gases. High-precision isotopic analysis of solid and liquid
bulk samples is achieved using an EA or thermal conversion-elemental analyzer
(TC/EA) coupled to an IRMS device for measurement of the 13C, 15N, 2H,
and 18O isotopes, whereas GC and LC conjugated to an IRMS device allow for
measurement of the isotopic ratio of specific compound(s) after chromatographic
separation.

1.3.1.1 Bulk Stable Isotope Analysis
Bulk analysis of 15N, first demonstrated by Preston and Owens in 1983, is based on
bulk isotopic analysis [43]. Its principle is straightforward since the bulk sample
(i.e., powder or liquid) is weighed in a tin capsule that is introduced into a heated
combustion interface through an autosampler (i.e., a carousel). Within the heated
furnace, the organic bulk material is transformed into gases (i.e., CO2 and N2).
These gases are carried out in a flow of helium gas stream and introduced into a
heated reduction furnace where nitrous oxides are converted into N2 (Figure 1.2).
Then, any excess O2 and water are removed before introducing the helium stream
into the IRMS ion source. By design, the EA-IRMS measures 13C and 15N isotopic
abundances. The isotopic precision of EA-IRMS, expressed as standard devia-
tions (SD) of 𝛿, is lower than 0.3‰ for 13C and 15N isotopes for sample amounts
greater than 50 nmol of an element, or an amount of nitrogen (as urinary urea and
ammonia after adequate processing) from 30 to 150 μg.
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Figure 1.2 Schematic representation of an elemental analyzer for EA-IRMS coupling. Source:
Muccio and Jackson [44]. Reproduced with permission of Royal Society of Chemistry.

To examine the 2H and 18O isotopic ratios of bulk samples, the oldest approach
was based on the cryodistillation of biological samples to produce H2 gas,
followed by a reduction with catalyzers (i.e., zinc and platinum), whereas for
18O isotope determination, the produced CO gas was equilibrated overnight
with unlabeled CO2 present in the water solution. These processes were time
consuming and required large volumes of sample. However, in the 2000s, a new
commercial system became available to both measure isotopes with smaller
amounts of material and utilize an automated system. In this case, the organic
material was not combusted but quantitatively pyrolyzed (at 1420 ∘C in a
glassy carbon reactor within a TC/EA) to produce H2 and CO gases that were
introduced into the ion source of the IRMS device through a helium stream as
the carrier gas. Technically, the ability to measure the 2H/1H ratio in a helium
(He; m/z 4) stream was challenging, due to the large He peak in the ion source.
There is a little overlap of this high abundant peak onto the m/z 3 Faraday cup
collector. Because of the high intensity of the helium peak in comparison to the
intensity of the 2H/1H peak, this contributed significantly. The solution was to
add a retardation lens into the m/z 3 Faraday cup collector. Moreover, H3

+ is
formed in the ion source, caused by the reaction H2

+ +H2 →H3
+ +H•. This also

contributes to the 2H/1H peak but can be accounted for by the so-called H3
+

factor. Practically speaking, the H3
+ factor needs to be assessed daily to obtain

precise and accurate isotopic ratios [40]. In this case, the IRMS device is equipped
with such specific collectors and is able to accurately measure both 2H and 18O
isotopes (Figure 1.3). Interestingly, the system allows for the simultaneous
detection of both isotopes in the same run, limiting the final volume drawn from
the patient and increasing the analytical throughput (typical run time is lower
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Figure 1.3 Typical TC-EA/IRMS chromatogram with H2 and CO peaks after injection of water sample.
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than 6 min per sample). The isotopic precision of the TC/EA-IRMS is about
2.0‰ for 𝛿2H and 0.3‰ for 𝛿18O. This system is particularly relevant in pediatric
studies, where only a small volume of biological fluid (i.e., urine, blood, or saliva)
is available.

Finally, a third bulk stable isotope analysis (BSIA) approach was developed for
breath 13CO2 isotopic enrichment. Analytically, this is accomplished by a com-
bination of headspace sampling and loop injection onto a GC column capable
of resolving different gases, such as CO2 and N2, connected to an IRMS device
(GC-IRMS). In these conditions, the combustion furnace is off. The analytical
measurement per se is very straightforward and the isotopic precision is lower
than 0.3‰ for 𝛿13C. This method, known as the 13C-breath test [45], allows for the
determination of specific clinical outcomes, such as the presence of Helicobacter
pylori after ingestion of labeled urea or measurements of fat digestion and gastric
emptying [46–48].

1.3.1.2 Compound-Specific Isotopic Analysis
One common feature of BSIA and compound-specific isotopic analysis (CSIA) is
the use of helium as a carrier gas to transport the targeted gases (i.e., CO2, N2,
H2, and CO). However, with CSIA, a chromatographic separation of the targeted
compound is carried out prior to the transformation of the organic molecules into
gases. The separation can be performed either by GC or LC.

1.3.1.2.1 Compound-Specific Isotopic Analysis with Gas
Chromatography–Isotope Ratio Mass Spectrometry
This approach was first coined “isotope ratio monitoring-GCMS” by Matthews
and Hayes [49], but today is named continuous-flow-isotope ratio mass spec-
trometry (CF-IRMS). One of the first technical considerations of CSIA by GC
is to reliably convert online organic molecules into gases while maintaining the
chromatographic separation and resolution achieved on the GC column. Com-
bustion interfaces (for 13C and 15N applications) used after GC separation were
developed in the early 1980s, whereas pyrolysis furnace applications (for 2H and
18O) were built in the 1990s (Table 1.1). In contrast to IRMS, which is a highly
specialized mass spectrometer, the GC system used for GC-IRMS coupling is a
standard commercial and generic instrument. Most GC methods are applicable
to isotopic measurements in terms of analytical conditions, with helium (He) as
the carrier gas.

Principle of Gas Chromatography Combustion Isotope Ratio Mass Spectrometry
For measuring either the 13C or 15N isotopic ratios of selected components,
GC–C-IRMS fits the purpose. Briefly, after adequate derivatization of polar
compounds, the derivatized components are injected into a capillary gas chro-
matographic column with an autosampler. Individual compounds are carried
by a helium stream and separated chromatographically according to their
volatility and their interaction with the stationary phase. Then, the helium
carrier introduces the compounds into a combustion furnace. This consists of
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Table 1.1 Typical light-stable isotopes used in metabolic studies and characteristics of
IRMS instruments hyphenated to gas chromatography for measuring light-stable
isotopes.

Light-stable
isotopes

Natural
abundance (%)

Instrument Isotopic
precision,
SD(𝜹, ‰)

Typical
sensitivity
(nmol)a)

2H 0.015 GC–P-IRMS 2–5 10–50
13C 1.11 GC–C-IRMS 0.1–0.3 0.1–5
15N 0.37 GC–C-IRMS 0.3–0.7 1–10
18O 0.20 GC–P-IRMS 0.3–0.6 4–14

a) Sensitivity expressed in nanomole of the analyzed element injected to get a precision
close to the value listed in this table.

Source: Sessions [40]. Reproduced with permission of John Wiley and sons.

a ceramic tube, typically with an inner diameter of 0.5 mm, with metal wires
(CuO/NiO/Pt), which is heated to 940 ∘C, where each compound is converted
into CO2, water, and nitrogen oxide (NOx) gases. In order to get rid of these NOx
gases, a reduction furnace (heated to 650 ∘C and containing Cu and Pt wires)
is installed in series, where nitrogen oxide gases are transformed into N2O and
NO2. Water is removed by a Nafion® water trap, and finally a small fraction of the
gases (in the helium stream) is introduced into the IRMS ion source (Figure 1.4).
The remainder of the gas stream is diverted to the atmosphere via a split. By
design, the IRMS can only accept a maximum of 0.4 mL/min of helium carrier
gas [41].

Principle of Gas Chromatography Pyrolysis Isotope Ratio Mass Spectrometry For
measuring deuterium and Oxygen-18 in compounds after a chromatographic
separation, a pyrolysis furnace is used instead of a combustion furnace. The
pyrolysis furnace is heated to 1400 ∘C [50]. At this temperature, organic compo-
nents are transformed into H2 and CO gases when oxygen is present. The high
temperature for pyrolysis requires a high-purity Al2O3 (alumina) reactor tube.
At such a temperature, alumina tubes are sensitive and leaks may develop over
time. Within gas chromatography–pyrolysis isotope ratio mass spectrometry
(GC–P-IRMS), alumina tubes have to be replaced more often than reactors used
in combustion systems (for 13C or 15N). In addition, many users and suppliers
recommend conditioning the pyrolysis reactor from time to time with injections
of organic solvent or via backflushing with CH4/He gas. This likely prevents
deposits of carbon inside the alumina tubes, which decreases its efficiency [51].
One additional difference with the combustion interface is the absence of Nafion
membranes, since pyrolysis of organic compounds does not produce water. Of
note, halogen atoms induce contaminants for the pyrolysis process and memory
effects generated may impact the accuracy and precision of deuterium isotopic
measurements produced by GC–P-IRMS [52].


