

�

� �

�

�

� �

�

PROGRAMMING MULTICORE
AND MANY-CORE COMPUTING
SYSTEMS

�

� �

�

Wiley Series on Parallel and Distributed Computing

Series Editor: Albert Y. Zomaya

A complete list of the titles in this series appears at the end of this volume.

�

� �

�

PROGRAMMING
MULTICORE AND
MANY-CORE
COMPUTING SYSTEMS

Edited by

Sabri Pllana

Fatos Xhafa

�

� �

�

Copyright © 2017 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this
book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty
may be created or extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloguing-in-Publication Data

Names: Pllana, Sabri, editor. | Xhafa, Fatos, editor.
Title: Programming multicore and many-core computing systems / edited by

Sabri Pllana, Fatos Xhafa.
Description: First edition. | Hoboken, New Jersey : John Wiley & Sons, [2017]

| Includes bibliographical references and index.
Identifiers: LCCN 2016038244| ISBN 9780470936900 (cloth) | ISBN 9781119332008

(epub) | ISBN 9781119331995 (Adobe PDF)
Subjects: LCSH: Parallel programming (Computer science) |

Coprocessors–Programming.
Classification: LCC QA76.642 .P767 2017 | DDC 005.2/75–dc23 LC record available at

https://lccn.loc.gov/2016038244

Cover Image: Creative-idea/Gettyimages
Cover design by Wiley

Set in 10/12pt, TimesLTStd by SPi Global, Chennai, India.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.copyright.com
http://www.wiley.com/go/permissions
www.wiley.com

�

� �

�

CONTENTS

LIST OF CONTRIBUTORS ix

PREFACE xv

ACKNOWLEDGEMENTS xxiii

ACRONYMS xxv

PART I FOUNDATIONS

1 Multi- and Many-Cores, Architectural Overview for
Programmers 3
Lasse Natvig, Alexandru Iordan, Mujahed Eleyat, Magnus Jahre

and Jørn Amundsen

2 Programming Models for MultiCore and Many-Core
Computing Systems 29
Ana Lucia Varbanescu, Rob V. van Nieuwpoort, Pieter Hijma,

Henri E. Bal, Rosa M. Badia and Xavier Martorell

v

�

� �

�

vi CONTENTS

3 Lock-free Concurrent Data Structures 59
Daniel Cederman, Anders Gidenstam, Phuong Ha, Håkan Sundell,

Marina Papatriantafilou and Philippas Tsigas

4 Software Transactional Memory 81
Sandya Mannarswamy

PART II PROGRAMMING APPROACHES

5 Hybrid/Heterogeneous Programming with OmpSs and its
Software/Hardware Implications 101
Eduard Ayguadé, Rosa M. Badia, Pieter Bellens, Javier Bueno,

Alejandro Duran, Yoav Etsion, Montse Farreras, Roger Ferrer,

Jesus Labarta, Vladimir Marjanovic, Lluis Martinell,

Xavier Martorell, Josep M. Perez, Judit Planas, Alex Ramirez,

Xavier Teruel, Ioanna Tsalouchidou and Mateo Valero

6 Skeleton Programming for Portable Many-Core Computing 121
Christoph Kessler, Sergei Gorlatch, Johan Enmyren, Usman Dastgeer,

Michel Steuwer and Philipp Kegel

7 DSL Stream Programming on Multicore Architectures 143
Pablo de Oliveira Castro, Stéphane Louise and Denis Barthou

8 Programming with Transactional Memory 165
Vincent Gramoli and Rachid Guerraoui

9 Object-Oriented Stream Programming 185
Frank Otto and Walter F. Tichy

10 Software-Based Speculative Parallelization 205
Chen Tian, Min Feng and Rajiv Gupta

�

� �

�

CONTENTS vii

11 Autonomic Distribution and Adaptation 227
Lutz Schubert, Stefan Wesner, Daniel Rubio Bonilla and

Tommaso Cucinotta

PART III PROGRAMMING FRAMEWORKS

12 PEPPHER: Performance Portability and Programmability for
Heterogeneous Many-Core Architectures 243
Siegfried Benkner, Sabri Pllana, Jesper Larsson Träff, Philippas Tsigas,

Andrew Richards, George Russell, Samuel Thibault, Cdric Augonnet,

Raymond Namyst, Herbert Cornelius, Christoph Keler, David Moloney

and Peter Sanders

13 Fastflow: High-Level and Efficient Streaming on Multicore 261
Marco Aldinucci, Marco Danelutto, Peter Kilpatrick and

Massimo Torquati

14 Parallel Programming Framework for H.264/AVC Video
Encoding in Multicore Systems 281
Nuno Roma, António Rodrigues and Leonel Sousa

15 Parallelizing Evolutionary Algorithms on GPGPU Cards
with the EASEA Platform 301
Ogier Maitre, Frederic Kruger, Deepak Sharma, Stephane Querry,

Nicolas Lachiche and Pierre Collet

PART IV TESTING, EVALUATION AND OPTIMIZATION

16 Smart Interleavings for Testing Parallel Programs 323
Eitan Farchi

17 Parallel Performance Evaluation and Optimization 343
Hazim Shafi

�

� �

�

viii CONTENTS

18 A Methodology for Optimizing Multithreaded System
Scalability on Multicores 363
Neil Gunther, Shanti Subramanyam and Stefan Parvu

19 Improving Multicore System Performance through Data
Compression 385
Ozcan Ozturk and Mahmut Kandemir

PART V SCHEDULING AND MANAGEMENT

20 Programming and Managing Resources on
Accelerator-Enabled Clusters 407
M. Mustafa Rafique, Ali R. Butt and Dimitrios S. Nikolopoulos

21 An Approach for Efficient Execution of SPMD Applications
on Multicore Clusters 431
Ronal Muresano, Dolores Rexachs and Emilio Luque

22 Operating System and Scheduling for Future Multicore and
Many-Core Platforms 451
Tommaso Cucinotta, Giuseppe Lipari and Lutz Schubert

GLOSSARY 475

INDEX 481

�

� �

�

LIST OF CONTRIBUTORS

Marco Aldinucci, Computer Science Department, University of Torino, Corso
Svizzera 185, 10149 Torino, Italy. [email: aldinuc@di.unito.it]

Jørn Amundsen, Norwegian University of Science and Technology, SemSælandsvei
7-9, NO-7491 Trondheim, Norway. [email: jorn.amundsen@ntnu.no]

Eduard Ayguade, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: eduard.ayguade@bsc.es]

Rosa M. Badia, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: rosa.m.badia@bsc.es]

Henri E. Bal, Department of Computer Science, Vrije Universiteit, De Boelelaan
1081A,1081 HV, Amsterdam, The Netherlands. [email: bal@cs.vu.nl]

Denis Barthou, INRIA Bordeaux Sud-Ouest, 200 avenue de la Vieille Tour 33405
Talence Cedex, France. [email: denis.barthou@labri.fr]

Pieter Bellens, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: pieter.bellens@bsc.es]

Siegfried Benkner, Faculty of Computer Science, University of Vienna, Wahringer-
strasse29, A-1090 Vienna, Austria. [email: sigi@par.univie.ac.at]

Daniel Rubio Bonilla, Department for Intelligent Service Infrastructures,
HLRS, University of Stuttgart, Nobelstr. 19, 70569 Stuttgart, Germany. [email:
rubio@hlrs.de]

ix

�

� �

�

x LIST OF CONTRIBUTORS

Javier Bueno, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor, Jordi
Girona 29, 08034 Barcelona, Spain. [email: javier.bueno@bsc.es]

Ali R. Butt, Virginia Tech, 2202 Kraft Drive (0106), Blacksburg, VA 24061, USA.
[email: butta@cs.vt.edu]

Daniel Cederman, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden. [email: cederman
@chalmers.se]

Pierre Collet, Strasbourg University, Pole API BdSébastien Brant BP 10413 67412
Illkirch CEDEX France. [email: pierre.collet@unistra.fr]

Herbert Cornelius, Intel Gmbh, DornacherStrasse 1, D-85622 Feldkirchen, Ger-
many. [email: herbert.cornelius@intel.com]

Tommaso Cucinotta, Retis Lab, ScuolaSuperioreSant’Anna CEIICP,
Att.NeFrancesca Gattai, Via Moruzzi 1, 56124 Pisa, Italy. [email: tommaso
.cucinotta@sssup.it]

Marco Danelutto, Computer Science Department, University of Pisa, Largo Pon-
tecorvo3, 56127 Pisa, Italy. [email: marcod@di.unipi.it]

Usman Dastgeer, IDA, Linköping University, S-58183 Linköping, Sweden. [email:
usman.dastgeer@liu.se]

Pablo De Oliveira Castro, CEA, LIST, Université De Versailles, 45, Avenue
DesÉtats Unis, Versailles, 78035 France. [email: pablo.oliveira@exascale-
computing.eu]

Alejandro Duran, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: alex.duran@bsc.es]

Mujahed Eleyat, University of Science and Technology (NTU), SemSælandsvei
7-9, NO-7491 Trondheim, Norway. [email: mujahed.eleyat@miriam.as]

Johan Enmyren, IDA, Linköping University, S-58183 Linköping, Sweden. [email:
x10johen@ida.liu.se]

Yoav Etsion, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor, Jordi
Girona 29, 08034 Barcelona, Spain. [email: yoav.etsion@bsc.es]

Eitan Farchi, IBM, 49 Hashmonaim Street, Pardes Hanna 37052, Israel. [email:
farchi@il.ibm.com]

Montse Farreras, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: mfarrera@ac.upc.edu]

Min Feng, Department of Computer Science, The University of California At River-
side, Engineering Bldg. Unit 2, Rm. 463, Riverside, CA 92521, USA. [email:
mfeng@cs.ucr.edu]

Roger Ferrer, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: roger.ferrer@bsc.es]

Anders Gidenstam, School of Business and Informatics, Högskolan I Borås,
S-50190 Borås, Sweden. [email: anders.gidenstam@hb.se]

Sergei Gorlatch, FB10, Universität Münster, D-48149 Münster, Germany. [email:
gorlatch@uni-muenster.de]

�

� �

�

LIST OF CONTRIBUTORS xi

Vincent Gramoli, LPD, EPFL IC, Station 14, CH-1015 Lausanne, Switzerland.
[email: vincent.gramoli@epfl.ch]

Rachid Guerraoui, LPD, EPFL IC, Station 14, CH-1015 Lausanne, Switzerland.
[email: rachid.guerraoui@epfl.ch]

Neil Gunther, Performance Dynamics Company, 4061 East Castro Val-
ley Blvd. Suite 110, Castro Valley, CA 95954, USA. [email: njgunther@
perfdynamics.com]

Rajiv Gupta, Department of Computer Science, The University of California at
Riverside, Engineering Bldg. Unit 2, Rm. 408, Riverside, CA 92521, USA.
[email: gupta@cs.ucr.edu]

Phuong Ha, Department of Computer Science, Faculty of Science, University of
Tromsø, NO-9037 Tromsø, Norway. [email: phuong@cs.uit.no]

Pieter Hijma, Department of Computer Science, Vrije Universiteit, De Boele-
laan1081A, 1081 HV, Amsterdam, The Netherlands. [email: pieter@cs.vu.nl]

Alexandru Iordan, University of Science and Technology (NTU), SemSælandsvei
7-9, NO-7491 Trondheim, Norway. [email: iordan@idi.ntnu.no]

Magnus Jahre, University of Science and Technology (NTU), SemSælandsvei 7-9,
NO-7491 Trondheim, Norway. [email: jahre@idi.ntnu.no]

Mahmut Kandemir, The Pennsylvania State University, 111 IST Building, Univer-
sity Park, PA 16802, USA. [email: kandemir@cse.psu.edu]

Philipp Kegel, FB10, Universität Münster, D-48149 Münster, Germany.
[email:philipp.kegel@uni-muenster.de]

Christoph Kessler, IDA, Linköping University, S-58183 Linköping, Sweden.
[email: christoph.kessler@liu.se]

Peter Kilpatrick, School of Electronics, Electrical Engineering and Com-
puter Science, Queen’s University Belfast, Belfast BT7 1NN, UK. [email:
p.kilpatrick@qub.ac.uk]

Jesus Labarta, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: jesus.labarta@bsc.es]

Nicolas Lachiche, Strasbourg University, Pole API BdSébastien Brant BP 10413
67412 Illkirch CEDEX France. [email: nicolas.lachiche@unistra.fr]

Giuseppe Lipari, Real-Time Systems Laboratory, ScuolaSuperioreSant’Anna, Pisa,
Italy. [email: g.lipari@sssup.it]

Stéphane Louise, CEA, LIST, Gif-Sur-Yvette, 91191 France. [email:
stephane.louise@cea.fr]

Emilio Luque, Computer Architecture and Operating System Department,
Universitat Autonoma De Barcelona, 08193, Barcelona, Spain. [email:
emilio.luque@uab.es]

Ogier Maitre, Strasbourg University, Pole API BdSébastien Brant BP 10413 67412
Illkirch CEDEX France. [email: ogier.maitre@unistra.fr]

Sandya Mannarswamy, Xerox Research Centre India, 225 1st C Cross, 2nd Main,
Kasturi Nagar, Bangalore, India. 560043. [email: sandya@hp.com]

�

� �

�

xii LIST OF CONTRIBUTORS

Vladimir Marjanovic, Barcelona Supercomputing Center, Nexus-2 Building, Jordi
Girona 29, 08034 Barcelona, Spain. [email: vladimir.marjanovic@bsc.es]

Lluis Martinell, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: luis.martinell@bsc.es]

Xavier Martorell, Barcelona Supercomputing Center, Nexus-2 Building, Jordi
Girona 29, 08034 Barcelona, Spain. [email: xavim@ac.upc.edu]

David Moloney, Movidius Ltd., Mountjoy Square East 19, D1 Dublin, Ireland.
[email: david.moloney@movidius.com]

Ronal Muresano, Computer Architecture and Operating System Department,
Universitat Autonoma De Barcelona, 08193, Barcelona, Spain. [email:
rmuresano@caos.uab.es]

M. Mustafa Rafique, Virginia Tech, 2202 Kraft Drive (0106), Blacksburg, Virginia
24061, USA. [email: mustafa@cs.vt.edu]

Raymond Namyst, Institut National De Recherche En Informatique Et En Automa-
tique (INRIA), Bordeaux Sud-Ouest, Cours De La Liberation 351, F-33405 Tal-
ence Cedex, France. [email: raymond.namyst@labri.fr]

Lasse Natvig, University of Science and Technology (NTU), Semsælandsvei 7-9,
NO-7491 Trondheim, Norway. [email: lasse@idi.ntnu.no]

Dimitrios S. Nikolopoulos, FORTH-ICS, N. Plastira 100, VassilikaVouton, Herak-
lion, Crete, Greece. [email: dsn@ics.forth.gr]

Frank Otto, Institute for Program Structures and Data Organization, Karlsruhe
Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany. [email:
frank.otto@kit.edu]

Ozcan Ozturk, Department of Computer Engineering, Engineering Build-
ing, EA 407B, Bilkent University, Bilkent, 06800, Ankara, Turkey. [email:
ozturk@cs.bilkent.edu.tr]

Marina Papatriantafilou, Department of Computer Science and Engineering,
Chalmers University of Technology, SE-412 96 Göteborg, Sweden. [email:
ptrianta@chalmers.se]

Stefan Parvu, Nokia Group, Espoo, Karakaari 15, Finland. [email: ste-
fan.parvu@nokia.com]

Josep M. Perez, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: josep.m.perez@bsc.es]

Judit Planas, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor, Jordi
Girona 29, 08034 Barcelona, Spain. [email: judit.planas@bsc.es]

Sabri Pllana, Department of Computer Science, Linnaeus University, SE-351 95
Vaxjo, Sweden. [email: sabri.pllana@lnu.se]

Stephane Querry, Pole API BdSébastien Brant BP 10413 67412 Illkirch CEDEX
France. [email: stephane.querry@unistra.fr]

Alex Ramirez, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: alex.ramirez@bsc.es]

�

� �

�

LIST OF CONTRIBUTORS xiii

Dolores Rexachs, Computer Architecture and Operating System Department,
Universitat Autonoma De Barcelona, 08193, Barcelona, Spain. [email:
dolores.rexachs@uab.es]

AndrewRichards, Codeplay Software Limited, York Place 45, EH1 3HPEdinburgh,
United Kingdom. [email: andrew@codeplay.com]

António Rodrigues, TU Lisbon/IST/INESC-ID, Rua Alves Redol 9, 1000-
029Lisboa, Portugal. [email: antonio.c.rodrigues@ist.utl.pt]

Nuno Roma, TU Lisbon/IST/INESC-ID, Rua Alves Redol 9, 1000-029 Lisboa,
Portugal. [email: nuno.roma@inesc-id.pt]

Peter Sanders, KarlsruherInstitut Für Technologie, Amfasanengarten 5,
D-76128Karlsruhe, Germany. [email: sanders@kit.edu]

Lutz Schubert, Department for Intelligent Service Infrastructures, HLRS,
University of Stuttgart, Nobelstr. 19, 70569 Stuttgart, Germany. [email:
schubert@hlrs.de]

Hazim Shafi, One Microsoft Way, Redmond, WA 98052, USA. [email:
hshafi@microsoft.com]

Deepak Sharma, Pole API BdSébastien Brant BP 10413 67412 Illkirch CEDEX,
France. [email: deepak.sharma@unistra.fr]

Leonel Sousa, TU Lisbon/IST/INESC-ID, Rua Alves Redol 9, 1000-029 Lisboa,
Portugal. [email: leonel.sousa@inesc-id.pt]

Michel Steuwer, FB10, Universität Münster, D-48149Münster, Germany.
[email:michel.steuwer@uni-muenster.de]

Shanti Subramanyam, Yahoo! Inc., 701 First Ave, Sunnyvale, CA 94089. [email:
shantis@yahoo-inc.com]

Håkan Sundell, School of Business and Infomatics, Högskolan I Borås, S-501
90BorâĂăs, Sweden. [email: hakan.sundell@hb.se]

Xavier Teruel, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: xavier.teruel@bsc.es]

Chen Tian, Department of Computer Science, The University of California at River-
side, Engineering Bldg. Unit 2, Rm. 463, Riverside, CA 92521, USA. [email:
tianc@cs.ucr.edu]

Walter F. Tichy, Institute for Program Structures and Data Organization, Karlsruhe
Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany. [email:
tichy@kit.edu]

Massimo Torquati, Computer Science Department, University of Pisa, Largo Pon-
tecorvo3, 56127 Pisa, Italy. [email: torquati@di.unipi.it]

Jesper Larsson Träff, Research Group Parallel Computing, Vienna University
of Technology, Favoritenstrasse 16/184-5, A-1040 Vienna, Austria. [email:
traff@par.tuwien.ac.at]

Ioanna Tsalouchidou, Barcelona Supercomputing Center, Nexus-2 Building,
3rdFloor, Jordi Girona 29, 08034 Barcelona, Spain. [email: ioanna.tsalouchidou
@bsc.es]

�

� �

�

xiv LIST OF CONTRIBUTORS

Philippas Tsigas, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden. [email: philip-
pas.tsigas@chalmers.se]

Philippas Tsigas, Department of Computer Science and Engineering, Chalmers
Tekniska Höogskola, SE-41296 Göteborg, Sweden. [email: tsigas@chalmers.se]

Mateo Valero, Barcelona Supercomputing Center, Nexus-2 Building, 3rd Floor,
Jordi Girona 29, 08034 Barcelona, Spain. [email: mateo.valero@bsc.es]

Rob V. Van Nieuwpoort, Department of Computer Science, Vrije Universiteit, De
Boelelaan 1081A, 1081 HV, Amsterdam, The Netherlands. [email: rob@cs.vu.nl]

Ana Lucia Varbanescu, Department of Software Technologies, Delft University of
Technology, Delft, The Netherlands Mekelweg 4, 2628 CD, Delft, The Nether-
lands. [email: a.l.varbanescu@tudelft.nl]

Stefan Wesner, HLRS, Department of Applications and Visualization, University
of Stuttgart, Nobelstr. 19, 70569 Stuttgart, Germany. [email: wesner@hlrs.de]

�

� �

�

PREFACE

Multicore and many-core computing systems have emerged as an important paradigm
in high-performance computing (HPC) and have significantly propelled development
of advanced parallel and distributed applications as well as of embedded systems.
Multicore processors are now ubiquitous, indeed, from processors with 2 or 4 cores in
the 2000s, the trend of increasing the number of cores keeps the pace, and processors
with hundreds or even thousands of (lightweight) cores are becoming commonplace
to optimize not only performance but also energy. However, this disruptive technol-
ogy (also referred to as ‘continuum computing paradigm’) presents several major
challenges such as increased effort and system-specific skills for porting and opti-
mizing application codes, managing and exploiting massive parallelism and system
heterogeneity to achieve increased performance, innovative modeling strategies for
low-power simulation, etc. Among these, we would distinguish the challenge of mas-
tering the multicore and many-core and heterogeneous systems – this is precisely the
focus of this book!

The emergence of multicore processors has helped in addressing several problems
that are related to single-core processors – known as memory wall, power wall and
instruction-level parallelism wall – but they pose several other ‘walls’ such as the
programmability wall or the coherency wall. Among these, programmability wall is a
long-standing challenge. Indeed, on the one hand, program development for multicore
processors, especially for heterogeneous multicore processors, is significantly more
complex than for single-core processors. On the other hand, programmers have been

xv

�

� �

�

xvi PREFACE

traditionally trained for the development of sequential programs, and only a small
percentage of them have experience with parallel programming.

In fact, in the past only a relatively small group of programmers interested in HPC
was concerned with the parallel programming issues; the situation has changed dra-
matically with the appearance of multicore processors in commonly used computing
systems. Traditionally parallel programs in HPC community have been developed
by heroic programmers using a simple text editor as programming environment, pro-
gramming at a low level of abstraction and doing manual performance optimization. It
is expected that with the pervasiveness of multicore processors, parallel programming
will become mainstream, but it cannot be expected that a mainstream programmer
will prefer to use the traditional HPC methods and tools.

The main objective of this book is to present a comprehensive view of the
state-of-the-art parallel programming methods, techniques and tools to aid the
programmers in mastering the efficient programming of multicore and many-core
systems. The book comprises a selection of twenty-two chapter contributions by
experts in the field of multicore and many-core systems that cover fundamental tech-
niques and algorithms, programming approaches, methodologies and frameworks,
task/application scheduling and management, testing and evaluation methodologies
and case studies for programming multicore and many-core systems. Lessons
learned, challenges and road map ahead are also given and discussed along the
chapters.

The content of the book is arranged into five parts:

Part I: Foundations

The first part of the book covers fundamental issues in programming of multicore and
many-core computing systems. Along four chapters the authors discuss the state of
the art on multi- and many-core architectures, programming models, concurrent data
structures and memory allocation, scheduling and management.

Natvig et al. in the first chapter, ‘Multi- and many-cores, architectural overview
for programmers’, provide a broad overview of the fundamental parallel techniques,
parallel taxonomies and various ‘walls’ in programming multicore/many-core
computing systems such as ‘power wall’, ‘memory wall’ and ‘ILP (instruction level
parallelism) wall’. The authors also discuss the challenges of the heterogeneity
in multicore/many-core computing systems. They conclude by stressing the need
for more research in parallel programming models to meet the five P’s of parallel
processing – performance, predictability, power efficiency, programmability and
portability – when building and programming multicore and many-core computing
systems.

Varbanescu et al. in the second chapter, ‘Programming models for multicore
and many-core computing systems’, survey a comprehensive set of programming
models for most popular families of many-core systems, including both specific and
classical parallel models for multicore and many-core platforms. The authors have
introduced four classes of reference features for model evaluation: usability, design
support, implementation support and programmability. Based on these features, a

�

� �

�

PREFACE xvii

multidimensional comparison of the surveyed models is provided aiming to identify
the essential characteristics that separate or cluster these models. The authors con-
clude by emphasizing the influence that the choice of a programming model can have
on the application design and implementation and give a few guidelines for finding a
programming model that matches the application characteristics.

The third chapter by Cederman et al., ‘Lock-free concurrent data structures’,
deals with the use of concurrent data structures in parallel programming of multicore
and many-core systems. Several issues such as maintaining consistency in the pres-
ence of many simultaneous updates are discussed and lock-free implementations of
data structures that support concurrent access are given. Lock-free concurrent data
structures are shown to support the design of lock-free algorithms that scale much
better when the number of processes increases. A set of fundamental synchroniza-
tion primitives is also described together with challenges in managing dynamically
allocated memory in a concurrent environment.

Mannarswamy in the fourth chapter, ‘Software transactional memory’, addresses
the main challenges in writing concurrent code in multicore and many-core comput-
ing systems. In particular, the author focuses on the coordinating access to shared
data, accessed by multiple threads concurrently. Then, the software transactional
memory (STM) programming paradigm for shared memory multithreaded programs
is introduced. STM is intended to facilitate the development of complex concurrent
software as an alternative to conventional lock-based synchronization primitives by
reducing the burden of programming complexity involved in writing concurrent code.
The need for addressing performance bottlenecks and improving the application per-
formance on STM is also discussed as a major research issue in the field.

Part II: Programming Approaches

The second part of the book is devoted to programming approaches for multicore
and many-core computing systems. This part comprises seven chapters that cover a
variety of programming approaches including heterogeneous programming, skeleton
programming, DSL and object-oriented stream programming and programming with
transactional memory.

The fifth chapter, ‘Heterogeneous programming with OMPSs and its implica-
tions’, by Ayguadé et al. discusses on programming models for heterogeneous
architectures aiming to ease the asynchrony and to increment parallelization,
modularity and portability of applications. The authors present the OmpSs model,
which extends the OpenMP 3.0 programming model, and show how it leverages
MPI and OpenCL/CUDA, mastering the efficient programming of the clustered
heterogeneous multi-/many-core systems. The implementation of OmpSs as well as
a discussion on the intelligence needed to be embedded in the runtime system to
effectively lower the programmability wall and the opportunities to implement new
mechanisms and policies is also discussed and some overheads related with task
management in OmpSs are pointed out for further investigation.

Kessler et al. in the sixth chapter, ‘Skeleton programming for portable many-core
computing’, consider skeleton programming (‘data parallel skeletons’) as a model to

�

� �

�

xviii PREFACE

solve the portability problem that arises in multi-and many-core programming and to
increase the level of abstraction in such programming environment. After overview-
ing the concept of algorithmic skeletons, the authors give a detailed description of
two recent approaches for programming emerging heterogeneous many-core systems,
namely, SkePU and SkelCL. Some other skeleton programming frameworks, which
share ideas with SkePU and SkelCL but address a more narrow range of architectures
or are used in industrial application development, are also discussed. Adding support
for portable task parallelism, such as farm skeletons, is pointed out as an important
research issue for future research.

In the seventh chapter, ‘DSL stream programming on multicore architectures’, by
de Oliveira Castro et al., the authors present a novel approach for stream program-
ming, considered a powerful alternative to program multi-core processors by offering
a deterministic execution based on a sound mathematical formalism and the ability
to implicitly express the parallelism by the stream structure, which leverages com-
piler optimizations that can harness the multicore performance without having to tune
the application by hand. Two families of stream programming languages are ana-
lyzed, namely, languages in which the data access patterns are explicitly described
by the programmer through a set of reorganization primitives and those in which the
data access patterns are implicitly declared through a set of dependencies between
tasks. Then, the authors expose the principle of a two-level approach combining the
advantages and expressivity of both types of languages aiming to achieve both the
expressivity of high-level languages such as Array-OL and Block Parallel and the rich
optimization framework, similar to StreamIT and Brook.

The eighth chapter, ‘Programming with transactional memory’, by Gramoli and
Guerraoui addresses similar issues as in Chapter 4, namely, the use of transac-
tional memory to remedy numerous concurrency problems arising in multicore and
many-core programming. The chapter analyzes the state-of-the-art concurrent pro-
gramming advances based on transactional memory. Several programming languages
that support TM are considered along with some TM implementations and a running
example for software support. The causes for performance limitations that TMs may
suffer from and some recent solutions to cope with such limitations are also discussed.

Otto and Tichy in the ninth chapter, ‘Object-oriented stream programming’,
present an approach unifying the concepts of object orientation (OO) and stream
programming aiming to take advantage of features of both paradigms. Aiming
for better programmability and performance gains, the object-oriented stream
programming (OOSP) is introduced as a solution. The benefits of OO and stream
programming are exemplified with XJava, a prototype OOSP language extending
Java. Other issues such as potential conflicts between tasks, run-time performance
tuning and correctness, allowing for interprocess application optimization and faster
parameter adjustments are also discussed.

The tenth chapter, ‘Software-based speculative parallelization’, by Tian et al.
studies the thread level speculative parallelization (SP) approach for parallelizing
sequential programs by exploiting dynamic parallelism that may be present in a
sequential program. As SP is usually applied to loops and performed at compile time,
it requires minimal help from the programmer who may be required to identify loops

�

� �

�

PREFACE xix

to which speculative parallelization is to be applied. The authors have discussed
several issues in SP, such as handling misspeculations, recovery capabilities and
techniques for identifying parallelizable regions. Some ongoing projects that focus
on SP techniques are also briefly discussed along with direction on future research
issues comprising energy efficiency in SP, using SP for heterogeneous processors
and 3D multicore processors, etc.

Schubert et al. in the eleventh chapter, ‘Autonomic distribution and adaptation’,
describe an approach for increasing the scalability of applications by exploiting inher-
ent concurrency in order to parallelize and distribute the code. The authors focus more
specifically on concurrency, which is a crucial part in any parallelization approach,
in the sense of reducing dependencies between logical parts of an application. To that
end, the authors have employed graph analysis methods to assess the dependencies
on code level, so as to identify concurrent segments and relating them to the specific
characteristics of the (heterogeneous, large-scale) environment. Issues posed to pro-
gramming multicore and many-core computers by the high degree of scalability and
especially the large variance of processor architectures are also discussed.

Part III: Programming Frameworks

The third part of the book deals with methodologies, frameworks and high program-
ming tools for constructing and testing software that can be ported between different,
possibly in themselves heterogeneous many-core systems under preservation of spe-
cific quantitative and qualitative performance aspects.

The twelfth chapter, ‘PEPPHER: Performance portability and programmability
for heterogeneous many-core architectures’, by Benkner et al. presents PEPPHER
framework, which introduces a flexible and extensible compositional metalanguage
for expressing functional and nonfunctional properties of software components, their
resource requirements and possible compilation targets, as well as providing abstract
specifications of properties of the underlying hardware. Also, handles for the run-time
system to schedule the components on the available hardware resources are provided.
Performance predictions can be (automatically) derived by combining the supplied
performance models. Performance portability is aided by guidelines and requirements
to ensure that the PEPPHER framework at all levels chooses the best implementation
of a given component or library routine among the available variants, including set-
tings for tunable parameters, prescheduling decisions and data movement operations.

Aldinucci et al. in the thirteenth chapter, ‘Fastflow: high level and efficient
streaming on multicore’, consider, as in other chapters, the difficulties of pro-
grammability of multicore and many-core systems, but from the perspective of
two interrelated needs, namely, that of efficient mechanisms supporting correct
concurrent access to shared-memory data structures and of higher-level program-
ming environments capable of hiding the difficulties related to the correct and
efficient use of shared-memory objects by raising the level of abstraction provided
to application programmers. To address these needs the authors introduce and
discuss FastFlow, a programming framework specifically targeting cache-coherent
shared-memory multicores. The authors show the suitability of the programming

�

� �

�

xx PREFACE

abstractions provided by the top layer of FastFlow programming model for
application programmers. Performance and efficiency considerations are also given
along with some real-world applications.

In the fourteenth chapter, Roma et al., ‘Programming framework for H.264/AVC
video encoding in multicore systems’, the authors bring the example of usefulness of
multicore and many-core computing for the video encoding as part of many multi-
media applications. As video encoding distinguishes for being highly computation-
ally demanding, to cope with the real-time encoding performance concerns, parallel
approaches are envisaged as solutions to accelerate the encoding. The authors have
presented a new parallel programming framework, which allows to easily and effi-
ciently implementing high-performance H.264/AVC video encoders. The modularity
and flexibility make this framework particularly suited for efficient implementations
in either homogeneous or heterogeneous parallel platforms, providing a suitable set
of fine-tuning configurations and parameterizations that allow a fast prototyping and
implementation, thus significantly reducing the developing time of the whole video
encoding system.

The fifteenth chapter, ‘Parallelizing evolutionary algorithms on GPGPU cards
with the EASEA platform’, by Maitre et al. presents the EASEA (EAsy Specification
of Evolutionary Algorithm) software platform dedicated to evolutionary algorithms
that allows to exploit parallel architectures, that range from a single GPGPU equipped
machine to multi-GPGPU machines, to a cluster or even several clusters of GPGPU
machines. Parallel algorithms implemented by the EASEA platform are proposed for
evolutionary algorithms and evolution strategies, genetic programming and multiob-
jective optimization. Finally, a set of problems is presented that contains artificial and
real-world problems, for which performance evaluation results are given. EASEA is
shown suitable to efficiently parallelize generic evolutionary optimization problems
to run on current petaflop machines and future exaflop ones.

Part IV: Testing, Evaluation and Optimization

The forth part of the book covers testing, evaluation and optimization of parallel
programs, with special emphasis for multicore and many-core systems. Techniques,
methodologies and approaches are presented along four chapters.

Farchi in the sixteenth chapter, ‘Smart interleavings for testing parallel
programs’, discusses the challenges of testing parallel programs that execute several
parallel tasks, might be distributed on different machines, under possible node or
network failures and might use different synchronization primitives. Therefore, the
main challenge is of parallel program testing resides in the definition and coverage of
the rather huge space of possible orders of tasks and environment events. The author
has presented state-of-the-art testing techniques including parallel bug pattern-based
reviews and distributed reviews. The later techniques enable the design of a test plan
for the parallel program that is then implemented in unit testing. Coping with the
scaling is envisaged as a main challenge for future research.

In the seventeenth chapter by Shafi, ‘Parallel performance evaluation and opti-
mization’, are covered important aspects of shared-memory parallel programming

�

� �

�

PREFACE xxi

that impact performance. Guidance and mitigation techniques for diagnosing perfor-
mance issues applicable to a large spectrum of shared-memory multicore programs in
order to assist in performance tuning are also given. Various overheads in parallel pro-
grams including thread overheads, cache overheads and synchronization overheads
are discussed and mitigation techniques analyzed. Also, optimization-related issues
such as nonuniform access memory and latency are described. The chapter overviews
diagnostic tools as critical means to achieving good performance in parallel applica-
tions.

The eighteenth chapter, ‘A methodology for optimizing multithreaded system scal-
ability on multicores’, by Gunther et al. presents a methodology which combines
controlled measurements of the multithreaded platform together with a scalability
modeling framework within which to evaluate performance measurements for mul-
tithreaded programs. The authors show how to quantify the scalability using the
Universal Scalability Law (USL) by applying it to controlled performance measure-
ments of memcached, J2EE and WebLogic. The authors advocate that system per-
formance analysis should be incorporated into a comprehensive methodology rather
than being done as an afterthought. Their methodology, based on the USL, empha-
sizes the importance of validating scalability data through controlled measurements
that use appropriately designed test workloads. Some results from quantifying GPU
and many-core scalability using the USL methodology are also reported.

Ozturk and Kandemir in the nineteenth chapter, ‘Improving multicore system
performance through data compression’, consider some important issues related to
accessing off-chip memory in a multicore architecture. Such issues include off-chip
memory latencies, large performance penalties, bandwidth limitations between the
multicore processor and of the off-chip memory, which may not be sufficient to
handle simultaneous off-chip access requests coming from multiple processors. To
tackle these issues the authors propose an on-chip memory management scheme
based on data compression, aiming to reduce access latencies, reduce off-chip band-
width requirements and increase the effective on-chip storage capacity. Results are
exemplified with empirical data from an experimental study. Building an optimization
framework to find the most suitable parameters in the most effective way is planned
for future research direction.

Part V: Scheduling and Management

The last part of the book deals with scheduling and resource management in multicore
and many-core computing systems. The chapters discuss many-core accelerators as
catalysts for HPC systems, nodes management, configuration, efficient allocation and
scheduling in multicore clusters as well as operating systems and scheduling support
for multicore systems and accelerator-based clusters.

In the twentieth chapter, ‘Programming and managing resources on accelerator
enabled clusters’, Rafique et al. study the use of computational accelerators as
catalysts for HPC systems and discuss the challenges that arise in accelerator-based
systems (specifically the case of accelerators on clusters), large-scale parallel
systems with heterogeneous components for provisioning general-purpose resources

�

� �

�

xxii PREFACE

and custom accelerators to achieve a balanced system. The study is exemplified
with a study on the implementation of MapReduce, a high-level parallel pro-
gramming model for large-scale data processing, on asymmetric accelerator-based
clusters. Empirical results are presented from an experimental test-bed using
three representative MapReduce benchmarks, which shed light on overall system
performance.

Muresano et al. in the twenty-first chapter, ‘An approach for efficient execu-
tion of SPMD applications on multicore clusters’, describe an efficient execution
methodology for multicore clusters, which is based on achieving a suitable applica-
tion execution with a maximum speedup achievable while the efficiency is maintained
over a defined threshold. The proposed methodology enables calculating the maxi-
mum number of cores that maintain strong application scalability while sustaining
a desired efficiency for SPMD applications. The ideal number of tiles that have to
be assigned to each core with the objective of maintaining a relationship between
speedup and efficiency can also be calculated. It was shown, by experimental evalu-
ation tests using various scientific applications, that the execution methodology can
reach an improvement of around 40% in efficiency.

The last chapter, ‘Operating system and scheduling for future multicore and many-
core platforms’, by Cucinotta et al. analyzes the limitations of the nowadays oper-
ating system support for multicore systems, when looking at future and emerging
many-core, massively parallel and distributed platforms. Therefore, most promising
approaches in the literature dealing with such platforms are discussed. The discussion
is mainly focused on the kernel architecture models and kernel-level mechanisms, and
the needed interface(s) toward user-level code and more specifically on the problem
of scheduling in multiprocessor and distributed systems, comprising scheduling of
applications with precise timing requirements.

�

� �

�

ACKNOWLEDGEMENTS

The editors of the book would like to sincerely thank the authors for their contribu-
tions and their patience during the preparation and publication of the book. We would
like to appreciate the reviewers’ constructive feedback that helped improve the con-
tent of the chapters. We would like to express our gratitude to Prof. Albert Y. Zomaya,
Founding Editor-in-Chief of the Wiley Book Series on Parallel and Distributed Com-
puting, for his encouragement and the opportunity to edit this book. The help and
support from Wiley editorial and publishing team are highly appreciated!

Fatos Xhafa’s work is partially supported by research projects from the Span-
ish Ministry for Economy and Competitiveness (MINECO) and the European Union
(FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R).

xxiii

�

� �

�

�

� �

�

ACRONYMS

ACML AMD core math library
ALU arithmetic logic unit
AMP asymmetric multicore processor
API application programming interface
ASF advanced synchronization facility
ASIC application-specific integrated circuit
ATLAS automatically tuned linear algebra software
BE best effort
BLAS basic linear algebra subprograms
BLI bilinear interpolation
BSP bulk synchronous parallel
CABAC context-adaptive binary arithmetic coding
CAS compare-and-swap
CAVLC context-adaptive variable-length coding
CBS constant bandwidth server

xxv

�

� �

�

xxvi ACRONYMS

ccNUMA cache-coherent nonuniform memory access architecture
Cell/B.E. cell broadband engine
CellSs cell superscalar
CG conjugate gradient
CMP chip multiprocessor
CorD copy or discard
COTS commercial off-the-shelf
CPU central processing unit
Ct intel C for throughput
cuBLAS CUDA BLAS
CUDA compute unified device architecture
D & C divide and conquer
DCT discrete cosine transform
DES data encryption standard
DMA direct memory access
DPB decoded picture buffer
DRAM dynamic random-access memory
DSL domain-specific language
DSP digital signal processor
DTMC dresden transactional memory compiler
EA evolutionary algorithm
EASEA EAsy Specification of Evolutionary Algorithms
EC2 elastic compute cloud
EIB element interconnect bus
ES evolution strategy
FFT fast fourier transform
FIFO first in, first out
FIR finite impulse response
FOSS free open-source software
FPGA field-programmable gate array
FS file system
GA genetic algorithm
GCC GNU compiler collection

�

� �

�

ACRONYMS xxvii

GOP group of pictures
GP genetic programming
GP general-purpose
GPGPU general-purpose computing on graphics processing units
GPMC general-purpose multicore
GPOS general-purpose operating system
GPP general-purpose processor
GPU graphics processing units
GPUSs GPU superscalar
HPC high-performance computing
HPL high-performance linpack
HT hyper-threading
HW hardware
ILP instruction-level parallelism
IOIF input/output interface
IPC interprocess communications
ISA instruction set architecture
J2EE Java 2 platform, enterprise edition
JVM Java virtual machine
KOPS kilo operations per second
KPN Kahn process networks
LAN local area network
LL/SC Load-linked/store-conditional
LOC lines of code
LS local storage
MB macroblock
MCD memcached
MCSTL multi-core standard template library
ME motion estimation
MFC memory flow controller
MG multigrid
MIC memory interface controller
MIMD multiple instruction, multiple data

�

� �

�

xxviii ACRONYMS

MKL math kernel library
MOEA multiobjective evolutionary algorithm
MP multiprocessor
MPI message passing interface
MPMC multiproducer/multiconsumer
MPMD multiple process, multiple data
MPSC multiproducer/single-consumer
MPSoC multiprocessor system-on-chip
NAS NASA Advanced Supercomputing
NB-FEB nonblocking full/empty bit
NFS network file system
NIC network Interconnect
NUMA nonuniform memory access
ODE ordinary differential equation
OmpSs openMP superscalar
OO object-orientation
OOSP object-oriented stream programming
OpenCL open computing language
OpenMP open multiprocessing
OS operating system
PCIe PCI express (peripheral component interconnect

express)
PEPPHER performance portability and programmability for

heterogeneous many-core architectures
PGAS partitioned global address space
POSIX portable operating system interface
PPE power processing element
PPU power processing unit
PS3 PlayStation 3
PSNR peak signal-to-noise ratio
PU processing unit
QoS quality of service
RAM random-access memory
RISC reduced instruction set computing

�

� �

�

ACRONYMS xxix

RT real time
RTOS real-time operating system
SAD sum of absolute differences
SDF synchronous data flow
SDK software development kit
SGL single global lock
SIMD single instruction, multiple data
SIMT single instruction, multiple threads
SISD single instruction, single data
SIU system interface unit
SM streaming multiprocessor
SMP symmetric multiprocessors
SMPSs SMP superscalar
SMT simultaneous multithreading
SoC system on chip
SP streaming processor
SP speculative parallelization
SPE synergistic processing element
SPM Scratchpad memory
SPMD single program, multiple data
SPSC single producer, single consumer
SPU synergistic processing unit
SSI single system image
ST supertile
STAPL Standard Template Adaptive Parallel Library
STL Standard Template Library
STM software transactional memory
SW Software
TBB Threading Building Blocks
TBD total bandwidth server
TLP thread-level parallelism
TLS thread-level speculation
TM transactional memory
TPA thread processor array

�

� �

�

xxx ACRONYMS

TPC thread processing cluster
UMA uniform memory access
USL universal scalability law
VLIW very long instruction word
VLSI very-large-scale integration

�

� �

�

PART I

FOUNDATIONS

�

� �

�

CHAPTER 1

MULTI- AND MANY-CORES,
ARCHITECTURAL OVERVIEW FOR
PROGRAMMERS

Lasse Natvig, Alexandru Iordan, Mujahed Eleyat, Magnus Jahre

and Jorn Amundsen

1.1 INTRODUCTION

1.1.1 Fundamental Techniques

Parallelism has been used since the early days of computing to enhance performance.
From the first computers to the most modern sequential processors (also called uni-
processors), the main concepts introduced by von Neumann [20] are still in use. How-
ever, the ever-increasing demand for computing performance has pushed computer
architects toward implementing different techniques of parallelism. The von Neu-
mann architecture was initially a sequential machine operating on scalar data with
bit-serial operations [20]. Word-parallel operations were made possible by using
more complex logic that could perform binary operations in parallel on all the bits in
a computer word, and it was just the start of an adventure of innovations in parallel
computer architectures.

3Programming Multicore and Many-core Computing Systems,
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

4 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

Prefetching is a 'look-ahead technique' that was introduced quite early and is
a way of parallelism that is used at several levels and in different components of
a computer today. Both data and instructions are very often accessed sequentially.
Therefore, when accessing an element (instruction or data) at address k, an auto-
matic access to address k+1 will bring the element to where it is needed before it
is accessed and thus eliminates or reduces waiting time. Many clever techniques
for hardware prefetching have been researched [5, 17] and can be exploited in the
context of the new multicore processors. However, the opportunities and challenges
given by the new technology in multicores require both a review of old techniques
and a development of new ones [9, 21]. Software prefetching exploits sequential
access patterns in a similar way but either it is controlled by the compiler
inserting prefetch operations or it can be explicitly controlled by the programmer [10].

Block access is also a fundamental technique that in some sense is a parallel op-
eration. Instead of bringing one word closer to the processor, for example, from
memory or cache, a cache line (block of words) is transferred. Block access also
gives a prefetching effect since the access to the first element in the block will bring
in the succeeding elements. The evolution of processor and memory technology during
the last 20 years has caused a large and still increasing gap between processor and
memory speed-making techniques such as prefetching and block access even more
important than before. This processor–memory gap, also called the memory wall, is
further discussed in Section 1.2.

Functional parallelism is a very general technique that has been used for a long
time and is exploited at different levels and in different components of almost all
computers today. The principle is to have different functional units in the processor
that can operate concurrently. Consequently, more than one instruction can be ex-
ecuted at the same time, for example, one unit can execute an arithmetic integer
operation while another unit executes a floating-point operation. This is to exploit
what has later been called instruction level parallelism (ILP).

Pipelining is one main variant of functional parallelism and has been used ex-
tensively at different levels and in different components of computers to improve
performance. It is perhaps most widely known from the instruction pipeline used in
almost all contemporary processors. Instructions are processed as a sequence of steps
or stages, such as instruction fetch, instruction decoding, execution and write back of
results. Modern microprocessors can use more than 20 pipeline stages so that more
than 20 instructions are being processed concurrently. Pipelining gives potentially a
large performance gain but also added complexity since interdependencies between
instructions must be handled to ensure correct execution of the program.

The term scalar processor denotes computers that operate on one computer word
at a time. When functional parallelism is used as described in the preceding text
to exploit ILP, we have a superscalar processor. A k-way superscalar processor
can issue up to k instructions at the same time (during one clock cycle). Also instruction
fetching, decoding and other nonarithmetic operations are parallelized by adding
more functional units.

INTRODUCTION 5

Figure 1.1 Flynn’s taxonomy.

1.1.2 Multiprogramming, Multiprocessors and Clusters

Multiprogramming is a technique invented in the 1960s to interleave the execution of
the programs and I/O operations among different users by time multiplexing. In this
way many users can share a single computer and get acceptable response time, and
the concept of a time-sharing operating system controlling such a computer was a
milestone in the history of computers.

Multiprocessors are computers with two or more distinct physical processors, and
they are capable of executing real parallel programs. Here, at the cost of additional
hardware, a performance gain can be achieved by executing the parallel processes in
different processors.

Many multiprocessors were developed during the 1960s and early 1970s, and in
the start most of the commercial multiprocessors had only two processors. Different
research prototypes were also developed, and the first computer with a large number
of processors was the Illiac IV developed at the University of Illinois [6]. The project
development stretched roughly 10 years, and the computer was designed to have 256
processors but was never built with more than 64 processors.

1.1.2.1 Flynn’s Taxonomy Flynn divided multiprocessors into four categories
based on the multiplicity of instruction streams and data streams – and this has
become known as the famous Flynn’s taxonomy [14, 15] illustrated in Figure 1.1.

A conventional computer (uniprocessor or von Neumann machine) is termed a
Single Instruction Single Data (SISD) machine. It has one execution or processing
unit (PU) that is controlled by a single sequence of instructions, and it operates on a
single sequence of data in memory. In the early days of computing, the control logic
needed to decode the instructions into control signals that manage the execution and
data traffic in a processor was a costly component. When introducing parallel pro-
cessing, it was therefore natural to let multiple execution units operate on different
data (multiple data streams) while they were controlled by the same single control
unit, that is, a single instruction stream. A fundamental limitation of these SIMD archi-

6 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

tectures is that different PUs cannot execute different instructions and, at the same
time, they are all bound to one single instruction stream.

SIMD machines evolved in many variants. A main distinction is between SIMD
with shared memory as shown in Figure 1.1 and SIMD computers with distributed
memory. In the latter variant, the main memory is distributed to the different PUs.
The advantage of this architecture is that it is much easier to implement compared
to multiple data streams to one shared memory. A disadvantage is that it gives the
need for some mechanism such as special instructions for communicating between
the different PUs.

The Multiple Instruction Single Data (MISD) category of machines has been
given a mixed treatment in the literature. Some textbooks simply say that no ma-
chines of this category have been built, while others present examples. In our view
MISD is an important category representing different parallel architectures. One of
the example architectures presented in the classical paper by Flynn [14] is very simi-
lar to the variant shown in Figure 1.1. Here a source data stream is sent from the
memory to the first PU, then a derived data stream is sent to the next PU, where it
is processed by another program (instruction stream) and so on until it is streamed
back to memory. This kind of computation has by some authors been called a soft-
ware pipeline [26]. It can be efficient for applications such as real-time processing
of a stream of images (video) data, where data is streamed through different PUs
executing different image processing functions (e.g. filtering or feature extraction).

Another type of parallel architectures that can be classified as MISD is systolic
arrays . These are specialized hardware structures, often implemented as an
application specific integrated circuit (ASIC), and use highly pipelined and parallel exe-
cution of specific algorithms such as pattern matching or sorting [36, 22].

The Multiple Instruction Multiple Data (MIMD) category comprises most con-
temporary parallel computer architectures, and its inability to categorize these has
been a source for the proposal of different alternative taxonomies [43]. In a MIMD
computer every PU has its own control unit that reads a separate stream of,
instructions dictating the execution in its PU. Just as for SIMD machines, a main
subdivision of MIMD machines is into those having shared memory or distributed
memory. In the latter variant each PU can have a local memory storing both
instructions and data. This leads us to another main categorization of multipro-
cessors, –shared memory multiprocessors and message passing multiprocessors.

1.1.2.2 Shared Memory versus Message Passing When discussing commu-
nication and memory in multiprocessors, it is important to distinguish the program-
mers view (logical view or programming model) from the actual implementation
(physical view or architecture). We will use Figure 1.2 as a base for our discussion.

The programmers, view of a shared memory multiprocessor is that all processes
or threads share the same single main memory. The simplest and cheapest way of
building such a machine is to attach a set of processors to one single memory thr-
ough a bus. A fundamental limitation of a bus is that it allows only one transaction
(communication operation or memory access) to be handled at a time. Consequently,
its performance does not scale with the number of processors. When multiproces-

INTRODUCTION 7

Figure 1.2 Multiprocessor memory architectures and programming models.

sors with higher number of processors were built – the bus was often replaced by
an interconnection network that could handle several transactions simultaneously.
Examples are a crossbar switch (all-to-all communication), multistage networks, hy-
percubes and meshes (see [23] Appendix E for more details). The development
of these parallel interconnection networks is another example of increased use of
parallelism in computers, and they are highly relevant also in multi- and many-core
architectures.

When attaching many processors to a single memory module through a parallel in-
terconnection network, the memory could easily become a bottleneck. Consequently,
it is common to use several physical memory modules as shown in Figure 1.2(a).
Although it has multiple memory modules, this architecture can be called a
centralized memory system since the modules (memory banks) are assembled as
one subsystem that is equally accessible from all the processors. Due to this uni-
formity of access, these systems are often called symmetric multiprocessors (SMP)
or uniform memory access (UMA) architectures. This programming model (SW)
using shared memory implemented on top of centralized memory (HW) is marked
as alternative (1) in Figure 1.2(c).

The parallel interconnection network and the multiplicity of memory modules
can be used to let the processors work independently and in parallel with different
parts of the memory, or a single processor can distribute its memory accesses across
the memory banks. This latter technique was one of the early methods to exploit
parallelism in memory systems and is called memory interleaving. It was motivated
by memory modules being much slower than the processors and was together with
memory pipelining used to speed up memory access in early multiprocessors [26]. As
seen in the next section, such techniques are even more important today.

The main alternative to centralized memory is called distributed memory and is
shown in Figure 1.2(b). Here, the memory modules are located together
with the processors. This architecture became popular during the late 1980s
and 1990s, when the combination of the RISC processor and VLSI technology made it
possible to implement a complete processor with local memory and network inter-
connect (NIC) on a single board. The machines typically ran multiprocessor variants
of the UNIX operating system, and parallel programming was facilitated by message
passing libraries, standardized with the message passing interface (MPI) [47]. Typ-
ical for these machines is that access to a processors local memory module is much

(a) (b) (c)

n n

8 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

faster than access to the memory module of another processor, thus giving the name
NonUniform Memory Access (NUMA) machines. This multiprocessor variant with
message passing SW and a physically distributed memory is marked as (2) in
the right part of Figure 1.2(c).

The distributed architectures are generally easier to build, especially for com-
puters designed to be scalable to a large number of processors. When the number of
processors grows in these machines either the cost of the interconnection network will
increase rapidly (as with crossbar) or it will become both more costly and slower (as
with multistage network). A slower network will make every memory access slower
if we use centralized memory.

However, with distributed memory, a slower network can to some extent be hid-
den if a large fraction of the accesses can be directed to the local memory module.
When this design choice is made, we can use cheaper networks and even a hierarchy
of interconnection networks, and the programmer is likely to develop software that
exploits the given NUMA architecture. A disadvantage is that the distribution and
use of data might become a crucial factor to achieve good performance – and in that
way making programming more difficult. Also, the ability of porting code to other
architectures without loosing performance is reduced.

Shared memory is generally considered to make parallel programming easier
compared to message passing, since cooperation and synchronization between the
processors can be done through shared data structures, explicit message passing code
can be avoided, and memory access latency is relatively uniform. In such distributed
shared memory (DSM) machines, the programmers view is one single address space,
and the machine implements this using specialized hardware and/or system software
such as message passing. The last alternative (3) – to offer message passing on top
of centralized memory-is much less common but can have the advantage of offer-
ing increased portability of message passing code. As an example, MPI has been
implemented on multicores with shared memory [42].

The term multicomputer has been used to denote parallel computers built of au-
tonomous processors, often called nodes [26]. Here, each node is an independent
computer with its own processor and address space, but message passing can be
used to provide the view of one distributed memory to the multicomputer program-
mer. The nodes normally also have I/O units, and today the mostly used term for
these parallel machines is cluster. Many clusters are built of commercial-off-the
-shelf (COTS) components,such as standard PCs or workstations and a fast local area
network or switch. This is probably the most cost-efficient way of building a large
supercomputer if the goal is maximum compute power on applications that are easy
to parallelize. However, although the network technology has improved steadily,
these machines have in general a much lower internode communication speed and
capacity compared to the computational capacity (processor speed) of the nodes. As
a consequence, more tightly coupled multiprocessors have often been chosen for the
most communication intensive applications.

1.1.2.3 Multithreading Multithreading is quite similar to multiprogramming,
that is, multiple processes or threads share the functional units of one processor by using

WHY MULTICORES? 9

overlapped execution. The purpose can be to execute several programs on one pro-
cessor as in multiprogramming or can be to execute a single application organized
as a multithreaded program (real parallel program). The threads in multithreading
are sometimes called HW threads, while the threads of an application can be called
SW threads or processes. The HW threads are under execution in the processor ,
while SW threads can be waiting in a queue outside the processor or even swapped
to disk.

When implementing multithreading in a processor, it is common to add internal
storage making it possible to save the current architectural state of a thread in a very
fast way, making rapid switches between threads possible.

A switch between processes, normally denoted context switch in operating sys-
tems terminology, can typically use hundreds or even thousands of clock cycles,
while there is multithreaded processors that can switch to another thread within one
clock cycle. Processes can belong to different users (applications) while threads be-
long to the same user (application). The use of multithreading is now commonly
called thread-level parallelism (TLP), and it can be said to be a higher level of paral-
lelism than ILP since the execution of each single thread can exploit ILP.

Fine-grained multithreading denotes cases where the processor switches between
threads at every instruction, while in coarse grained multithreading the processor
executes several instructions from the same thread between switches, normally when
the thread has to wait for a lengthy memory access. Both ILP and TLP can be
combined as in simultaneous multithreading (SMT) processors where the k issue
slots of a k-way superscalar processor can be filled with instructions from different
threads. In this way, it offers 'real parallelism' in the same way as a multiprocessor.
In a SMT processor, the threads will compete for the different subcomponents of
the processor, and this might at first sight seem to be a poor solution compared to a
multiprocessor where a process or thread can run at top speed without competition
from other threads. The advantage of SMT is the good resource utilization of such
architectures – very often the processor will stall on lengthy memory operations,
and more than one thread is needed to fill in the execution gap. Hyper-threading is
Intel’s terminology (officially called hyper-threading technology) and corresponds
to SMT [48].

1.2 WHY MULTICORES?

In recent years, general-purpose processor manufacturers have started to provide
chips with multiple processor cores. This type of processor is commonly referred
to as a multicore architecture or a chip multiprocessor (CMP) [38]. Multicores
have become a necessity due to four technological and economical constraints, and
the purpose of this section is to give a high-level introduction to these.

10 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

Technological trends for microprocessors. Simplified version of Figure 1 in [18].

High-performance single-core processors consume a great deal of power, and high
power consumption necessitates expensive packaging and powerful cooling solu-
tions. During the 1990s and into the 21st century, the strategy of scaling down the gate
size of integrated circuits, reducing the supply voltage and increasing the clock rate,
was successful and resulted in faster single-core processors. However, around year
2004, it became infeasible to continue reducing the supply voltage, and this made it
difficult to continue increasing the clock speed without increasing power dissipation.
As a result, the power dissipation started to grow beyond practical limits [18], and
the single-core processors were said to hit the power wall. In a CMP, multiple cores
can cooperate to achieve high performance at a lower clock frequency.

Figure 1.3 illustrates the evolution of processors and the recent shift toward
multicores. First, the figure illustrates that Moore’s law still holds since the number
of transistors is increasing exponentially. However, the relative performance, clock
speed and power curves have a distinct knee in 2004 and has been flat or slowly
increasing since then. As these curves flatten, the number of cores per chip curve
has started to rise. The aggregate chip performance is the product of the relative
performance per core and the number of cores on a chip, and this scales roughly
with Moore’s law. Consequently, Figure 1.3 illustrates that multicores are able to
increase aggregate performance without increasing power consumption. This expo-
nential performance potential can only be realized for a single application through
scalable parallel programming.

1.2.2 The Memory Wall

Processor performance has been improving at a faster rate than the main memory
access time for more than 20 years [23]. Consequently, the gap between processor
performance and main memory latency is large and growing. This trend is referred
to as the processor–memory gap or memory wall. Figure 1.4 contains the classical
plot by Hennessy and Patterson that illustrates the memory wall. The effects of the

Figure 1.3

1.2.1 The Power Wall

WHY MULTICORES? 11

The processor–memory gap (a) and a typical memory hierarchy (b).

memory wall have traditionally been handled with latency hiding techniques such as
pipelining, out-of-order execution and multilevel caches. The most evident effect
of the processor–memory gap is the increasing complexity of the memory hierarchy,
shown in Figure 1.4(b). As the gap increased, more levels of cache were added.
In recent years, it has been common with a third level of cache, L3 cache. The
figure gives some typical numbers for storage capacity and access latency at the
different levels [23].

The memory wall also affects multicores, and they invest a significant amount
of resources to hide memory latencies. Fortunately, since multicores use lower
clock frequencies, the processor–memory gap is growing at a slower rate for multi-
cores than for traditional single cores. However, aggregate processor performance
is growing at roughly the same rate as Moore’s Law. Therefore, multicores to
some extent transform a latency hiding problem into an increased bandwidth de-
mand. This is helpful because off-chip bandwidth is expected to scale significantly
better than memory latencies [29, 40]. The multicore memory system must pro-
vide enough bandwidth to support the needs of an increasing number of concurrent
threads. Therefore, there is a need to use the available bandwidth in an efficient
manner [30].

1.2.3 The ILP Wall and the Complexity Wall

It has become increasingly difficult to improve performance with techniques that ex-
ploit ILP beyond what is common today. Although there is a considerable ILP
available in the instruction stream [55], extracting it has proven difficult
with current process technologies [2]. This trend has been referred to as the ILP wall.
Multicores alleviate this problem by shifting the focus from transparently extracting
ILP from a serial instruction stream to letting the programmer provide the
parallelism through TLP.

Designing and verifying a complex out-of-order processor is a significant task.
This challenge has been referred to as the complexity wall. In a multicore, a proces-
sor core is designed once and reused as many times as there are cores on the chip.

(a) (b)

Figure 1.4

12 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

These cores can also be simpler than their single-core counterparts. Consequently,
multicores facilitate design reuse and reduce processor core complexity.

1.3 HOMOGENEOUS MULTICORES

Contemporary multicores can be divided into two main classes. This section intro-
duces homogeneous multicores that are processors where all the cores are similar,

they have the same amount of cache resources. Conceptually, these multicores are
quite similar to SMPs. The section starts by introducing a possible categorization
of such multicores, before we describe a selected set of modern multicores
at a high level. All of these are rather complex products, and both the scope
of this chapter and the space available make it impossible to give a complete
and thorough description. Our goal is to introduce the reader to the richness
and variety of the market – motivating for further studies. The other mainclass,
heterogeneous multicores, is discussed in the next section. A tabular summary
of a larger number of commercial multicores can be found in a recent paper by
Sodan et-al. [48].

1.3.1 Early Generations

In the paper Chip Multithreading: Opportunities and Challenges by Spracklen and
Abraham [50], the authors introduced a categorization of what they called chip multi

core architectures. As shown in Figure 1.5, the first generation multicores typically
had processor cores that did not share any on-chip resources except the off-chip
datapaths. It was normally two cores per chip and they were derived from earlier
uniprocessor designs. Also the PUs used in the second generation multicores
were from earlier uniprocessor designs, but they were more tightly integrated
through use of a shared L2 cache. It could be more than two processors, and the
shared L2 made intracore communication very fast. The cores sometimes run the
same program (SPMD), so the demand for cache capacity for storing instructions can
be reduced. Both these advantages of the shared L2 cache can reduce the demand
of off-chip bandwidth. However, more than one core using the L2 cache introduce
new challenges such as cache partitioning, fairness and quality of service (Qos)
[12, 11, 30].

The third generation multicores can be said to be those using cores that are de-
signed from the ground up and optimized to sit in a multicore processor. These may
typically be simpler cores running at a lower frequency and hence with a much lower
power consumption. Further, they are typically using SMT. Olukotun and Hammond [37]

.call these three generations for simple CMP, shared-cache CMP and multithreaded
shared-cache CMP, respectively.

that is, they execute the same instruction set, they run on the same clock frequency and

threaded processors (CMT processors) that also can be used to categorize multi-

HOMOGENEOUS MULTICORES 13

Multicore processor generations: first (a), second (b), third (c).

1.3.2 Many Thin Cores or Few Fat Cores?

The choice between a few powerful and many less powerful processors or cores
has been discussed widely both during the multiprocessor era and the multicore
era. In his classical paper Amdahl [3] gave a simple formula explaining how the
serial fraction of an application severely constraints the maximum speedup that can be
achieved by a multiprocessor. The serial fraction is a code that cannot be parallelized,
and Amdahl’s law might motivate for having at least one core that is faster than the
others, that is, go for a heterogeneous multicore. For executing the so-called embarrassingly
parallel applications, that is, applications that are very easy to parallelize since they
have no or a very tiny serial part – a multicore with a large number of small cores
might be most efficient, especially if power efficiency is in focus. However, if there
is significant serial fraction, a smaller number of more powerful cores might be best.
A recent paper by Hill and Marty [24] titled Amdahl’s Law in the Multicore Era
demonstrates the influence of Amdahl’s law on this trade-off in an elegant way.

1.3.3 Example Multicore Architectures

1.3.3.1 IBM(R) Power(R) Performance Optimization With Enhanced RISC
(POWER) is an IBM processor architecture for technical computing workloads im-
plementing superscalar RISC. The POWER architecture was the starting point in
1991 of the Apple R©, IBM and Motorola R© (now Freescale Semiconductor R©) joint
effort to develop a new RISC processor architecture, the PowerPC R© architecture
[49]. The design goals of PowerPC were to create a single chip providing multipro-
cessing extensions and 64-bit support (addressing and operations). It was later ex-
panded with vector instructions, originally trademarked AltiVecTM. In 2006, POWER
and PowerPC was unified into a new brand, the Power Architecture, owned by
Power.org.

The POWERn series of processors are IBM’s main product line implementing
the Power architecture. The first product in this series was the multichip, super-

(a) (b) (c)

Figure 1.5

14 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

scalar and out-of-order POWER1 processor, introduced in 1990. The POWER7 R©,
introduced in 2010, is the latest development in this series and is also the pro-
cessor to power the first DARPA High Productivity Computing System (HPCS)
petaflops computer. A stripped-down POWER7-core is expected to be used in the
Blue Gene R©/Q system, replacing the BlueGene/P massively parallel supercomputer
in 2012.

The POWER7 processor provides 4, 6 or 8 cores per chip, each with 4-way hard-
ware multithreading (SMT) [1]. A core might under software control be set to

Power 7 multicore, simplified block diagram.

operate at different degrees of multithreading from single-threaded mode (ST) to
4-ways SMT.

The chip is implemented in 45 nm technology, with cores running at a nominal
frequency of 3.0 – 4.14 GHz, depending on the configuration. The cache hierarchy
consists of 32K 4-way L1 data and instruction caches, a 256K 8-way L2 cache and
32 MB shared L3 cache, partitioned into 8 4 MB 8-way partitions. The L3 cache is
implemented with embedded DRAM technology (eDRAM). The chip is organized
as 8 cores (called chiplets), each containing the PU, L1 and L2 caches and
one of the 8 L3-cache partitions (Fig. 1.6). A consequence of this design is
that the L3 has a nonuniform latency. A pair of DDR3 DRAM controllers, each
with four 6.4 GHz channels provides a sustained main memory bandwidth of over
100 GB/s.

In addition to POWER6 R© VMX (AltiVec) and decimal floating point (DFU), the
POWER7 core provides the new VSX vector facility. VSX is mainly an extension for
64-bit vector floating-point arithmetic; it does not provide 64-bit integer arithmetic
like Intel R© and AMD processors.

Energy efficiency is implemented at the core or chiplet level where each core
frequency might be individually changed. The modes sleep, nap and turbo allows
dynamic voltage and frequency adjustment, from off, to –50% and +10% for maxi-
mum performance.

×

Figure 1.6

HOMOGENEOUS MULTICORES 15

Figure 1.7 ARM Cortex A15, simplified block diagram.

ARM became one
of the first companies to implement multicore technology with the launch of the
ARM11TM MPCoreTM processor in 2004. The latest version of the ARM MPCore
technology is the ARM CortexTM-A15 MPCore processor, targeting markets ranging
from mobile computing, high-end digital home, servers and wireless infrastructure.

The processor can be implemented to include up to four cores (see Figure 1 7) The. .
multicore architecture enables the processor to exceed the performance of single

Every Cortex-A series processor has power management features including dynamic
voltage and frequency scaling and the ability for each core to go independently into
standby, dormant or power off energy management states. Like its predecessors
Cortex-A15 is based on the ARMv7A processor architecture giving full application
compatibility with all ARM Cortex-A processors. This compatibility enables access
to an established developer and software ecosystem.

Each processor core has an out-of-order superscalar pipeline and low-latency ac-
cess through a bus to a shared L2 cache that can be up to 4 MB. The cores provide
floating-point support and special SIMD instructions for media performance [4].

1.3.3.3 Sun UltraSPARC(R) T2 Sun’s UltraSPARC T2 is a homogeneous
multithreaded multicore specially designed to exploit the TLP present
in almost every server type application. Sun introduced its first multicore,
multithreaded microprocessor the UltraSPARC T1 (codenamed Niagara) in Novem-
ber 2005 [33]. The UltraSPARC T1 uses the SPARC V9 R© instruction set and was
available with 4, 6 and 8 processing cores, each able to execute four threads simul-
taneously [48]. The UltraSPARC T2 includes a network interface unit and a PCI
express interface unit, and this is why the T2 is sometimes referred to as a system
on chip [45]. It was available in October 2007 and produced in 65 nm technology.

The UltraSPARC T2 is comprised of 8 64-bit cores, and each core can execute 8 in-
dependent threads. Thus, T2 is able to execute 64 threads simultaneously. The cores
are connected by a crossbar to an 8-banked shared L2 cache, 4 DRAM controllers and
2 interface units (Fig. 1.8).

In order to minimize power requirements and to meet temperature constraints, the
UltraSPARC T2 uses a core frequency of only 1.4 GHz. A complete implementation
of the UltraSparc T2 processor in VerilogTM (a HW description language) along

-core high-performance embedded devices while consuming significantly less power.

1.3.3.2 ARM(R) Cortex -A15 MPCoreTM ProcessorTM

16 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

Figure 1.8 Sun UltraSPARC T2 architecture, simplified block diagram.

with tools is freely available from the OpenSPARC R© project [54]. This gives the
interested researcher a rare opportunity to study the inner details of a modern multi-
core processor.

In autumn 2010, Oracle launched the SPARC T3, previously known as Ultra-
SPARC T3. It has 16 cores each capable of 8-way SMT giving a total of 128-way
multithreading [39].

1.3.3.4 AMD Istanbul The Istanbul processor is the first 6-core AMD OpteronTM

processor and is available for 2-, 4- and 8-socket systems, with clock speeds rang-
ing from 2.0 to 2.8 GHz. It was introduced in June 2009 and is manufactured in a
45 nm process and based on the AMD 64-bit K10 architecture. The K10 architecture
supports the full AMD64 instruction set and SIMD instructions for both integer and
floating-point operations [25].

Figure 1.9 shows a simplified block diagram. The processor has six cores, three
levels of cache, a crossbar connecting the cores, the system request interface, the
memory controller and the three HyperTransport TM 3.0 links. The memory con-
troller supports DDR2 memory with a bandwidth of up to 12.8 GB/s. In addition,
the HyperTransport 3.0 links provide an aggregate bandwidth of 57.6 GB/s and are
used to allow communication between different Istanbul processors.

The 6 MB of L3 cache is shared among the 6 cores: there are a 512 KB L2 cache
per core and 64 KB L1 data cache and a 64 KB L1 instruction cache for each core.

1.3.3.5 Intel(R) Nehalem In November 2008, with the release of CoreTM i7,
Intel introduced the new microprocessor architecture Nehalem [28]. The Nehalem
architecture (Fig. 1.10) has been used in a large number of processor variants in the
mobile, desktop and servers markets and is mainly produced in 45 nm technology.
The core count is typically 2 for mobile products, 2 – 4 cores for desktop and 4,

HOMOGENEOUS MULTICORES 17

AMD Opteron Istanbul processor, simplified block diagram.

Figure 1.10 Intel Nehalem architecture – 4 cores, simplified block diagram.

6 or 8 for servers. At the high end, the Nehalem architecture shrinked to 32 nm
technology (also called Westmere) has been announced to provide a 10-core chip.

Intel introduced with Nehalem the turbo boost technology (TBT) to allow ad-
justments of core frequency at runtime [27]. Considering the number of active cores,
estimated current usage, estimated power requirements and CPU temperature, TBT
determines the maximum frequency that the processor can run at. Core frequency
can be increased in steps of 133 MHz and to a higher level if few cores are active.
This allows for a boost in performance while still maintaining the power envelope.
To save energy, it is possible to power down cores when they are idle, but when
needed again they are turned on, and the frequency of the processor is reduced ac-
cordingly [52].

The QuickPath interconnect (QPI) was introduced in Nehalem to provide high
speed, point-to-point connections between all cores, the I/O hub, the memory con-
troller and the large shared L3 cache (Fig. 1.10). The L3 cache is inclusive. Ne-
halem-based processors have up to 3.5 times more memory bandwidth than previous
generation processors.

Figure 1.9

18 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

The Nehalem architecture reintroduced hyper-threading, a technique that allows
each core to run two threads simultaneously, improving on resource utilization and
reducing latency. Although it was introduced in Intel processors as early as in 2002,
it was not used in the Intel core architecture that preceded Nehalem.

For faster computation of media applications, the Nehalem architecture supports
the SSE4 instruction set introduced in the previous generation processors. SSE is
an abbreviation for streaming SIMD extensions and is an SIMD instruction set ex-
tension to the 86 architecture that is used by compilers and assembly coders for
vectorization.

1.3.3.6 Tilera(R) TILE64 TM Tilera [53] has developed and is currently ship-
ping the TILEPro36TM and TILEPro64TM series of embedded many-core processors.
The Tilera devices may contain up to 64 individual 32-bit processors on a single sil-
icon device and are targeted at embedded markets which require programmability,
high performance and demanding power constraints. All Tilera devices contain nu-
merous integrated IO interfaces, allowing system designers to save board real estate
and complexity by integrating the IO and processing into a single device. Current
target markets for the TILEProTM family of devices include video and network pro-
cessing. The TILEPro family of devices is fabricated in TSMC’s 90 nm technology
and comes in 700 and 866 MHz frequency grades.

Each Tilera device contains multiple individual processor cores. Each core sup-
ports the TILE instruction set architecture (ISA), a Tilera proprietary ISA sharing
many similarities with modern RISC ISAs. The Tilera ISA is a 3-wide VLIW for-
mat, where each 64-bit VLIW instruction encodes three operations. Correspondingly,
there are three execution pipelines per processor core, two arithmetic pipelines and
one load/store pipeline. When running at 866 MHz, a TILEPro64 is capable of 166
billion 32-bit operations per second. Additionally, the Tilera ISA contains SIMD op-
erations, enabling 32b, 16b and 8b arithmetic. The physical address of the TILEPro
devices is 36 bits, giving a TILEPro device access to up to 64 GB of memory. The
TILEPro processor is an in-order machine, issuing 64-bit VLIW instructions in pro-
gram order. However, the TILEPro cache subsystem is out of order, allowing the
processor to continue to fetch, issue and execute instructions in the presence of mul-
tiple cache misses. The TILE cores do not have HW FPU support.

The TILEPro device is a complete system on a chip, containing multiple inte-
grated IO interfaces. TILEPro64 contains four integrated DDR2 memory controllers,
capable of supporting 800 MHz operation. Memory space may be configured to be
automatically interleaved across the four controllers or programmatically assigned
on a page-by-page mapping from page to controller.

A TILEPro processor core contains a 16 KB L1 instruction cache, an 8 KB L1 data
cache and a 64 KB unified L2 cache (used for both instructions and data). All pro-
cessor cores on a TILEPro device are cache coherent, enabling running of standard,
shared-memory programs such as POSIX threads across the entire device. The cores
may be configured into multiple coherence domains, allowing a single SMP Linux
image to run across all cores within the system, or only a subset. Tilera hypervisor
technology enables the ability to run multiple Linux images in parallel. Coherency

×

HETEROGENEOUS MULTICORES 19

is maintained between the processor cores via a unique directory-based coherency
protocol, called dynamic distributed cache (DDC). The DDC protocol tracks ad-
dress sharers within the system via a distributed directory and maintains coherence
by properly invalidating/updating shared data upon modification. Additionally, the
Tilera cache subsystem provides the ability for one core’s L2 cache to serve as a
backing L3 cache for another core within the system. In this context, the L2 storage
structures may contain both L2 and L3 cache blocks.

The TILEPro processor cores communicate with each other and the IO inter-
faces via multiple on-chip, packet-switched networks. These networks, called the
iMeshTM, are proprietary interconnects used to carry communication within the system
such as memory read requests, memory read responses, tile-to-tile read responses,
etc. The networks are configured in a mesh topology, providing performance
scalability as the number of cores is increased. The TILEPro devices contain three
separate mesh networks for memory and cache communication, as well as two
networks for user-level messaging. These networks are synchronous with the pro-
cessor cores and run at the same frequency, and the latency for a message through
the mesh networks is one processor cycle per node.

1.4 HETEROGENEOUS MULTICORES

This section introduces heterogeneous multicores – processors where one or some
of the cores are significantly different than the others. The difference can be as funda-
mental as the instruction set used, or it can be the processor speed or cache/memory
capacity of the different cores. We start by introducing some of the main types of het-
erogeneity, before we present three different contemporary products in this category
of processors.

1.4.1 Types of Heterogeneity in Multicores

Single-ISA heterogeneous multicores are processors where all the cores have the
same ISA, that is, they can execute the same instructions, but they can have
different clock frequencies and/or cache sizes. Also the cores might have,
different architectures implementing the same ISA. Typically there is one
or a few high-performance cores (fat cores) that are superscalar out-of-order
processors and a larger number of smaller and simpler cores that can be in-order
processors with a shorter pipeline [34]. As discussed in Section 1.3.2, this can be
beneficial for speeding up applications where there is a significant part of the com-
putation that is serial or if some of the threads put more demand on the memory
system. This kind of multicores is called by some authors asymmetric multicore
processors (AMP). They have gained increased interest lately since they potentially
can be more energy efficient than conventional homogeneous multicores [13].

Multiple-ISA multicores such as the Cell/BE TM microprocessor presented in
Section 1.4.2.1 have two or more different instruction sets. They require a toolchain
for each core type and are in general harder to program. In addition, many of these

20 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

processors, including CellTM, have explicitly managed memory hierarchies where
the programmer is responsible for placement and transfer of data. This will in general
increase programmer effort and code complexity compared to a cache-based system
that are automatic and hidden from the programmer. Recent research has shown that
comparable performance can be achieved through programming environments where
compiler and runtime support implicitly manage locality [44].

In the embedded systems market, there is a long tradition of using highly hetero-
geneous multicores with different kinds of simple or complex cores and HW units
integrated on a single chip. These multiprocessor system-on-chip (MPSoC) sys-
tems often achieve a very high level of power efficiency through specialization [35],
but again the price to pay is often more difficult programming. MPSoC systems
have been available as commercial products for longer than multicores, and some
few MPSoCs are homogeneous. We refer the reader to a recent survey of MPSoCs
by Wolf, Jerraya and Martin for this rich branch of multicore processors [57].

Graphics processing units (GPU) and accelerators are also considered examples
of heterogeneous multicores, even though in most cases they in general need a host
processor to be able to run a complete application. The principle of hardware ac-
celeration – adding a special purpose HW unit to off load the processor or to speed
up computation by doing specific functions in HW instead of software - has a long
history. About 30 years ago, a common practice for speeding up floating-point op-
erations in a PC was to add a floating-point coprocessor unit (FPU). Today , the
inclusion of different accelerator subunits in a CMP is becoming increasingly
popular, and IBM has recently announced a processor architecture where processing
cores and hardware accelerators are closely coupled [16].

Similarly, the GPU was added to accelerate the processing of graphics. GPUs
have during the last two decades been through a substantial development from spe-
cialized units for graphics processing only to more programmable units being
popular for general-purpose GPU (GPGPU). Their programming has become
substantially improved through languages such as CUDATM and OpenCLTM [32, 8].

1.4.2 Examples of Multicore Architectures

1.4.2.1 The CellTM Processor Architecture The Cell Broadband EngineTM

(Cell/BE) is a heterogeneous processor that was jointly developed by Sony R©, Tos-
hiba R© and IBM R©. As shown in Figure 1.11, it is mainly composed of one main core
(power processing element (PPE)), 8 specialized cores (called synergistic processing
elements (SPEs)), an on-chip memory controller and a controller for a configurable
I/O interface, all linked together by an element interconnection bus (EIB) [46]. The
main core is a 64-bit Power processor with vector processing extensions and two lev-
els of hardware-managed caches, a 32 KB L1 data cache and a 512 KB L2 cache. In
addition, it is a dual-issue, dual-threaded processor that has a single-precision peak
of 25.6 Gflops/s and a double-precision peak of 6.4 Gflops/s.

The 8 SPEs are SIMD cores (SPU) which each possess a 256 KB local store (LS)
for storing both data and instructions, a 128 128-bit register file and a memory
flow controller (MFC). MFC has the capability to move code and data between main

×

