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Preface

Electromagnetic Compatibility (EMC) as a topic has become very important
in the last few decades. The vitality of EMC nowadays can be seen in many
academic activities, as there are many universities worldwide offering under-
graduate or graduate EMC courses, either obligatory or optional. Moreover,
today, in the world of wireless communication and Internet of Things (IoT),
many electronic products, devices, or systems are required to pass immunity
and emission testing regarding EMC standards. Accordingly, there are dozens
of books related to various EMC aspects currently available from major sci-
entific publishers. Nevertheless, books rarely deal with EMC computational
models and related numerical methods.

The previous book by Dragan Poljak, Advanced Modeling in Computational
Electromagnetic Compatibility, was published by Wiley in February 2007. The
present book authored by Dragan Poljak and Khalil El Khamlichi Drissi pro-
vides an overview of the further advances in the area of computational electro-
magnetics arising from a decade of very close and highly intensive collaboration
between the Dragan research group from the University of Split, Croatia, and
the Khalil group from Universitė Clermont Auvergne, France.

This rather fruitful collaboration resulted in successful joint projects and
numerous journal and conference papers. The beauty of this collaboration
reflects in merging two research teams tackling similar problems with dif-
ferent approaches related to antenna theory models (Dragan group) and
transmission line methods (Khalil group). Furthermore, there is the benefit of
discussing different solution methods related to boundary integral equation
techniques and finite difference techniques. Moreover, throughout the book a
trade-off between the different formulations and numerical solution methods
is provided.

While the previous Wiley book by Dragan was primarily focused on aca-
demic examples, the present book by Dragan and Khalil deals with many
practical engineering problems. The most significant topics covered in the
book are related to realistic antenna systems, such as antennas for air traffic
control or ground penetrating radar (GPR) antennas, grounding systems,
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such as grounding systems for wind turbines and biomedical applications
of electromagnetic fields, such as transcranial magnetic stimulation. The
book includes a large number of illustrative computational examples and
reference list at the end of each chapter. Rigorous theoretical background and
mathematical details of various formulations and solution methods being used
throughout the book are presented in detail.

The authors hope that the present book gives not only a useful description of
their expertise related to computational EMC but also updated information on
the latest advances in this area.

The book is divided in two parts. The first part deals with electromagnetic
field coupling to thin wire configurations of an arbitrary shape covering the
following topics: introductory aspects of computational electromagnetics,
antenna theory versus transmission line approximation, electromagnetic
field coupling to overhead and buried wires, transient analysis of grounding
systems and lightning channel modeling. An important goal of this part of
the book is to provide a trade-off between a highly efficient transmission line
approach, rather widely used by EMC community researchers and engineers,
and antenna theory models providing the most rigorous analysis of high
frequency (HF) and transient phenomena.

The second part of the book deals with advanced modeling of bioelectromag-
netics phenomena featuring the method of moments (MoM), boundary ele-
ment method (BEM) and hybrid finite element method (FEM)/ BEM, respec-
tively. Of particular interest is not only human exposure to low frequency (LF)
and HF electromagnetic fields but also some biomedical applications of elec-
tromagnetic fields.

We hope that this book will be useful material for undergraduate, graduate
and postdoc students to learn about advanced EMC computational models and
that it will also enable engineers in industry to solve some demanding practi-
cal problems. We also think that the book could be used for various university
courses involving not only computational EMC models but also computational
electromagnetics in general or numerical modeling in engineering itself.

The book requires a general background in electrical engineering, involving
mainly basic electromagnetics. Fundamental EMC concepts such as numerical
modeling principles are given in this book. Thus, the book is convenient for
students, specialists, researchers and engineers.

To sum up, we are glad we have managed to compose this material stem-
ming from more than a decade of very intensive collaboration in the areas of
EMC and bioelectromagnetics. Of course, there are many rather challenging
problems we plan to deal with together in days to come.

Split, Croatia–Clermont-Ferrand
France, June 2017 Dragan Poljak

Khalil El Khamlichi Drissi
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Arbitrary Shape
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1

Computational Electromagnetics – Introductory Aspects

This introductory section deals with the character of a physical model and
the corresponding mathematical method to solve the problem of interest.
The models are characterized to be simplified imaginary simulations of the
real-world systems one attempts to understand. However, models include
only those properties and relationships required to understand aspects of real
systems that are of interest at the given moment, i.e. those aspects of real
systems one knows, or those one is aware of after all. The rest of the informa-
tion about a real system is simply neglected. Furthermore, this introductory
section discusses the fundamental framework to describe electromagnetic
phenomena – Maxwell’s equations, wave equations, and conservation laws.

1.1 The Character of Physical Models Representing
Natural Phenomena

1.1.1 Scientific Method, a Definition, History, Development … ?

Scientists create tools, that’s what they do...
C.P. Snow

Science could be considered as an entire set of facts, definitions, theorems,
techniques, and relationships, and is tested on phenomena in the real,
objective, and external world and, itself, has many elements of imagination,
logic, creativity, judgment, metaphor, and instrumentations.

The essence of science is definitely more in research methods and specific way
of reasoning, and less in particular facts and results.

Scientific insight starts with observing a certain phenomenon, and then
organizing the collected observations in a sort of hypothesis that is tested on
additional observations, and if necessary, modified. Then, predictions based
on these modified hypotheses are carried out, and some experiments are

Computational Methods in Electromagnetic Compatibility: Antenna Theory Approach versus Transmission line Models,
First Edition. Dragan Poljak and Khalil El Khamlichi Drissi.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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performed to test the predictions. When the range of predictions provided by
the hypothesis is considered to be satisfactory for the scientific community,
the hypothesis is referred to as a scientific theory or natural law.

This rather successful methodology, more than four centuries old, is called
science or scientific method.

Scientific method was born in the beginning of the seventeenth century with
Galileo having abandoned Aristotle’s theory of motion. It was Galileo who came
up with the principle of the relativity of motion and with the statement that only
change in motion required force.

At the same time, a separation of science from philosophy began in the form
of shift from consideration of the nature of phenomenon (essence) to explana-
tion of the behavior of a phenomenon. Namely, the Aristotelian essentialistic
approach to the explanation of natural phenomena was replaced by the math-
ematical predictive approach. Instead of asking the question why scientists
started to ask how [1]. As once Kelvin pointed out – to know something about
phenomena means to measure them and express them in terms of numbers.

What is considered to be one of the crucial issues in the analysis of a natural
phenomenon is related to the development and application of a physical model
enabling one to predict the behavior of a system with a certain level of accuracy.

One of the crucial aspects of the scientific method and related technological
progress is definitely the physical model of a natural phenomenon of interest.

1.1.2 Physical Model and the Mathematical Method to Solve
the Problem – The Essence of Scientific Theories

Therefore, the goal of the scientific method is to establish the model of a
physical phenomenon and to develop related mathematical methods for
the analysis of the given problem.

Various theoretical and experimental procedures are used while developing
a model. Models are simplified imaginary simulations of the natural systems
one attempts to understand and include only those properties and relationships
required to understand aspects of real systems that are currently of interest, i.e.
those aspects one knows, or, those one is aware of after all. The rest of the details
about a real system are simply neglected from a model.

The concept of physical model represents the essence of reductionistic
approach within the scientific method. How much the model of a given physi-
cal phenomenon is satisfactory depends on what is required from the model. In
the language of mathematics, almost all problems arising in electromagnetics
can be formulated in terms of differential, integral, or variational equations.

Generally, there are two basic approaches to solving problems in electromag-
netics – the differential (field) approach and the integral (source) approach.
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The field approach deals with a solution of a corresponding differential
equation with associated initial and boundary conditions, specified at a
boundary of a computational domain. Solving some differential equation type
one obtains the spatial and temporal distribution of the corresponding field or
potential.

Historically, this approach has been developed by Boskovic, Faraday,
Maxwell, and others, and is generally very useful for handling the problems
with closed domains and clearly specified boundary conditions, the so-called
interior field problems.

The source or integral approach is based on the solution of a corresponding
integral equation that yields the distribution of electromagnetic filed sources in
terms of charge or current distribution, respectively.

In the past, this approach was promoted by Franklin, Cavendish, and Ampere,
among others, and is convenient for the treatment of the exterior (unbounded)
field problems.

Thus, a classical boundary-value problem can be formulated in terms of the
operator equation:

L(u) = p (1.1)

on the domain Ω with conditions

F(u) = q|Γ (1.2)

prescribed on the boundary Γ.
L is the linear differential operator, u is the solution of the problem, and p

is the excitation function representing the known sources inside the domain.
Note that u usually represents potentials (such as scalar potential 𝜑) or fields
(such as electric field E).

The character of the differential approach is depicted in Figure 1.1 [2].
Methods for the solution of the interior field problem are generally referred

to as differential methods or field methods.

L(u) = p

F(u) = q∣Γ

Ω

p–known sources inside the domain

Γ

Figure 1.1 Differential approach concept.
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T (observation point)

g(u) = h

Figure 1.2 Integral approach concept.

Essentially, a differential approach isolates the calculation domain from the
rest of the world. The interaction of the domain of interest with the rest is
expressed (de facto replaced) by a set of prescribed boundary conditions.

If instead of differential operator L one considers an integral operator g, then
unknowns are related to field sources (charge or current densities, respectively),
distributed along the boundary Γ′. Namely, it can be written as

g(u) = h, (1.3)

where h denotes the excitation function.
Figure 1.2 illustrates the character of the integral approach [2].
Solution methods for the exterior field problem are generally referred to

as integral methods or source methods. In this case, the domain of interest
is unbounded (infinite). However, the source distribution represents all that
exists, i.e. all interactions coming from the outer world are neglected. For
example, when a basic electromagnetic model is developed for a dipole antenna
in engineering electromagnetics the antenna is assumed to be insulated in free
space [2].

Finally, for dynamic phenomena the initial condition of a physical system
has to be considered. Basically, any law of nature represents physical states in
a mathematical form (written in terms of differential, integral, or variational
equations). Thus, a prescribed initial condition (behavior of the considered
physical quantity at t = 0) by definition implies that nothing exists earlier than
t = 0. This is also considered to be the origin of time asymmetry in physical laws.

Generally, techniques for the solution of operator equations can be referred
to as analytical, numerical, or hybrid methods. Analytical solution methods
provide exact solutions but are, on the other hand, limited to a narrow range of
applications, mostly related to canonical problems.

Unfortunately, there are not many realistic scenarios in physics or practical
engineering problems that can be worked out using these techniques.

Numerical techniques are applicable to almost all scientific engineering prob-
lems, but the main drawbacks are related to the limits governed by the approx-
imation contained in the model itself.

Moreover, the criteria for accuracy, stability, and convergence are not always
straightforward and clear to the researcher in a particular area [2].



Computational Electromagnetics – Introductory Aspects 7

1.1.3 Philosophical Aspects Behind Scientific Theories

One of the crucial questions in the philosophy of science is how physical models
really work, or, more generally, how scientific theories are developed or “up-
graded.”

Looking back into the history of physics, the development of Maxwell’s
kinetic theory of gases and electromagnetic field theory was not motivated by
experimental findings that were not compatible with the existing paradigm (in
the sense of Kuhn [3]), as was the case with relativity and quantum mechanics.

In the case of electromagnetism almost all facts, known in Maxwell’s time,
were interpreted satisfactorily within the Newton paradigm and incorporated
into a powerful theoretical frame.

This theory was intensively in use till Hertz experimentally verified one of the
main goals of the Maxwell theory – the existence of electromagnetic waves.

However, the principal motivation in the background of Maxwell’s work was
essentially philosophical, or even metaphysical in nature, i.e. the consequence
of his own point of view. The origin of Maxwell’s ideas came from Michael
Faraday and his study of electromagnetic induction. Faraday, together with
Boskovic, was one of the first scientists who came up with the idea of field
versus action at a distance concept.

Some rather old, but still important questions from philosophy of science are
as follows:
• Is scientific insight into the absolute truth possible, taking into account lim-

itations of our conceptual, language, and mathematical tools?
• Is the rise of knowledge cumulative in nature and is it clearly directed to the

objective truth?
According to logical positivism, Popper’s falsificationism, and Kuhn’s social

relativism the objective truth is out of reach for the human mind. Furthermore,
for Ernst Mach and Vienna circle followers, theories are systems of quantitative
relationships between measurable phenomena, and are not directed toward the
absolute and objective truth. Moreover, Mach and other empiricists claim that
only theories directly testable with experiments should be accepted [4, 5]. For
Niels Bohr, theory is a tool to explain various experimental data.

No universal theory exists for Popper that would be conclusively proved in
an inductive sense. Theory is alive while its disadvantages are not found. For
Kuhn, the natural selection of scientific theories is driven by the request for
problem solving. For Wittgenstein, the origin of scientific triumph is aspiration
for generality.

Gödel incompleteness theorem has destroyed the basis of the axiomatic
method. Stephen Hawking lost faith in the existence of Theory of Everything as
Gödel theorem had convinced him that any system could not be complete if it
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was consistent. There can always be a proposition that cannot be proved or
refuted.

Einstein’s reasoning was also affected by the strong philosophical back-
ground, classical education, and culture of dialogue. For Einstein, many
professional scientists of his time have seen thousands of trees, but have never
seen a wood [4, 5]. Einstein esteems that the knowledge of historical and
philosophical background of science could set one free of prejudices of which
most of the generation suffers. Thus, after initial respect for the Vienna circle,
Einstein’s attitudes began to differ from the circle ideas. The circle refused any
element of a theory, as metaphysical, if there was no clear connection with an
experience.

Einstein claims that veracity of a theory can never be proved, as it is
never known if future experience will contradict its conclusions. Einstein
moves aside Schlick and Reichenbach as new empirical philosophy, according
to Einstein, turns science into something like engineering. Einstein’s own
experience leads him to a strong attitude that creative theoretical thinking
cannot be replaced with algorithm for building and testing theories. Passion
for knowledge, according to Einstein, creates the illusion that the objective
world can be comprehended rationally, without any empirical foundation – in
short, by means of metaphysics.

Therefore, the old question still of interest in both philosophy and science is
this: Does scientific knowledge come from out-of-mind reality, or it is neces-
sarily just a reflection of the mind and is it limited by its own insight abilities?

1.1.4 On the Character of Physical Models

Physical model represents the fundamental concept within the framework of
the scientific method for the representation and understanding of natural phe-
nomena. Physical models are simplified imaginary simulations of the real-world
systems one attempts to understand, including only those properties and rela-
tionships required to understand the aspects of real systems one considers, i.e.
those aspects of real systems one knows, or is generally aware of. The rest of
the facts about a real system are simply neglected from the model. As a mat-
ter of fact, how much the model of a given physical phenomenon is satisfactory
then strongly depends on what is required from the particular model. Thus, one
draws conclusions from an incomplete information set.

Therefore, models are tools for capturing particular insights of the phe-
nomena and they do not represent a full proof for a system behavior under
all circumstances. Moreover, mathematically described physical models are
abstractions of the natural world, while the related computational models, con-
venient for implementation on a digital computer, are eventually abstraction
of the physical world.

Therefore, physical models and related solution methods are problem
dependent.
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1.2 Maxwell’s Equations

In his hands electricity first became a mathematically exact science and
the same might be said of other larger parts of physics.
Sir James H. Jeans

It was not possible to incorporate an increasing knowledge on electricity and
magnetism through the nineteenth century into Newton’s physics framework.
Thus, contributions of Faraday, Maxwell, Heaviside, Hertz, and others led to
the revolutionary concept of field in classical physics. The field was shown not
to be just mathematical abstract entity, but pure physical reality. Consequently,
by adopting the field notion the action at a distance concept was abandoned [5].

With James C. Maxwell, not only a rigorous electromagnetic field theory
came along but also a grand unification of electricity, magnetism, and light.
Namely, almost a quarter century before the Hertz experimental verification
Maxwell theoretically anticipated the existence of electromagnetic waves. Light
is just an electromagnetic wave, visible to the human eye propagating through
ether. After Maxwell, H. A. Lorentz extended Maxwell’s theory with electrody-
namics of charged particle.

1.2.1 Original Form of Maxwell’s Equations

Maxwell’s equations were modified a few times [6] in the last 150 years since
they were originally formulated by Maxwell and published for the first time [7].
The changes were regarding the physical interpretation, mathematical expres-
sion, and general approach to the solution methods for different problems. In
the mid-1860s Maxwell originally derived 20 scalar equations. What is today
considered to be modern Maxwell’s equations are a set of vector equations
independently derived by Heaviside and Hertz by the end of the nineteenth
century.

Historically speaking, with Maxwell’s equations, a rigorous mathematical
basis has been established for a proper description of electromagnetic phe-
nomena. Moreover, the appearance of Maxwell’s equations has provided the
paradigm shift from the old action at a distance concept to the field approach.
Maxwell’s equations have undergone significant changes twice [8]. First, it
was when Heaviside reduced the scalar form into the vector notation. He also
made important modifications, having abandoned the potentials in favor of
fields. Next time, a significant improvement was initiated by Larmor due to
the discovery of the electron.

Important advancements of Maxwell’s theory in the mid-1880s were carried
out by Poynting, FitzGerald, and Heaviside. Lorentz’s contribution is related to
the development of microscopic theory by means of Maxwell’s equations and
inclusion of the force acting on a charged particle arising from the existence of
fields.
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1.2.2 Modern Form of Maxwell’s Equations

The laws of classical electromagnetism can be expressed very concisely by a
set of four differential equations. There is also an equivalent integral form of
these equations. The differential form of Maxwell’s equations is commonly used
in solving engineering problems while their integral forms are convenient in
providing a deeper insight into the underlying physical laws.

The first Maxwell equation is the differential form of Faraday law (the
time-varying magnetic flux density B⃗causes the curl of electric field E⃗) given by

∇ × E⃗ = −𝜕B⃗
𝜕t
. (1.4)

Hence, the time-varying magnetic fields are vortex sources of electric fields.
The second Maxwell equation is the differential form of generalized Ampere’s

law stating that either a current density J⃗ or a time-varying electric flux density
D⃗ gives rise to a magnetic field H⃗ . This can be expressed as

∇ × H⃗ = J⃗ + 𝜕D⃗
𝜕t
. (1.5)

It is worth noting that the term 𝜕D⃗∕𝜕t was originally added by Maxwell to the
original expression for Ampere’s law, thus making the law consistent with the
electric charge conservation. This term is usually referred to as a displacement
current density.

The third Maxwell equation states that electric monopoles exist, so that

∇ ⋅ D⃗ = 𝜌, (1.6)
i.e. charge densities 𝜌 are the monopole sources of the electric field.

Finally, the fourth Maxwell equation states that magnetic poles always occur
in pairs and are due to electric currents; no free poles can exist. This is expressed
by the divergence Maxwell equation:

∇ ⋅ B⃗ = 0, (1.7)
which implies that the magnetic field is always solenoidal.

The integral form of the Faraday law states that any change of magnetic flux
density B through any closed loop induces an electromotive force around the
loop. Taking the surface integration over (1.4) and applying the Stokes theorem
yields

∮c
E⃗ ds⃗ = −∫S

𝜕B⃗
𝜕t

⋅ dS⃗, (1.8)

where the line integral is taken around the loop and with dS⃗ = n⃗dS.
The voltage induced by a varying flux has a polarity such that the induced

current in a closed path gives rise to a secondary magnetic flux, which opposes
the change in time-varying source magnetic flux.
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The integral form of the Ampere law is derived by integrating (1.5) and apply-
ing the Stokes theorem:

∮c
H⃗ ds⃗ = ∫S

J⃗ dS⃗ + ∫S

𝜕D⃗
𝜕t

⋅ dS⃗. (1.9)

Equation (1.6) is the Ampere circular rule with Maxwell addition of the sec-
ond term on the right-hand side (the displacement current). The generalized
Ampere law states that either an electric current or a time-varying electric flux
gives rise to magnetic field.

Taking the volume integral over (1.6) and applying the Gauss divergence
theorem results in

∮S
D⃗ dS⃗ = ∫V

𝜌dV , (1.10)

where the right-hand side represents the total charge within the volume V .
Equation (1.6) is the Gauss flux law for the electric field stating that the flux

of D vector corresponds to the total electric charge within the domain.
The Gauss flux law for the magnetic field can be derived by taking the volume

integral of (1.7) and applying the Gauss divergence theorem, i.e.

∮S
B⃗ dS⃗ = 0, (1.11)

stating that the flux of B vector over any closed surface S is identically zero.
What is also necessary for a description of electromagnetic phenomena in a

linear medium are the constitutive equations:

D⃗ = 𝜀E⃗, (1.12)
J⃗ = 𝜎E⃗, (1.13)
B⃗ = 𝜇H⃗, (1.14)

and the Lorentz force equation

F⃗ = q(v⃗ × B⃗), (1.15)

where q denotes the charged particle, v is the particle velocity, 𝜀 is permittivity,
𝜎 is conductivity, and 𝜇 is permeability of a medium, respectively.

To solve Maxwell’s equations for a given problem the continuity conditions
at the interface of two media with different electrical properties must be
specified [2]:

n⃗ × (E⃗1 − E⃗2) = 0, (1.16)
n⃗ × (H⃗1 − H⃗2) = J⃗s, (1.17)

n⃗(D⃗1 − D⃗2) = 𝜌s, (1.18)
n⃗(B⃗1 − B⃗2) = 0, (1.19)
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where n⃗ is a unit normal vector directed from medium 1 to medium 2, and
subscripts 1 and 2 denote fields in regions 1 and 2. Equations (1.16) and (1.19)
state that the tangential components of E and the normal components of B
are continuous across the boundary. Equation (1.17) represents that the tan-
gential component of H is discontinuous due to the surface current density
J s induced on the boundary. Equation (1.18) means that the discontinuity in
the normal component of D is the same as the surface charge density 𝜌s on
the boundary.

In the case of a perfect conductor, the electric field E and magnetic field H
vanish within the perfectly conducting medium. These fields are replaced by
the surface charge density 𝜌s and surface current density J s. At higher frequen-
cies, there is a well-known effect that confines current largely to surface regions.
The so-called skin depth in common situations is often sufficiently small for the
surface phenomenon to be an accurate representation. Therefore, the familiar
rules for the behavior of time-varying fields at a boundary defined by good con-
ductors follow directly from consideration of the limit condition, i.e. when the
conductor is perfect.

As no time-varying field exists in a perfect conductor, the electric flux density
is entirely normal to the conductor and supported by a surface charge density
at the interface.

Dn = 𝜌s. (1.20)

The magnetic field is entirely tangential to the perfect conductor and is equi-
librated by a surface current density:

Hs = Js. (1.21)

Conditions at the extremes of the boundary value problem are obtained by
extending the interface conditions.

1.2.3 From the Corner of Philosophy of Science

Essentially, development of Maxwell kinetic theory of gases and electromag-
netic field theory was not motivated by experimental findings which were not
compatible with existing paradigm (in a sense of T.S. Kuhn [3]), as was the case
with relativity and quantum mechanics.

As already explained in 1.1.3, almost all facts from electrodynamics, known
in Maxwell time, were interpreted relatively satisfactory within the Newton
paradigm. That approach was standardly used till Hertz experimental verifi-
cation of the very existence of electromagnetic waves.

The origin of Maxwell’s ideas to replace the action at a distance concept with
the concept of physical field, was essentially philosophical, or a pure abstract,
mathematical thought, and came from previous works of Faraday and Boskovic.
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Maxwell introduced a revolution not only in electromagnetics but also
in thermodynamics [9]. His approach to represent a physical phenomenon
in terms of statistical function was a remarkable improvement in science
generally. Such an approach led not only to the statistical nature of the second
law of thermodynamics, but also provided the development of mathematical
description of quantum mechanics.

Furthermore, his introduction of today’s famous Maxwell’s demon having
questioned the second law of thermodynamics contributed to the development
of information theory in the twentieth century.

No doubt, Maxwell, himself, was and is one of the greatest scientists of all
times.

1.2.4 FDTD Solution of Maxwell’s Equations

One of the widely used approaches for a direct solution of Maxwell’s equations
in the last few decades is the use of the finite difference time domain (FDTD)
method. FDTD solution of Maxwell’s equations is based on discretizing the dif-
ferential equations by means of pulse basis approximation and converting them
into a finite difference equation. FDTD is a highly versatile method enabling the
analysis of objects with a wide range of size and complexity, from a microstrip
circuit to a helicopter or the human body. The method discretizes a domain of
interest into unit cells, leading to the use of the so-called staircase approxima-
tion for smoothly curved surfaces or volumes. The unit cell, usually called “the
Yee cell” after Yee who introduced the first FDTD algorithm [10], is shown in
Figure 1.3.

Figure 1.3 Configuration of electric
and magnetic fields in a cell.
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Assuming isotropic and nondispersive media, Maxwell’s equations (1.4) and
(1.5) can be written as

∇ × E⃗(r, t) = −𝜇𝜕H⃗(r, t)
𝜕t

, (1.22)

∇ × H⃗(r, t) = 𝜎E⃗(r, t) + 𝜀𝜕E⃗(t, r)
𝜕t

. (1.23)

Using the Yee cell [10] and performing the space–time finite difference dis-
cretization one obtains [11]
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where A and B are given by

A =
1 − 𝜎 ⋅ Δt

2 ⋅ 𝜀

1 + 𝜎 ⋅ Δt
2 ⋅ 𝜀

, B =

Δt
𝜀

1 + 𝜎 ⋅ Δt
2 ⋅ 𝜀

. (1.26)

Other electromagnetic field components are obtained by a simple circular
permutation of the space variables. It is possible to improve the original FDTD
formulation to provide more accurate modeling of smooth curves, but with the
price of increasing the complexity of the algorithms. Also, the FDTD method
encounters some difficulties in modeling thin wires and the related feed-gap
concept [9]. Moreover, within the FDTD method E and H fields are not com-
puted exactly at a distance of half a cell from each other.
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The thin wire itself is defined as a conductive object with radius smaller than
the size of an FDTD cell [9, 11].

In many engineering applications, such as antenna analysis and design and
grounding systems studies, it is necessary to model electrically thin conducting
cylinders requiring the radii r0 of such conducting structures to be smaller than
the smallest Yee cell dimensions. Thus, a special formulation must be imple-
mented to accurately represent these radii. The details can be found elsewhere,
e.g. in [11].

Contour integral approach [9], derived from Maxwell’s equations in inte-
gral form, is used to account for the air–ground interface. It is convenient
to treat the problems including inhomogeneous media and a nonuni-
form spatial discretization by using Maxwell’s equations in their integral
form [11].

Figure 1.4 shows a grid of FDTD discretization of the air–ground interface.
Thus, from the generalized Ampere’s law (1.9) one obtains

∮c
H⃗ ⋅ ds⃗ =

[
H

n+ 1
2

z (i + 1∕2, j + 1∕2, k) − H
n+ 1

2
z (i + 1∕2, j − 1∕2, k)

]
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+
[

H
n+ 1

2
y (i + 1∕2, j, k − 1∕2) − H
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2
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]
⋅ Δy, (1.27)
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Figure 1.4 Treatment of the air–ground interface by the “the contour integral approach”
method.
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Combining (1.27) and (1.28) yields
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(1.29)
where

K = 1
2Δt

(𝜀0 + 𝜀s) −
𝜎s

4
, N = 1

2Δt
(𝜀0 + 𝜀s) +

𝜎s

4
. (1.30)

The other field components can be derived in a similar manner. It is also nec-
essary to truncate the calculation domain. Therefore, absorbing regions must
be implemented at the domain’s limits, simulating the wave propagation thus
avoiding non-natural reflections in infinite domain. In this context, the absorb-
ing conditions are used [12].

1.2.5 Computational Examples

Computational examples are related to the transient behavior of grounding sys-
tems in two-layer soil. FDTD solution of Maxwell’s equations is performed by
taking into account the variation in conductivity between the conductive layers
of the soil. The obtained FDTD results are compared to the numerical results
calculated via the TL approach [11].

The first example deals with a horizontal grounding electrode in two-layer
stratified soil. Figure 1.5 shows the electrode buried horizontally at depth

Second soil layer of infinite depth 

ε1= 36, ρ1= 200 Ω. m

ε2= 36, ρ2= 1000 Ω. m

Injection

First layer of soil depth 2 m

Interface soil–air

0.4 m

(ε0, μ0)

2 m

∞

Figure 1.5 Horizontal grounding electrode in two-layer soil.
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Figure 1.6 Transinet current induced at the middle of the buried electrode.

d = 0.4 m from the soil–air interface. The radius of the conductor is a = 7 mm
and its length is L = 20 m, while the height of the upper layer is D = 2 m.

The electrode is excited by a voltage source given by double exponential func-
tion [11]

V (t) = V0(e−at − e−bt), (1.31)

where V 0 = 30 kV, a = 45 099 s−1, b = 9 022 879 s−1.
Physical constants 𝜀, 𝜌 of the medium are depicted in Figure 1.5.
Figure 1.6 shows the transient current induced along the horizontal ground-

ing electrode calculated by FDTD and the TL approach, respectively.
The results obtained via different approaches seem to agree satisfactorily. The

next example is a grounding grid in two-layer stratified soil. Figure 1.7 shows the
grid buried at d = 0.8 m depth in the stratified soil. The size of the grounding
grid is 20 m × 20 m. The physical constants (𝜀, 𝜌) of the medium are shown
in Figure 1.7. The radius of the conductors is a = 7 mm. The grounding grid
system is excited by double exponential voltage impulse (1.31). Two cases are
considered, with the injection point being on the corner and in the middle of
the grounding grid system, respectively, as shown in Figure 1.7.
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Figure 1.7 Horizontal grounding grid in two-layer soil.
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Figure 1.8 Transient currents induced at different points for the horizontal grounding grid
(Scenario 1).

Figures 1.8 and 1.9 show transient currents induced on the horizontal
grounding grid obtained as FDTD solution of Maxwell’s equations and using
the TL approach, respectively.

Two different scenarios are studied (corner injection – scenario 1, and central
point injection – scenario 2 of the current source).

The numerical results obtained by different approaches are in satisfactory
agreement, again.
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Figure 1.9 Transient currents induced at different points for the horizontal grounding grid
(Scenario 2).

1.3 The Electromagnetic Wave Equations

Maxwell’s equations are coupled first order space–time partial differential
equations that are very difficult to apply when solving boundary-value prob-
lems. One way to overcome the difficulty of solving coupling equations is
to decouple these first order equations, thereby obtaining the second order
electromagnetic wave equations.

The wave equations are readily derived from the Maxwell curl equations,
by differentiation and substitution. Taking curl on both sides of equation (1.5)
leads to

∇ × ∇ × H⃗ = ∇ × J⃗ + 𝜕

𝜕t
(∇ × D⃗). (1.32)

Using constitutive equations (1.12) and (1.13) and assuming uniform scalar
material properties yields

∇ × ∇ × H⃗ = 𝜎∇ × E⃗ + 𝜀 𝜕
𝜕t
(∇ × E⃗). (1.33)

According to the Maxwell equation (1.4) curl of E is replaced by the rate of
change of magnetic flux density, and using (1.14) it follows that

∇ × ∇ × H⃗ = −𝜇𝜎 𝜕H⃗
𝜕t

− 𝜇𝜀𝜕
2H⃗
𝜕t2 . (1.34)

Performing some mathematical manipulations, the same equations can be
derived for the electric field.
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Using the standard vector identity valid for any vector E,

∇ × ∇ × H⃗ = ∇ ⋅ (∇E⃗) − ∇2H⃗. (1.35)

Taking into account the solenoidal nature of the magnetic field (1.7) yields
the final form of the wave equation:

∇2H⃗ − 𝜇𝜎 𝜕H⃗
𝜕t

− 𝜇𝜀𝜕
2H⃗
𝜕t2 = 0. (1.36)

If a linear, isotropic, homogeneous, source-free medium is considered then
the set of equations (1.36) simplifies into

∇2H⃗ − 1
v2
𝜕2H⃗
𝜕t2 = 0, (1.37)

where v denotes the wave propagation velocity in lossless homogeneous
medium:

v = 1√
𝜇𝜀
. (1.38)

The velocity of wave propagation in free space is the velocity of light:

c = 1√
𝜇0𝜀0

, (1.39)

where c = 3 × 108 m s−1, approximately.

1.4 Conservation Laws in the Electromagnetic Field

A general relationship for power and energy expressed in terms of electric and
magnetic fields is given in the form of Poynting theorem.

The conservation law of electromagnetic energy can be obtained from curl
Maxwell equations.

An equivalence of vector operators yields

∇ ⋅ (E⃗ × H⃗) = H⃗ ⋅ ∇ × E⃗ + E⃗ ⋅ ∇ × H⃗. (1.40)

Combining Equations (1.4), (1.5), and (1.40), one has

E⃗ ⋅
𝜕D⃗
𝜕t

+ H⃗ ⋅
𝜕B⃗
𝜕t

= −E⃗ ⋅ J⃗ + E⃗ ⋅ (∇ × H⃗) − H⃗ ⋅ (∇ × E⃗), (1.41)

or in the alternative form,
𝜕w
𝜕t

= −E⃗ ⋅ J⃗ − ∇ ⋅ (E⃗ × H⃗), (1.42)
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where the w term represents the energy storage per unit volume for an electro-
magnetic field:

w = 1
2
(E⃗D⃗ + H⃗B⃗). (1.43)

Integrating (1.41) over some finite region in space one obtains the integral
form of the electromagnetic energy conservation law:

∫V
w dV = −∫V

E⃗ ⋅ J⃗ dV − ∫V
∇ ⋅ (E⃗ × H⃗)dV . (1.44)

The left-hand side term is the time rate of the stored energy in the electric
and magnetic fields of the region.

The first term on the right-hand side represents the Joule heat (the ohmic
power loss if J is a conduction current density or the power required to acceler-
ate charges if J is a convection current arising from moving charges). If there is
an energy source then the product EJ is negative for that source and represents
energy flow out of the region.

The other term on the right-hand side gives the flow into the domain
boundary.

Applying the Gauss integral theorem to the last term of (1.44)

∫V
∇ ⋅ (E⃗ × H⃗)dV = ∮S

(E⃗ × H⃗) ⋅ dS⃗, (1.45)

the volume integral transforms to the surface integral over the boundary, where
dS⃗ is the outward drawn normal vector surface element.

Since all the energy changes must be supplied externally, this term represents
the energy flow into the volume per unit time due to the minus sign of the sur-
face integral. Changing sign, the rate of energy flow, or power flow, out through
the enclosing surface is given by

P = ∮S
(E⃗ × H⃗)dS⃗, (1.46)

where E⃗ × H⃗ is the Poynting vector representing power density flow – flow of
energy per unit area per unit time at the surface (power density flow), known
as Poynting vector:

P⃗d = E⃗ × H⃗. (1.47)

The Poynting vector (1.47) gives the direction and magnitude of energy flow
density at any point in space.

Power flow does not exist in the vicinity of a system of static charges having
electric but no magnetic field. Also, in the vicinity of a perfect conductor there
is a zero tangential component normal to the conductor and power flow into
the perfect conductor is not possible.
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Therefore, the final integral form of the conservation law in the electromag-
netic field is then given by

𝜕

𝜕t ∫V

1
2
(E⃗ ⋅ D⃗ + H⃗ ⋅ B⃗)dV = −∫V

E⃗ ⋅ J⃗ dV + ∮S
(E⃗ × H⃗) ⋅ dS⃗. (1.48)

Therefore, the rate of increase of electromagnetic energy in the domain
equals the rate of flow of energy in through the domain surface less the Joule
heat production in the domain.

For a battery with a nonelectrostatic field E′ pumping energy both into heat
losses and into a magnetic field is considered; the corresponding current den-
sity can be written as

J⃗ = 𝜎(E⃗ + E⃗′) (1.49)

and (1.48) becomes

∫V
E⃗′ J⃗ dV = 𝜕

𝜕t ∫V

1
2
(E⃗ ⋅ D⃗ + H⃗ ⋅ B⃗)dV + ∫V

|J⃗|
𝜎

dV + ∮S
(E⃗ × H⃗) ⋅ dS⃗,

(1.50)

where the term on the left-hand side represents the sources within the volume
of interest.

The first and second terms on the right-hand side of (1.50) are the total energy
stored in the electric and magnetic fields, respectively.

1.5 Density of Quantity of Movement in the
Electromagnetic Field

According to the laws of classical mechanics, force F⃗ is equal to the change in
quantity of movement of matter:

F⃗ =
dG⃗meh

dt
= d

dt
(mv⃗) = d

dt ∫V
𝜌mv⃗ dV , (1.51)

where G⃗meh is the momentum or quantity of movement, 𝜌m g is the mass den-
sity, and v⃗ is the velocity.

If an electromagnetic system is subjected to an external force, where force
density to charges and currents is given by

f⃗ = 𝜌E⃗ + J⃗ × B⃗. (1.52)

The total force on the matter contained within volume V , i.e. to charges and
currents, is defined by the expression

F⃗ = ∫V
f⃗ dV = ∫V

(𝜌E⃗ + J⃗ × B⃗)dV . (1.53)
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Combining (1.51) and (1.53), Newton’s second law yields

dG⃗meh

dt
= ∫V

(𝜌E⃗ + J⃗ × B⃗)dV . (1.54)

Furthermore, for free space one has

𝜌 = 𝜀0∇E⃗ (1.55)

and

J⃗ = 1
𝜇0

∇ × B⃗ − 𝜀0
𝜕E⃗
𝜕t
. (1.56)

So, it follows that

f⃗ = 𝜌E⃗ + J⃗ × B⃗ = 𝜀0E⃗∇E⃗ + 1
𝜇0

B⃗ × ∇ × B⃗ − 𝜀0
𝜕E⃗
𝜕t

× B⃗. (1.57)

Now, the last term in (1.57) can be written in the following manner:

𝜀0
𝜕E⃗
𝜕t

× B⃗ = 𝜕

𝜕t
(𝜀0E⃗ × B⃗) − 𝜀0E⃗ × 𝜕B⃗

𝜕t
= 𝜕

𝜕t
(𝜀0E⃗ × B⃗)

+ 𝜀0E⃗ × ∇ × E⃗. (1.58)

and the force density (1.57) becomes

f⃗ = 𝜀0E⃗∇E⃗ − 1
𝜇0

B⃗ × ∇ × B⃗ − 𝜕

𝜕t
(𝜀0E⃗ × B⃗) − 𝜀0E⃗ × ∇ × E⃗. (1.59)

As one has ∇H⃗ = 0, expression (1.59) can be written as

f⃗ = 𝜀0E⃗∇E⃗ − 𝜀0E⃗ × ∇ × E⃗ + 𝜇0H⃗∇H⃗ − 𝜇0H⃗ × ∇ × H⃗

− 𝜕

𝜕t
(𝜀0E⃗ × B⃗), (1.60)

and the relation for the total force within the volume becomes

F⃗ = ∫V
f⃗ dV = 𝜀0 ∫V

(E⃗∇E⃗ − E⃗ × ∇ × E⃗)dV +

+ 1
𝜇0 ∫V

(B⃗∇B⃗ − B⃗ × ∇ × B⃗)dV − d
dt ∫V

(𝜀0𝜇0E⃗ × H⃗)dV . (1.61)

As for an arbitrary vector function A⃗ one has

∫V
(A⃗∇A⃗ − A⃗ × ∇ × A⃗)dV = ∮S

[
A⃗(n⃗ ⋅ A⃗) − 1

2
n⃗A2

]
dS, (1.62)

it follows that

F⃗ = ∮S
T⃗ dS − d

dt ∫V

1
c2 E⃗ × H⃗ dV , (1.63)



24 Computational Methods in Electromagnetic Compatibility

where

T⃗ = 𝜀0

[
E⃗(n⃗ ⋅ E⃗) − 1

2
n⃗E2

]
+ 1
𝜇0

[
B⃗(n⃗ ⋅ B⃗) − 1

2
n⃗B2

]
(1.64)

is the force over the surface unit and is referred as stress tensor.
According (9.4) and (9.13) it can be written that

dG⃗meh

dt
= ∮S

T⃗ dS − d
dt ∫V

1
c2 E⃗ × H⃗ dV , (1.65)

or
d
dt

(
G⃗meh + ∫V

1
c2 E⃗ × H⃗ dV

)
= ∮S

T⃗ dS. (1.66)

If one deals with an isolated system the term from the right-hand side in
(9.16.), which accounts for the surface stress, vanishes and from (9.1) it follows
that

d
dt ∫V

(𝜌mv⃗ + 𝜀0E⃗ × B⃗)dV = 0. (1.67)

So the expression for the laws of the conservation of quantity of movement
in an isolated mechanic-electromagnetic system must be modified, and the
expression

g⃗EM = 𝜀0E⃗ × B⃗ = 1
c2 E⃗ × H⃗ (1.68)

is considered to be the density of the quantity of movement of the electro-
magnetic field.

Electromagnetic momentum, in accordance to mechanics, is then given by

G⃗EM = ∫V
(D⃗ × B⃗)dV = ∫V

( 1
c2 E⃗ × H⃗

)
dV . (1.69)

Therefore, if an arbitrary isolated mechanical system of mass density 𝜌m and
velocity v within a small volume V is considered the quantity of movement is
conserved. The law of conservation of quantity of movement, which accounts
for electromagnetic quantity of movement, could be written in the form

d
dt

(G⃗meh + G⃗EM) = 0, (1.70)

i.e. it follows that

G⃗meh. + G⃗EM = Const. (1.71)

The existence of stress in the electromagnetic field and the expression of elec-
tromagnetic quantity of movement prove the existence of the electromagnetic
field as a real physical entity, thus confirming the vision of Michael Faraday.
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1.6 Electromagnetic Potentials

Instead of using fields the analysis of electric and magnetic fields can be sim-
plified by using auxiliary potential functions, such as the electric scalar poten-
tial 𝜑, or the magnetic vector potential A. The potential functions are readily
derived from the Maxwell equations.

Thus, the Maxwell equation (1.7) is satisfied if the flux density B can be
expressed in terms of an auxiliary vector A, i.e.

B⃗ = ∇ × A⃗. (1.72)

Maxwell curl equation (1.4) then becomes

∇ × E⃗ = − 𝜕

𝜕t
(∇ × A⃗), (1.73)

and by rearranging (1.73), it follows that

∇ ×
(

E⃗ + 𝜕A⃗
𝜕t

)
= 0. (1.74)

Furthermore, the quantity within brackets in (1.74) can be written as the gra-
dient of the scalar potential function 𝜑:

E⃗ + 𝜕A⃗
𝜕t

= −∇𝜑 (1.75)

or

E⃗ = −𝜕A⃗
𝜕t

− ∇𝜙. (1.76)

Thus, knowing the potential functions A and 𝜑, the magnetic and electric
fields can be determined from Equations (1.72) and (1.76).

1.7 Solution of the Wave Equation and Radiation
Arrow of Time

From the physical point of view natural laws expressed in the mathematical
form are symmetric, i.e. they remain the same if one changes the direction of
time [11, 13, 14].

Thus, Maxwell’s equations appear to be time invariant (there is no preference
regarding the time direction). However, the electromagnetic wave equations
that are derived from Maxwell’s equations have two solutions in the form of
retarded and advanced potential, respectively. The retarded potential solution
is considered to have physical meaning and is related to the electromagnetic
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waves detected at an observation point after they left the source, i.e. the time
required for these waves to reach a receiver is delayed with respect to the time
measured at the source. On the other hand, the advanced potential solutions
pertaining to the waves that would propagate in such a way as to arrive at the
detector before they leave the source are mathematically also possible. Such
waves are never observed in nature and are eliminated by specifying certain
set of boundary and initial conditions, respectively. Note that the physical laws
formulated in terms of differential equations are not sufficient to fully describe
the natural phenomena as the corresponding initial and boundary conditions,
respectively, are to be specified [14].

Basically, this “wave asymmetry,” i.e. nonexistence of convergent waves is due
to the radiation. Thus, divergent radiated fields exist (related with accelerated
charges) and their temporal inverses (convergent waves) are never observed in
nature.

The radiation arrow of time could be analyzed by studying the solutions of
wave equation for magnetic vector potential A:

∇2A⃗ − 𝜇𝜀𝜕
2A⃗
𝜕t2 = −𝜇J⃗ . (1.77)

The wave equation (1.77) has two solutions, one in the form of retarded
potential

A⃗ret(r, t) =
𝜇

4𝜋 ∫V ,

J⃗(r⃗′, t − R∕c)
R

dV ′, (1.78)

and the other one in the form of advanced potential

A⃗adv(r, t) =
𝜇

4𝜋 ∫V ,

J⃗(r⃗′, t + R∕c)
R

dV ′, (1.79)

where R = |r⃗ − r⃗′| is the distance from the source to the observation point,
respectively.

Note that R/c is the time necessary for the signal to arrive from the source
point to the observation point (Figure 1.10).

In the case of divergent waves a signal at the source point at time t′ = t −R/c
is advanced for time R/c compared to the signal at the observation point, i.e.
the signal at the observation point at time t = t′ +R/c is delayed for time R/c
compared to the signal at the source point. Similarly, in the case of convergent
waves a signal at the source point at time t′ = t +R/c is delayed for R/c compared
to the signal at the observation point, or the signal at an observation point at
time t = t′ −R/c is advanced for time R/c at an observation point with respect to
the source point. The source and observation point, respectively, are depicted
in Figure 1.10.
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Figure 1.10 The source point and the observation point.

1.8 Complex Phasor Form of Equations
in Electromagnetics

In many engineering scenarios, devices or systems are excited sinusoidally and
a time-harmonic variation of electromagnetic fields is assumed. In such cases,
it is convenient to represent the variables of interest in a complex phasor form.
Also, if a transient response is of interest, inverse Fourier transform (IFT) is
used to transform the frequency response in the time domain.

1.8.1 The Generalized Symmetric Form of Maxwell’s Equations

For a simple medium the time-harmonic, symmetric form of Maxwell’s
equations, i.e. the form in which both electric and fictitious magnetic charges
and currents are taken into account, is given by Poljak and Tham [15]

∇ × E⃗ = −j𝜔𝜇H⃗ − M⃗, (1.80)
∇ × H⃗ = j𝜔𝜀E⃗ + J⃗ , (1.81)

∇ ⋅ E⃗ = 1
𝜀
𝜌e, (1.82)

∇ ⋅ H⃗ = 1
𝜇
𝜌m, (1.83)

in which the fictitious magnetic surface current M and magnetic charge density
𝜌m are introduced. The time-harmonic factor ej𝜔t , which is implied, has been
omitted in the equations.


