

Introductory Relational Database Design
for Business, with Microsoft Access

Introductory Relational Database Design
for Business, with Microsoft Access

Jonathan Eckstein
MSIS Department
Rutgers Business School
United States

Bonnie R. Schultz
Schultz Writing Services
Princeton, New Jersey
United States

This edition first published 2018
© 2018 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material
from this title is available at http://www.wiley.com/go/permissions.

The right of Jonathan Eckstein and Bonnie R. Schultz to be identified as the author of this work
has been asserted in accordance with law.

Registered Office(s)
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand.
Some content that appears in standard print versions of this book may not be available in other
formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation any implied warranties
of merchantability or fitness for a particular purpose. No warranty may be created or extended
by sales representatives, written sales materials or promotional statements for this work. The
fact that an organization, website, or product is referred to in this work as a citation and/or
potential source of further information does not mean that the publisher and authors endorse the
information or services the organization, website, or product may provide or recommendations
it may make. This work is sold with the understanding that the publisher is not engaged in
rendering professional services. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a specialist where appropriate. Further, readers should
be aware that websites listed in this work may have changed or disappeared between when this
work was written and when it is read. Neither the publisher nor authors shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

Library of Congress Cataloging-in-Publication Data
Names: Eckstein, Jonathan, author. | Schultz, Bonnie R., author.
Title: Introductory relational database design for business, with Microsoft Access /

by Jonathan Eckstein and Bonnie R. Schultz.
Description: Hoboken : Wiley, 2017. | Includes bibliographical references and index. |

Identifiers: LCCN 2017019748 (print) | LCCN 2017028117 (ebook) |
ISBN 9781119329428 (pdf) | ISBN 9781119329442 (epub) |
ISBN 9781119329411 (hardback)

Subjects: LCSH: Relational databases. | Microsoft Access. | BISAC: BUSINESS &
ECONOMICS / Statistics. | COMPUTERS / Management Information Systems.

Classification: LCC QA76.9.D3 (ebook) | LCC QA76.9.D3 E325 2017 (print) |
DDC 005.75/65–dc23

LC record available at https://lccn.loc.gov/2017019748
Cover Design: Wiley
Cover Image: Relationships Windows: Courtesy of Jonathan Eckstein

Set in 10/12pt Warnock by SPi Global, Pondicherry, India

10  9  8  7  6  5  4  3  2  1

http://www.wiley.com/go/permissions
http://www.wiley.com

v

Contents

Preface  ix

1	 Basic Definitions and Concepts  1
Basic Terms and Definitions  1
Types of Information Systems  3

2	 Beginning Fundamentals of Relational Databases and MS Access  7
Beginning Fundamentals of MS Access  8

A “Hands‐On” Example  9
Introduction to Forms  15
Another Method to Create Forms  18
Introduction to Reports  22
Introduction to Queries  26
Common Datatypes in MS Access  32
Exercises  34

3	 Introduction to Data Management and Database Design  43
Introduction to Data Management  43
General Data Management Issues  43
Classifying Information Systems Tasks: Transaction and Analytical
   Processing  45
What Is Wrong with Just One Table?  46
Repeating Groups  47
An Illustration of Multiple Tables and Foreign Keys  48

4	 Basic Relational Database Theory  53
Tables and Their Characteristics  53
Primary Keys and Composite Keys  55
Foreign Keys and Outline Notation  57
Creating Entity‐Relationship (ER) Diagrams  59
Functional Dependency  60

Contentsvi

Dependency Diagrams  61
Partial Dependency  62
Transitive Dependency  63
Database Anomalies  63
What Causes Anomalies?  64
How to Fix Anomalies  65
Good Database Design Principles  66
Normalization and Zip Codes  67
Expanding the Customer Loans Database  68
DVD Lending Library Example without Loan History  71
The DVD Lending Library Example with Loan History  75
Subtypes  78
Exercises  85

5	 Multiple Tables in Access  95
The Relationships Window and Referential Integrity  95
Nested Table View  100
Nested Forms  101
Queries with Multiple Tables  103
Multiple Joins and Aggregation  108
Personnel: Database Design with Multiple Paths between Tables  115
Creating the Database in Access using Autonumber Keys  119
A Simple Query and a Different Way to Express Joins in SQL  120
Exercises  123

6	 More about Forms and Navigation  127
More Capabilities of Forms  127
Packaging it Up – Navigation  132
Exercises  135

7	 Many‐to‐Many Relationships  139
Focus Groups Example  139
The Plumbing Store: Many‐to‐Many with an Additional
   Quantity Field  143
Hands‐On Exercise and More About Queries and SQL  146
Project Teams: Many‐to‐Many with “Flavors” of Membership  154
The Library  159
Exercises  163

8	 Multiple Relationships between the Same Pair of Tables  171
Commuter Airline Example  171
The College  177

Contents vii

Sports League Example  181
Multiple Relationships in Access  183
Exercises  184

  9	 Normalization  189
First Normal Form  189
Second Normal Form  192
Third Normal Form  194
More Normal Forms  197
Key Factors to Recognize 3NF  198
Example with Multiple Candidate Keys  198
Normalizing an Office Supplies Database  198
Summary of Guidelines for Database Design  202
Exercises  203

10	 Basic Structured Query Language (SQL)  215
Using SQL in Access  215
The SELECT … FROM Statement  215
WHERE Conditions  217
Inner Joins  218
Cartesian Joins and a Different Way to Express
   Inner Joins  221
Aggregation  228
GROUP BY  231
HAVING  237
ORDER BY  238
The Overall Conceptual Structure of Queries  240
Exercises  243

11	 Advanced Query Techniques  253
Outer Joins  253
Outer Joins and Aggregation  256
Joining Multiple Records from the Same Table: AS in the FROM
   Clause  260
Another Use for AS in the FROM Clause  262
An Introduction to Query Chaining and Nesting  262
A More Complicated Example of Query Chaining: The League
   Standings  265
Subqueries and Back to the Plumbing Store Database  270
Practical Considerations and “Bending the Rules” Against
   Redundancy  274
Exercises  275

Contentsviii

12	 Unary Relationships  279
Employee Database  279
Setting Up and Querying a Unary Relationship in Access  283
The Course Catalog Database  291
Exercises  294

Further Reading  301
Index  303

ix

Why Did We Write this Book?

This book arose from the first author’s experience of teaching an undergraduate
management information systems (MIS) course in the business school of
Rutgers University in Piscataway, NJ, United States. This experience consisted
of teaching 20 different sections in 12 different semesters, spread over a 20‐year
time span.

Rutgers’ undergraduate New Brunswick business program’s approach to
teaching MIS differs from that of most business schools. Typically, MIS courses
and textbooks stress superficial familiarity with dozens or even hundreds of
aspects of information technology. The Rutgers approach, even before the first
author arrived there, was different. At least two thirds of the course is spent
achieving a relatively deep understanding of one of the most pervasive, durable,
and persistent technologies in information technology: relational databases.
Finding suitable textbooks was difficult, however. For some time, we used two
books, one being a traditional MIS book and the other covering the Microsoft
Access relational database product. This solution was expensive and not
entirely satisfactory, and became less so over time. With each release of Access,
the available Access books became increasingly focused on details of the user
interface, and shied away from explaining the underlying design issues of how
to structure databases. Giving such a book to somebody without solid prior
experience in designing databases is like having somebody without a driver’s
license read the owner’s manual of a feature‐laden luxury car: while they might
learn how to set the climate control to keep the passenger and driver at differ-
ent temperatures, they would be no closer to being able to properly use the car
for its fundamental task of transportation. Books specifically about database
design also exist but are primarily aimed at computer science majors. They are
overly abstract and too technical for business students just beginning to learn
about information technology.

Preface

Prefacex

This book, which began as a set of class notes, takes a different approach.
It develops an understanding of relational databases step by step, through
numerous compact but realistic examples that gradually build in complexity.
While readers will not necessarily gain enough experience to design large‐scale
organizational systems with hundreds or thousands of tables, they do get a
thorough grounding in the technology and its applications, enough to build
useful systems with dozens of tables. At every stage, the technology is pre-
sented through application examples from business, as well as other fields,
giving the reader a chance to concretely think through the details and issues
that often arise.

One may well ask, “why should one teach an introductory MIS course this
way?” The main reasons are as follows:

●● Relatively lasting hands‐on knowledge of a pervasive and useful technology
●● Acquisition of immediately marketable skills
●● Development of analytical thinking and problem solving

The currently prevalent approach to teaching MIS stresses “buzzword”‐level
knowledge of numerous currently popular technologies. But without the foun-
dation of hands‐on application and problem solving, such material is quickly
forgotten. Such knowledge may be useful for those in high‐level decision‐making
positions, but by the time most undergraduate students might reach such posi-
tions, the knowledge will most likely be largely forgotten and outdated.

Relational databases are one of the most durable technologies in information
systems. For decades, they have been the dominant way most organizations
store most of their operational data. While databases have grown larger and
data are being gathered at ever‐increasing rates, the basic concepts and tech-
niques of the technology have remained stable (much more stable, in fact, than
procedural programming languages). Once one is comfortable with basic pro-
ductivity software such as e‐mail clients, word processors, spreadsheets, and
presentation packages, there could scarcely be a more important or founda-
tional technology to learn, even for manipulating data on one’s own personal
computer. By designing dozens of (albeit relatively simple) databases and for-
mulating dozens of queries, students using this book acquire an understanding
of relational databases in a way that should be more durable than knowledge
acquired by memorizing facts or concepts.

Being able to understand and work with relational databases is a marketable
skill that students can put to work at the beginning of their careers in almost
any industry. While we first introduce queries using Microsoft Access’ QBE
(query‐by‐example) grid, most of this book’s coverage of queries is through
SQL (Structured Query Language), which is used with minor variations in
nearly all relational database systems. We have received positive feedback from
students who used earlier versions of this text distributed as class notes, to the
effect that they were able to “hit the ground running” in jobs or internships

Preface xi

because they already understood how to formulate complex database queries
in SQL. Superficial “survey” MIS courses do not provide such skills.

Designing a database is a highly analytical skill, involving breaking down a
situation into its critical components such as things, people, and events, and
clearly elucidating the relationships between these components. Learning such
a skill develops the mind generally, fostering abilities in critical thinking and
problem solving. Developing such abilities is an important component of any
college education, regardless of students’ fields of study. Just because a course
is in a business school does not mean it should convey only facts – students in
business programs deserve to develop their fundamental thinking skills just as
much as (for example) majors in philosophy, mathematics, or chemistry. Such
considerations motivate our approach of not teaching just facts and trends, but
of also covering relevant material that helps students learn new ways of think-
ing and solving problems. Relational database design is an ideal vehicle for
such mental development. Compared to other cognitively demanding IT‐
related skills like procedural computer programming, we have found that rela-
tional databases are relatively accessible and easily related to a wide range of
nontrivial applications. The somewhat widespread notion that only computer
scientists can or should design databases is simply not true. Almost any busi-
ness student can learn how to design databases with up to a dozen or so tables,
and for most people it is a much less frustrating means of cognitive develop-
ment than learning, for example, Python or Java.

When embedded in packages such as Microsoft Access, relational database
technology now allows the production of relatively sophisticated software
applications with little or no computer programming in the traditional proce-
dural sense. In fact, Access’ Form, Report, Navigation, and Query features
allow construction of professional‐looking and useful applications without
any “classical” programming whatsoever. Chapter 6 explores these abilities of
Access, and its exercises provide a number of different mini‐projects for stu-
dent assignments. Being able to completely build such an application gives
students a feeling of mastery and accomplishment.

This book uses Microsoft Access as a vehicle for learning about relational
databases because it is widely available and relatively easy to use. But this is not
“an Access book.” We leave many features of Access uncovered and focus on
basic skills that largely transfer to other relational database settings. Students
need “hands‐on” experience, and Access is simply the most logical vehicle to
use. For more exhaustive coverage of the many “nooks and crannies” of Access,
numerous books are already available. However, they all assume that their
readers already know how to design a database.

When we teach MIS, we also cover some material not included in this book.
In the course of a typical 28‐class semester, we might have 6–7 lectures on
other topics such as spreadsheets, network technology, security, and ethics.
We chose not to include such material in this text because it is amply covered

Prefacexii

in other textbooks, especially at the level of detail that only 6–7 classes permit.
Instead, this book focuses on what is unique about our approach to teaching
MIS. Instructors are encouraged to combine this book with other books,
excerpts from other books, or their own notes and lectures on topics not
covered here.

Finally, while this book was conceived as a textbook for undergraduate
business students, it could also be used in other educational situations or even
outside the context of a graded course, as a relatively “friendly” introduction to
database technology. We are not aware of other books, textbooks or otherwise,
that develop relational database technology in the incremental, example‐rich
manner that has proved effective at Rutgers over the past two decades.

Introductory Relational Database Design for Business, with Microsoft Access, First Edition.
Jonathan Eckstein and Bonnie R. Schultz.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.

1

1

This chapter covers the following topics:

●● Basic definitions and concepts in database technology
●● The role of computers and network technology in helping run businesses

and other organizations
●● Common types of information processing systems in current use

Basic Terms and Definitions

There are some basic definitions and concepts that should provide useful con-
text for understanding database design. Some of the terms we define are in
common use but take on specific meaning in the information technology field.

Datum is a singular word, and data is its plural. A datum (sometimes called
a “data item”) is a “particle” of information like “12” or “Q.”

Information refers to data that are structured and organized to be useful in
making a decision or performing some task. Relational databases are currently
the most common way data are organized into information; hence this book’s
focus on relational databases.

Knowledge denotes understanding or evaluating information. An example
could be when Casleton Corporation analyzes its recruiting data and concludes
that recruits from Driftwood College tend to have good performance evalua-
tions only if their GPAs are at least 3.0. Based on this “knowledge,” Casleton’s
managers might choose to screen applicants from Driftwood College by their
GPAs, interviewing only those graduates with at least a 3.0 GPA.

For this book, we will focus on representing information within computer
systems. Note, however, that knowledge can also be represented within
computers. One common kind of knowledge representation (KR) within com-
puters is part of the field of artificial intelligence (AI). One common business
application of AI in business is in automated business rules systems. Another

Basic Definitions and Concepts

Introductory Relational Database Design for Business, with Microsoft Access2

recently popularized AI application is the “Siri” personal assistant on iPhones
and iPads, or the similar “Google Voice” app on Android devices. Although its
business uses are substantial and gradually expanding, we will not discuss AI,
as relational database systems are simpler and far more ubiquitous.

Information systems consist of the ways that organizations store, move,
organize, and manipulate/process their information. The components that
implement information systems – in other words, information technology –
consist of the following:

●● Hardware – physical tools: computer and network hardware, but also low‐
tech objects such as pens and paper

●● Software – (changeable) instructions for the hardware (when applicable; the
simplest hardware does not need software)

●● People
●● Procedures – instructions for people
●● Data/databases

Information systems existed before computers and networks – they just used
relatively simple hardware that usually did not need software (at least as we
know it today). For example, filing all sales receipts alphabetically by customer
in a filing cabinet is a form of information system, although it is not electronic.
Tax records kept on clay tablets by ancient civilizations were also a form of
information system. Strictly speaking, this book is about an aspect of CBISs
(computer‐based information systems). Because of the present ubiquity of
computers in information systems, we usually leave out the “CB,” treating it as
implicit.

Present‐day CBISs have the following advantages over older, manual infor-
mation systems:

●● They can perform numerical computations and other data processing much
more quickly, accurately, and cheaply than people.

●● They can communicate very quickly and accurately.
●● They can store large amounts of information quickly and cheaply, and infor-

mation retrieval can often be very rapid.
●● They can, to varying degrees, automate tasks and processes that previously

required human labor.
●● Information no longer needs to be “stuck” with particular things, locations,

or people.

However, increasingly, automated systems can have drawbacks, such as the
following:

●● Small errors can have a much wider impact than in a less automated system.
For example, in March 2003, a minor software bug in some airport data col-
lection code – which programmers were aware of but considered too small
to cause operational problems – grounded all aircraft in Japan for two days.

Basic Definitions and Concepts 3

●● Fewer people in the organization understand exactly how information is
processed.

●● Sometimes, malfunctions may go unnoticed. For example, American Airlines
once discovered a serious bug in its “yield management” software only after
reporting quarterly results that were significantly lower than expected.
(“Yield management” refers to the process of deciding how many aircraft
seats to make available for sale at different fare levels.)

Information architecture is the particular way an organization has arranged
its information systems: for example, a particular network of computers run-
ning particular software might support a firm’s marketing organization, while
another network of computers running different software might support its
production facilities, and so forth.

Information infrastructure consists of the hardware and software that sup-
port an organization’s information architecture, together with the personnel
and services dedicated primarily to maintaining and developing that hardware
and software.

Application and application program (nowadays sometimes simply “app”)
are somewhat ill‐defined terms but typically denote computer software and
databases supporting a particular task or group of tasks. For example, a firm’s
human resource department might use one application to analyze benefit costs
and usage, and another to monitor employee turnover.

A classic business IT problem is that applications, especially those used by
different parts of an organization, may not communicate with one another
effectively – for example, a new hire or retirement might have to be separately
entered into both of the human resources systems described above because
they do not communicate or share a common database.

Types of Information Systems

Particular information systems may be intended for use at one or more levels
of an organization, as follows (Figure 1.1):

●● The operational level – day‐to‐day operations and routine decisions. In an
airline, for example, an operational decision is whether to cancel a par-
ticular flight on a particular day, or what type of aircraft to schedule on a
particular flight during the summer flying season. Operational events that
that might need to be recorded could include a customer scanning her
boarding pass as she boards a flight, or an aircraft arriving at its destina-
tion gate.

●● The strategic level – the highest‐level, “big picture” decisions. In the example
of an airline, whether to serve the Asia–US market, or whether to emphasize
cost over service quality.

Introductory Relational Database Design for Business, with Microsoft Access4

●● The tactical level – decisions in between operational and strategic levels; for
an airline, such a decision might be whether to increase or decrease service
to a particular city.

In reality, the boundaries between these levels are typically somewhat indis-
tinct: the levels form a continuous “spectrum.” But labeling different segments
of this spectrum as “levels” is useful conceptually.

Organizations are also typically divided into functional areas, meaning that
different parts of the organization have different functions (that is, they do
different things). These divisions vary by organization, but Figure 1.1 shows a
fairly standard division into accounting, finance, operations, marketing, and
human resources.

Transaction processing systems (TPSs) gather data about everyday business
events in “real time” as they occur. Examples:

●● You buy three items at a local store.
●● A shipment of coffee beans arrives at a local distribution center.
●● A passenger checks in for a flight.
●● A package is unloaded from a FedEx or UPS aircraft.

Strategic Level

Tactical Level

Operational Level

Accounting Finance Operations Marketing HR

FAIS
FAIS

FAIS FAIS FAIS

FAIS

TPS TPS TPS
Or…

ERP

IT Personnel and Organization Hardware and Software

IT infrastructure

Figure 1.1  Information systems and the levels of an organization.

Basic Definitions and Concepts 5

Although only one of the above events is a transaction in the classical economic
sense, from an information systems perspective all of these events are examples
of transactions that may be immediately tracked by a TPS. Often, technology like
barcodes and scanners makes tracking such transactions quicker, cheaper, and
more detailed than if their associated data were to be keypunched manually.
TPS systems are always operational‐level systems, but they may also be used at
other levels, or feed information to other systems at higher levels.

Functional area information systems (FAISs), also called departmental informa-
tion systems (DISs), are designed to be operated within a single traditional func-
tional department of an organization such as sales, human resources, or accounting.
In the early days of CBIS, these were often the only kind of systems that were
practical, because managing the data from more than one functional area would
have required too much storage or computing power for a single system.

When an organization has multiple functional area systems, properly coor-
dinating them becomes a potentially difficult issue. The systems may require
overlapping data and can therefore become “out of sync” with one another.
ERP (enterprise resource planning) systems are a relatively extreme reaction to
the problem of poorly coordinated functional area systems, and are offered by
vendors such as SAP and Oracle. They aim to support the entire organization’s
needs with essentially one single integrated system. They have enormous
potential benefits but are also notoriously tricky and expensive to configure
and install. Note that the only really meaningful word in the ERP acronym is
“enterprise,” denoting a system for the entire enterprise, and the reasons for
“resource planning” in the acronym are historical. Such systems can perform
resource planning but not particularly more than any other business function.

Some other common terms, some of which we will define in more detail later
in the book, include the following:

●● MIS – management information system – refers to a standard system that
consolidates operational data into reports useful to managers.

●● DSS – decision support system – refers to a system designed to help analyze
and make specific kinds of decisions (at any level of the management
hierarchy).

●● ES – expert system – refers to a system that mimics the knowledge and
behavior of human experts in particular domains, such as diagnosing prob-
lems with complicated equipment.

●● EIS – executive information system – refers to a system that is designed to
provide executives with information to assist them in making high‐level
(strategic or tactical) decisions.

●● An interorganizational system (IOS) is a system that connects two organiza-
tions – for example, it may allow a company to automatically share inventory
and backlog data with suppliers or customers.

●● Electronic commerce or e‐commerce refers to sales transactions in which at
least one side of the transaction (buyer or seller), and perhaps both, is per-
formed by a CBIS without direct human intervention.

Introductory Relational Database Design for Business, with Microsoft Access, First Edition.
Jonathan Eckstein and Bonnie R. Schultz.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.

7

2

Microsoft Access is an example of relational database software, usually called
a relational database management system (RDBMS). Access is just one of
many relational database offerings in the software marketplace. Others include
packages such as Oracle and Ingres. Some database software, such as MySQL,
is available free of cost, while other packages are sold by commercial vendors
such as Oracle and IBM.

All of these database packages are conceptually similar to MS Access.
The greatest difference is in the scale of operation each package supports, in
terms of both the volume of data and the number of simultaneous users. User
interfaces also differ from package to package.

It is important to note that not all databases are relational. Some older tech-
nologies are still in use in the business environment, and other modern
approaches exist, such as object databases. However, relational databases are
by far the most commonly used today, especially in business applications,
which is why this textbook focuses on them.

In relational databases, all data are kept in tables, also called relations. Most
relational databases contain more than one table, but for now we will keep
things simple and consider only a single table. A database with only one table
is often called a flat file database.

Table 2.1 shows an example of a data table pertaining to students.
The rows of the table, also called tuples or records, correspond to things

or events that we wish to store information about, such as people, orders, or
products. In Table 2.1, each row corresponds to a student.

The columns of the table, also called attributes or fields, record various
properties of the things or events being described. In this example, the attrib-
utes are the ID number, first name, last name, and zip code of each student.

Other kinds of software can store tables of data. For example, spreadsheet
programs such as Microsoft Excel can store data tables. The biggest different
between Excel and Access is in the way in which Access allows for relationships
between multiple tables. However, other differences exist. For instance, each

Beginning Fundamentals of Relational
Databases and MS Access

Introductory Relational Database Design for Business, with Microsoft Access8

column in a relational database table has a fixed datatype. Here “datatype”
refers to the kind of data being stored: for example, an amount of money, some
other kind of number, or a character string like a person’s name. In a relational
database, every datum stored in a column must have the same datatype; that is,
every entry in the column must be a percentage, or every entry must be a char-
acter string, and so forth. In spreadsheets, you can have data of different types
within the same column. For example, a name might be stored in a particular
cell, but another cell in the same column might contain a percentage.

Another difference is that in relational databases, one identifies columns by
a user‐specified attribute name (such as ID# or FirstName above) rather than
by sequential letters (A, B, C,…), or column numbers as in a spreadsheet.

One more difference is that in spreadsheets, rows and columns are essen-
tially symmetrical in their basic function. For example, it is no harder to add a
column to a spreadsheet than it is to add a row. In relational database tables,
rows and columns have fundamentally different roles. In relational databases,
you can add or delete rows easily and quickly, whereas columns are largely
static. Depending on the specific relational database software one is using, one
might be able to add or delete columns in a table after it has been created, but
if the table already contains a large amount of data, such an operation may be
very time consuming and require significant computing resources.

Beginning Fundamentals of MS Access

Microsoft Access is both of the following:

●● A relational database system
●● A graphical, object‐oriented software development environment (but not an

object database or object‐oriented database, which would imply a different,
more flexible data‐storage model)

To develop an Access application, one uses various tools and “wizards” to
create, customize, and link “objects” to suit one’s needs. It is also possible

Table 2.1  Example table of student data.

ID# FirstName LastName ZipCode

14758993 Joseph Ho 08765
23458902 Karen Leigh 21678
89312199 Max Saperstein 11572
90926431 Alex Holmes 08743
82938475 Meera Rajani 99371
19284857 Evan Chu 34012

Beginning Fundamentals of Relational Databases and MS Access 9

to write segments of computer programming code in the Visual Basic language
and combine them with objects, but doing so is often unnecessary for simple
Access applications. Thus, Access allows someone to build fairly sophisticated
applications without engaging in classic text‐based computer programming.

Access’ most frequently used kinds of objects are tables, forms, queries, and
reports. Access stores all the objects for a database in a single file with the type
“.accdb” (or “.mdb” in earlier versions of Access).

Typically, Access keeps each database and its entire constituent objects
inside a single operating‐system file (Figure 2.1). For different database soft-
ware or operating systems other than Microsoft Windows, the situation might
be different: the database or even a single table might be spread across multiple
operating‐system files.

Access allows you to link objects in useful ways. We will start by examining
the simplest such linkage, between a table and a form. Essentially, the table
provides a way to store your basic data, and the form provides an alternative
way to view that data on the screen. Information can flow in both directions
between the table and form (Figure 2.2).

A “Hands‐On” Example

Let us suppose we want to track information about students at a small college.
We want to keep the following information for each student:

●● ID number (9 digits)
●● Name (First, Last, and Middle name or initial)
●● Address, consisting of street address, city, state, and zip code
●● Major
●● Gender
●● Birth date (question: why is it better to store a person’s birth date than their

age?)

Table

Table
Form

Query

Report

.accdb file

Figure 2.1  Objects within an Access file.

Table Form

Figure 2.2  A table interacting with a form.

Introductory Relational Database Design for Business, with Microsoft Access10

●● Whether or not the student is on financial aid (for the purposes of this exam-
ple, a simple yes/no)

●● Credits taken
●● Grade points amassed

Note that if you take a three‐credit class and get a B+, that means you get
3 × 3.5 = 10.5 grade points. Your GPA is the ratio of your grade points amassed
to your total credits taken.

Let us create a database to store this information:

1)	 Open Microsoft Access from the “Start” or Windows menu at the bottom
left of the screen (Figure 2.3).

2)	 Click the “Blank desktop database” icon (“Blank database” in earlier versions
of Access).

3)	 In the resulting dialog box, provide a file name, for example, “students” (if
Windows is configured not to display file types) or “students.accdb”
(if Windows is configured to display file types).

4)	 Click “Create.”

Access assumes that the first thing we want to do is to create a table. We see
an empty table called “Table1.” Now, we want to define what information
resides in this table. This step is called table design (Figure 2.4).

Figure 2.3  When Access opens.

Beginning Fundamentals of Relational Databases and MS Access 11

5)	 Accordingly, we click the “View” button at the top left (make sure you have
the “FIELDS” tab selected), and select “Design View.”

6)	 A small dialog box appears requiring us to give the table a name – we call
the table STUDENT and then click OK (Figure 2.5).

We now see a list of the attributes in the table (somewhat counterintuitively,
the columns of the table appear as rows in this view; Figure 2.6).

Figure 2.4  A new Access table.

Figure 2.5  Naming a table in Access.

Figure 2.6  Table design view.

Introductory Relational Database Design for Business, with Microsoft Access12

We now specify the columns in our table. In designing a database, you should
keep in mind the following guidelines:

●● Try to plan for the future and include all the data you are likely to need.
In Access, it is possible to change attribute datatypes or add attributes later,
but if the database is already large or many people are using it simultane-
ously, adding attributes or modifying datatypes could be slow or could
disrupt the use of your system.

●● Have a separate field for each division of the data you anticipate needing. As a
general rule, it is much easier to put data together than to take them apart. For
example, if we store student’s names as three different fields (first, middle, and
last names) then we can easily form a student’s whole name by concatenating
(placing end‐to‐end) the contents of these fields. If we just store the name as
one large field, then certain tasks, such as sorting students by their first or last
names, may become unnecessarily difficult and prone to error.

●● Avoid storing calculated fields. If you have already stored the total credits and
grade points amassed, you can easily calculate GPA. There is no need to
redundantly store the students’ GPAs. That will take up unnecessary space
and create an opportunity for the fields of the database to become inconsist-
ent with one another. In relational databases like Access, you should generally
use table objects only for your “base” data. Calculations based on those data
reside in other objects, such as queries, forms, and reports. This separation
of base and calculated data is another way in which relational databases are
different from spreadsheets, in which all “base” data coexist with calculations
within the same two‐dimensional grid of cells.

Let us now proceed with the design of our database:

1)	 Access has already provided a field called “ID,” in keeping with the standard
procedure of every table including a primary key attribute whose value
uniquely identifies each row of a table. This is another difference from
spreadsheets, which identify rows by simply numbering them sequentially.
We will extensively discuss the choice and construction of primary keys
later in this book.

Now, each student should already have a unique student ID number, so
that even if there were two students named “John Smith,” each would
have a different ID. Access defaults to a primary key field called “ID” with
a datatype of “Autonumber,” which means that Access will assign IDs
automatically. Let us assume for this example that the college registrar
has already assigned 9‐digit ID numbers in a social‐security‐number‐like
format. We do not want to create our own different ID numbers, but
would prefer to use the same ID numbers assigned by the registrar,
in the same format. Therefore, we change the datatype of the ID field

Beginning Fundamentals of Relational Databases and MS Access 13

to text, rather than Autonumber, by selecting “Short Text” (for Access
2013) or “Text” (for earlier versions) from the pull‐down menu under
“Data Type.” Note that it is generally customary to use text fields to rep-
resent ID numbers and the like, which do not have any specific arithmetic
meaning – for example, it makes no sense to add or subtract two students’
ID numbers.

Versions of Access prior to 2013 had two kinds of text fields, “Text” for
standard, fixed‐length fields and “Memo” for potentially very long, free‐
form, variable‐length fields. In Access 2013 the terminology for these two
kinds of fields was changed to “Short Text” and “Long Text,” respectively.
This terminology can be a bit confusing because “Short Text” has the potential
to be quite long (255 characters), and a “Long Text” field does not necessar-
ily have to be long. In this textbook, we will use the term “Text” to refer to
standard, “short” text fields, and we will not use “Long Text” fields in our
exercises. Therefore, we will refer to “Short Text” fields simply as “Text”
from this point forward.

In the “field properties” at the bottom of the screen, we enter “9” in
“field size” (to set the ID length to nine characters) and “000\‐00\‐0000”
under “input mask.” This input mask allows you to enter only numbers
(because of the “0” characters), and the placement of the “\‐” characters
causes the IDs to display in a social‐security‐number‐like format. Note
that the hyphens in the input mask are not actually stored in the database.
Instead of just typing in the input mask, we can instead click on the “…”
button in the input mask property, and select from commonly used input
masks in the “input mask wizard” that then pops up. Finally, we can enter
an explanation like “Student ID number from registrar” in the “descrip-
tion” area.

2)	 In the next row, we create a “FirstName” field by typing “FirstName”. The
datatype defaults to “Short Text” (or, equivalently, “Text” in older versions of
Access), with a length of 255 characters. Here, we may select a shorter
length, like 40. Here and below, we will select some reasonable lengths for
text fields, but there is nothing magical or “best” about the lengths chosen.

3)	 Create a “MiddleName” text field; set the length to 20.
4)	 Create a “LastName” text field; set its length to 50.
5)	 Create a “StreetAddress” text field; set its length 80.
6)	 Create a “City” text field; set its length to 50.
7)	 Create a “State” text field, and set its length to 2 (assuming we will use

standard postal two‐letter codes for states).
8)	 Create a “ZipCode” text field, and set its length to 9 (for modern zip + 4

codes). We can click the “…” box on the right of “input mask,” and after
saving the table, select a standard mask for zip codes. Note that adding or
multiplying zip codes makes no sense, so we store them as text.

Introductory Relational Database Design for Business, with Microsoft Access14

9)	 Create a “Gender” text field; set its length to 1. We will just store “M” or “F”
in this field. Later in this chapter we will see how to ensure that a user does
not enter other letters.

10)	 Create a “Major” text field; set its length to 30 (later in this book, we will
see how to allow only real majors to be entered in situation like this).

11)	 Create a “BirthDate” field. Access has a special datatype for dates and
times, called “Date/Time,” which can store combined dates/times with an
accuracy of seconds. Select this datatype. Under “field properties,” we
can also select a format to use to display this information – for example,
“short date.” Note that it is much better to store a student’s birth date,
which is static, than their age, which would have to be periodically
updated.

12)	 Create a “FinancialAid” field. Assume that we just want the database to
remember whether the student has any financial aid. In this case, we have
an example of a “yes/no” field; select the “Yes/No” datatype. We can set the
format to “Yes/No” instead of the default “True/False” (this change affects
only how the field is displayed).

13)	 Create a “Credits” field. Note that a student’s tally of credits is a number on
which it makes sense to perform addition and other arithmetic operations.
Select the “number” datatype. In “field properties,” select a “Field Size” of
either “Long Integer” or “Integer” for the “field size” (an “Integer” means a
whole number). Note that “Integer” can hold whole numbers in the range
–32,768 through +32,767, which should be more than sufficient to hold
a tally of credits. If the school were to allow fractions of credits, it would
have to make this field a “Single” or “Double,” datatypes that can hold
numbers containing fractions.

14)	 Create a “GradePoints” field. Grade points amassed can be fractional, so
select “number” and a field size of “Double,” which can store arbitrary
numbers including fractions. “Single” can store fractional values with
about 6 digits of accuracy and “Double” about 14. “Double” is generally
recommended over “Single” unless you anticipate having a gigantic data-
base and need to worry about how much storage it will consume.

15)	 The table design process is now complete (Figure 2.7). Finally, we save the
table design by clicking the small disk icon in the top left corner, next to the
Access logo. Note that “saving” in Access saves an object within the overall
Access file; in other Microsoft Office applications, “save” has the different
meaning of saving the whole file. In Access, the database file as a whole is
continuously saved.

Next, we switch the “view” to “datasheet” instead of “design,” and
enter some data (we can just invent some information for now;
Table 2.2).

Beginning Fundamentals of Relational Databases and MS Access 15

Introduction to Forms

We will now create a form to view our table in a more visually pleasing way.
With the table open, select the “Create” tab and push the “Form” button.

Access then creates a form automatically linked to the STUDENT table. Note
that we can enter data into the form, and it is immediately reflected in the
table, and vice versa. The form first appears in “Layout View.” If we choose
“Form View,” we can enter and change data.

We can now choose the “Design View” of the form and make changes. For
example, we can change the font in the header, resize the text boxes, and so
forth. To make changes to the widths and positions of the individual text boxes,
we must first remove the “layout” that initially links them together. To remove
this linking, choose the “arrange” tab, click the small handle on the upper left
area of the form that looks like a box with a “+” sign in it, and click “Remove
Layout.”

Figure 2.7  Completed Design View for the STUDENT table.

 Table 2.2 Sample data entered into the STUDENT table.

ID First Name
Middle
Name

Last
Name

Street
Address City State Zip Gender Major Birth Date

Financial
Aid Credits

Grade
Points

547‐89‐9399 Bella Q Amati 393 West
Boulevard

Piscataway NJ 08854‐ F Marketing 12/22/1986 No 35 90

784‐57‐8483 Matthew F Short 23 Greene
Circle

East
Brunswick

NJ 08750‐ M Finance 3/12/1987 Yes 38 94

129‐34‐8900 Yu‐Ping Chen 177
Whitcomb
Lane

Sparta NJ 07768‐ M Accounting 4/4/1987 No 30 102.5

Beginning Fundamentals of Relational Databases and MS Access 17

If you want to view forms and tables as sub‐windows rather than tabs, select
the “File” tab (or click the Office icon in Access 2007), click “Options,” select
the “Current Database” tab, and select “Overlapping Windows” under
“Document Window Options.” You then see a message stating “You must close
and reopen the database for the specified option to take place.” Close and
reopen the database.

In Design View, our form should look approximately as in Figure 2.8.

We can now add a box to display each student’s GPA:

16)  Select “Design View” again, if it is not already selected.
17)  If desired, make space on the form by dragging the “Form Footer” bound-

ary down.
18)  In the “design” tab, click the “text box” tool (“ab |” near the left of the ribbon).
19)  Draw the text box somewhere on the form.
20)  After aligning the text box and its label, type “GPA” in the label.

Figure 2.8  Design View of a form linked to the STUDENT table.

Introductory Relational Database Design for Business, with Microsoft Access18

●● Next, view the properties of the text box (if you do not see them on the right
of the screen, right‐click the box and select “properties”). In these properties,
perform the following operations:

–– Enter “=[GradePoints]/[Credits]” in “Control Source” – note that the
names are case sensitive: “Credits” is not the same as “credits.” The square
brackets indicate to Access that it should use the values of fields in the
linked table, in this case Students. Access should insert the brackets auto-
matically if you type the field names correctly.

–– Select “Fixed” in the “Format” property and “3” for “Decimal Places.”
–– Go back to “Form View,” and observe the results (Figure 2.9). Note that

GPA is computed from the other fields in the same record when you
display the form, but is not stored in the database itself. Therefore, it is
called a computed field or calculated field.

Another Method to Create Forms

We now present a method to create forms that gives the user a bit more
control. To begin with, we download a slightly different version of the data-
base we created earlier, class‐3‐base.accdb, from the book website.

Figure 2.9  Completed student form with GPA display.

