Prenatal and Postnatal Care

A Woman-Centered Approach

Second Edition

Robin G. Jordan Cindy L. Farley Karen Trister Grace

WILEY Blackwell

Prenatal and Postnatal Care A Woman-Centered Approach

Prenatal and Postnatal Care

A Woman-Centered Approach

SECOND EDITION

Edited by Robin G. Jordan Cindy L. Farley Karen Trister Grace

WILEY Blackwell

This second edition first published 2019 © 2019 by John Wiley & Sons, Inc.

Edition History [John Wiley and Sons 1e, 2014]

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Robin G. Jordan, Cindy L. Farley and Karen Trister Grace to be identified as authors of editorial work in this book has been asserted in accordance with law.

Registered Office(s)

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Jordan, Robin G., 1954– editor. | Farley, Cindy L., editor. | Grace, Karen Trister, editor. Title: Prenatal and postnatal care : a woman-centered approach / edited by Robin G. Jordan, Cindy L. Farley, Karen Trister Grace.

Description: Second edition. | Hoboken, NJ : Wiley, 2019. | Includes bibliographical references and index. | Identifiers: LCCN 2018001930 (print) | LCCN 2018002300 (ebook) | ISBN 9781119318354 (pdf) | ISBN 9781119318361 (epub) | ISBN 9781119318347 (pbk.)

Subjects: | MESH: Maternal-Child Nursing | Pregnancy Complications-nursing | Pregnancy-physiology Classification: LCC RJ254 (ebook) | LCC RJ254 (print) | NLM WY 157.3 | DDC 618.92/01-dc23 LC record available at https://lccn.loc.gov/2018001930

Cover Design: Wiley Cover Image: Courtesy of Robin G. Jordan

Set in 10.5/12.5pt Minion by SPi Global, Pondicherry, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

This book is dedicated to women who persist.

To the wide circle of women in my life who help keep me physically strong, intellectually growing, and emotionally sustained. And laughing the whole time. ~Robin~

To my granddaughter, Isabel Brown, from Brooklyn Town. My wish for you is expressed in the Girl's Globe Manifesto and my hope is that this book contributes in small part toward a healthy life for women and their families: "A girl should be free to live to her full potential, to live a healthy life, free from violence and discrimination. To get educated and access her right to go to school. To choose when, if and whom to marry and have children when she is ready. Simple, these are her rights. With them she can change the world." ~With love, Nana Cindy~

To my husband, Peter, whose love, support, and co-parenting makes it all possible. ~Karen~

Contents

About the Editors	xxi
Contributors	xxiii
Preface	xxvii
About the Companion Website	xxix

Part I Physiological Foundations of Prenatal and Postnatal Care

1	Reproductive Tract Structure and Function	5
	Anatomy of the Female Reproductive System	6
	External Genitalia	6
	Internal Genitalia	8
	Menstrual Cycle Physiology	11
	Beginnings	11
	Onset of Puberty	11
	The Hypothalamic–Pituitary–Ovarian Axis	14
	Menstrual Cycle Phases	14
	Resources for Women	17
	Resources for Healthcare Providers	17
	References	17
2	Conception, Implantation, and Embryonic	
	and Fetal Development	19
	Patricia W. Caudle	
	Introduction	20
	Conception and Implantation	20
	The Placenta	21
	Beginnings and Structure	21
	Chorionic and Amnionic Membranes	22
	The Umbilical Cord	23
	Placental Functions	23
	Sociocultural Uses of the Placenta	23
	Placental Transport	23
	Placental Endocrine Synthesis	
	and Secretion	24
	The Embryo	25
	Organogenesis	28
	The Fetus	30
	Summary	31
	Resources for Healthcare Providers	31
	Resources for Women, Their Families, and	
	Healthcare Providers	32
	References	32

3	Maternal Physiological Alterations	
	during Pregnancy	33
	Patricia W. Caudle	
	Introduction	33
	Hematologic System Adaptations	33
	Blood Changes	34
	Cardiovascular System Adaptations	35
	Anatomical and Functional Cardiac Changes	35
	Vascular Changes	36
	Blood Pressure Changes	36
	Supine Hypotensive Syndrome	37
	Respiratory System Adaptations	37
	Anatomical Changes	37
	Pulmonary Function Changes	37
	Renal System Adaptations	38
	Anatomical Changes	38
	Renal Function Changes	38
	Gastrointestinal System Adaptations	38
	Anatomical Adaptations	39
	Gastrointestinal Function Changes	39
	Liver and Biliary Changes	39
	Metabolic System Adaptations	39
	Basal Metabolic Rate	40
	Carbohydrate Metabolism	40
	Protein Metabolism	40
	Fat Metabolism	40
	Leptin and Ghrelin	40
	Insulin	40
	Skin Changes	41
	Pigmentation Changes	41
	Vascular Changes	41
	Connective Tissue Changes	41
	Sebaceous and Sweat Gland Changes	41
	Hair and Nail Changes	42
	Immune System Adaptations	42
	Fetus as Allograft	42
	Disorders Related to Immunologic Changes	
	in Pregnancy	43
	Neurological System and Sensory Adaptations	44
	Musculoskeletal System Adaptations	44
	Endocrine System Adaptations	45
	Anatomical Changes	45
	Pituitary Function Changes	45
	Thyroid Function Changes	46
	Adrenal Function Changes	46
	Summary	46
	Resources for Women and Their Families	46
	Resources for Healthcare Providers	46
	References	46

viii Contents

4	Physiological Alterations during	
	the Postnatal Period	49
	Kaitlin Wilson and Cindy L. Farley	
	Introduction	49
	Uterus	49
	Lochia	50
	Cervix	51
	Vagina	51
	Labia and Perineum	51
	Rectal Anatomy	52
	Additional Maternal Alterations during	
	the Postpartum Period	52
	Weight Loss	52
	Hair Growth	52
	Central Nervous System	53
	Endocrine Changes	53
	Immune Response	53
	Cardiovascular System	53
	Musculoskeletal System	54
	Renal System	54
	Gastrointestinal Tract	55
	Summary	55
	Resource for Women	55
	Resource for Healthcare Providers	55
	References	55

Part II Preconception, Prenatal Care, and Postnatal Care

Preconception Care	59
Cynthia Nypaver	
Introduction	59
Challenges to Providing Preconception Care	59
Benefits of Preconception Health Care	60
Evidence Supporting Preconception Health Care	60
Preconception Care	61
Risk Assessment and Screening	61
Health History	61
Physical Examination	63
Laboratory Examination	63
Mental Health	63
Substance Use and Abuse	63
Intimate Partner Violence	64
Genetics	64
Infections	65
Exposure to Teratogens	65
Preconception Health Care for Women with	
Chronic Illnesses	67
Asthma	67
Cancer Survivors	67
Cardiovascular Disease and Hypertension	70
Diabetes	70
Phenylketouria	71
Systemic Lupus Erythematosus (SLE)	71
Seizure Disorders	71
Thrombophilias	71
Thyroid Disorders	71
	Preconception Care <i>Cynthia Nypaver</i> Introduction Challenges to Providing Preconception Care Benefits of Preconception Health Care Evidence Supporting Preconception Health Care Preconception Care Risk Assessment and Screening <i>Health History</i> <i>Physical Examination</i> <i>Laboratory Examination</i> <i>Mental Health</i> <i>Substance Use and Abuse</i> <i>Intimate Partner Violence</i> <i>Genetics</i> <i>Infections</i> <i>Exposure to Teratogens</i> Preconception Health Care for Women with Chronic Illnesses <i>Asthma</i> <i>Cancer Survivors</i> <i>Cardiovascular Disease and Hypertension</i> <i>Diabetes</i> <i>Phenylketouria</i> <i>Systemic Lupus Erythematosus (SLE)</i> <i>Seizure Disorders</i> <i>Thrombophilias</i> <i>Thyroid Disorders</i>

	Preconception Health Promotion and Counseling Conception	72 72
	Nutrition	72
	Dietary Supplements	72
	Weight	73
	Physical Activity	73
	Preparation for Pregnancy and Childbirth	73
	Reproductive Life Plan	73
	Vaccinations	74
	Unique Considerations	74
	Immigrant and Refugee Women	74
	Prior Pregnancy Loss	74
	Women with Disabilities	74
	Preconception Care for Men	76
	Summary	76
	Resources for Women and Their Families	76
	Resources for Healthcare Providers	77
	References	77
6	Prenatal Care: Goals, Structure,	0.1
	and Components	81
	Carrie S. Klima	
	Introduction	82
	A Brief History of Prenatal Care	82
	Current Goals of Prenatal Care	83
	Initial and Continuing Risk Assessment	84
	Health Promotion	84
	Medical and Psychosocial Interventions and Follow-Up	84
	Updates to the "Content of Prenatal Care"	85
	Structure of Prenatal Care	85
	The Schedule of Prenatal Visits	86
	How Much Prenatal Care Is Enough?	86
	What Happens in Prenatal Care?	87
	Integrating Quality into Prenatal Care	87
	Group Prenatal Care: CenteringPregnancy	88
	Making Group Prenatal Care Work	89
	Components of Prenatal Care	89
	Assessment	89
	Health History: Initial Visit	90
	Physical Assessment	92
	Laboratory Assessment	93
	Genetic Screening	93
	Diagnostic Testing	93
	Preventative Care	95
	Immunization	95
	Oral Health	95
	Mental Health	95
	Intimate Partner Violence (IPV)	95
	Health Promotion and Education	96
	Nutrition	96
	Substance Abuse	96
	Exercise	97
	Working and Pregnancy	98
	Health Education throughout Pregnancy	98
	Summary	99
	Resources for Women and Their Families	100
	Resources for Healthcare Providers	100
	References	100

7	Nutrition during Pregnancy	103
	Robin G. Jordan	
	Introduction	104
	Understanding Food Units and Recommendations	104
	Size of Food Servings	104
	Prenatal Nutrition and Health Outcomes	104
	Fetal Origins of Disease	106
	Nutritional Needs in Pregnancy	106
	Fluid Intake	106
	Macronutrients: Total Energy	107
	Macronutrients: Fats	107
	Macronutrients: Carbohydrates	108
	Protein	109
	Micronutrients	110
	Overweight and Obesity in Pregnancy	112
	Underweight in Pregnancy	112
	Pre- and Postnatal Flavor Learning	113
	Food Safety during Pregnancy	113
	Food-Borne Infections	113
	Alcohol Caffeine and Artificial Sweeteners	116
	Factors Influencing Nutritional Intake	116
	Resource Availability	116
	Culture and Family	117
	Making a Nutritional Assessment	117
	Using Nutrition Resources	118
	Counseling for Optimal Prenatal Nutrition	121
	Special Issues in Prenatal Nutrition	121
	Adolescent Pregnancy	121
	Vegetarian and Vegan Diets in Pregnancy	121
	Dreamancy after Bariatric Surgery	122
	Fating Disorders	124
	Dica	124
	r icu Summary	125
	Descurses for Women and Their Families	120
	Resources for Healthcare Droviders	120
	Resources for freatmeater froviders	120
	References	120
8	Pregnancy Diagnosis and Gestational Age	
	Assessment	131
	Ianet L. Engstrom and Iovce D. Cappiello	
	Introduction	132
	Benefits of Early Pregnancy Diagnosis and	
	Gestational Age Assessment	132
	Pregnancy Diagnosis	132
	Presumptive Signs of Pregnancy	134
	Probable Signs of Pregnancy	134
	Positive Signs of Pregnancy	137
	Gestational Age Assessment	138
	Terminology Used to Describe Gestational Age	139
	Devices Used to Calculate the Gestational Age	141
	Methods of Estimating the	
	Gestational Age	141
	Counseling for Pregnancy Diagnosis	146
	Counseling after a Negative Pregnancy Test	146
	Counseling after a Positive Pregnancy Test	147
	Options Counseling for Unintended Pregnancy	147
	Providing Evidence-Rased Information	11/
	about Pregnancy Options	149
		/

103		Summary	150
		Resources for Women and Their Families	151
104		Resources for Healthcare Providers	151
104		References	151
104	9	Risk Assessment during Pregnancy	155
104		Robin G. Iordan	100
106		Introduction	155
106		Process and Purpose of Risk Assessment	155
106		Benefits of Risk Assessment	156
107		Limitations of Risk Assessment	156
107		Poor Predictive Value	156
108		Lack of Precision	156
109		Nonmodifiable Risk Factors	156
110		Disadvantages of Risk Assessment	
112		and Risk Management	156
112		Unnecessary Interventions	157
113		Normalization of Technology and Illusion	
113		of Risk Control	157
115		Labeling Women as High Risk	157
116		Misapplication of Risk Assessment and Risk	
116		Management	157
117		Introduction of Actual Risk	158
117		Increase in Financial, Physical, and Emotional Costs	158
118		Birth Fear	159
121		Perspective of Risk and Risk Assessment	159
121		Explaining Risk to Women	160
121		Potential Problems of Risk Miscommunication	162
122		Informed Consent	162
124		Summary	163
124		Resources for Healthcare Providers and women	162
125		Deferences	163
126		Relefences	105
126	10	Prenatal Ultrasound	167
126		Cynthia Parke and Robin G. Jordan	
126		Introduction	168
		The Physics and Mechanics of Ultrasound	168
121		Types of Scans	169
151		Use of Prenatal Ultrasound	170
122		First-Trimester Ultrasound	170
132		Second-Trimester Ultrasound	171
132		Third-Trimester Ultrasound	173
132		Interpreting and Communicating Results	174
134		The Woman's Experience of Ultrasound	175
134		Patient Education	176
134		Safety	176
138		Overuse of Ultrasound	177
139		Recreational Prenatal Ultrasound	1//
141		Adding Liltune our days of Dreating	1/8
		Adding Oltrasound to Scope of Practice	1/8
141		Resources for Healthcare Droviders	1/8
146		References	170
146			1/0
147	11	Genetic Counseling, Screening, and Diagnosis	181
147		Robin G. Jordan	
		Introduction	182
149		Family History and Risk Evaluation	182

	Genetic Screening Tests	182
	Screening for Neural Tube Defects	183
	Screening for Aneuploidy	183
	First-Trimester Screening	185
	Second-Trimester Screening	185
	Integrated and Sequential Screening	185
	Noninvasive Prenatal Testing	186
	Genetic Screening by Ultrasound	186
	Carrier Screening	187
	Expanded Carrier Screening	187
	Diagnostic Prenatal Genetic Testing	189
	Amniocentesis	189
	Chorionic Villus Sampling	189
	Percutaneous Umbilical Blood Sampling	189
	Chromosomal Microarray Analysis	189
	The Role of Genetic Counselors	190
	Psychosocial Considerations in Genetic Testing	190
	Prenatal Genetic Testing and the Tentative Pregnancy	191
	Genetic Testing Counseling during Prenatal Care	191
	Pretest Counseling	191
	Post-Test Counseling	192
	Ethical Responsibilities in Genetic Testing	192
	Prenatal Genetic Counseling and the Healthcare	
	Provider	193
	Summary	193
	Resources for Women, Their Families,	
	and Healthcare Providers	193
	References	194
12	Assessment of Fetal Well-Being	197
	Ienifer Fahev	
	Introduction	197
	Physiologic Principles	198
	Indications	199
	Interprofessional Care	199
	Fetal Testing Methods	200
	Fetal Movement Counting (FMC)	200
	Care of a Woman Reporting Decreased	
	Fetal Movement	202
	Nonstress Test	202
	Contraction Stress Test	206
	Amniotic Fluid Volume Assessment	206
	The Biophysical Profile (BPP) and Modified BPP	206
	Doppler Ultrasonography	210
	Education and Counseling	210
	Cultural, Personal, and Family Considerations	211
	Health Disparities and Vulnerable Populations	211
	Legal and Liability Issues	211
	Summary	212
	Resource for Healthcare Providers	213
	References	213
13	Common Discomforts of Pregnancy	215
	Robin G. Jordan	
	Introduction	215
	Back Pain and Pelvic Girdle Pain	216
	Assessment	217
	Relief and Preventative Measures	217
	Bleeding Gums	218

A (210
Assessment	219
Relief and Preventative Measures	219
Breast Tenderness	219
Assessment	219
Relief and Preventative Measures	219
Carpal Tunnel Syndrome (CTS)	220
Assessment	220
Relief and Preventative Measures	220
Cervical Pain	220
Constipation	220
Assessment	221
Relief and Preventative Measures	221
Dizziness/Syncope	222
Assessment	222
Relief and Preventative Measures	222
Edema	222
Assessment	222
Relief and Preventative Measures	223
Emotional Changes	223
Assessment	223
Relief and Preventative Measures	223
Fetigue	223
Accessment	223
Assessment Doliof and Drouontating Maggures	224
Electulor co	224
Account	224
Assessment Doliof and Dravantative Macauree	224
Relief und Preventative Measures	224
A second second	225
Assessment	225
Relief and Preventative Measures	225
Heartburn	225
Assessment	226
Relief and Preventative Measures	226
Heart Palpitations	226
Assessment	226
Relief and Preventative Measures	226
Hemorrhoids	227
Assessment	227
Relief and Preventative Measures	227
Increased Warmth and Perspiration	227
Leukorrhea	227
Assessment	227
Relief and Preventative Measures	227
Leg Cramps	228
Assessment	228
Relief and Preventative Measures	228
Nasal Congestion	228
Assessment	229
Relief and Preventative Measures	229
Epistaxis	229
Assessment	229
Relief and Preventative Measures	229
Nausea and Vomiting of Pregnancy (NVP)	230
Assessment	230
Relief and Preventative Measures	231
Ptyalism	233
Assessment	233
Relief and Preventative Measures	233

	Restless Leg Syndrome (RLS)	233
	Assessment	233
	Relief and Preventative Measures	234
	Round Ligament Pain	234
	Assessment	234
	Relief and Preventative Measures	235
	Shortness of Breath	235
	Assessment	235
	Relief and Preventative Measures	235
	Skin, Hair, and Nail Changes	235
	Hyperpigmentation	236
	Vascular Changes	237
	Hair and Nail Changes	237
	Relief and Preventative Measures	237
	Sleep Disturbances	238
	Assessment	238
	Relief and Preventative Measures	238
	Supine Hypotension Syndrome (SHS)	239
	Assessment	240
	Relief and Preventative Measures	240
	Urinary Frequency and Nocturia	240
	Assessment	240
	Relief and Preventative Measures	240
	Urinary Incontinence	240
	Assessment	240
	Relief and Preventative Measures	241
	Varicosities (Legs/Vulva)	241
	Leg Varicosities	241
	Relief and Preventative Measures	241
	Vulvar Varicosities	242
	Relief and Preventative Measures	242
	Vision Changes	243
	Assessment	243
	Relief and Preventative Measures	243
	Resources for Women and Their Families	243
	References	243
14	Oral Health	247
	Julia Lange Kessler	
	Introduction	247
	Anatomy of the Oral Cavity	247
	Initial Assessment of the Oral Cavity	248
	Oral Health History	248
	Physical Exam	249
	Influence of Oral Health on Pregnancy Outcomes	249
	Gingivitis	250
	Periodontitis	250
	Pregnancy (Pyogenic) Granuloma	250
	Conditions Affecting Oral Health	250
	Postpartum and Newborn Oral Health	251
	Summarv	251
	Resources for Women and Their Families	251
	Resources for Healthcare Providers	251
	References	251
15	Madiantian I las Junios Duase	252
15	Memo Dise during Pregnancy	253
	Mary C. Brucker and Iekoa L. King	254
	Introduction	254
	Types of Pharmaceutical Agents	254

	Prescriptive Authority	254
	Governmental Oversight of Pharmaceutical Agents	254
	Pre-Marketing Drug Testing	255
	The Prescription: Essential Components	256
	FDA Categories for Drugs in Pregnancy	257
	Etiology of Birth Defects	258
	Mechanisms of Teratogenic Drugs	258
	Identification of a Teratogen	259
	Selected Teratogens	260
	Pharmacokinetics in Pregnancy	261
	Common Medications Used During Pregnancy	261
	Vaccines during Pregnancy	261
	Rational Use of Drugs in Pregnancy	261
	Summary	264
	Resources for Healthcare Providers	267
	Resources for Women and Their Families	267
	References	267
16	Substance Use during Pregnancy	271
	Daisy J. Goodman, Kelley A. Bowden,	
	and Alane B. O'Connor	
	Introduction	271
	Prevalence of Prenatal Substance Use	272
	Terminology	272
	Historical Approaches to Prenatal Substance Use	273
	Harm Reduction Approaches to Prenatal	
	Substance Use	274
	Common Comorbid Conditions	275
	Mental Health Disorders	275
	Social Issues	275
	Medical Conditions	275
	Prenatal Screening	275
	Screening Tools	276
	Brief Intervention	276
	Treatment Types	278
	Commonly Used Substances, Pregnancy	
	Implications, and Recommended Treatment	279
	Alcohol	279
	Nicotine	280
	Cocaine	282
	Marijuana	283
	Amphetamines/Methamphetamines	283
	Designer Drugs	283
	Opioids	284
	Perinatal Care of Women with Substance	
	Use Disorders	285
	Pregnancy Dating	286
	Prenatal Laboratory Testing	286
	Psychosocial Assessment	286
	Screening for Social Determinants	286
	Concurrent Medications	2.86
	Fetal Assessment	286
	Anticipatory Guidance	287
	Barriers to Treatment	287
	Communication and Coordination of Care	287
	Neonatal Abstinence Syndrome	287
	Postpartum Care	289
	Breastfeeding and Substance Use	289
	2. chargeoning with one stunice Osc	-07

	Interprofessional Care	290
	Summary	290
	Resources for Healthcare Providers	291
	References	291
17	Health Disparities and Social Issues	
	in Pregnancy	297
	Nena R. Harris	
	Introduction	297
	Poverty	298
	Food Insecurity	298
	Housing Insecurity	299
	Financial Insecurity	300
	Interdisciplinary Care	300
	Incarceration during Pregnancy	300
	Intimate Partner Violence during Pregnancy	302
	Reproductive Coercion	303
	Human Trafficking	303
	Pregnancy and a History of Childhood	
	Sexual Abuse	305
	Assessing for Childhood Sexual Abuse	305
	Providing Care	305
	Summary	307
	Resources for Healthcare Providers	307
	Resources for Women and Their Families	308
	References	308
18	Diversity and Inclusiveness	
10	in the Childbearing Year	313
	Cindy I. Earley and Michael I. Wright	515
	Introduction	314
	Inequities in Peripatal Care and Outcomes	314
	Contributors to Perinatal Health Disparities	314
	Socioeconomic Conditions	315
	Physiologic Effects of Discrimination	315
	Medical Mistrust	316
	Developing Cultural Competence	316
	Communication	317
	Selected Cultural Traditions	517
	in the Childbearing Year	317
	Pregnancy	318
	Labor and Birth Care	318
	Postpartum	319
	Infant Care	319
	Summary	320
	Resources for Healthcare Providers	320
	Resources for Women	320
	References	320
10	Exercise and Sexual Occupational	
19	and Environmental Health in Drognancy	272
	Mashan Carland	525
	Iviegnan Gariana	202
	Introduction	323
	Exercise Demofite of Examples in Duran and	323
	Denejus of Exercise in Fregnancy	324
	enysiologic Ununges auring Pregnancy	22.4
	unu Exercise	524

	Motivation to Exercise	325
	Measuring Exercise Activities	326
	Exercise Activities	326
	General Advice for Exercising in Pregnancy	327
	Exercise during the Postpartum Period	328
	Environmental Exposures	329
	Making an Environmental Exposure	
	Assessment	329
	Metals and Metalloids	331
	Organic Solvents	332
	Pesticides	332
	Endocrine-Disrupting Chemicals	332
	Reducing Exposures	333
	Sexuality	333
	Pregnancy Influences on Sexuality	334
	Sexual Activity during Pregnancy	334
	Sexual History	334
	The Workplace and Pregnancy	335
	Shift Work	335
	Heavy Lifting and Long Work Hours	335
	Noise Exposure	336
	Deschassocial Stress and Employment	226
	Programcy Discrimination in the Workblace	336
	Associate Occupational Conditions	227
	Assessing Occupational Conditions	227
	Supporting Pregnancy Health in the Workplace	33/
	Even even for More er	227
	Exposure for women	33/
	Resources on Pregnancy and Environmental	225
	Exposure for Healthcare Providers	33/
	Resource on Work during Pregnancy for Women	338
	References	338
20	Psychosocial Adaptations in Pregnancy	341
	Cindy L. Farley, Eva M. Fried, and	
	Amv R. Chavez	
	Introduction	342
	Developing Relationship: A Trauma-Informed	012
	Approach	342
	Maternal-Newborn Attachment and Adaptation	343
	Bowlhy and Ainsworth	344
	Kennell and Klaus	3//
	Brazelton	3/15
	Long-Term Effects of Disorganized Attachment	345
	Maternal Pole Development	346
	Development	246
	Ruoin Ladarman	240
	Leuerman Body Imago	250
	Sibling Dreponstion	254
	Sibling Preparation	254
	Mala Dentation and Attachment	255
	Male Pariners	355
	remaie Pariners	356
	Pregnancy in Transgender Men	358
	Caring for a Pregnant Iransman	358
	Summary	359
	Resources for Women and Their Families	359
	Resources for Healthcare Providers	359
	Reterences	359

21	Health Education during Pregnancy	363
	Lisa Hanson, Karen Robinson, Leona	
	VandeVusse, and Kathryn Harrod	
	Introduction	363
	Sources and Quality of Consumer	
	Childbirth Education	363
	Prenatal Visit Approach to Individual	
	Childbirth Education	365
	Class Education and Group Prenatal Care	366
	Developmental Considerations	366
	Adolescents	366
	Adult Education Principles	366
	Issues Integral to Prenatal Education	367
	Literacy, Health Literacy, Written Materials,	
	and Reading Level	367
	Prioritizing Prenatal Education Needs	368
	Trimester Based Approaches to Prenatal Education	369
	Cultural Considerations	369
	Health Disparities and Vulnerable Populations	369
	Documentation of Teaching	369
	Summary	369
	Resources for Women and Their Families	
	(Government Websites)	373
	Resources for Women and Their Families	
	(Nongovernment Websites)	373
	References	373
22	Description of the plant	275
22	Preparing for Birth	3/5
	Melissa D. Avery, Carrie E. Neerland,	
	and Melissa A. Saftner	
	Introduction	375
	What Is Physiologic Birth?	375
	Benefits of Physiologic Birth	376
	Fear of Childbirth	376
	Maternal Confidence for Physiologic Birth	376
	Evidence Related to Women's Prenatal	
	Confidence for Physiologic Birth	378
	Interviews with Women and Prenatal	
	Care Providers	378
	Healthcare System Supports	380
	Prenatal Care Strategies	380
	Individual Strategies	380
	Summary	381
	Resources for Healthcare Providers	381
	Resources for Women and Their Families	382
	References	382
23	Triage during Pregnancy	385
20	Cathy Ruhl	000
	Introduction	385
	Objectives and Goals of Triage Care and	505
	Evaluation	385
	Obstetric Triage in the Hospital Setting	386
	Primary Responsibilities of Professionals	500
	during Triage and Evaluation	386
	Common Reasons Women Seek Urgent/	500
	Emergent Care during Dregnancy	386
	Energent Care during rieghancy	500

	Collaboration Between Obstetric and	
	Emergency Departments	387
	Obstetric Triage Unit Organization	387
	Elements of Triage	387
	Elements of Healthcare Provider Evaluation	388
	Best Practices in Triage Units	388
	Triage Acuity Tools	388
	The Maternal Fetal Triage Index	388
	Assessment of Pain and Coping in the MFTI	388
	Relevance of the MFTI for Providers	390
	Clinical Decision Tools for Triage and Evaluation	390
	Emergency Medical Treatment and Labor Act	390
	Liability Issues in Obstetric Triage and Evaluation	390
	Quality Measures in Triage	391
	Anticipatory Guidance about Triage during	
	Prenatal Care	391
	Summary	391
	Resources for Women and Their Families	391
	Resources for Healthcare Providers	391
	References	391
24	Assessment and Care at the Onset of Labor	393
2T	Amy Marowitz	575
	Introduction	303
	Determining the Onset of Labor	303
	Timing of Admission to the Birth Setting	393
	Reframing "False Labor"	30/
	Determining Active Labor	395
	Anticipatory Guidance during	575
	the Prenatal Period	395
	Assessment of the Woman with Report	575
	of Labor Onset	396
	Subjective Data	396
	Objective Data for a Face-to-Face Labor	070
	Onset Assessment	396
	Plan of Care	397
	Self-Care	397
	Sleep and Rest	397
	Coping Strategies and Comfort Measures	
	for Early Labor	398
	Ambulation in Early Labor	398
	Summary	398
	References	398
25		401
25	Components of Postnatal Care	401
	Tia P. Andrighetti and Deborah	
	Brandt Karsnitz	
	Introduction	401
	Fourth-Trimester Tasks	402
	Immediate Postpartum Care	402
	Later Postpartum Care	402
	Placental Encapsulation	404
	Assessment of Maternal Physical	40.4
	and Emotional Adjustment	404
	Keview of Birth Experience	405
	rumuy Auuptanon Sibling Adiastanont	405
	Siving Aajustment	406

	Maternal Role Development	407
	Infant Feeding	407
	Activity and Exercise	407
	Diet and Nutrition	408
	Weight Loss	408
	Lochia	408
	Afterbirth Pain	409
	Perineal Discomfort	410
	Diureseis and Diaphoresis	410
	Constipation and Hemorrhoids	410
	Sleep	410
	Sexuality	411
	Resumption of Menses and Ovulation	411
	Contraception	412
	Postpartum Physical Examination	412
	Breast Exam	412
	Abdominal Exam	413
	Costovertebral Angle Tenderness (CVAT)	413
	Perineal Exam	414
	Vaginal and Uterine Exam	414
	Rectal Exam	414
	Leg Exam	414
	Postpartum Depression and Intimate Partner	41.4
	Violence Screening	414
	Postpartum Warning Signs	415
	Unalth Dispersition and Value and la Deputations	415
	Intermediate and Come	410
	Decovery and Employment	417
	Summery	417
	Bassymers for Women	410
	Resources for Healthcare Providers	410
	References	410
	References	410
26	Lactation and Breastfeeding	423
	Marsha Walker	
	Introduction	423
	Benefits of Breastfeeding	423
	Unique Properties of Human Milk	424
	Nutritional Properties of Human Milk	424
	Defense Agents in Human Milk	426
	Breastfeeding as a Public Health Issue	426
	Promoting and Supporting Breastfeeding	427
	Maternal and Infant Anatomy and Physiology	
	of Lactation and Breastfeeding	428
	Basics of Breastfeeding Support and Assessment	432
	Position	432
		433
	Milk Production	434
	Breastjeeaing Patterns	435
	Assessing Intake	435
	Nutrition for Numing Mother	436
	Contracation	430
	Smoking	43/
	Smoking Alcohol and Illicit Drugs	43/
	Autonoi unu mutu Drugs Medications and Breastfeeding	438
	Employed Nursing Mothers	430
	Employed Indising Molliers	439

	Summary	440
	Resources for Women and Healthcare Providers	440
	References	440
27	Contraception in the Postnatal Period	445
	Lean N. Torres	445
	Introduction	445
	Postpartum Care and Return to Fertility	
	after Childbirth	445
	Selecting a Postpartum Contraceptive Method	446
	Contraceptive Methods	448
	Tier One Methods	448
	Permanent Methods	448
	Long-Acting Reversible Contraceptive	
	(LARC) Methods	449
	Tier Two Methods	451
	Combined Hormonal Contraceptives (CHCs)	451
	Progestin-Only Contraceptives	453
	Lactational Amenorrhea Method (LAM)	454
	Tier Three Methods	455
	Barrier Methods	455
	Other Methods	456
	Emergency Contraception	457
	Summary	457
	Resources for Women and Healthcare	
	Providers	458
	References	458

Part III Complex Prenatal and Postnatal Conditions

28	Bleeding during Pregnancy	463
	Robin G. Jordan	
	Introduction	463
	Early Pregnancy Bleeding	464
	Differential Diagnosis for Bleeding	
	in the First Half of Pregnancy	464
	Evaluation	464
	Problem-Focused History	464
	Physical Exam	465
	Laboratory Evaluation	465
	Diagnostic Testing	465
	Subchorionic Hemorrhage	466
	Leiomyomas	466
	Spontaneous Pregnancy Loss	466
	Signs and Symptoms	468
	Diagnosis and Management	468
	Early Pregnancy Loss Follow-Up Care	469
	Early Pregnancy Loss and Grief	469
	Recurrent Pregnancy Loss	470
	Potential Problems Related to Unexplained	
	Early Pregnancy Bleeding	470
	Ectopic Pregnancy	470
	Clinical Presentation	471
	Diagnosis and Management	471
	Gestational Trophoblastic Disease	472

	Potential Problems	472
	Presentation	472
	Diagnosis and Management	473
	Interprofessional Care	474
	Bleeding during the Second Half of Pregnancy	474
	Differential Diagnoses	474
	Placenta Previa	474
	Potential Problems	475
	Presentation	476
	Birth Planning	476
	Placental Abruption	476
	Potential Problems	477
	Presentation	477
	Vasa Previa	477
	Diagnosis and Management of Bleeding	
	in the Second Half of Pregnancy	478
	Resources for Women and Their Families	478
	References	479
29	Amniotic Fluid and Fetal Growth Disorders	481
	Victoria H. Burslem and Cindy L. Farley	
	Introduction	482
	Amniotic Fluid Dynamics	482
	Placentation and Perinatal Outcomes	483
	Amniotic Fluid Disorders	484
	Oligohydramnios	484
	Polyhydramnios	486
	Chorioamnionitis	487
	Fetal Growth Disorders	488
	Determination of Growth Disorders	488
	Fetal Growth Restriction	489
	Macrosomia	491
	Summary	492
	Resources for Women and Their Families	492
	Resources for Healthcare Providers	492
	References	492
30	Preterm Labor and Birth	495
	Robin G. Jordan and Nancy Jo Reedy	
	Introduction	495
	Social and Racial Disparities	496
	Pathophysiology of Preterm Birth	497
	Perinatal Morbidity Related to Prematurity	497
	Risk Factors for Preterm Birth	497
	Predicting Preterm Birth	499
	Fetal Fibronectin Testing	499
	Cervical Length Measurement	499
	Primary Prevention of Preterm Birth	500
	Smoking and Substance Use Cessation	500
	Nutrition and Weight Gain	500
	Interpregnancy Interval	501
	Progesterone Therapy	501
	Cerclage	501
	Treating Infections	502
	Prenatal Stress, Depression, and Anxiety	503
	Disturbed Sleep and Fatigue	503
	Occupational Activity	504
	Pessary	504
	·	

lems	472		Prenatal Education on Signs and Symptoms	
	472		of Preterm Labor	504
Management	473		Diagnosis and Management of Women	501
nal Care	474		with Preterm Labor	505
the Second Half of Pregnancy	474		Interprofessional Care	505
ing noses	474		Summary	505
uignoses	474		Resources for Women and Healthcare	505
lems	475		Providers	506
	476		References	506
7	476		Telefences	500
ion	476	31	Hypertensive Disorders of Pregnancy	511
lems	477		Robin G. Jordan and Elizabeth Gabzdyl	
	477		Introduction	511
	477		Classification of Hypertensive Disorders	
Janagement of Bleeding	1, ,		in Pregnancy	512
alf of Pregnancy	478		Screening for Hypertensive Disorders	512
omen and Their Families	478		Blood Pressure Measurement	512
	479		History	512
	1, ,		Proteinuria	512
l and Fetal Growth Disorders	481		Physical Examination	513
slem and Cindy L. Farley			Preeclampsia-Eclampsia	513
	482		Pathophysiology of Preeclampsia-Eclampsia	
Dynamics	482		Syndrome	514
Perinatal Outcomes	483		Potential Problems Due to Preeclampsia	515
Disorders	484		Risk Factors for Developing Preeclampsia	515
lios	484		Evaluation of Pregnant Women with New-Onset	
os	486		Hypertension	515
iitis	487		Management of Women with Preeclampsia	517
sorders	488		Prediction of Preeclampsia	517
1 of Growth Disorders	488		Prevention of Preeclampsia	518
Restriction	489		Long-Term Sequelae of Preeclampsia	518
	491		Risk Management Issues in the Office Setting	518
	492		Chronic Hypertension	519
omen and Their Families	492		Management of Women with Chronic	
ealthcare Providers	492		Hypertension in Pregnancy	520
	492		Chronic Hypertension with Superimposed	
	405		Preeclampsia	520
and Birth	495		Management of Women with Chronic	
i and Nancy Jo Reedy			Hypertension with Superimposed	
	495		Preeclampsia	521
l Disparities	496		Gestational Hypertension	521
of Preterm Birth	497		HELLP Syndrome	521
lity Related to Prematurity	497		Pathophysiology and Potential Problems	521
Preterm Birth	497		Diagnosis	522
rm Birth	499		Interprofessional Care	523
tin Testing	499		Summary	523
th Measurement	499		Resources for Women and Their Families	523
ion of Preterm Birth	500		Resources for Healthcare Providers	523
Substance Use Cessation	500		References	523
Weight Gain	500	22	Contational Disk atom	F 2 7
y Interval	501	32		527
nerapy	501		Kimperly K. Irout	
	501		Introduction	527
nons	502		Patnophysiology and Potential Problems	527
s, Depression, and Anxiety	503		Prenatal Screening and Diagnosis	528
p ana Fatigue	503		Screening for Women at High Risk for	500
Activity	504		Gestational Diabetes	528
	504		Screening and Diagnostic Methods	529

	Management	531
	Dietary Intervention	531
	Exercise Therapy	532
	Blood Glucose Monitoring	532
	Pharmacologic Treatments	533
	Insulin Therapy	533
	Oral Medications	534
	Social Considerations	534
	Fetal Surveillance and Timing of Birth	534
	Labor and Birth	535
	Postpartum Follow-Up	535
	Interprofessional Care	536
	Perspective on GDM Risk	536
	Care of the Pregnant Woman with	
	Pregestational Diabetes	537
	Resources for Women and Their Families	537
	Resources for Healthcare Providers	537
	References	537
^	Multifatal Castation	F 4 1
55	Multiletal Gestation	541
	Incidence	541
	Embryology	541
	Diagnosis	543
	Potential Problems	543
	Risks to the Fetuses/Neonates	543
	Risks to the Woman	544
	Prenatal Care	545
	Nutritional Counseling	545
	Genetic Screening	546
	Anticipatory Guidance	546
	Assessing Fetal Growth	546
	Fetal Surveillance	547
	Birth Planning	547
	Psychosocial Aspects	547
	Resources for Healthcare Providers	548
	Resources for Women and Their Families	548
	References	548
24		FF 1
34	Post-Ierm Pregnancy	551
	Heather M. Bradford	
	Introduction	551
	Potential Problems	552
	Prevention, Intervention, and Management	550
	Options	552
	Fetal Surveillance	553
	Expectant Management	555 552
	Labor-Stimulating Activities	555 EE 4
	Labor induction	554
	Resources for Women and Their Families	555
	References	555
	References	555
35	Hyperemesis Gravidarum	557
	Karen Trister Grace	
	Introduction	557
	Etiology and Risk Factors	557
	Potential Problems	558

	Evaluation	558
	Care and Management	558
	Resource for Healthcare Providers	560
	Resources for Women and Their Families	560
	References	560
36	Abdominal Pain	561
	Karen Trister Grace	
	Introduction	561
	Evaluation	561
	Appendicitis	562
	Gall Bladder Disease	562
	Abdominal Trauma	563
	CPR in Pregnancy	564
	Pancreatitis	564
	Resources for Healthcare Providers	564
	Resources for Women and Their Families	564
	References	564
37	Pregnancy after Infertility	567
	Melicia Escobar	
	Introduction	567
	Prevalence of Infertility	567
	Context and Course of Infertility	568
	Prior Fertility Treatments	569
	Preexisting Conditions and Perinatal Issues	569
	Pharmacologic Considerations	569
	Lifestyle Considerations	569
	Psychological Impacts of Infertility Treatment	
	and Transition to Pregnancy	573
	Psychosocial and Emotional Care and Support	573
	Supporting the Partner	573
	Supporting Gestational Carriers	573
	Summary	574
	Resources for Women and Their Families	574
	Resources for Healthcare Providers	574
	References	574
38	Common Complications during	
	the Postnatal Period	577
	Deborah Brandt Karsnitz	
	Introduction	577
	Postpartum Morbidity and Mortality	578
	Postpartum Cultural Considerations	579
	Postpartum Disorders	579
	Puerperal Fever (Pyrexia)	579
	Puerperal Infection (Postpartum Infection)	579
	Wound Infection	580
	Secondary (Delayed) Postpartum Hemorrhage	581
	Postpartum Hematoma	582
	Subinvolution	582
	Postpartum Preeclampsia–Eclampsia	582
	Postpartum Venous Thromboembolism (VTE)	583
	Postpartum Thyroiditis	584
	Postpartum Mood and Anxiety Disorders	584
	Postpartum Blues	585
	Postpartum Depression	586
	Postpartum Psychosis	587

	Generalized Anxiety Disorder	588
	Obsessive-Compulsive Disorder	588
	Panic Disorder	588
	Post-Traumatic Stress Disorder	588
	Mood and Anxiety Disorder Assessment/Screening	589
	Summary	593
	Resources for Women and Their Families	594
	Resources for Healthcare Providers	594
	References	594
39	Common Breastfeeding Problems	597
	Marsha Walker	
	Introduction	597
	Common Infant-Related Breastfeeding Problems	597
	Difficulty or Failure to Latch	597
	Fussy Baby	598
	Sleepy Baby	599
	Slow Weight Gain	600
	Preterm and Late Preterm Infants	600
	Common Maternal Breastfeeding Problems	602
	Sore Nipples	602
	Management of Sore Nipples	604
	Breast Engorgement	604
	Plugged Ducts	606
	Mastitis	606
	Abscess	607
	Low Milk Supply	607
	Summary	610
	Resources for Women and Their Families	610
	Resources for Healthcare Providers	610
	References	610
40	Perinatal Loss and Grief	613
	Robin G. Jordan	
	Introduction	613
	Stillbirth	613
	Breaking the News	614
	Care and Management of Women with Stillbirth	614
	Grieving and Emotional Care after Perinatal Loss	615
	Cultural Considerations	617
	Physical Care after Stillbirth	617
	Follow-Up Care	618
	Interconception and Subsequent Pregnancy Care	618
	Summary	619
	Resources for Women and Their Families	619
	Resources for Healthcare Providers	619
	References	620
Par	t IV Common Primary Care Health	
Cor	nditions during the Prenatal and	
Pos	thatal Periods	623
41	Obesity Cocilia M. Invitt	625
	Jetuin IVI. Jevill Introduction	625
	Introduction	020
	Prevalence	626

Health Disparities and Cultural Considerations

Personal and Family Considerations

626

	Obesity Physiology Potential Problems	626 627
	Management of Pregestational Obesity	628
	Assessment of the Pregnant Woman	028
	with Obesity	628
	Management Principles	629
	Nutrition	630
	Pregnancy Weight Gain and Management Issues Low Weight Gain, Weight Loss, and Pregnancy	630
	Concerns	631
	Physical Activity	631
	Comfort Measures	631
	Duplonged Dreamon av	632
	Introportum and Destructum Jacuas	632
	Intrapartum and Postpartum issues	622
	Logal and Liability Issues	622
	Summery	622
	Descurces for Women and Their Families	634
	Resources for Healthcare Providers	634
	References	634
40	Mood and Anvioty Disordary	627
42	Heather Shlosser	037
	Introduction	637
	Depression during Pregnancy	637
	Potential Problems of Perinatal Depression	639
	Screening for Perinatal Depression	639
	Management of Perinatal Depression	640
	Starting Medications	640
	Pregnant Women Currently Taking	
	Antidepressants	641
	Complementary and Alternative Therapies	642
	Bipolar Disorder in Pregnancy	642
	Signs and Symptoms of Bipolar Disorder	643
	Screening for Bipolar Disorder	643
	Management of Pregnant Women	
	with Bipolar Disorder	643
	Anxiety and Trauma-Related Disorders	645
	Post-Traumatic Stress Disorder (PTSD)	645
	Generalized Anxiety Disorder (GAD)	646
	Interprofessional Care	647
	Summary	647
	Resources for Women and Their Families	648
	Resources for Healthcare Providers	648 648
42	Henry tale is and Threads and all Disarder	(51
43	Ialana Lazar. Karen Trister Grace and	651
	Robin G. Jordan	
	Introduction	652
	Anemia	652
	Physiologic Hematologic Changes in Pregnancy	652
	Iron-Deficiency Anemia	653
	Alloimmunization of Pregnancy	654
	Rh Blood Group System	656
	Atypical Blood Group Incompatibilities	656

	Anti-D Immunoglobulin for Prevention			
	of Alloimmunization	657		
	Identification and Management			S
	of Alloimmunization	657		R
	Hemoglobinopathies	658		R
	Sickle Cell Hemoglobinopathies	658		R
	Thalassamia	659		1
	Folata Daficianay	650	46	C
	Vitamin D. Dafining m	600		Ľ
	Vitalini B_{12} Deficiency	660		Īı
	Bleeding Disorders	660		I
	I nrombocytopenia	660		G
	Inherited Bleeding Disorders	661		C
	Thromboembolic Disorders	661		
	Inherited or Acquired Thrombophilias	662		
	Signs, Symptoms, and Management	662		
	Summary	663		т.
	Resources for Women and Their Families	663		п
	Resources for Healthcare Providers	663		
	References	663		
44	Respiratory Disorders	665		
	Janvce Cagan Agruss			C
	Introduction	665		
	Respiratory Physiology and Pregnancy	665		
	Asthma	665		
	Potential Problems	665		
	Differential Diagnosis	666		А
	Common Clinical Presentation and Data	000		
	Gathering	666		
	Management of Asthma during Pregnancy	666		
	Smaking Cossation	668		S
	Datient Education	668		D
	Interprofessional Care	669		л D
	Interprojessional Cure	660		л D
	llinuenza	(70		Г
		670	47	E
		0/1		E
	Summary	6/1		Īı
	Resource for Healthcare Providers	6/1		Т
	References	6/1		-
45	Urinary Tract Disorders	673		
	Rhonda Arthur and Nancy Pesta Walsh			
	Introduction	673		С
	Urinary Tract Infection	673		
	Prevalence and Risk Factors	673		
	Pathophysiology	674		
	Common Pathogens	674		
	Asymptomatic Bacteriuria	674		
	Acute Cystitis	675		
	Acute Pyelonethritis	675		
	Evaluation	675		F
	Health History	675		1.
	Dhysical Examination	675		
	I nysicui Launninunon I aboratory Testing	676		
	Care of Women with Urinary Tract Infactions	677		
	Recurrent UTI	678		
	Care of Women with Suspected A suite Divelopentaritie	678		
	Nenhrolithiasis	678		
	rephronullasis	0/0		

	Evaluation	678
	Care of women with Suspected Nephrolithiasis	6/9
	Summary	679
	Resources for Women and Their Families	679
	Resource for Healthcare Providers	679
	References	679
46	Gastrointestinal Disorders	681
	Debora M. Dole	
	Introduction	681
	Initial Evaluation	681
	Gastroenteritis	681
	Evaluation	682
	Diagnostic Testing	682
	Treatment	683
	Interprofessional Care	683
	Intraheptic Cholestasis of Pregnancy	683
	Evaluation	683
	Diagnostic Testing	683
	Treatment	684
	Interprofessional Care	684
	Cholecystitis and Cholelithiasis	684
	Evaluation	684
	Diagnostic Testing	684
	Treatment	685
	Interprofessional Care	685
	Acute Appendicitis	685
	Evaluation	685
	Diagnostic Testing	685
	Interprofessional Care	686
	Summary	686
	Resources for Healthcare Providers	686
	Resource for Women and Their Families	686
	References	686
47	Endocrine Disorders	687
	Elizabeth Gabzdyl	
	Introduction	687
	Thyroid Disorders in Pregnancy	687
	Thyroid Physiology in Pregnancy	687
	Screening for Thyroid Disorders in Pregnancy	688
	Diagnosing Thyroid Disorders	688
	Overt Hypothyroidism	689
	Maternal and Fetal Risks	689
	Clinical Presentation	690
	Laboratory Testing, Diagnosis, and Management	690
	Subclinical Hypothyroidism	690
	Screening for Hypothyroidism in Pregnancy	691
	Preconception Care of a Woman	
	with Hypothyroidism	691
	Hyperthyroidism	691
	Maternal and Fetal Risks	691
	Clinical Presentation	691
	Laboratory Testing, Diagnosis,	
	and Management	691
	Interprofessional Care	692
	Subclinical Hyperthyroidism	692
	Thyroid Storm	692

	Postpartum Thyroiditis	692	
	Laboratory Evaluation, Diagnosis, and		
	Management	692	
	Iodine in Pregnancy	692	
	Pregestational Diabetes Mellitus	693	
	Classifications	693	
	Perinatal Risks	693	
	Preconception Counseling and Care	695	
	Summary	695	
	Resources for Women and Healthcare Providers	695	
	References	695	
48	Neurological Disorders	697	
	Lise Hauser		
	Introduction	697	50
	Seizure Disorders	697	
	Potential Pregnancy Problems	698	
	Antiepileptic Drugs (AEDs) during Pregnancy	698	
	Headache	701	
	Primary Headaches: Tension Type	701	
	Primary Headaches: Migraines	702	
	Secondary Headaches: Trauma	702	
	Nonpharmacological Headache Management	702	
	Pharmacologic Treatment of Migraine	703	
	Headaches	704	
	Postpartum Headaches	704	
	Cluster Headaches	704	
	Multiple Sclerosis	704	
	Restless Legs Syndrome/Willis-Eckhom Disease	705	
	Carpal Tunnel Syndrome	705	
	Central Nervous System Imaging in Pregnancy	700	
	and Lactation	706	
	Interprofessional Care	700	
	Decourses for More on a Their Families	700	
	Resources for Women and Their Families	706	
	Resources for Healthcare Providers	706	
	References	/06	
49	Dermatological Disorders	709	
	Nell L. Tharpe		
	Introduction	709	
	Atopic Eruption of Pregnancy	710	
	Assessment and Diagnosis	710	
	Differential Diagnoses	711	
	Treatment and Management	711	
	Pruritic Urticarial Papules and Plaques		
	of Pregnancy	712	
	Assessment	713	
	Differential Diagnoses	713	
	Treatment and Management	713	
	Pruritic Folliculitis of Pregnancy	713	
	Assessment and Diagnosis	713	
	Differential Diagnosis	714	
	Treatment and Management	714	
	Pemphigoid Gestationis	714	
	Accoccment	715	
	Differential Diagnosis	715	
	Treatment and Management	715	
	Interprofessional Care	715 716	
	interprojessional Care	/10	

Pustular Psoriasis of Pregnancy	716
Assessment	716
Differential Diagnosis	716
Treatment and Management	716
Interprofessional Care	717
Intrahepatic Cholestasis of Pregnancy	717
Assessment	717
Differential Diagnoses	718
Treatment and Management	718
Interprofessional Care	718
Summary	718
Resources for Healthcare Providers	718
References	719
Infectious Diseases	721
Flizabeth A Darr	,21
Introduction	721
Cutomagelouinus (CMV)	721
Detential Drahlance	722
Clinical Procentation and Accomment	722
Clinical Presentation and Assessment	722
Management	723
Prevention	723
Group B Streptococcus (GBS)	/24
Potential Problems	724
Assessment	724
Management	724
Hepatitis A	725
Potential Problems	725
Assessment	725
Management	725
Prevention	726
Hepatitis B	726
Potential Problems	726
Assessment	727
Management	727
Prevention	728
Hepatitis C	728
Potential Problems	728
Assessment	728
Management	729
Parvovirus B19	729
Potential Problems	729
Assessment	729
Management	730
Rubella	730
Presentation and Assessment	730
Management	731
Prevention of Rubella and CRS	731
Toxoplasmosis	731
Potential Problems	731
Clinical Presentation and Assessment	732
Management	733
Prevention	733
Varicella	734
Potential Problems	734
Clinical Presentation and Assessment	734
Management	735
Emerging Infectious Diseases	735
	,00

xx Contents

	Ebola	736
	Zika	736
	Potential Problems	736
	Clinical Presentation and Assessment	736
	Management	737
	Prevention	737
	Summary	737
	Resources for Women and Their Families	737
	Resources for Healthcare Providers	738
	References	738
51	Sexually Transmitted Infections and Vaginitis	741
	Eva M. Fried and Cindy L. Farley	
	Introduction	741
	Sexually Transmitted Bacterial Infections	742
	Chlamydia Trachomatis	742
	Neisseria Gonorrhoeae	743
	Syphilis	743
	Sexually Transmitted Viral Infections	744
	Herpes Simplex	744
	Human Immunodeficiency Virus (HIV)	746

Human Papillomavirus (HPV)	747
Hepatitis B	748
Zika Virus	748
Sexually Transmitted Parasitic Infection	748
Trichomoniasis	748
Fungal Vaginitis	749
Vulvovaginal Candidiasis (VVC)	749
Bacterial Vaginitis	749
Bacterial Vaginosis (BV)	749
Partner STI Treatment	751
Legal Requirements for Reporting STI Diagnosis	752
Psychosocial Impact of STI Diagnosis	752
Effects on the Individual	752
STI Prevention within Relationships	752
Summary	753
Resources for Healthcare Providers	753
Resource for Women and Partners	754
References	754
Index	757

About the Editors

Robin G. Jordan, PhD, CNM, FACNM, studied midwifery at the University of Medicine and Dentistry of New Jersey, after earning her MSN from Case Western Reserve University. She earned a PhD in Health Sciences from Touro University. Dr. Jordan started the first hospital-based nurse-midwifery service in the greater Northern Michigan area. During her clinical practice career, she has attended childbearing women in hospital, birth center, and home settings. Dr. Jordan was a longstanding faculty member of Frontier Nursing University, developing and teaching the Antepartum Care course series for midwifery and nurse practitioner students. She has also served as adjunct faculty at Georgetown University in the Nurse-Midwifery/Women's Health Nurse Practitioner (WHNP) programs teaching antepartum care. She is coauthor of Clinical Practice Guidelines for Midwifery and Women's Health. Dr. Jordan currently serves her community as a member of the board of directors of the local women's safe home, and is active in state politics with a focus on improving health care for women and girls.

Cindy L. Farley, PhD, CNM, FACNM, studied midwifery at Emory University. She earned her BSN and PhD from The Ohio State University and her MSN from Emory University. She is an associate professor at Georgetown University in the Nurse-Midwifery/

WHNP programs. She serves as a locum tenens midwife for Mount Eaton Care Center, an Amish birth center, and Pomerene Hospital, a rural hospital in Millersburg, Ohio. Dr. Farley works as a legal expert on selected cases involving midwifery regulatory issues and clinical care. She is co-author of *Clinical Practice Guidelines for Midwifery and Women's Health*. Dr. Farley has been instrumental in organizing groups of midwifery students to visit their federal legislators and advocate for positive change in important maternal health policies and legislation. Making midwives to improve the health of women and their families is Dr. Farley's passion.

Karen Trister Grace, PhD(c), MSN, CNM, has been a midwife for 18 years. She earned a BA in sociology at Barnard College, a BSN and MSN from the University of Pennsylvania, a Certificate in Health Disparities and Health Inequality from Johns Hopkins Bloomberg School of Public Health, and she is currently a PhD candidate at Johns Hopkins University School of Nursing. Her research focuses on unintended pregnancy and reproductive coercion. Ms. Grace has also been a nursing and midwifery educator for 10 years, and is currently an Adjunct Instructor at Georgetown University in the Nurse-Midwifery/WHNP program. She practices clinically at Mary's Center, a FQHC in the metropolitan Washington, DC, area.

Contributors

Janyce Cagan Agruss, PhD, CNE, APRN Associate Professor Family Nurse Practitioner College of Nursing Rush University Chicago, IL

Tia P. Andrighetti, DNP, CNM, CHSE Associate Professor Frontier Nursing University Northfield, NH

Rhonda Arthur, DNP, CNM, WHNP-BC, FNP-BC, CNE Associate Professor Frontier Nursing University Floyd, VA

Melissa D. Avery, PhD, CNM, FACNM, FAAN Director, Nurse-Midwifery Program Professor School of Nursing University of Minnesota Minneapolis, MN

Kelley A. Bowden, MS, RN Perinatal Outreach Nurse Educator Maine Medical Center Portland, ME

Heather M. Bradford, MS, CNM, ARNP, FACNM Assistant Program Director Nurse Midwifery/WHNP Programs School of Nursing and Health Studies Georgetown University Seattle, WA

Mary C. Brucker, PhD, CNM, FACNM, FAAN Adjunct Associate Professor Nurse Midwifery/WHNP Programs School of Nursing and Health Studies Georgetown University Editor, Nursing for Women's Health Arlington, TX

Victoria H. Burslem, MSN, CNM, APRN, FACNM, Clinical Bound Faculty Frontier Nursing University Nicholasville, KY **Patricia W. Caudle,** DNSc, CNM, FNP-Ret Associate Professor Frontier Nursing University Heber Springs, AK

Amy R. Chavez, MA, CMT, CCE ReStoryative Somatics, Trauma Informed Birth Education Yellow Springs, Ohio

Joyce D. Cappiello, PhD, FNP, FAANP Assistant Professor College of Health and Human Services University of New Hampshire Durham, NH

Debora M. Dole, PhD, CNM, FACNM Vice-Chair, Department of Advanced

Practice Nursing Associate Professor Nurse Midwifery/WHNP Programs School of Nursing and Health Studies Georgetown University West Harrison, IN

Melicia Escobar, MSN, CNM, WHNP-BC Clinical Faculty Director, Instructor Nurse Midwifery/WHNP Programs School of Nursing & Health Studies Georgetown University Philadelphia, PA

Jenifer Fahey, MPH, PhD(c), CNM, FACNM Assistant Professor & Director Division of Midwifery University of Maryland School of Medicine Department of Obstetrics, Gynecology & Reproductive Science Baltimore, MD

Cindy L. Farley, PhD, CNM, FACNM Associate Professor Nurse Midwifery/WHNP Programs School of Nursing & Health Studies Georgetown University Yellow Springs, OH

Eva M. Fried, DNP, MS, RN, WHNP-BC Adjunct Faculty Nurse Midwifery/WHNP Programs School of Nursing & Health Studies Georgetown University Columbus, OH

Elizabeth Gabzdyl, DNP, CNM, APN Assistant Professor College of Nursing Seattle University

Meghan Garland, MSN, CNM Faculty Frontier Nursing University Winter Haven, FL

Seattle, WA

Daisy J. Goodman, DNP, MPH, CNM, WHNP-BC Clinical Assistant Professor, Obstetrics & Gynecology Dartmouth Institute for Health Policy and Clinical Practice Hanover, NH

Karen Trister Grace, PhD(c), MSN, CNM Adjunct Faculty Nurse-Midwifery/WHNP Programs School of Nursing & Health Studies Georgetown University Bethesda, MD

Nena R. Harris, PhD, FNP-BC, CNM Assistant Professor Frontier Nursing University Shelter Health Services Charlotte, NC

Lise Hauser, DNP, APN, CNM Assistant Director of Public Health Nursing Kane County Health Department Aurora, IL

Lisa Hanson, PhD, CNM, FACNM Professor and Director Midwifery Program College of Nursing Marquette University Milwaukee, WI

Kathryn Harrod, PhD, CNM, FACNM Lead Nurse Midwife Aurora Healthcare Assistant Clinical Professor College of Nursing Marquette University Milwaukee, WI **Cecilia M. Jevitt,** PhD, CNM, FACNM Midwifery and Women's Health Specialties Coordinator School of Nursing Yale University New Haven, CT

Robin G. Jordan, PhD, CNM, FACNM Adjunct Faculty Nurse Midwifery/WHNP Programs School of Nursing & Health Studies Georgetown University Petoskey, MI

Deborah Brandt Karsnitz, DNP, CNM Professor Frontier Nursing University Simpsonville, KY

Julia Lange Kessler, DNP, CM, FACNM Program Director, Assistant Professor Nurse Midwifery/WHNP Programs School of Nursing & Health Studies Georgetown University Westtown, New York

Tekoa L. King, MPH, CNM, FACNM Deputy Editor, Journal of Midwifery & Women's Health Health Sciences Clinical Professor School of Nursing University of California San Francisco San Francisco, CA

Carrie S. Klima, PhD, CNM, FACNM Program Director, Clinical Associate Professor Nurse-Midwifery & WHNP Programs University of Illinois in Chicago Chicago, IL

Jalana Lazar, MS, CNM, WHNP, MPH Clinical Midwife, Lifestages Women's Center Adjunct Faculty Nurse-Midwifery/WHNP programs School of Nursing & Health Studies Georgetown University Yellow Springs, OH

Amy Marowitz, DNP, CNM Associate Professor Frontier Nursing University Leland, MI **Carrie E. Neerland,** PhD(c), CNM, FACNM Staff Midwife University of Minnesota Health Minneapolis, MN

Cynthia Nypaver, PhD, CNM, WHNP-BC Associate Professor Director, Nurse Midwifery Program College of Nursing University of Cincinnati Cincinnati, OH

Alane B. O'Connor, FNP, DNP Faculty Maine Dartmouth Family Medicine Residency Augusta, ME

Cindy Parke, RNC, C-EFM, MSN, CNM Director and Owner, Professional Education Center Chico, CA

Elizabeth A. Parr, MSN, CNM, Assistant Professor, Advisor and Clinical Coordinator Midwifery Institute at Jefferson Emmaus, PA

Nancy Pesta Walsh, DNP, CNP Assistant Professor Frontier Nursing University Hutchinson, MN

Nancy Jo Reedy, MPH, CNM, FACNM Course Faculty, Clinical Advisor Nurse-Midwifery/WHNP programs School of Nursing & Health Studies Georgetown University Arlington, TX

Karen Robinson, PhD, CNM Assistant Professor College of Nursing Marquette University Milwaukee, WI

Cathy Ruhl, MS, CNM Director, Women's Health Programs Presbyterian Hospital Albuquerque, NM

Melissa A. Saftner, PhD, CNM, FACNM Clinical Associate Professor School of Nursing University of Minnesota Minneapolis, MN Heather Shlosser, DNP, FNP-BC, PMHNP-BC Director, Psychiatric Mental Health Nurse Practitioner Program Frontier Nursing University PMHNP Iris Telehealth Keene, NH

Nell L. Tharpe, MS, CNM, FACNM, CRNFA (E) Perinatal and Women's Health Consultant Adjunct Professor School of Continuing Professional Studies at Jefferson (Philadelphia University + Thomas Jefferson University) Adjunct Faculty, Birthwise Midwifery School East Boothbay, ME

Leah N. Torres, MD Rocky Mountain Health Center West Valley City, UT

Kimberly K. Trout, PhD, CNM, APRN Assistant Professor Department of Family & Community Health School of Nursing University of Pennsylvania Philadelphia, PA

Leona VandeVusse, PhD, CNM, FACNM Associate Professor Emerita College of Nursing Marquette University Milwaukee, WI

Marsha Walker, RN, IBCLC Executive Director National Alliance for Breastfeeding Advocacy Chair Board of Directors Massachusetts Breastfeeding Coalition Boston, MA

Kaitlin Wilson, MS, CNM Brookhaven, GA

Michal J. Wright, MS, CNM Rayle, GA

Preface

Pregnancy and the birth of a baby are significant lifechanging events for a woman and her family. A woman transforms into a mother, and a family is created. Optimal care not only focuses on the physical process but also on the emotional experience of pregnancy and the postpartum period. The context of a woman's culture, life experiences, social roles, and physical and mental health status on the childbearing experience influence her options, choices and outcomes.

This book both describes and challenges current prenatal and postnatal care practices. Prenatal care visits within the current pathology-centered model of care are brief and focused on testing, legalities, and reimbursement. Too often this approach emphasizes the needs of the provider within the office setting rather than the woman's needs during pregnancy. Postnatal care is often limited in scope and connection at a time when the new family needs guidance and support from professionals as well as family members. This is a disservice to women and their families. Opportunities to promote health and well-being for the woman and her family during pregnancy, birth, and beyond are being missed in contemporary practice. These missed opportunities are reflected in the rising maternal mortality rate in the United States.

The woman herself and her unique needs are the rightful focus of prenatal and postnatal care. *Womancentered care* is the term used to describe a philosophy of maternity care that is based on the needs and preferences of the woman. This care emphasizes the importance of informed choice, continuity of care, active participation, best care practices, provider responsiveness, and accessibility. Pregnancy, childbirth, and the postpartum period are the start of family life. A full account of the meaning and values that each woman brings to her experience of pregnancy and motherhood should be included in care.

The fundamental principles of woman-centered care encompass the following tenets:

- Women are co-creators of their maternity care with their healthcare providers.
- Women have the right to informed choice in the options available to them during pregnancy, labor, birth, and the postnatal period, including the place of birth, who provides care, and where care is provided.

- Women have the ultimate authority over the key decisions that affect the content and progress of their care.
- Women have the moral and legal right to decisions regarding their bodily integrity.
- Women have the right to care that supports their optimal health and that of their baby.

Prenatal and postnatal care provided within the context of the woman's own experience, focused on both the life-changing nature of the pregnancy experience as well as physical adaptations and needs, leads to improved maternal and infant outcomes. The views, beliefs, and values of the woman, her partner, and her family in relation to her care and that of her baby are sought and respected at all times. Adequate time is spent in providing optimal prenatal and postnatal care with kindness, respect, and dignity.

The Need for This Text

A growing body of scientific evidence supports physiological childbearing for healthy pregnant women at low risk for complications. Several decades of escalating pregnancy and birth medicalization have shown that interventions applied on a large scale and without medical indication lead to significant negative iatrogenic consequences. However, care supporting physiological labor and birth does not begin with the first contraction; rather, it begins with the first prenatal appointment and continues into the postpartum period. Too much faith is placed in technology and too little faith is placed in human connection and caring. This book brings balance to the fore; it adds a holistic framework from which to enter into dialogue with the woman who presents for care. Midwives, nurse practitioners, physicians, physician assistants and other prenatal and postnatal healthcare providers, and students with common practice foundations in providing holistic care, emphasizing patient education and health maintenance in the context of an ongoing relationship, will find this book useful.

The editors of this book are experienced clinicians and educators of midwives, nurse practitioners, medical students, and other healthcare providers. We have found that many available obstetrical and maternity care texts offer limited content on prenatal and postnatal care. Additionally, an appreciation of the effects of the mind-body connection and the background social dynamics of the pregnant woman and her family on her overall health and childbearing experience has been lacking. This appreciation, in addition to a solid understanding of normal childbearing processes, will increase healthcare providers' competency in supporting the normal and recognizing the abnormal. This text provides a breadth and depth of knowledge on normal pregnancy and postpartum processes and care not found in other texts.

New in the Second Edition

This edition has been updated in all chapters to reflect current standards and care recommendations. An intentional focus is placed on the needs of diverse populations. The following new chapters have been added:

- Prenatal Ultrasound
- Oral Health
- Diversity and Inclusiveness in the Childbearing Year
- Preparing for Birth
- Triage during Pregnancy
- Pregnancy after Infertility

Additional highlights include new and updated content on pregnant women in the workplace, prenatal genetic testing, trauma-informed care, and transgender pregnancy care. The second edition also includes commonly used complementary therapies and offers more detailed information on planning for birth and on select prenatal and postpartum complications. Faculty resources have been expanded within the electronic text version.

Gender and Language

The editors recognize that some readers may take strong exception to and may feel marginalized by the use of the term woman throughout this textbook, including in its title. In our clinical practices and in our scholarly work, it is our aim to honor the full range of gender identities of the pregnant people who we and other prenatal care providers care for. And as writers, we are especially attuned to the politics and the power of language. We recognize that some providers care for people who were assigned female at birth but who seek pregnancy and identify as male or gender nonconforming, and that the language in this book may leave them wondering if their patients and their clinical experiences are represented here. We have added content in this edition about prenatal and postnatal care for transgender individuals that we feel is important for all prenatal care providers to know. We aimed for the most inclusive language possible without losing the "woman-centered" focus we originally set out to provide. We wish to state, in unequivocal terms, our unwavering support for pregnant people of all genders, and the providers who offer a person-centered approach to caring for this vulnerable population.

We are pleased that the first edition has been well received by clinicians and faculty in educational programs of various health professions. The first edition was honored with the 2015 Book of the Year award from the American College of Nurse Midwives. We are extremely fortunate to have many highly regarded contributors to the second edition and to mentor some talented new writers. All contributing authors have a background in clinical practice and are established content experts in their field. Most of our contributors are also educators, bringing an understanding of the needs of students to the text. We want to acknowledge our co-editors of the first edition, Julie A. Marfel and Janet L. Engstrom, and their work in launching the first edition. We are excited to welcome Karen Trister Grace to our editorial team for the second edition.

Just as second labors differ from the first when considering pregnancy and birth, so too do second editions differ from first edition texts. We knew what to expect and were prepared, but met a few surprises along the way. Throughout the process, we held true to our goal to give birth to a text that will assist clinicians and students to provide exemplary prenatal and postnatal care. We hope our efforts on this second edition will inform and inspire you as you serve the childbearing women and families of your community.

This book was written as a resource for all those interested in providing woman-centered prenatal and postnatal care. While aspects of this care are timeless and do not change, certain elements of prenatal and postnatal care are refined as new evidence is incorporated into existing bodies of knowledge. Healthcare providers are responsible for their ongoing learning in the field and should read critically and widely among the many resources available to them. Evidence-based health care encompasses psychosocial and cultural aspects of care applied in a mutual dialogue and determination with each individual woman.

The authors, editors, and publisher have made every effort to assure accuracy of information as this book goes to press. Nevertheless, they are not responsible for errors, omissions, or outcomes related to the application of this information in the clinical setting. This is at the healthcare provider's own discretion.

> Robin G. Jordan Cindy L. Farley Karen Trister Grace

About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/jordan/prenatal

The website includes:

- Case studies
- Multiple Choice Questions

Prenatal and Postnatal Care A Woman-Centered Approach

Part I

Physiologic Foundations of Prenatal and Postnatal Care
1

Reproductive Tract Structure and Function

Patricia W. Caudle

Relevant Terms

Adrenarche-initiation of increased adrenal androgens Ampulla—wider end of the fallopian tube Atresia—degeneration and absorption of immature follicles Bartholin glands-pea sized bilateral vulvar glands that secrete fluid to lubricate the vagina **Cervix**—lower portion of the uterus Chadwick's sign—bluish color to the cervix, vagina and labia due to increased blood flow in pregnancy, can be seen as early as 6-8 weeks gestation **Clitoris**—erogenous organ with erectile tissue covered by labia minora Cornua—both sides of the upper outer area of the uterus where the fallopian tubes join the uterus Ectropion—visible columnar cells at the cervical os Endocervical canal—passageway within the cervix to the inner uterus Endometrium—lining of the uterus Escutcheon—pubic hair Fimbriae—fingerlike projections that move the egg toward and into the fallopian tube First polar body—other half of the product of division of the primary oocyte Fornix (fornices)—spaces around the cervix in the vagina Fourchette—area immediately below the introitus Gonadarche—period when ovaries begin to secrete sex hormones Gonadostat—gonadotropin-releasing hormone pulse generator Granulosa cells—cells lining an ovarian follicle that become luteal cells after ovulation Ground substance—mucopolysaccharide between smooth muscle and collagen of the cervix Hart's line—line of change where skin transitions to smoother, moist skin Hegar's sign—softening and compressibility of the uterine isthmus Hymen-membranous ring of tissue at the introitus Introitus—opening to the vagina Isthmus—uterine "neck" between cervix and body Labia majora—two rounded folds of adipose tissue covered with pubic hair

Labia minora—folds of tissue between the labia majora
Lactobacilli—normal bacterial flora of the vagina
Leptin—hormone secreted by fat cells that plays a key role
in appetite and metabolism
Meatus—opening of the urethra
Menarche—initiation of menses
Metaplasia —normal replacement of one cell type with another
Mittelschmerz—pain upon ovulation
Myometrium—middle, muscular layer of the uterus
Mucin—glycosylated proteins that form mucus that acts as
lubricant and protectant
Nulliparous—a woman who has never had a child
Oogenesis —transformation of oogonia into oocytes
Oogonia —primordial female germ cells
Os—opening of the cervix
Parous—woman who has had a child
Peritoneum—thin membrane around abdominal organs that
covers the bladder, uterus, and rectum
Rectouterine pouch —fold of peritoneum between the uterus
and the rectum
Rectovaginal septum —tissue between the rectum and vagina
Rugae—thin ridges of tissue like an accordion that allow for
expansion in the vagina
Squamocolumnar junction (SCJ)—where squamous cells and
columnar cells meet on the cervix
Skene glands—small bilateral vulvar glands that secrete fluid
to lubricate the urethra
Thelarche—breast development
Vasovagal response—bradycardia and syncope caused by
stretching the cervical canal
Vesicouterine pouch—fold of peritoneum between the
bladder and the uterus
Vesicovaginal septum—tissue between the bladder and the
vagina
Vestibule —area inside the labia minora where openings of the
urethra and the vagina are found
Zona pellucida—membrane surrounding the plasma
membrane of the oocyte

Prenatal and Postnatal Care: A Woman-Centered Approach, Second Edition. Edited by Robin G. Jordan, Cindy L. Farley and Karen Trister Grace. © 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc. Companion website: www.wiley.com/go/jordan/prenatal

Anatomy of the Female Reproductive System

An understanding of the anatomy of the female reproductive system is essential in caring for women. It is important to be able to recognize normal structures and to appreciate that there is a wide variation of normal among women.

External Genitalia

The vulva is a term designated for the external genitalia of the female. The vulva includes the mons pubis, **labia majora** and **minora**, **clitoris**, **vestibule**, **hymen**, urinary **meatus**, and Skene and Bartholin glands. Figure 1.1 and Figure 1.2 illustrate the external genitalia and its development from embryonic structures.

The mons pubis is the cushion-like area over the pubic bone. In adult woman, the mons is covered with curly, coarse pubic hair called the **escutcheon**. The pubic hair distribution is usually triangular but may extend up toward the umbilicus in a diamond shape in women who have higher levels of serum androgens.

The labia majora consist of two rounded folds of adipose tissue covered with pubic hair that extend from

the mons to the perineum on either side of the vaginal opening. The labia minora, found between the majora, are thinner, pinkish in color, and hairless (Bickley & Szilagyi, 2013). The labia majora have the same position and general structure as the male scrotum and arise from the same tissues during embryonic development.

The labia minora have two folds above where they divide to descend on either side of the vestibule, ending at the **fourchette** just below the **introitus**, or the opening to the vagina. The upper fold forms the prepuce over the clitoris and the lower fold is the frenulum of the clitoris. The clitoris is an erogenous organ with erectile tissue. The clitoris is exquisitely sensitive in most women and is the primary source of sexual pleasure.

The vestibule is that area inside the labia minora where the openings to the urethra, vagina, and Skene and Bartholin gland ducts are found. The urethra is just above the vaginal opening and below the pubic arch. The vaginal introitus is rimmed with the hymen or its tags. **Bartholin glands** are located at either side of the lower portion of the introitus. The ducts for these glands open near the hymenal ring at 5 o'clock and 7 o'clock. **Skene glands** and ducts are found near the urethral meatus.

Figure 1.1. External female genitalia. From Tortora & Derrickson (2017). Used with permission.

Figure 1.2. Development of external genitalia from embryonic structures. From Tortora & Derrickson (2017). Used with permission.

Hart's line is the line of change in the vestibule where vulvar skin transitions to smoother, moister skin around the urethral meatus and the introitus.

Below the vulva is the perineal body and anal opening. These structures are examined as part of the external genitalia examination. Underlying these structures are the superficial muscles of the perineum and anal sphincter. The superficial muscles most often affected by childbirth include the bulbocavernosus muscle, the superficial transverse perineal muscle, and the external and internal

Figure 1.3. Superficial muscles of the perineum. From Tortora & Derrickson (2017). Used with permission.

anal sphincters. These structures, with the exception of the internal anal sphincter, converge on the central tendon of the perineum found between the introitus and the anus. The central tendon is part of the perineal body that may tear or be cut by episiotomy during birth (Figure 1.3).

Internal Genitalia

The vagina is a musculomembranous tube that gives access to the **cervix** for coitus and serves as the birth canal. The lower third of the vagina is supported and fixed by the pubococcygeus muscles of the levator ani group. The upper portion of the vagina and the cervix are supported by the cardinal and uterosacral ligaments. This portion of the vagina is capable of amazing expansion to accommodate birth. Vaginal **rugae** allow for elasticity and expansion. Vaginal length varies with genetics, parity, age, and estrogen effect. On average, the length of the vagina is about 6–8 cm anteriorly and 7–10 cm along the posterior wall (Cunningham et al., 2014). The elastic vagina elongates during intercourse and stretches widely during birth. The spaces around the cervix within the vagina are called the anterior, posterior, and lateral **fornices**.

The rectum supports the middle of the posterior vaginal wall. The anterior vaginal wall offers some support to the bladder (Phillippi, Latendresse, McCance, 2014). The principle innervations for the vagina are the pudendal nerve and the inferior hypogastric plexus, both of which derive from sacral nerve (S) 2–4. Lymph drainage for the vagina is to the para-aortic nodes.

The vagina is lubricated by an epithelial glycoprotein coat and transudate, cervical mucus from the endocervical columnar epithelium, and fluids from the Bartholin and Skene glands (Tufts et al., 2014). The milieu of the vagina is acidic and presents a barrier to many bacteria. The pH is normally between 4.0 and 4.5 in women of childbearing age and is maintained by the estrogen effect on the epithelial glycoprotein coat and **lactobacilli** (normal bacterial flora of the vagina). Vaginal secretions increase during pregnancy due to increased vascularity.

The lower portion of the vagina is separated from the urinary bladder by the **vesicovaginal septum**, and is separated from the rectum by the **rectovaginal septum**. The rectovaginal septum is at risk for lacerations and tears in the event of an operative birth. The upper vagina, around the cervix, is separated from the rectum via a fold of the **peritoneum** (thin membrane around abdominal organs that covers the uterus, bladder, and rectum) called the **rectouterine pouch** or pouch of Douglas. There is a similar, smaller pouch in front of the cervix and behind the bladder called the **vesicouterine pouch**. This area must be incised and the bladder brought forward during cesarean birth (Cunningham et al., 2014). After ovulation, a secondary oocyte and its corona radiata move from the pelvic cavity into the infundibulum of the uterine tube. The uterus is the site of menstruation, implantation of a fertilized ovum, development of the fetus, and labor.

Figure 1.4. The uterus and associated structures. From Tortora & Derrickson (2017). Used with permission.

The cervix is the lower, narrow part of the pear-shaped uterus that protrudes into the vagina (Figure 1.4). About half of the cervix is within the vaginal canal. This part of the cervix has an external **os** followed by a passageway to the uterus called the **endocervical canal**. The canal ends at the internal os that opens into the uterine cavity. The size and shape of the cervix varies with parity, age, and the amount of estrogen and progesterone available. The cervix of a **nulliparous** woman is smaller and the external os is smaller and more circular than the cervix of a **parous** woman, which is wider and the external os is slitlike and more open. The length of the cervix plays a role in cervical integrity during pregnancy.

The blood supply to the cervix arrives via the uterine arteries that derive from the internal iliac arteries. The cervical branches of the uterine arteries are located at 3 o'clock and 9 o'clock to the cervical os. Venous blood drains to the hypogastric venous plexus.

The cardinal and uterosacral ligaments support the cervix and upper vagina. The cardinal ligament to attaches either side of the cervix and extends laterally to attach to connective tissue called the parametrium. The uterosacral ligament attaches to the posterior cervix and extends posteriorly to attach to the fascia of the sacrum. The main nerve supply to the cervix derives from the hypogastric plexus and follows the uterosacral ligament to the posterior cervix. Since there are sensory, sympathetic, and parasympathetic nerve fibers within the endocervical canal, any instrumentation through the cervical os has the potential for causing a **vasovagal response** in some women. Conversely, the external cervix has fewer sensory nerve endings, making small external biopsies less painful for women.

The structure of the cervix is complex. It is composed of collagenous connective tissue (smooth muscle and elastic tissue) and **ground substance**, a mucopolysaccharide. There is a much smaller percentage of smooth muscle in the cervix than in the uterine fundus. The cervix during pregnancy is extraordinarily strong and remains closed as the uterine contents increase in size and volume. Near the end of the pregnancy, the cervix softens and becomes distensible, allowing the fetus to be expelled. This dramatic change requires enzyme activity, an increase in cervical water content, hormonal changes, and an increase in prostaglandins (Blackburn, 2013). After birth, the dilated cervix will shorten and become firmer, so that by 1 week postpartum, the os is dilated to only 1 cm.

Histologically, the cervix has two cell types: the columnar cells that line the endocervical canal and the opening of the cervix, and the squamous epithelium that covers the outside of the cervix. Most lower genital tract cancers occur where these two cell layers meet at the **squamocolumnar junction** (SCJ) (Phillippi, et al., 2014).

Columnar cells secrete **mucin** (a glycosylated protein that forms mucus that acts as lubricant and protectant) and have a reddened papillary appearance. The squamous epithelium is smooth and pink. At **menarche**, higher levels of estrogen cause glycogenation and other changes in the squamous epithelium. These changes and the increasing acidity in the vagina cause the squamous cells to migrate and cover the columnar cells. **Metaplasia** of the squamous and columnar cells occurs at the SCJ. This makes this area highly susceptible to invasion by human papilloma virus, hyperplasia, and dysplasia. Metaplasia occurs throughout a woman's childbearing years; over time, the SCJ will migrate into the endocervical canal. The SCJ is the most important area for collection of cell samples for the Pap test.

Columnar cells are visible at the cervical os during adolescence, pregnancy, and when women use oral contraceptive pills because of the higher levels of estrogen during these events. This is often referred to as ectropion. Columnar cells produce cervical mucus that changes according to the hormones secreted during the menstrual cycle. During the late follicular phase and ovulation, when estrogen levels are highest, the mucus is clear, stretchy, slick, thin, and abundant. These characteristics of the mucus facilitate sperm passage from the vagina, through the cervix, and into the uterus. Under the influence of progesterone during the luteal phase, the mucus becomes scant, thick, pasty, and opaque. One of the important effects of progestin-only contraceptives is the thickening of the cervical mucus that serves as a barrier to sperm (Lewis et al., 2010).

Mucus from the columnar cells of the endocervical canal becomes thick and forms a mucous plug during pregnancy. This plug helps to prevent the passage of bacteria into the uterus. Increased vascularity and swelling of the cervix during early pregnancy will cause a bluish coloring called **Chadwick's sign**.

The uterine cervix is connected to the body of the uterus by the **isthmus**. This segment of the uterus will soften and become compressible during early pregnancy, a feature specific to pregnancy known as **Hegar's sign**.

The body or corpus of the uterus (Figure 1.4) is the most dynamic portion of the uterus. Here, the innermost lining, or **endometrium**, responds to ovarian hormones

every month, building in preparation for implantation, then sloughing as menses if pregnancy does not occur (Behera, 2016). This is also where implantation and gestation take place and where the powerful forces of labor are generated. An adult woman's uterus is about 3–4 inches long before any pregnancies have occurred. After pregnancy and postpartum involution, the range is 4.5–5 inches. The weight of the nonpregnant uterus is about 60 grams if never pregnant, heavier depending numbers of pregnancies (Cunningham et al., 2014). During pregnancy, the muscles of the uterus hypertrophy and the weight will increase to about 38.8 oz by 40 weeks' gestation. This hypertrophy does not extend to the cervix, which contains much less muscle tissue.

Attached to both sides of the upper, outer portion of the uterus, known as the **cornua**, are the fallopian tubes, round ligaments, and ovarian ligaments. The body of the uterus, unlike the cervix, is mostly muscle tissue. Inside the uterus, the anterior and posterior walls lie very close to each other, forming a slit-like space (Cunningham et al., 2014). Within this space is the very active endometrium, the first of three layers within the uterine corpus (Behera, 2016). The endometrial cyclic response to hormones is explained later in this chapter.

The middle layer of the uterus is the myometrium. This layer is composed of smooth muscle united by connective tissue and makes up most of the uterine bulk. The outermost layer is the perimetrium, a thin layer of epithelial cells. The myometrium contains four layers of muscles with blood vessels coursing through each layer. The inner layer of muscle fibers is composed of spirals on the long axis of the uterus. The middle layers of muscle fibers have interlacing fibers that form a figure eight around the many blood vessels. When the placenta is expelled after birth, the empty uterus contracts and the muscles of this layer become "living ligatures" that help halt the blood flow. The outer two layers of muscle fibers are smooth muscle in bundles of 10 to 50 overlapping cells interspersed with connective tissue and ground substance that transmit contractions during labor (Blackburn, 2013, p. 115). Interestingly, the layers of the myometrium arise from different embryonic locations, so they respond to uterine stimuli in different ways. The result is a rhythmic contractile force that propels the fetus toward the cervical opening regardless of the fetal presentation.

The uterine blood supply comes to the uterus from the internal iliac artery via the ovarian and uterine arteries. These arteries feed the arcuate, radial, basal, and spiral arteries. The spiral arteries of the endometrium change during the menstrual cycle. If pregnancy does not occur during the cycle, the spiral arteries constrict, the endometrial matrix breaks down, and menses occurs. There is extensive collateral circulation that is enhanced during pregnancy. This arterial system is very efficient in supplying nutrients and oxygen to the growing uteroplacental unit and fetus, but if hemorrhage occurs, this interconnected system of vessels makes control of the bleeding difficult.

There are two sets of lymphatics within the uterine body. One set drains into the internal iliac nodes and the other ends in the para-aortic lymph chain (Cunningham et al., 2014). The nerve supply to the uterus is derived mostly from the sympathetic nervous system and partly from the parasympathetic system. The parasympathetic system fibers derive from sacral nerves 2, 3, and 4. The sympathetic system ultimately comes from the aortic plexus just below the sacral promontory. Sensory fibers from the uterus derive from the 11th and 12th thoracic nerve root and carry the pain signals from contractions of labor to the central nervous system. The sensory nerves from the cervix and upper vagina move through the pelvic nerves to sacral nerves 2, 3, and 4. The primary nerve of the lower vagina is the pudendal nerve.

The fallopian tubes (Figure 1.4) extend from the upper sides the uterus. These oviducts vary from 8–14 cm in length. There are three parts: the **fimbria**, **ampulla**, and the isthmus. The fimbria opens into the abdominal cavity and have finger-like, ciliated projections, with one longer projection that reaches closer to or touches the ovary, which capture the ovum from the surface of the ovary. The ampulla is the widest section of the uterine tubes. The smooth muscle and ciliated cells within the tubes contract rhythmically all the time. At ovulation, these contractions become stronger and more frequent in order to move the ovum toward the uterine lining. Fertilization, if it occurs, will typically occurs in the ampulla (Blackburn, 2013). The isthmus is the narrowest section of the tubes, connecting the ampulla to the uterine cavity

The ovaries reside on either side of the uterus and are attached to the ovarian ligament that extends to and attaches to the cornua. Other ligaments help support the ovaries and serve as conduits for vessels and nerves. The top layer of the ovary contains oocytes and developing follicles. The core of the ovary is composed of connective tissue, blood vessels, and smooth muscle. Ovaries vary in size but typically are approximately 2.5–5 cm long and 1.5–3 cm wide, giving them an almond shape. Ovaries are sometimes palpable during the bimanual examination of the adnexa during pelvic examination (Bickley & Szilagyi, 2013).

Menstrual Cycle Physiology

The menstrual cycle occurs regularly in most women from menarche to menopause with some expected irregularity during the first year after menarche and the years of perimenopause. It is regulated by complex interactions between the hypothalamus, the pituitary gland, the ovaries, and the uterus. This section will highlight the hormonal changes and how these changes affect the ovary and the uterine lining.

Beginnings

The gender of an embryo is determined at the time of fertilization. The male contribution of an X chromosome combined with the female-contributed X chromosome produce the basis for a unique female human. Before the seventh week of gestation, the gonads of male and female embryos look the same. It is not until the sixteenth week after fertilization that primordial germ cells called oogonia can be detected along the genital ridge in females (Moore, Persaud, & Torchia, 2016). By 7 months of gestation, all of the oogonia have been transformed into primary oocytes and no new oogonia are formed. At birth, a female newborn will have an average of 200,000-400,000 follicles on the two ovaries. Each follicle contains a primary oocyte that has already begun the first meiotic division (Moore et al., 2016). At puberty, only about 10%, or 40,000, of these early follicles will remain due to atresia. Of these, only about 400-500 will develop into a primary and secondary follicles.

Oogenesis is the sequence of events that transforms the oogonia into an oocyte ready to be fertilized. In early fetal life, oogonia divide via mitosis to form primary oocytes. By birth, the primary oocytes have begun the first meiotic division but the process is arrested and remains that way until just before ovulation, when the first meiotic division is completed. At this division, a secondary oocyte receives the bulk of the cytoplasm and the **first polar body** is formed. At ovulation, the secondary oocyte begins its second meiotic division, but the process halts and does not resume unless the secondary oocyte is fertilized by a sperm (Moore et al., 2016). The process of oogenesis is depicted in Figure 1.5.

At term, the gonadotropin-releasing hormone pulse generator, or **gonadostat**, is at work in the fetus. The gonadostat responds to high levels of maternal estrogen by releasing small amounts of gonadotropin-releasing hormone. After birth, when maternal estrogens are removed, the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are released from the newborn's pituitary gland (Tufts et al., 2014). During infancy and childhood, estrogen levels are very low and gonadotropin secretion is restrained in a positive feedback fashion.

Onset of Puberty

When a girl is 8–12 years old, the gonads begin to produce estrogen and puberty begins with **thelarche** (breast development). Estrogen production begins in

Figure 1.5. Oogenesis. From Tortora & Derrickson (2017). Used with permission.

response to complex interrelated changes involving the central nervous system, hypothalamus, pituitary, and ovary. Onset of these changes is influenced by genetics, general health, nutrition, geographic location, exposure to light, and body weight (Tufts et al., 2014; Silverthorn, 2016). It is thought that increasing body fat and the adipose hormone **leptin** facilitate maturation, and both are important to the onset of menses. Reproductive maturation involves the central nervous system and the endocrine system in a sequence of changes that will lead to menarche.

The first in the sequence of events that will lead to reproductive maturation is the release of gonadotropinreleasing hormone from the hypothalamus that will cause the release of FSH and LH from the pituitary. These hormones will induce **gonadarche** and **adrenarche**, and the hormones from the gonads and adrenal glands stimulate the development of secondary •

Hormones from the anterior pituitary regulate ovarian function, and hormones from the ovaries regulate the changes in the endometrial lining of the uterus.

Figure 1.6. Hormonal stimulation of the gonads and feedback loops. GnRH, gonadotropin-releasing hormone. From Tortora & Derrickson (2017). Used with permission.

sexual characteristics such as breast growth, pubic and axillary hair growth, and changes in the vagina (Bickley & Szilagyi, 2013; Tufts et al., 2014). These changes also set the stage for the first ovulation and first ovulatory menstrual period. Figure 1.6 illustrates the sequence for the beginning of hormonal stimulation of the ovary and the beginning negative and positive feedback loops.

The average age for menarche in the United States varies according to population, race, socioeconomic

conditions, and nutrition. Among well-nourished white females, the average age at menarche is 12.43 (ACOG, 2015). Black females begin about 5 or 6 months earlier. Table 1.1 describes the characteristics of the normal menstrual cycle.

Once menarche and ovulatory cycles are established, puberty is complete and the female is able to reproduce physiologically; however, social and cultural norms influence reproductive behaviors and

Menarche (average age)	
White	12.43 years
Black	~11.5 years
Menstrual cycle length	
First year of menses	32.2 days (range 20–60 days)
Typical menstrual cycle length during the years between menarche and menopause	21–45 days (only 9%-15% are 28 days in length)
Flow length	
First year	2–7 days
Typical length	4–6 days (less than 2 or more than 8 considered abnormal)
Flow amount	20–80 mL (second day heaviest)

Tal	ble 1.1	Norma	menstrua	l cycl	e c	haracteristics
-----	---------	-------	----------	--------	-----	----------------

Adapted from: American College of Obstetricians and Gynecologists (ACOG). (2015); Blackburn (2013); and Shulman (2011).

choices once physical reproductive maturity is achieved. Throughout the childbearing years, the hypothalamic– pituitary–ovarian (HPO) axis and the uterus go through cycles in production of hormones and changes in the endometrial lining.

The Hypothalamic–Pituitary–Ovarian Axis

Once established, the menstrual cycle continues based on feedback mechanisms between the hypothalamus, pituitary, and the ovary. The hypothalamus is a pearlsized organ at the base of the brain near the optic chiasm. The cells of the hypothalamus synthesize and secrete many releasing hormones that act on the pituitary and other endocrine glands. It is responsible for regulating thirst, sleep, hunger, libido, and many endocrine functions (Tufts et al., 2014). The hypothalamus responds to lower serum levels of estrogen near the end of a cycle by secreting an FSH-releasing factor that will travel to the nearby pituitary gland and stimulate the release of FSH. FSH will stimulate the growth of follicles on the ovary, with one follicle becoming dominant for each cycle. Later, when the follicle releases enough estrogen, the hypothalamus will secrete an LH-releasing hormone that will travel to the pituitary and stimulate the release of LH.

The pituitary gland is located in the sella turcica, below the hypothalamus and optic chiasm. It has a stalk connecting it to the hypothalamus and two lobes, anterior and posterior. The anterior lobe synthesizes and secretes FSH, LH, and many other hormones that affect specific target organs. Figure 1.6, depicts the early HPO axis with feedback loops.

The ovaries are the target organs for the gonadotropins secreted by the anterior pituitary. They are located on either side of the uterus, suspended by the ovarian ligament. They are covered in follicles, each with the potential for growing and releasing an ovum. Figure 1.7 shows the ovarian surface and the stages of the follicle.

The functioning of the HPO axis is dependent on feedback loop control. The most common form of feedback control is negative feedback. This occurs when rising hormone serum levels cause a decrease in another hormone. The other form of feedback control is positive feedback, where rising levels of one hormone causes a rise in another. These feedback mechanisms help to keep the hormones within normal ranges.

The hormones involved in the menstrual cycle include the gonadotropin-releasing hormones from the hypothalamus, the gonadotropin-stimulating hormones from the pituitary, and the ovarian hormones from the ovary (Table 1.2).

Menstrual Cycle Phases

There are two parts to the menstrual cycle that occur simultaneously. To help clarify what is happening in each part, this section will separate the ovarian cycle and the endometrial cycle.

Ovarian cycle

There are three phases of the ovarian cycle: the follicular phase, ovulation, and the luteal phase. The follicular phase begins on the first day of menses and is more variable in length than the luteal phase. It may last anywhere from 10 to 21 days (Silverthorn, 2016). The luteal phase is the most predictable in length because of the life span of the corpus luteum. It lasts 13–15 days unless pregnancy occurs and the life of the corpus luteum continues (Shulman, 2011).

The follicular phase actually begins during the last days of the previous cycle when decreasing estrogen and inhibin deliver a negative feedback signal to the hypothalamus and pituitary. This signal stimulates the hypothalamus to release an FSH-releasing factor that stimulates the anterior pituitary to release FSH. The primordial follicles on the ovary each contain an oocyte and a layer of **granulosa cells** that will respond to the FSH. It is thought that there is at least a 3-month period of stimulation to recruit a dominant follicle for one ovulation (Blackburn, 2013). It is this one primed follicle that responds to the FSH first and begins to grow before

Figure 1.7. Cross section of the ovary during the reproductive years. (A) Frontal section. (B) Hemisection. (C) Ovulation of a secondary oocyte. From Tortora & Derrickson (2017). Used with permission.

other follicles on the ovaries that may respond. This follicle takes in more FSH than the others and grows more rapidly. Within this dominant or primary follicle, the oocyte begins to grow and the **zona pellucida** is formed and grows between the oocyte and the granulosa cells (Tufts et al., 2014). Just before ovulation, the corona radiata will form around the zona pellucida. As these changes progress, some of the follicles that had started to respond to FSH but did not fully mature undergo atresia (Shulman, 2011). During the follicular phase, the ovary and the primary follicle are secreting both estrogen and progesterone, with estrogen being produced in higher amounts. FSH stimulates the granulosa cells of the dominant follicle to produce much higher levels of estrogen and to upregulate LH receptors within the follicle cells (Tufts et al., 2014). The higher levels of estrogen cause positive feedback stimulation of the hypothalamus and pituitary that result in a rise in LH. Near the end of the follicular phase, estrogen will peak, causing LH to surge and reach its highest

Hypothalamus	Follicle-stimulating hormone releasing factor Gonadotropin-releasing factor Luteinizing hormone-releasing factor
Pituitary	Follicle-stimulating hormone Luteinizing hormone
Ovary	Progesterone Estrogen Testosterone Inhibin Activin Follistatin

Table 1.2	Hormones of the menstrual cy	cle
-----------	------------------------------	-----

Adapted from: Tufts, Rodway, Huether, & Deneris (2014).

level about 12–24 hours before ovulation (Blackburn, 2013). The higher levels of LH are a very reliable signal of impending ovulation. LH detection kits are available to help couples determine when ovulation occurs (US Food and Drug Administration (FDA), 2014).

LH has other functions. It stimulates ovarian tissue in a way that increases androgen levels and enhances the libido (Shulman, 2011). It stimulates the remaining granulosa cells of the ruptured follicle to become lutein cells so that the corpus luteum is formed. LH is also responsible for stimulating the oocyte to resume meiosis (Silverthorn, 2016).

Ovulation occurs after a surge and peak level of LH, but there are several factors that facilitate the extrusion of the ovum from the follicle. As the follicle and oocyte have grown, the oocyte has shifted to one side of the follicle. When estrogen begins to decrease, the follicle swells and prostaglandins, proteolytic enzymes, and smooth muscle contractions cause the follicular wall to burst open and the ovum is extruded (Blackburn, 2013). The phenomenon of **mittelschmerz** or pain upon ovulation is thought to be due to the rupture of the follicle and the release of the ovum and surrounding fluid that can irritate the abdominal lining.

After ovulation, the remaining cells of the follicle are re-vascularized and transformed into the corpus luteum by taking up hormones and lutein pigment that gives it a yellow color (Shulman, 2011). The corpus luteum continues to secrete estrogen and progesterone, but now progesterone is produced in higher amounts. Progesterone will cause changes in the endometrium and suppress new follicular growth. It will peak between 7 and 8 days after the rapid increase of LH. This highest level of progesterone corresponds with the time of implantation, if fertilization has occurred. If implantation occurs, the corpus luteum is maintained by the human chorionic gonadotropin secreted by the conceptus so that progesterone levels are maintained.

If fertilization has not occurred, the corpus luteum begins involution and estrogen, progesterone, and inhibin levels will fall. Cellular changes during involution will result in a small scar on the ovary called the corpus albicans (Silverthorn, 2016). The decrease in the ovarian hormones causes a negative feedback stimulation of the hypothalamus and pituitary and the process begins all over again.

Endometrial cycle

The endometrial cycle has three phases: proliferative, secretory, and menstrual. These phases correspond with events occurring in the ovarian cycle. Proliferative changes in the endometrial lining occur under the influence of estrogen during the corresponding follicular phase. During this phase, there is hyperplasia of the endothelial cells and growth of the stroma within the endometrium (Silverthorn, 2016). The endometrial height will reach 0.5–5 mm during this phase.

After ovulation, when the corpus luteum begins producing more progesterone, the secretory phase begins. During this time, the epithelial cells accumulate glycogen, become more tortuous, the spiral arteries coil, and capillary permeability of the stroma increases (Cunningham et al., 2014). If fertilization occurs, the secretory endometrium begins transformation to decidual tissue and will be 5–10 mm deep when implantation begins (Blackburn, 2013).

If fertilization does not occur, then the endometrium degenerates and the menstrual phase begins. The corpus luteum atrophies, estrogen and progesterone production decreases, and prostaglandins are released. Prostaglandins cause vasoconstriction and other changes that lead to ischemia and necrosis of the secretory structures. At the same time, there is the breakdown of proteins within the superficial layer and sloughing. Rupture of capillaries during sloughing leads to bleeding. Bleeding and myometrial contractions help remove the degenerated endometrium (Tufts, et al., 2014).

Menses typically lasts 4–6 days, but may be considered normal if all of a woman's bleeding is consistently between 2 and 8 days in length. The prostaglandins released will cause contractions, ischemia, and pain in some women. These contractions, along with increasing levels of estrogen, which encourage clot formation, eventually stop the bleeding (Shulman, 2011). Figure 1.8 illustrates the endocrine changes, ovarian cycle, and endometrial cycle in one chart.

The menstrual cycle is a complex and wondrous phenomenon that ensures the continuation of the human

Estrogens are the primary ovarian hormones before ovulation; after ovulation, both progesterone and estrogens are secreted by the corpus luteum.

Figure 1.8. Changing hormone levels during the menstrual cycle. (A) Hormonal regulation of changes in the ovary and uterus. (B) Changes in concentration of anterior pituitary and ovarian hormones. From Tortora & Derrickson (2017). Used with permission.

race. Most of the time, all of the components work in harmony and there is no need to intervene. The story of embryonic and fetal development that occurs in the uterus is continued in Chapter 2.

Resources for Women

Menstruation and the Menstrual Cycle Fact Sheet: https://www.womenshealth.gov/publications/ourpublications/fact-sheet/menstruation.html

Resources for Healthcare Providers

Association of Reproductive Health Professionals: http:// www.arhp.org/topics/pregnancy

References

American College of Obstetricians and Gynecologists (ACOG). (2015). Menstruation in girls and adolescents: Using the menstrual cycle as a vital sign. Committee Opinion No. 651. *Obstetrics and Gynecology*, *126*, e143–e146.

18 Reproductive Tract Structure and Function

- Behera, M. (2016). Uterine anatomy. *Medscape Reference*. Last updated 7/22/2015. Retrieved from http://emedicine.medscape.com/ article/1949215-overview#a1
- Bickley, L., & Szilagyi, P. (2013). Bates' guide to physical examination and history taking (11th ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins.
- Blackburn, S. (2013). *Maternal, fetal, & neonatal physiology: A clinical perspective* (4th ed.). Maryland Heights, MO: Elsevier.
- Cunningham, F., Leveno, K., Bloom, S., Spong, C, Dashe, J., Hoffman, B., Casey, B., Sheffield, J. (2014). *Williams obstetrics* (24th ed.). New York: McGraw-Hill Medical.
- Lewis, R. A., Taylor, D., Natavio, M. F., Melamed, A., Felix, J., & Mishell, D. (2010). Effects of the levonorgestrel-releasing intrauterine system on cervical mucus quality and sperm penetrability. *Contraception*, 82(6), 491–496.
- Moore, K., Persaud, T., & Torchia, M. (2016). Before we are born: Essentials of embryology and birth defects (9th ed.). Philadelphia: Elsevier.
- Phillippi, J. Latendresse, G., McCance, K.(2014). Alterations of the female reproductive system. In K. McCance, S. Huether,

V. Brashers, & N. Rote (Eds.), *Pathophysiology: The biologic basis for disease in adults and children* (7th ed., pp. 800–884). St. Louis, MO: Elsevier/Mosby.

- Shulman, L. (2011). The menstrual cycle. In R. Hatcher, J. Trussell, A. Nelson, W. Cates, D. Kowal, & M. Policar. *Contraceptive Technology*. (20th ed., pp.29-43). New York: Ardent Media, Inc.
- Silverthorn, D. (2016). *Human physiology: an integrated approach.* (7th ed.). Essex, England: Pearson.
- Tortora, G. J., & Derrickson, B. (2017). *Principles of anatomy & physiology* (13th ed.). Hoboken, NJ: John Wiley & Sons, Inc.
- Tufts, G., Rodway, G., Huether, S., & Deneris, A. (2014). Structure and function of the reproductive systems. In K. McCance, S. Huether, V. Brashers, & N. Rote (Eds.), *Pathophysiology: The biologic basis for disease in adults and children* (7th ed., pp. 768–799). St. Louis, MO: Elsevier/Mosby.
- US Food and Drug Administration (FDA). (2014). Medical Devices: Ovulation (urine test). Retrievedfrom http://www.fda.gov/ MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ HomeUseTests/ucm126065.htm

Conception, Implantation, and Embryonic and Fetal Development

Patricia W. Caudle

Relevant Terms

Acrosome reaction—a process that exposes small openings in	Gametes—ovum and sperm
the head of the sperm that allows it to penetrate the ovum	Gastrulation—formation of the germ layers of the embryo
membrane and release its contents	Haploid—contains 23 chromosomes
Active transport—movement across a semipermeable membrane against a concentration gradient	Hydatidiform mole—abnormal proliferation of the conceptus that can become malignant
Allantois—small appendage of the umbilical vesicle	Implantation bleeding—loss of a small amount of blood from
Angingenesis—process by which new vessels form from	the utering lining during implantation
avisting vascals	Lacunae cmall spaces or "lakes" within the
Anontosis programmed cell death	synautiotrophoblast
Blastocyst —third stage of the concentus development:	Lanuage fine soft bair that covers the fatus
nostmorula	Lingusis hreakdown of fat moloculos
Conscitution removal of the algorithmic cost from the head	Mesonchumal cells that can differentiate into many different
of the cherm	soll trace
Of the spenn	Cell types Mesodorm middle layer of the dayalaning ombryo
and becomes the fetal part of the placente	Merula mulherry like group of colle second phase of
Charles freedocum will at embryonic pole that extend into	Morula—Induserry-like group of cens, second phase of
the deciduar will develop into the placente	Neurolation formation of the neurol type
the decidua, will develop into the placenta	Net a charded and the structure that halos are a size the memory
Chorion laeve—smooth chorion that will luse and disappear	Notochordal—rodike structure that helps organize the hervous
chorionic vini—projections from the cytotrophobiast to the	system and becomes part of the vertebra and axial skeleton
syncytiotrophobiast that eventually become an arteriocapii-	Oligonydramnios—less than normal amount of amhlotic fluid
lary venous network that supplies the embryo	Oocyte—ovum
Cleavage—replication process of cells	Oogonia—primitive ovum
Cloacal membrane—future site of the anal opening in the embryo	Organogenesis—process by which endoderm, mesoderm, and
Coelom —cavity that fills with a nutrient lake for molecular	ectoderm develop into internal organs
exchange between the woman and the embryo	Peptide—synthesized from protein
Corona radiata—first layer of the ovum	Pinocytosis —carrier molecule is required to engult molecules
Cytotrophoblast—inner layer of the trophoblast	and move it across the placental barrier
Decidual reaction —cellular and vascular changes in the	Placenta accreta—abnormal attachment of the trophoblast to
endometrium at implantation	the endometrium
Diploid—contains 46 chromosomes	Polyhydramnios—excessive amniotic fluid
Ectoderm—outermost layer of the developing embryo	Precursors—building blocks or chemicals used to make
Endoderm—innermost layer of the developing embryo	another chemical
Extraembryonic somatic mesoderm—layer of mesoderm	Primitive streak—line of epiblast cells through the middle of
that will combine with trophoblast to form the chorion	the back of the embryo
Facilitated diffusion—movement across a semipermeable	Pulmonary hypoplasia—poor fetal lung growth
membrane that needs a transporter but no energy	Quickening—fetal movement first felt by the woman

Prenatal and Postnatal Care: A Woman-Centered Approach, Second Edition. Edited by Robin G. Jordan, Cindy L. Farley and Karen Trister Grace. © 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc. Companion website: www.wiley.com/go/jordan/prenatal

Sacrococcygeal teratoma—cystic tumor with tissue from all	Teratogen —any substance that can disrupt the development
three empryonic germ layers	of an embryo
Simple diffusion—movement across a semipermeable membrane from higher to lower concentration	Velamentous insertion—umbilical blood vessels insert into the placenta via the amniotic membrane and are not
Somites—segmental mass of mesoderm occurring in pairs	protected by Wharton's jelly
along the notochord, which develop into vertebrae and muscles	Vernix caseosa—cheesy coating on the fetus that protects the skin
Steroid—synthesized from cholesterol	Wharton's jelly—gelatinous connective tissue of the
Syncytiotrophoblast—outer layer of the conceptus that sends	umbilical cord
out fingerlike extensions that take in uterine cells as it	Zona pellucida—second layer of the ovum
invades the endometrium	Zygote—first cell created by fusion of ovum and sperm

Introduction

Estrogen produced by the ovarian follicle begins the preparation of the endometrial lining for a potential pregnancy. When the follicle extrudes the ovum, the *corpus luteum* develops and begins to produce more progesterone (literally, progestation). This hormone causes the endometrium to become very receptive to implantation should conception occur. This chapter will outline conception, implantation of the *conceptus* into the receptive uterine lining, and the development of the embryo/fetus and placenta. For purposes of consistency, embryonic and fetal age is based on the estimated time of fertilization unless otherwise stated.

Conception and Implantation

Conception or fertilization occurs in the ampulla of the fallopian tube typically within 24 hours of ovulation. In order for conception to occur, about 300 to 500 sperm must be in the fallopian tube when the ovum arrives. It takes that many sperm to produce the enzymes needed for one sperm to fertilize the egg (Blackburn, 2013). During the journey through the cervix and uterus to the fallopian tube, the sperm undergoes capacitation so that when it passes through the corona radiata (the first layer of the ovum), it can begin the acrosome reaction (small openings of the head that releases the contents) and bind to the zona pellucida, which is the second layer of the ovum. The enzymes that have been released by the other sperm help to remove obstructing cells and allow one sperm to penetrate the zona pellucida and enter the ovum. The entire sperm will be taken into the **oocyte** or ovum. Once the sperm has entered the ovum cytoplasm, a zonal reaction occurs to prevent another sperm from entering. The sperm will determine the sex of the embryo by contributing either an X (for female) or a Y (for male) sex chromosome.

Within a few hours, the **haploid** (containing 23 chromosomes) **gametes** (ovum and sperm) will unite within the ovum to form a complete **diploid** (containing 46 chromosomes) cell called the **zygote**, the first cell of a human being. All the information to make a human being is within the zygote. Each cell that develops from this first cell will move and take shape according to the programming of the DNA (deoxyribonucleic acid) from each parent. Cells will change in order to make different tissues and changing cells will influence each other. There will be migrations of cells to form different organs. **Apoptosis** will occur so that cavities are formed and excessive growth does not occur (Beery & Workman, 2012). It is a complex and marvelous chain of events.

The zygote begins to move toward the uterus and the cell begins the replication process, or **cleavage**. In about 30 hours, there are two cells (Benirschke, 2014). By about 3 days, a morula made of 12–32 cells enters the uterine cavity (Moore, Persaud, & Torchia, 2016). Fluid accumulates in the **morula**, forming a **blastocyst**. The blastocyst is protected from the woman's immune system by the *zona pellucida*, the covering for the blastocyst (Blackburn, 2013). About 5 days after fertilization, a 58-cell blastocyst will shed the zona pellucida and secrete substances that help to make the uterine lining even more receptive to implantation. These substances include human chorionic gonadotropin (hCG).

Spontaneous pregnancy losses that occur during the first two weeks are typically caused by chromosomal abnormalities or by failure of the blastocyst and the **syn-cytiotrophoblast** to produce enough hCG to maintain the corpus luteum as it produces progesterone. Figure 2.1 depicts the cleavage and travel of the conceptus through the fallopian tube to the uterine implantation site.

About 6 to 10 days after ovulation, implantation of the blastocyst into the estrogen- and progesterone-primed endometrium begins (Liu, 2014). Most implantations occur on the upper posterior uterine segment closest to the follicle that released the egg. The blastocyst will adjust itself so that the embryonic pole is closest to the endometrial lining (Blackburn, 2013). It will embed entirely into the endometrium where it has adhered itself.

Frontal section through the uterus, uterine tube, and ovary

Figure 2.1. Cleavage and travel of the conceptus to the uterus.

The embryonic disc appears and during the second week, it will develop the **ectoderm**, **endoderm**, and **mesoderm** layers that will later form all the body systems of the embryo. Structures outside the embryonic disc form the amniotic cavity, the amnion, the umbilical cord beginnings, and the chorionic sac.

The Placenta

Beginnings and Structure

Encircling the blasotocyst are trophoblast cells that begin the invasion process by projecting into the uterine lining to reach maternal blood vessels. These cells will form the placenta. Once adhered to the endometrium, the trophoblast cells differentiate into two layers. The outer layer is the syncytiotrophoblast, which is a multinuclear protoplasm mass that sends out the fingerlike extensions that take in uterine cells as it invades the endometrium. This layer of the trophoblast secretes both **peptide** and **steroid** hormones important to the maintenance of the pregnancy. The inner layer of the trophoblast has distinct cells and is called the **cytotrophoblast**. These cells secrete peptide hormones needed for the pregnancy.

The syncytiotrophoblast grows and begins to develop small spaces called **lacunae** that will fill with serum from woman's spiral arteries as the invasion progresses. This fluid will nourish the trophoblast. The maternal arteries become fully dilated and a low-resistance, low-pressure continuous flow is established (Cunningham et al., 2014). Communication between the lacunae and uterine vessels begins uteroplacental circulation. The remodeling of the spiral arteries is an important step in establishing optimal circulation and nourishment for the embryo/fetus. Chronic disorders of pregnancy, such as preeclampsia or intrauterine fetal growth restriction, or both, can result from incomplete dilation of the spiral arteries at this stage in development (Blackburn, 2013).

The projections from the cytotrophoblast into the syncytiotrophoblast mass become chorionic villi. These protrusions develop through three stages to become a functioning arteriocapillary venous network that supplies the embryo. Fetal blood begins to circulate by about 21 days after fertilization within the villi. An exchange via diffusion between the maternal and embryonic circulations begins, but the blood from each does not combine or meet. More about the cardiovascular development and transfer of nutrients and gases between woman and fetus is presented later in this chapter.

Recall that the endometrium is changing under the influence of the progesterone that has been secreted by the corpus luteum. This secretory endometrial lining must be primed for the conceptus to be able to implant. Correct timing is essential. At midway in the secretory phase, the endometrium develops protrusions and chemical changes that enhance the acceptance of the blastocyst (Cunningham, et al., 2014).

A decidual reaction (cellular and vascular changes in the endometrium at implantation) occurs around the conceptus after it has embedded into the primed endometrium. This reaction provides an area for the conceptus that is protected from the maternal immune system (Moore, Persaud, & Torchia, 2016). If this reaction is abnormal, then *placenta accreta* (abnormal attachment of the trophoblast to the myometrium) or ectopic pregnancy may occur. The decidua basalis is directly under the trophoblast and is compressed. The villi at the embryonic pole extend into the decidua basalis and become the chorion frondosum that develops into the placenta. The decidua capsularis and decidua vera (or parietalis) are over the trophoblast. The decidua capsularis will disappear as the embryo develops. The decidua vera will fuse with the chorion laeve (smooth chorion) and disappear as products of conception fill the uterine cavity.

Implantation bleeding, the loss of a small amount of blood from the uterine lining at implantation, occurs when the invasion of the uterine lining causes an abrupt opening in arterioles or veins. Many pregnant women experience this episode of bleeding, and it is considered physiological or a normal variant. The appearance of this bleeding occurs at about the same time a menstrual period is anticipated and can be incorrectly interpreted as the last menstrual period. This can affect how the pregnancy is dated, so a careful menstrual history is warranted.

The placenta at term is round and disk-shaped, about 9 in. or 22 cm in diameter and 2 to 4 cm thick (Cunningham, et al., 2014). The maternal surface is formed by about 20 cotyledons (lobes) attached to the decidua via septa connected to the grooves between the cotyledons. Each lobe contains one main stem villi and its many branches. The fetal side is grayish white and covered by the amnion membrane.

Chorionic and Amnionic Membranes

At about 14 days post conception, the implanted ovum is visible on the endometrium as a polyp-like protrusion. The embryo, amnion, and yolk sac cavities are within the cytotrophoblast layer. The developing embryo at about 14 days is connected inside the trophoblast via a stalk that will become part of the umbilical cord. The stalk is part of the mesoderm, one of three layers of the developing embryo. The ectoderm is part of the amniotic sac epithelium. The endoderm is opposite the ectoderm and beside the yolk sac (Benirschke, 2014). As the embryo grows, it will fold, making the endoderm the innermost portion of the embryo. Eventually, the embryo is surrounded by the amnion and the amniotic fluid (AF).

The yolk sac provides nutrition for the early embryo. As the embryo folds, the yolk sac is enclosed and becomes the primitive gut, nourishing the conceptus (Benirschke, 2014). The cytotrophoblast cells encircle the extraembryonic **coelom**, a cavity that fills with a nutrient lake for molecular exchange between the woman and the embryo (Ross & Beall, 2014). The coelom disappears by the end of the first trimester and the amniotic fluid-filled cavity surrounds the fetus.

One layer of the extraembryonic mesoderm is the **extraembryonic somatic mesoderm**. This layer will combine with the two layers of the trophoblast to form the chorion and the chorionic sac. Within the chorion, the embryo, amniotic sac, and umbilical vesicle are attached to the chorion by the connecting stalk that will become the umbilical cord.

The amniotic sac will enclose the embryo and cells from the amniotic membrane will eventually cover the umbilical cord (Benirschke, 2014). The amniotic sac lies against but does not normally adhere to the entire chorionic membrane by about 12 weeks. There are no blood vessels in the amnion except in rare instances of **velamentous insertion** (where blood vessels insert or grow into the amniotic membrane). The amniotic membrane is made up of ectodermal epithelial cells, thin connective tissue, and macrophages.

AF fills the amniotic sac around the embryo. It protects the embryo/fetus from trauma and most bacteria, allows for fetal movement and growth, and facilitates lung and limb development (Ross & Beall, 2014). The amount of AF increases steadily between 10 and 30 weeks, then slows. Between 36 and 38 weeks, AF begins to decrease normally. At 41 weeks of gestation, AF begins to decrease more rapidly.

Excessive AF, known as **polyhydramnios**, can occur when the fetus has an encephaly or esophageal atresia, which prevents swallowing of AF, or when the woman has diabetes. Complications of polyhydramnios include placental abruption, uterine dysfunction, and postpartum hemorrhage.

Oligohydramnios, or below normal AF, can occur when there is an obstruction to fetal urine flow, renal agenesis, or other fetal anomalies; chronic leakage of AF; or rupture of the amniotic membrane. Chronic reduction in AF can cause fetal **pulmonary hypoplasia** or can increase the risk for infection.

Functions of the amniotic fluid

- · Protects the embryo/fetus from trauma
- Is a barrier to most bacteria
- Allows for fetal movement and growth
- Facilitates lung and limb development
- Reflects fetal kidney function
- Provides thermoregulation
- Aids in gastrointestinal maturation

The Umbilical Cord

The connecting stalk is the earliest appearance of the umbilical cord. As the embryo folds during the fourth week, the umbilical cord begins to form and the amnion cells near it develop into the covering for the cord (Moore, Persaud, & Torchia, 2016). Once fetoplacental circulation is established, two umbilical arteries within the cord carry deoxygenated blood away from the fetus to the placenta and woman. The placental barrier between the woman and the fetus is very thin and allows substances, but not blood, to move back and forth. One umbilical vein within the cord brings oxygen and nutrients back to the fetus from the placenta and woman. These three umbilical vessels are surrounded by Wharton's jelly, a gelatinous connective tissue. This protective coating does not cover the entire umbilical cord when there is a velamentous insertion.

The umbilical cord is usually between 12 and 35 in. (30 and 90 cm) long (Moore, Persaud, & Torchia, 2016). If it is too long, there is danger that it will coil around the fetus, tighten, and cut off oxygen and nutrient flow. A true knot in the umbilical cord can be created through fetal movement and is found in about 1 in 100 pregnancies, but only causes problems for 1 in 2000. A longer cord can prolapse with the rupture of amnionic membranes, be occluded by the fetal presenting part, and cause loss of oxygen and nutrients to the fetus. About 1 in 20 umbilical cords are abnormally short (Beall, 2015). The cause of shorter cords is unknown; however, shortened cords may cause decreased fetal movement, placental abruption, or disruption in a part of the cord. A shortened cord can affect fetal descent and expulsion, although there are data that indicate that a vaginal delivery can happen if the cord is as short as 5.125 in. (13 cm).

Placental Functions

The placenta and umbilical cord move substances such as nutrients, gases, drugs, and wastes between the woman and the fetus. In addition to the transport of substances, the placenta serves as the organ for gas exchange and waste removal and as an endocrine gland for the fetus. It metabolizes glycogen, cholesterol, and fatty acids for energy, and synthesizes and secretes both steroid and peptide hormones (Moore, Persaud, & Torchia, 2016). The placenta can metabolize some drugs via specific enzyme action. In addition, placental cells produce P-glycoprotein, a substance that can pump some drugs away from the fetus (Lassiter & Manns-James, 2017). Shortly after the baby is born, the extraordinary placenta is expelled from the uterus as waste.

Sociocultural Uses of the Placenta

The American health care system has often treated the placenta as biohazardous waste material, although some placentas have been harvested for medical or commercial use. In some cultures, the placenta is used in rituals designed to honor or protect the mother and the baby, such as burying it under a tree. Two alternative trends are emerging with regard to the placenta: (1) lotus birth, in which the umbilical cord is not severed at birth and the cord and placenta are kept with the baby until natural separation occurs; and (2) placental encapsulation in which the placenta is steamed, dehydrated, ground, and placed into capsules for ingestion in the postpartum period by the mother with reputed effects of enhancing milk supply and preventing depression. Health care providers should discuss the woman's preferences for the disposal or use of the placenta in the prenatal period.

Placental Transport

By the third week after fertilization, the embryo has developed a vascular network and fetal circulation begins and the heart begins to beat by about day 21 (Moore, Persaud, & Torchia, 2016). The embryonic circulation is separated from maternal circulation by a thin membrane often called the placental barrier.

The four main modes of transport for substances across the placental membrane are **simple diffusion** (movement from higher to lower concentration), facilitated diffusion (movement that needs a transporter but no energy), **active transport** (movement against a concentration gradient that requires energy), and **pinocytosis** (carrier molecule is required to engulf the molecule and move it across the placental barrier) (Blackburn, 2013; Moore, Persaud, & Torchia, 2016). Most drugs cross the placenta via simple diffusion (Lassiter & Manns-James, 2017). Table 2.1 lists the four modes of transport and gives a few examples of substances that are transported via each mode.

Table 2.1 Four main transport mechanisms

Mode of Transport	Examples
Simple diffusion	Oxygen, CO ₂ , carbon monoxide, H ₂ O, most drugs, steroids, electrolytes, anesthetic gases
Facilitated diffusion	Glucose (facilitated by insulin), cholesterol, triglycerides, phospholipids
Active transport	Amino acids, vitamins, transferrin (carries iron to fetus), iodine, calcium
Pinocytosis	Immunoglobulin G

Adapted from: Adams & Urban (2016); and Blackburn (2013).

Seven factors affect substance transfer across the placenta (Adams & Urban, 2016):

- 1. High maternal plasma level of the specific substance can affect transfer. Higher maternal plasma levels will mean that more of the substance is available for transfer to the fetus.
- 2. Lipid-soluble substances cross the placental barrier better and more rapidly than do water-soluble sub-stances.
- 3. The smaller the molecule, the more readily it crosses the placenta. Alcohol, for instance, is a very small molecule and crosses readily. Heparin is a very large molecule and does not cross.
- 4. Protein binding can make the substance too large to cross.
- 5. Ionized drugs do not cross as easily as nonionized drugs. An example of this is how nicotine crosses and reaches higher concentrations in the fetus. Nicotine is a weak base and maternal serum is slightly more acid than fetal serum. Once in the fetus, nicotine becomes ionized in a higher pH environment and will not cross the placenta back to woman. So, plasma levels of nicotine are higher in the fetus than in the woman.
- 6. If uteroplacental blood flow is compromised, drugs or other substances can stay in the fetus for a long time. This increases the risk for more serious fetal side effects. In fact, the rate of maternal or fetal blood flow through the villous spaces will affect diffusion.
- 7. The stage of fetal development makes a difference. Before implantation, drug exposure will either destroy the blastocyst or it will not be affected at all. During organ development between weeks 3 and 8, the developing organs may be damaged by drugs. This is also the time when the risk for drug-related spontaneous abortion is highest. During the fetal phase, weeks 9–40, drugs will be in the fetal system for a longer period of time due to immature metabolism and excretion processes. Exposure at this time, however, does not cause severe malformations. Instead, there may be delayed growth or organ function problems.

Some viruses, bacteria, and protozoa cross the placenta to infect the fetus. Table 2.2 lists the infectious agents that may cross the placental barrier and affect the fetus.

Placental Endocrine Synthesis and Secretion

The placenta uses **precursors** such as cholesterol, estrogen, or protein to synthesize both peptide and steroid hormones. The peptide hormones include, but are not limited to, hCG, human placental lactogen (also called human chorionic somatomammotropin), human chorionic adrenocorticotropin (ACTH), corticotropin-

	······
Viruses	Varicella zoster, Coxsackie, parvovirus (B19), cytomegalovirus, rubella, human immunodeficiency virus, polio virus, zika virus
Bacteria	<i>Treponema pallidum</i> (syphilis), listeriosis, Borrelia (Lyme disease)
Protozoa	Toxoplasmosis

Table 2.2 Transplacental infections

Adapted from: Centers for Disease Control and Prevention. (2016, November 18); Cunningham et al. (2013); and Moore, Persaud, & Torchia (2016).

releasing hormone, relaxin, and inhibin. The steroid hormones include estrogen and progesterone.

The hormone hCG is essential to pregnancy. It is produced by both the syncytiotrophoblast and cytotrophoblast for the first 5 weeks of pregnancy, thereafter, by the syncytiotrophoblast and fetal kidneys. It is detectible in maternal serum and urine by 7–9 days after ovulation and is used for pregnancy tests. Maternal plasma levels of hCG double every 31–35 hours until around 63–70 days (Liu, 2014). Plasma levels then decline until about 16 weeks to remain the same until birth.

Maternal serum levels of hCG are used clinically for pregnancy testing and for diagnosis of various pregnancy abnormalities in the early weeks of pregnancy. Levels of hCG that are too high indicate multiple fetuses, fetal hemolytic disease, **hydatidiform mole**, or Down syndrome. Levels that are too low or that do not double in 2 days can indicate spontaneous abortion or ectopic pregnancy. hCG is also used in combination with other substances such as estriol and alpha-fetoprotein to screen for other fetal abnormalities.

The functions of hCG include maintenance of the corpus luteum; maintenance of the development of spiral arteries in the myometrium and formation of syncytiotrophoblast; acting as a luteinizing hormone to stimulate the male embryonic/fetal testicle to secrete testosterone; stimulation of the maternal thyroid gland; and promotion of secretion of relaxin (peptide hormone) from the corpus luteum. It might also promote vasodilation and smooth muscle relaxation of the uterus (Moore, Persaud, & Torchia, 2016; Blackburn, 2013). In maintaining the corpus luteum, hCG also prevents menses. It is synthesized without any contribution from the fetus, so maternal serum levels will remain high long after fetal demise (Blackburn, 2013).

Human placental lactogen is synthesized in the syncytiotrophoblast and can be measured in maternal serum at about 4 weeks. Its actions include maternal **lipolysis** (breakdown of fat for energy), increased maternal insulin resistance that facilitates protein synthesis and availability of amino acids and glucose to the fetus, **angiogenesis** (embryo blood vessel formation), and increased synthesis and availability of lipids (Blackburn, 2013). This is the placental hormone most involved in keeping a constant flow of glucose and amino acids going to the fetus.

ACTH is important for fetal lung maturation and plays a role in the timing of labor and birth. Corticotropinreleasing hormone (CRH) is produced in the placenta, membranes, and decidua. CRH acts to increase ACTH secretion from the trophoblast, causes smooth muscle relaxation in blood vessels and in the uterus until late in pregnancy, and facilitates maternal immunosuppression. Near term, a rise of CRH from the fetus and the placenta contributes to the genesis of labor.

Relaxin is produced in the corpus luteum, decidua, and the placenta. It acts to quiet the myometrium, facilitate the decidual reaction, remodel collagen, and soften the cervix (Blackburn, 2013). Relaxin also mediates hemodynamic changes of pregnancy and softens ligaments and cartilage in the skeletal system.

Inhibin is another glycoprotein produced by the trophoblast. It acts with sex steroid hormones to decrease the secretion of follicle-stimulating hormone from the pituitary, thereby stopping ovulation during pregnancy.

There are three major estrogens: estrone, estradiol, and estriol. In pregnancy, estriol is the major estrogen. Estriol is synthesized in the placenta from precursors from the maternal and fetal adrenal glands. Dehydroepiandrosterone sulfate (DHEA-S) is synthesized from cholesterol in the fetal adrenal glands, and it is an essential precursor to placental synthesis of estriol (Blackburn, 2013). During pregnancy, estriol production increases about 1000 times that seen in nonpregnant women at ovulation (Cunningham et al., 2013). Lower than normal maternal serum levels of estriol are seen when the fetus is an encephalic or has adrenal hypoplasia. Additionally, fetal demise can occur because the fetal pituitary is not releasing ACTH or the fetal adrenal glands are not functioning (Blackburn, 2013). Maternal serum and AF estriol levels, along with other substances, are also used to screen for Down syndrome, trisomy 18, and neural tube defects.

Estrogen in pregnancy has many functions. Estrogens induce the proliferation and secretory phase of the endometrium, stimulate phospholipid synthesis, enhance prostaglandin production, and trigger uterine contractions. Estrogens also promote myometrial vasodilation, increase uterine blood flow, prepare the breasts for breastfeeding, affect the maternal renin–angiotensin system, stimulate the liver to produce globulins, and increase fetal lung surfactant production (Blackburn, 2013; Liu, 2014).

Progesterone is secreted by the corpus luteum early in pregnancy. It is not until about 8–10 weeks that progesterone is synthesized and secreted by the placenta. The precursor for progesterone synthesis is cholesterol. Maternal serum levels of this steroid hormone increase steadily throughout the pregnancy so that by term, 250 mg/day is being produced (Liu, 2014). This is about 10 times the amount produced by the corpus luteum during the luteal phase of the menstrual cycle.

Progesterone has a number of essential functions in pregnancy. Progesterone is needed for preparation of the endometrium for implantation; maintenance of a quiescent uterus through relaxation of the smooth muscle; inhibition of uterine prostaglandin development, thereby delaying cervical softening; inhibition of the cell-mediated immune system to help prevent rejection of the conceptus; reduction of CO₂ sensitivity in the maternal respiratory center; inhibition of prolactin secretion; relaxation of maternal smooth muscle in the gastrointestinal and urinary systems; and elevation of maternal temperature. Additionally, it is important in creating thicker cervical mucus and a mucous plug that serve as a barrier to infectious agents trying to enter the uterus (Blackburn, 2013; Liu, 2014). Unlike estrogen, the fetus is not necessary for the production of progesterone and maternal serum levels of this hormone will remain high long after fetal demise (Blackburn, 2013). Table 2.3 summarizes the placental hormones and their functions.

The Embryo

Gastrulation (formation of germ layers of the embryo) changes the embryo from a two-layer disc to a threelayer disc. The three layers include the ectoderm, mesoderm, and endoderm. These layers form the basis for all tissues and organs that will develop as the embryo grows. Gastrulation begins with the appearance of the **primitive streak** from the tail through the middle of the back of the embryo to the head (Moore, Persaud, & Torchia, 2016). Cells from the primitive streak and its derivatives will migrate away and form the mesoderm until about the fourth week. Near the tail end of the primitive streak, the **cloacal membrane** develops. This is the future site of the anal opening. Figure 2.2 shows how the primitive streak appears and lengthens.

Parts of the primitive streak that do not degenerate can give rise to a **sacrococcygeal teratoma**, a cystic tumor that contains tissues from all three germ layers (Hamilton, 2015). These tumors can be surgically removed from the neonate without any lasting effect.

Mesenchymal cells from the primitive node move toward the head and form the **notochordal** process and

Human Chorionic Gonadotropin (hCG)	Maintains the corpus luteum Promotes vasodilation and relaxation of the uterus Stimulates the male testicle to secrete testosterone Stimulates maternal thyroid Promotes secretion of relaxin
Human placental lactogen (hPL)	Maternal lipolysis Increases maternal insulin resistance Angiogenesis Increases synthesis of lipids
Human chorionic adrenocorticotropin (ACTH)	Promotes fetal lung maturation Plays role in timing of labor
Corticotropin-releasing hormone	Acts to increase ACTH secretion from the trophoblast Causes smooth muscle relaxation in blood vessels and uterus Facilitates maternal immunosuppression Near term, contributes to genesis of labor
Relaxin	Quiets the myometrium Facilitates decidual reaction Remodels collagen Helps soften the cervix Affects cartilage of maternal skeletal system
Inhibin	Acts with other hormones to decrease release of follicle-stimulating hormone, which stops ovulation
Dehydroepiandrosterone sulfate (DHEA-S)	Essential precursor to placental synthesis of estrogen
Estrogen	Acts to prepare the endometrium for pregnancy Stimulates phospholipid synthesis Enhances prostaglandin production Promotes uterine vasodilation Prepares breasts for breastfeeding Increases fetal lung surfactant production
Progesterone	Essential for preparation of the endometrium for implantation Maintains quiescent uterus Inhibits prostaglandin development Inhibits maternal cell-mediated immune system Reduces CO ₂ sensitivity in maternal respiratory center Inhibits prolactin secretion Relaxes maternal smooth muscle Causes increase in maternal temperature Increases cervical mucus and formation of mucous plug

Adapted from: Blackburn (2013); Cunningham et al. (2013); and Liu (2014).

canal. The notochord is a rodlike structure that helps organize the nervous system and later becomes part of the vertebral column and axial skeleton. As the vertebra develops around the notochord, it will degenerate until only remnants are left in the nucleus pulposus between bony vertebrae. The notochord grows between the ectoderm and the endoderm and stops at the prechordal plate. Before it degenerates, the notochord will cause a thickening of the ectoderm and the formation of the neural plate by the end of week 4. This is where the central nervous system, including the forebrain, begins (Moore, Persaud, & Torchia, 2016). The neural plate and ectoderm also give rise to the retina, iris, optic nerve, and other eye structures. On either side of the noto-chord, **somites** (segmental mass of mesoderm occurring in pairs along the notchord) develop, which give rise to the skeleton, muscles, and some of the skin. As the somites develop, they can be used to estimate the age of the embryo (Blackburn, 2013). Figure 2.3 shows the notochord process. Near the prechordal plate, layers of

Gastrulation involves the rearrangement and migration of cells from the epiblast.

Figure 2.2. Gastrulation and the appearance of the primitive streak.

ectoderm and endoderm meet and form the oropharyngeal membrane, which will become the mouth.

Mesenchymal cells migrate to the sides of the primitive streak and fuse with the extraembryonic mesoderm that is part of the amnion and umbilical vesicle. These cells also migrate toward the head and form the cardiogenic mesoderm where the heart will begin development at the end of the third week. The **allantois** is a small appendage of the umbilical vesicle that attaches to the connecting stalk. It is involved with blood formation and the development of the urinary bladder. The blood vessels of the allantois become the arteries and vein of the umbilical cord (Moore, Persaud, & Torchia, 2016).

Neurulation is complete at the end of week 4. About day 18, a neural groove and neural folds appear in the neural plate. These early neural folds are the first signs of brain development. Later, the neural folds fuse to form the neural tube that will separate from the surface ectoderm. The edges of the ectoderm will then fuse over the neural tube, becoming the skin of the back. A neural

The notochordal process develops from the primitive node and later becomes the notochord.

Figure 2.3. Notochord growth. (A) Dorsal and partial sectional views of the trilaminar embryonic disc, about 16 days after fertilization. (B) Sagittal section of the trilaminar embryonic disc, about 16 days after fertilization.

crest forms between the neural tube and the ectoderm (Moore, Persaud, & Torchia, 2016). Neural crest cells migrate and change into spinal ganglia and autonomic nervous system ganglia. These cells also form the ganglia for cranial nerves V, VII, IX, and X; sheaths for peripheral nerves; the pia mater; and arachnoid mater. This is the time that neural tube defects occur, including anencephaly and meningocele due to failure of primary neurulation, and spina bifida due to failure of secondary neurulation (Jallo, 2015).

The embryo's first nourishment is from maternal blood via diffusion through the chorion, extraembryonic coelom, and umbilical vesicle. At the beginning of the third week, blood vessel formation begins in the extraembyonic mesoderm of the umbilical vesicle and connecting stalk (Moore, Persaud, & Torchia, 2016). At the same time, new blood vessels are being formed in the chorion so that by day 21 postfertilization, the early uteroplacental circulation is functional. At about the same time, the intraembryonic coelom is dividing into the pericardial, pleural, and peritoneal cavities.

Blood formation within the embryo does not begin until week 5. The heart and large vessels develop in the pericardial cavity and the heart begins to beat on day 21 or 22 after conception (Moore, Persaud, & Torchia, 2016). The cardiovascular system is the first system in the embryo to function.

Organogenesis

The fourth to eighth week for the embryo is the period of organogenesis. All the main organ systems begin to develop during these weeks. This is the time when the embryo is most vulnerable to teratogens. As development proceeds, the embryo begins take on more visual characteristics unique to humans.

These transformative 4 weeks begin with the folding of the embryo so that the flat trilaminar disc becomes a curved cylinder (Moore, Persaud, & Torchia, 2016). The curve is toward the connective stalk and umbilical vesicle. Figure 2.4 depicts the folding of the embryo.

Once folding is complete, the three layers—ectoderm, mesoderm, endoderm-begin to divide, migrate, aggregate, and differentiate in precise patterns to form organs.

Germ Layers and Organogenesis

Ectoderm-central and peripheral nervous systems, muscle, the skin, hair and nails, mammary glands, pituitary gland, and tooth enamel

Mesoderm-connective tissue, cartilage, bone, striated and smooth muscle, heart, blood, lymphatic system, kidneys, ovaries, testes, spleen, adrenal glands

Endoderm-lining of the gastrointestinal, urinary and respiratory tracts, linings of the ear, parts of the pancreas, and thyroid

The fourth week of development will produce somites and the neural tube will be open. The pharyngeal arches are visible and the embryo curves more head to tail (Moore, Persaud, & Torchia, 2016). The heart pumps blood even though it has not yet developed chambers. The forebrain causes an elevation of a portion of the head and there is a tail-like structure opposite the head. Arm buds are seen on either side of the upper embryo.

Figure 2.4. Folding of the embryo: (A) 22 days, (B) 24 days, and (D) 28 days.

Otic pits are visible where the ears will be, and a thickening on either side of the head marks where the future eye lenses will be. The leg buds become visible at the end of the fourth week.

During week 5, growth of the head is more rapid than other parts due to the development of the brain and facial features. The embryo is bent in a way that the face will touch the cardiac prominence. Mesonephric ridges appear that will become the kidneys.

The embryo begins slight movements during week 6 and will reflex to touch. Digital rays, the first stages of fingers and hands, appear. The legs develop about 4–5 days after the hands. The auricles for the ears begin to be visible. The retinal pigment for the eyes is present. The head is large and the trunk begins to straighten. The intestines enter the peritoneal cavity near the end of the umbilical cord and an umbilical hernia occurs to give room for the intestine (Moore, Persaud, & Torchia, 2016). At the end of week 6, the embryo is about 22–24 mm in length (Cunningham et al., 2014).

The limbs develop more rapidly during the seventh week. Digital rays become hand plates and the arms and legs become longer. This is also the time when the primordial gut and umbilical vesicle shrink to form the omphaloenteric duct (Moore, Persaud, & Torchia, 2016).

During the last week of organogenesis, fingers are webbed, toes are still digital rays, and the scalp veins become visible and form a band around the head. By the end of the eighth week, digits of the hands and feet have grown longer and the webs are gone. Coordinated movements of all four limbs are seen. The femurs are the first bones to begin to ossify. The tail-like structure has disappeared. The head is still larger than the remainder of the body, but its features are human. The neck is visible, eyelids are closing, and auricles are nearing their final shape. The auricles are low on the head. Sex identification is not yet possible. The fetus will be 10–12 weeks old before it becomes clear that it is either a male or a female. This distinction cannot be made reliably by ultrasound at this stage.

The Fetus

The end of week 8 and the beginning of week 9 mark the beginning of the fetal period. The fetal period is a time of rapid growth and differentiation of the systems that have been formed during the preceding 8 weeks. By convention, the main changes in the fetus are considered to occur every 4–5 weeks (Moore, Persaud, & Torchia, 2016).

From weeks 9–12, the fetus doubles its crown to rump length. At 9 weeks, the eyes are wide set, the ears low on the head, and the eyelids are fused. The legs are short and

thighs are small. The intestines are seen at the end of the umbilical cord until week 10. The intestines will be completely in the peritoneal cavity by week 11. Urine formation and micturition begin during this period. The fetus begins to swallow AF that contains the urine. Fetal wastes are passed via fetal blood circulation to the woman through the placental membrane. By the end of week 12, the arm length reaches the proportional length the arms will maintain in relation to the body. The legs are still growing.

During weeks 13–16, the head is smaller in relation to the remainder of the body and the legs are longer. Limb movements as seen via ultrasound are coordinated by week 14. Slow eye movements are seen at 14 weeks and scalp hair has begun to grow. By 16 weeks, ovaries are present in female fetuses and contain ovarian follicles with **oogonia** (primitive ovum). Sixteen weeks is also the time when fetal bones are visible by ultrasound and the eyes are closer together and look forward. At week 14, the fetal crown–rump length has grown to about 7 cm.

The time period between 17 and 20 weeks marks rapid growth. This is the time that fetal movements can be felt by the woman (**quickening**). The skin at this stage is covered with **vernix caseosa**, which protects the skin. The skin is also covered with **lanugo**, which helps hold the vernix caseosa to the skin. Eyebrows are visible. In females, the uterus is differentiated and formed. In the male, the testes have started migrating toward the scrotum from the posterior abdominal wall. Brown fat for heat generation begins to be deposited in the subcutaneous area (Moore, Persaud, & Torchia, 2016).

Increased weight gain and a more proportional fetus are seen in weeks 21–25. Rapid eye movements and blink-startle responses become evident between weeks 21 and 23 (Moore, Persaud, & Torchia, 2016). Lung development is nearing completion. Surfactant begins to be secreted from the walls of the lungs at 24 weeks. This fluid will help maintain open alveoli, and it is essential for newborn breathing to begin and continue after birth. Fingernails are seen at 24 weeks (Moore, Persaud, & Torchia, 2016).

Between 26 and 29 weeks, the fetus has the potential to survive if it is born prematurely. Its central nervous system has matured enough to direct regular breathing motions and to control body temperature (Moore, Persaud, & Torchia, 2016). The eyelids open and close at 26 weeks and toenails are visible. Brown fat has accumulated and skin wrinkles are smoothed.

Fetal pupils react to light at 30–38 weeks, skin is pink and smooth, and arms and legs become plump. By 35 weeks, the grasp reflex is present and the nervous system is mature enough to function. The abdomen is as wide as the head and the breasts protrude from the chest wall in

Timing	Physiological Events	Potential Vulnerabilities
Weeks 1 and 2	Dividing zygote, implantation, bilaminar embryo	Not susceptible to teratogenesis; spontaneous loss may occur, often due to genetic malfunction early in process
Week 3	Neurological system and cardiac system development begins	Anencephaly; neural tube defects; truncus arteriosis, atrial septal defect or ventricular septal defects may occur near the end of this week of development
Week 4	Brain and nervous system, arms, and later in the week, legs; end of week: ears, eyes	Neural tube defects, heart defects, upper and lower limb defects; low set or deformed ears and deafness; malformed eyes, cataracts, glaucoma
Week 5	Brain and nervous system, heart, arms, legs, ears, eyes, mouth	Same as week 4 and add cleft lip
Week 6	Same as week 5; add tooth enamel and hard palate near the end of week 6	Same as week 5; add enamel hyperplasia and staining; cleft palate near end of week 6
Week 7	Same as week 6; add genitalia	Masculinization of female genitalia may occur at this point
Week 8	Same as week 7; end of this week marks the end of organogenesis	Ears and hearing at risk; eye deformities at week 4; tooth enamel, hard palate, and female genitalia still at risk
Week 9	Brain, hard palate, female genitalia at risk	Brain development deficiencies major threat; hearing still at risk; other major congenital anomalies become less of a threat; functional defects and minor anomalies still possible
Week 16	Brain	Mental retardation; functional defects and minor anomalies continue
Weeks 32–38	Focus on growth and development	Functional and minor anomalies may occur in the central nervous system, ears, eyes, teeth, palate, and external genitalia

 Table 2.4
 Vulnerable periods in embryonic and fetal growth and development

Adapted from: Moore, Persaud, & Torchia (2016).

both boys and girls. Growth begins to slow, although more brown fat is added during the last weeks before birth (Moore, Persaud, & Torchia, 2016). The fetus at 30 weeks weighs about 1800 g, or just under 41b (Cunningham et al., 2014). Fetal growth may be assessed by ultrasound, magnetic resonance imaging (MRI), or fetal monitoring.

The baby is expected to be born at about 266 days after fertilization or 280–283 days after the woman's last normal menstrual period (Moore, Persaud, & Torchia, 2016). It is estimated that about 12% of babies are born after the expected date of birth (EDB) (Moore, Persaud, & Torchia, 2016). The average baby will weigh about 3400 g at birth.

Birth defects have the potential for occurring at many times during embryonic growth and development. Table 2.4 lists vulnerable periods and the defects that can occur.

Summary

There is much more to be learned about the development of a human being from the single-celled zygote. The synthesis of the various cells that grow, produce substances that sustain life, migrate to form organs and tissue, or die away to form hollows and spaces is complex and wondrous. It is easy to see that disruption during any stage can cause a cascade of changes that can lead to birth defects or death. It is important that health care professionals respect and protect the woman and the embryo/fetus and educate women and their families to enhance the health of mothers and their growing babies.

Resources for Healthcare Providers

- For a detailed week-by-week timeline of human development from a cell to a newborn, use this link: https://embryology.med.unsw.edu. au/embryology/index.php/Timeline_human_development
- An interactive visual tool for understanding conception, embryonic, and fetal development, *The Visible Embryo*, is available at http:// www.visembryo.com/baby/index.html
- Tsiaras, A. (2011). Conception to birth—visualized. YouTube. Retrieved 1/2/17 https://www.youtube.com/watch?v=fKyljukBE70
- Khan Academy. (2014). Implantation. YouTube. Retrieved 1/2/17 https://www.youtube.com/watch?v=1KL8HAm3uSY
- General Embryology: Detailed Animation on Gastrulation (2014). YouTube. Retrieved 1/2/17 https://www.youtube.com/ watch?v=3AOoikTEfeo

Resources for Women, Their Families, and Healthcare Providers

- Fetal Development Timeline: http://www.babycenter.com/0_fetaldevelopment-timeline_10357636.bc
- This website from the University of Michigan Medical School (1999) depicts the embryonic period during weeks 3–8: http:// www.med.umich.edu/lrc/coursepages/m1/embryology/embryo/ 05embryonicperiod.htm

References

- Adams, M., & Urban, C. (2016). *Pharmacology: Connections to nursing* practice (3rd ed.). Boston: Pearson.
- Beall, M. (2015, September 9). Umbilical cord complications. *Medscape Reference*. Retrieved from http://emedicine.medscape.com/article/262470-overview#aw2aab6b3
- Beery, T., & Workman, M. (2012). *Genetics and genomics in nursing and health care*. Philadelphia: F.A. Davis.
- Benirschke, K. (2014). Normal early development. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy* and Resnik's maternal-fetal medicine: Principles and practice (7th ed., pp. 37–46). Philadelphia: Elsevier/Saunders.
- Blackburn, S. (2013). *Maternal, fetal, and neonatal physiology: A clinical perspective* (4th ed.). Maryland Heights, MO: Elsevier.

- Centers for Disease Control and Prevention. Zika virus (2016, November 18). Retrieved from https://www.cdc.gov/zika/hc-providers/index.html
- Cunningham, F., Leveno, K., Bloom, S., Spong, C, Dashe, J., Hoffman, B., Casey, B., Sheffield, J. (2013). Williams obstetrics (24th ed.). New York: McGraw-Hill Medical.
- Hamilton, C. (2015, April 16). Cystic teratoma clinical presentation. *Mediscape Reference*. Retrieved from http://emedicine.medscape. com/article/281850-clinical
- Jallo, G. (2015, December 15). Neural tube defects. *Medscape Reference*. Retrieved from http://emedicine.medscape.com/article/1177162overview
- Lassiter, N., & Manns-James, L. (2017). Pregnancy. In M. Brucker & T. King. *Pharmacology for women's health*. (2nd ed., pp. 1025–1059). Burlington, MA: Jones & Bartlett.
- Liu, J. (2014). Endocrinology of pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy and Resnik's maternal-fetal medicine: Principles and practice* (7th ed., pp. 100–111). Philadelphia: Elsevier/Saunders.
- Moore, K., Persaud, T., & Torchia, M. (2016). *Before we are born: Essentials of embryology and birth defects* (9th ed.). Philadelphia: Elsevier.
- Ross, M., & Beall, M. (2014). Amniotic fluid dynamics. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy and Resnik's maternal-fetal medicine: Principles and practice* (7th ed., pp. 47–52). Philadelphia: Elsevier/Saunders.

3

Maternal Physiological Alterations during Pregnancy

Patricia W. Caudle

Relevant Terms

Accelerated starvation—after a period of fasting, ketonemia, ketonuria and hypoglycemia occur and the body starts to breakdown fat for fuel	Melasma—tan or brown discoloration of areas of the facial skin Methylation—the process by which methyl groups are added to a DNA molecule, changing the activity of that DNA segment
Anabolic—construction of molecules for storage	Neural tube defects—birth defects of the brain and
Anagen—growing phase of the hair growth cycle	spinal cord
Angiogenesis—growth of new blood vessels	PC02—partial pressure of carbon dioxide in the blood
Apoptosis—cell death by the Fas/FasL ligand system	Pedunculated—attached via a stalk
Catabolism—breakdown of molecules for energy	Pica—a craving for nonfood substances
Cytokines—molecule messengers that regulate responses	Placentation—development of the placenta
to inflammation	Platelet-derived growth factor—protein that regulates
Epulis—localized vascular swelling of gums between teeth	blood vessel formation and growth
Fas/FasL—cell membrane proteins that can activate cell death	Ptyalism—excess salivation
Fibrinolysis—breakup and removal of excess fibrin	Resorption , bone —osteoclasts break down bone and release
Hyperemia—increased blood flow	calcium
Hyperplasia—increased number of normal cells in normal	Semiallograft—transplanted tissue that is half-host genetic
Linea alba—white fibrous structure running from the umbilicus	maternal genetic material
to the symphysis formed by the fusion of the abdominal	Talangiactasias cmall dilated blood vessels near the skin
muscles, visible through the skin of the anterior abdominal	surface
Linea nigra—darkened skin over the linea alba seen in	Telogen —resting phase of the hair growth cycle
nregnancy	Thromboxane—a prostaglandin
Linolytic—breakdown of fat	Tissue factor —substance that initiates clotting
Lordosis—increased inward curve of the lumbar and	Trigono the triangular region of the bladder wall muscle tissue
cervical spine	with angles that correspond with ureter and urethra openings

Introduction

This chapter outlines physiological changes and adaptations experienced by the pregnant woman as her body accepts, accommodates, and maintains a pregnancy to term. Virtually every body system is affected by remarkable hormonal, anatomical, physiological, and biochemical changes that occur from fertilization through parturition.

Hematologic System Adaptations

Maternal physiological changes in the hematologic system include increases in blood and plasma volume, and increases in the number of red blood cells (RBCs) and white blood cells (WBCs). These changes lead to increased nutritional requirements for iron and folate. In addition, pregnancy is a hypercoagulable state where

Prenatal and Postnatal Care: A Woman-Centered Approach, Second Edition. Edited by Robin G. Jordan, Cindy L. Farley and Karen Trister Grace. © 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc. Companion website: www.wiley.com/go/jordan/prenatal changes in specific clotting factors and fibrin and fibrinolytic activities occur.

Blood Changes

Blood is composed of plasma, RBCs and WBCs, platelets, and many smaller molecules with numerous functions. During pregnancy, blood volume increases by 30% to 45%, or about 1.5 liters (Blackburn, 2013). The major components, plasma and the RBC mass, increase at different rates and through different mechanisms. The more rapid increase in plasma volume causes hemodilution. This hemodilution lowers the hemoglobin, hematocrit, and RBC count per milliliter. These changes do not affect the mean corpuscular volume or mean corpuscular hemoglobin concentration in a normal pregnancy (Kilpatrick, 2014). Table 3.1 delineates the changes in hematologic laboratory parameters during pregnancy.

Red blood cells

The RBC mass will increase by 20–30% by the end of a normal pregnancy (Monga & Mastrobatista, 2014). This increase occurs because of increased production of RBCs in the bone marrow. Human placental lactogen (hPL), progesterone, and prolactin have been identified as the hormones of pregnancy that stimulate an increase in erythropoiesis (Monga and Mastrobatista, 2014).

White blood cells

Total WBC count increases during pregnancy, ranging from about 5000 to about 15,000 per cubic millimeter (Blackburn, 2013). Most of the increase is in the numbers of neutrophils. Neutrophils function as the first WBC

 Table 3.1
 Changes in hematologic laboratory parameters during pregnancy

Red blood cells (RBCs)	Increase ~ 20–30%
RBC indices	Unchanged
Hematocrit	Decreases ~ 3–5%
Hemoglobin	Decreases 2–10%
White blood cells	Increase 8% (much higher in labor)
Serum ferritin	Decreases
Serum iron	Decreases
Total iron-binding capacity	Increases
Transferrin saturation	Decreases
RBC folate	Decreases
Iron	Decreases
Transferrin	Increases

Adapted from: Blackburn, S. (2013); Kilpatrick, S. (2014).

responders in the body's reaction to an infectious or inflammatory process. The WBC count may rise to as high as 30,000 per cubic millimeter during labor and birth without infection. This increase mimics a similar rise in WBCs seen during aerobic exercise.

Plasma

Plasma volume begins to increase as early as 6-8 weeks' gestation (estimated gestational age [EGA]). By about 32 weeks' EGA, plasma volume will have increased 45-50% higher than nonpregnant levels (Monga and Mastrobatista, 2014). This increase helps to meet heightened maternal metabolic needs, to circulate blood within the dilated uterine vascular system, to provide nutrients to the growing conceptus, and to protect the mother against the consequences of blood loss during labor and birth. Plasma expands because the production of nitric oxide, a potent vasodilator synthesized from the endothelium of the blood vessel walls, is enhanced and leads to vasodilation, causing the renin-angiotensinaldosterone system (RAAS) to induce sodium and water retention (Monga and Mastrobatista, 2014). In addition, human chorionic gonadotropin (hCG) stimulates the thirst centers of the hypothalamus, leading to an increased sensation of thirst and intake of water and other fluids (Blackburn, 2013).

Plasma volume is higher in multiple gestations, maternal obesity, or when the fetus is larger (Monga and Mastrobatista, 2014). Increased levels of plasma also occur with hydatidiform mole, so the fetus is not the sole reason for plasma increases (Monga and Mastrobatista, 2014). Plasma volume is decreased with preeclampsia.

Iron requirements

An increase in RBC production and a growing fetus and placenta requires increased iron intake and absorption. It is estimated that the pregnant woman needs 500 mg of additional iron during pregnancy. This includes 300 mg that is used by the fetus and about 200 mg that is needed for normal daily use and loss (Monga & Mastrobatista, 2014). To meet this need, maternal iron stores are mobilized and increased absorption of dietary iron from the duodenum occurs. Progesterone mediates a slowed peristalsis in the small intestine and colon, which enhances iron absorption (Kelly & Savides, 2014).

Many women enter pregnancy with micronutrient deficiencies, particularly iron stores, due to inadequate diets and cyclical menstrual blood loss. The demands of pregnancy will further deplete these stores, even though there is no menses during the course of the pregnancy (Kilpatrick, 2014). Routine iron supplementation in the absence of anemia is not recommended by US Preventive Service Task Force (USPSTF). Studies have shown, however, that prenatal routine iron supplementation is correlated with a decrease in the prevalence of low birth weight (Lassiter & Manns-James, 2017).

The transfer of iron from mother to fetus occurs via active transport through serum transferrin at the placenta. If maternal iron stores are low, then the placenta develops more transferrin receptors (Kilpatrick, 2014). This mechanism helps assure iron transfer to the fetus, even when the woman has limited iron for herself, and further depletes her iron stores.

Folate requirements

Folate is a water-soluble B vitamin that helps tissues grow and function properly. Folate acts as a co-enzyme involved in DNA and RNA synthesis and cell division. Specifically, it is required for the process of **methylation** (Scott et al., 1994). Interruption of DNA synthesis or methylation can prevent the proper closure of the neural tube. During pregnancy, folate requirements increase from 50 to 300–500 μ g/day because of the growing fetus, the increased maternal RBC mass, and the increased uterine size (Kilpatrick, 2014). Studies have demonstrated that adequate folate intake, both before and during early pregnancy, will significantly reduce the occurrence of **neural tube defects** (NTDs).

Changes in clotting factors

Blood also contains substances to help prevent hemorrhage through clotting and, at the same time, substances that assure that blood stays in liquid form. During pregnancy, factors that promote hemostasis and **fibrinolysis** are enhanced. This adaptation helps control bleeding when there is an increased risk for hemorrhage with implantation and placental development, and again during the third stage of labor when the placenta detaches from the uterine wall. Paradoxically, prevention of hemorrhage comes with an increased risk for thrombus formation in the uteroplacental and intervillous circulations, and the deep veins of the legs and pelvis.

The changes that occur to enhance hemostasis are many and complex. Not every component of the hemostatic system increases. For instance, the platelet count during pregnancy decreases slightly, but stays within the same normal range as the count for nonpregnant women. This decrease has been attributed to hemodilution and increased platelet aggregation in response to increased production of the prostaglandin **thrombox**-**ane** A_2 (Bowersox, 2016). Platelets are non-nucleated cells synthesized by the bone marrow that play an important role in hemostasis. When there is an injury to a blood vessel, platelets are the first to respond. They work through aggregation, adhesion, and through

releasing histamine, serotonin, and **platelet-derived growth factor** (PDGF). Once released, these substances enhance the enlargement of the platelet plug, activate the coagulation cascade, support the fibrin mesh that develops to further strengthen the plug, and PDGF stimulates smooth muscle blood vessel walls to help healing (Rodger & Silver, 2014).

Progesterone stimulates an increase in tissue factor (TF) (substance that initiates clotting) and plasminogen activator inhibitor type 1 (PAI-1) in the decidua and endometrium (Rodger & Silver, 2014). During pregnancy, fibrinogen doubles, and clotting factors V, VII, VIII, IX, and X and the von Willebrand factor all increase. Prothrombin fragments increase and the prothrombin time decreases. There is decreased anticoagulation and fibrinolysis; however, the bleeding time is about the same. These adaptations serve to control the bleeding that occurs when the placenta detaches. In fact, a fibrin matrix is established in spiral arteries early in pregnancy that will cause a fibrin mesh to form very quickly over the placenta site. Fibrinolytic activity decreases until about an hour after childbirth. These changes and others are summarized in Table 3.2.

Cardiovascular System Adaptations

The heart and vascular system undergo profound changes beginning as early as 5 weeks' gestation. Women with healthy hearts seldom report concerns associated with these changes. There are several signs and symptoms that occur, however, that mimic cardiovascular disease, creating a diagnostic dilemma for the healthcare provider. Up to 4% of pregnant women will have unrecognized cardiovascular disease; this is emerging as a contributor to maternal morbidity and mortality (Mohamad, 2017). Table 3.3 lists the functional cardiovascular signs and symptoms seen in pregnancy.

Anatomical and Functional Cardiac Changes

The ventricular muscle mass increases during the first trimester and the left atrial diameter increases as the blood volume increases (Monga & Mastrobatista, 2014). Cardiac output, a measure of functional capacity of the heart, increases by 30–50%, with about half of this increase occurring by 8 weeks' gestation (Blackburn, 2013). The increase in cardiac output comes from increases in both stroke volume and heart rate. Stroke volume causes most of the early rise in cardiac output and then declines as the pregnancy nears term. Maternal heart rate begins to increase at 5 weeks' gestation and reaches a maximum increase of about 15–20 beats per minute by 32 weeks' gestation. Increased cardiac output is needed to support the 10-fold increase in uterine

36 Maternal Physiological Alterations during Pregnancy

5 5	1 0 1
Platelets	Decrease slightly but within normal prepregnancy limits
Fibrin deposits	Increased
Tissue factor (TF)	Found in the decidua, and endometrium
Fibrin–fibrinogen complexes	Increased
Plasminogen-activated inhibitors	Increased
Fibrinogen	Increased
Fibrinolysis	Decreased
Coagulation factor I	Increased
Coagulation factor 5 and 9	Increased slightly
Coagulation factor VII	Increased (10 times normal)
Coagulation factor VIII	Increased (doubles)
Coagulation factor X	Increased
von Willebrand factor	Increased
Activated partial thromboplastin time (aPTT)	Decreased
Prothrombin time (PT)	Decreased
Bleeding time	Unchanged
Resistance to activated Protein C	Increased
Protein S (coagulation inhibitor)	Decreased
Fibrin degradation products	Increased
D-dimer (marker for fibrinolysis)	Increased

Tab	le 3	.2	Changes i	n coagul	ation	factors	in preg	nancy
-----	------	----	-----------	----------	-------	---------	---------	-------

Adapted from: Blackburn, S. (2013); Cunningham et al (2014); and Rodgers & Silver, 2014.

blood flow (500–800 mL/min) and the 50% increase in blood flow to the kidneys (Monga & Mastrobatista, 2014). Blood flow is also increased to the breasts and the skin. These adaptations explain the flow murmurs and other changes in signs and symptoms listed in Table 3.3.

Vascular Changes

Collagen throughout the vascular system softens, resulting in increased compliance and decreased vascular resistance beginning around 5 weeks' gestation. Vasodilation occurs as the result of the relaxant effects of progesterone and prostaglandin (Monga & Mastrobatista, 2014). The low-resistance uteroplacental circulation acts like an arteriovenous connection, thereby contributing to lowered vascular resistance. In addition, there is an increased production of endothelial relaxant factors such as nitric oxide that contribute to lowered vascular resist-

Table 3.3	Signs and symptoms of a normal pregnancy tha	t
mimic heart	lisease	

Dyspnea	Progesterone effect on breathing centers causing increased respiratory rate and increased metabolic demand
Fatigability	Response to increased metabolic demand
Dependent edema	Venous pressure from gravid uterus, lower colloid osmotic pressure
First heart sound louder	Early closure of mitral valve
Split S ₂	Expected at about 30 weeks of gestation
S ₃	Heard in 90% of pregnant women
Systolic flow murmur	Heard in 95% of pregnant women; begins ~12–20 weeks and disappears about 1 week after birth
Left lateral displacement of the point of maximal impulse	Gravid uterus pressing upward on diaphragm and heart
Mammary souffle	Continuous murmur from mammary vessels, heard best in second intercostal space

Adapted from: Mohamad (2017); and Monga & Mastrobatista (2014).

ance. All of these changes contribute to decreased venous resistance that will slow the speed of venous flow and contribute to stasis of the blood, thereby increasing the risk for deep vein thrombosis in pregnancy. These changes also contribute to an increased sensitivity to autonomic blockade, such as that produced by epidural anesthesia (Monga & Mastrobatista, 2014). When this anesthesia is administered to pregnant women, a sudden drop in blood pressure often occurs.

Blood Pressure Changes

Normally, arterial blood pressure decreases in pregnancy when the arteries relax and peripheral vascular resistance decreases. This decrease in blood pressure begins at about 7 weeks' gestation and persists until around 32 weeks' gestation, when it begins to rise to prepregnancy levels (Monga & Mastrobatista, 2014).

Maternal position affects blood pressure measurements. In fact, blood pressure decreases 5–10 mmHg systolic and 10–15 mmHg diastolic when a pregnant woman lies on her left side (Monga & Mastrobatista, 2014). Serial blood pressures taken with the pregnant woman sitting with her feet on the floor are the best for monitoring for any abnormal changes in blood pressure during pregnancy.

Supine Hypotensive Syndrome

Supine hypotensive syndrome occurs in approximately 8% of pregnant women in the second and third trimesters (Lanni, Tillinghast, & Silver, 2002). Lying flat on the back in the supine position after about 30 weeks' gestation can cause the weight of the gravid uterus to compress the vena cava. When the vena cava is compressed, it will limit the amount of blood that can return to the heart. This reduction in stroke volume causes a decrease in cardiac output and a decrease in blood pressure (Cunningham et al., 2014). The changes in the mother's cardiovascular system can cause her to feel faint and can lead to a drop in fetal heart rate. Rarely, loss of consciousness can occur. Women naturally tend to turn to the side when they feel this sensation and no harm is caused by this temporary state. It can be a problem during an office visit when a woman is lying on her back for an examination or during labor if she is immobile and supine. Side-lying positions will relieve the pressure of the gravid uterus and will restore blood flow and blood pressure.

Respiratory System Adaptations

Pregnancy puts less stress on the respiratory system than on the cardiovascular system; however, there are significant adaptations. Although some women may report shortness of breath, respiratory exchange is more efficient during pregnancy. The primary changes occur in lung volume and ventilation as the oxygen demands of maternal metabolism and the fetoplacental unit increase. These changes begin early in pregnancy.

Anatomical Changes

Estrogen and the increasing blood volume of pregnancy that causes capillary engorgement that leads to swelling and increased mucous production in the nose, sinuses, eustachian tubes, and middle ears. At the same time, progesterone causes a relaxation of veins and increased pooling that further contributes to mucous membrane swelling. The result is increased incidence of pregnancy rhinitis, epistaxis, serous otitis, and congested sinuses (Blackburn, 2013).

The hormone relaxin causes increased pliability of cartilage in the chest, allowing for an increase in chest circumference. As the gravid uterus increases in size, the diaphragm raises about 4 cm, the thoracic circumference

increases about 6 cm, and the costal angle widens (Whitty & Dombrowski, 2014). There is also an increase in thoracic breathing and more diaphragmatic movement (Whitty & Dombrowski, 2014). Most of the chest wall changes persist after pregnancy.

Pulmonary Function Changes

Increased maternal progesterone affects respiratory rate, respiratory drive, and total pulmonary resistance. Progesterone reduces pulmonary airflow resistance and stimulates the respiratory center of the brainstem to increase the respiratory rate. It also lowers the threshold to carbon dioxide (CO₂) and increases the sensitivity of chemoreceptors to CO2. An increased metabolic rate increases oxygen requirements and consumption (Monga & Mastrobatista, 2014). The combined effect is mild hyperventilation and mild respiratory alkalosis that occurs as the mother "blows off" CO₂ and decreases the carbon dioxide partial pressure in blood (PCO₂). Progesterone has also been implicated in the increase in carbonic anhydrase in RBCs that helps in CO₂ transfer and a decrease in PCO₂ (Whitty & Dombrowski, 2014). A reduced maternal PCO, facilitates the movement of CO₂ waste from the fetus to the mother and enhances the release of oxygen from the mother to the fetus (Cunningham et al., 2014).

There are several pulmonary function parameters that are changed as adaptation to pregnancy occurs, listed in Table 3.4. It is important to note that increased oxygen requirements and adaptations in pulmonary function make respiratory diseases such asthma and pneumonia potentially much more serious in pregnancy (Whitty & Dombrowski, 2014).

Table 3.4 Changes in respiratory parameters in pregnancy

Total lung capacity	Decreased by 4%
Inspiratory capacity	Increased by \sim 300 mL
Expiratory reserve capacity	Decreased by \sim 200 mL
Residual volume	Decreased by 18%
Tidal volume	Increased by 50%
Minute ventilation	Increased by 40%
O ₂ consumption	Increased by 20% (50% during labor)
Total pulmonary resistance	Reduced
Maternal pH	Mild respiratory alkalosis

Adapted from: Cunningham et al. (2014); Whitty & Dombrowski (2014).

Renal System Adaptations

The renal and urinary systems undergo dramatic change in response to pregnancy. The kidneys must adjust to increased blood and extracellular fluid volume, and increased maternal and fetal wastes. There are changes related to hormonal effects, pressure from the gravid uterus, and from cardiovascular adaptations.

Anatomical Changes

The kidneys grow in volume and length during pregnancy due to an increase in renal vascular and interstitial growth (Monga & Mastrobatista, 2014). The kidneys and ureters dilate when the gravid uterus grows enough to compress the ureters at the pelvic rim and slow urine flow. The right ureter is more greatly affected either because of the right-sided rotation of the uterus or because of the cushioning provided to the left ureter by the sigmoid colon (Cunningham et al., 2014). Ureter dilation may also be a consequence of progesterone, relaxin, and nitric oxide effects that relax smooth muscle; however, most studies support uterine compression as the most likely cause of these changes (Monga & Mastrobatista, 2014). Dilation of the kidneys and ureters increases the potential for urine stasis and infection. Hydroureter may persist for 3-4 months after child-birth.

The bladder begins adaptive changes at about 12 weeks of gestation (Cunningham et al., 2014). By then, **hyperemia** and **hyperplasia** of the muscle and connective tissue will cause elevation of the bladder **trigone** and increase the susceptibility to bladder infection. There is reduced bladder capacity and increased incidence of incontinence during the third trimester related to pressure on the bladder from the gravid uterus. In addition, pressure from the fetal presenting part may slow blood and lymph drainage, causing the base of the bladder to swell and become more prone to infection.

Renal Function Changes

Renal plasma flow increases 60–80% by midpregnancy then decreases to about 50% above prepregnancy rates by term (Monga & Mastrobatista, 2014, p. 98). Lateral lying positions increase venous return and renal plasma flow; the left lateral lying position is best for enhancing renal plasma flow. These position changes will lead to increased urine flow and nocturia.

Glomerular filtration rate (GFR) increases significantly within 2 weeks after conception and is 50% higher than prepregnancy levels by 12 weeks' gestation (Cunningham et al., 2014). This and the weight of the growing uterus on the bladder explain the urinary frequency experienced by women during the first weeks of pregnancy. The increase in GFR causes increased creatinine clearance and decreased serum creatinine, blood urea nitrogen, and serum osmolarity.

Renal tubular function also changes in pregnancy. The most impressive tubular function change is the reabsorption of sodium. Sodium retention is promoted by increased levels of estrogen, deoxycorticosterone, and the increased activity of the RAAS (Monga & Mastrobatista, 2014). Sodium retention is also enhanced by maternal sitting or standing. Interestingly, although sodium is retained during pregnancy, the serum levels of sodium decrease slightly due to hemodilution.

Two other important electrolytes are significantly affected by renal tubular function changes in pregnancy. Potassium is retained, but like sodium, serum levels slightly decrease due to increased plasma volume. Calcium excretion increases while total serum calcium decreases related to a decrease in plasma albumin (Monga & Mastrobatista, 2014). Further discussion of maternal and fetal calcium physiology is found in the musculoskeletal section of this chapter.

Glucose excretion increases, causing glycosuria in about 16% of normal pregnancies (Cunningham et al., 2014). Increased glycosuria will increase susceptibility to urinary tract infection.

Uric acid excretion is increased and serum uric acid levels decrease between 8 and 24 weeks of gestation. The serum levels begin to rise to near prepregnancy levels by term. Clinically, an increased plasma uric acid level has been used as a marker for preeclampsia, but lacks sensitivity and specificity as a diagnostic tool (Monga & Mastrobatista, 2014).

About two-thirds of the weight gain in pregnancy is retained fluid related to the changes in renal tubular function. About 6L of body water is retained in extracellular areas and 2L is gained in intracellular spaces. Plasma increases account for only about one-quarter of the increase in extracellular fluid (Monga & Mastrobatista, 2014). The allocation of fluid is described as about 3.5 L for amniotic fluid, fetus, and placenta; and about 3L for maternal blood volume, breasts, and uterus (Cunningham et al., 2014). Clinically, fluid retention of more than 1.5 L is seen as dependent edema (Blackburn, 2013). Fluid seeps into interstitial spaces of the lower extremities because of increased venous hydrostatic pressure below the uterus when the gravid uterus places pressure on the inferior vena cava and pelvic vessels.

Gastrointestinal System Adaptations

Gastrointestinal (GI) changes related to pregnancy and pregnancy hormones cause discomforts that are experienced in most normal pregnancies. Occasionally, these changes mimic more serious conditions and require careful assessment.

Anatomical Adaptations

The stomach, liver, and intestines are displaced upward and back by the growing uterus. This change will move the appendix as high as the right upper quadrant, causing the pain of appendicitis to be much higher in the abdomen than expected. In most pregnancies, however, the change in location and the compression of the stomach and bowel is well tolerated.

Gastrointestinal Function Changes

The primary cause of changes in the function of the GI tract in pregnancy is progesterone. This hormone relaxes smooth muscle, thereby causing decreased lower esophageal sphincter tone and slowing of peristalsis and intestinal transit time. A relaxed lower esophageal sphincter will allow for reflux of stomach contents into the lower esophagus, resulting in heartburn, especially when pressure from the growing uterus is exerted against the stomach. The slowed transit time leads to increased absorption of water, vitamin B_{12} , some amino acids, iron, and calcium (Blackburn, 2013; Kelly & Savides, 2014). This also results in dryer, harder stool, an increased incidence of constipation and, straining at stool, and hemorrhoids.

In the mouth, the gums respond to increased estrogen by becoming hyperemic, friable, and softer. Some women will develop one or more **epulis**, a localized vascular swelling of the gums. These changes increase maternal risks for gingivitis and periodontal disease. There is no evidence that pregnancy increases tooth decay or tooth loss, although this belief is expressed in common folklore. See Chapter 14, Oral Health in the Childbearing Year.

Progesterone is an appetite stimulant leading to increased food intake to meet metabolic needs. This may be part of the reason for food cravings, including **pica**, the ingestion of substances such as clay, starch, or other matter with no nutritional value. However, sociocultural background is a strong influence on this eating behavior.

Ptyalism, or excess salivation, can occur in pregnancy. Most often, this is related to a reluctance to swallow saliva when a woman is troubled by nausea and vomiting of pregnancy. Nausea and vomiting of pregnancy, a common occurrence, has been linked to hCG, estrogen, elevated T4, prostaglandin E_2 , altered motility related to progesterone, the emotional and psychological state of the mother, and reflux (Kelly & Savides, 2014). However, the exact cause is unknown; the phenomenon of nausea and vomiting has multiple determinants. The nausea likely increases some of the food aversions commonly observed in pregnancy.

Liver and Biliary Changes

Anatomically, the liver is displaced up and back as the uterus grows. The liver does not change in size and

Table 3.5	Liver Function	Changes in	Pregnancy
-----------	----------------	------------	-----------

Albumin	Decreased
Alkaline phosphatase (ALP)	Increased (also produced in placenta)
Aspartate transaminase (AST)	Slight decrease due to hemodilution
Alanine transaminase (ALT)	Slight decrease due to hemodilution
Bilirubin (conjugated, unconjugated)	Unchanged
Gamma-glutamyl transpeptidase (GGT)	Slight decrease due to hemodilution
Total protein	Decreased

Adapted from: Creasy et al. (2013); Cunningham et al. (2014); Williamson, Mackillop, & Heneghan (2014).

blood flow to the liver is unchanged. The production of proteins and enzymes by the liver does change. Plasma proteins, including albumin, decrease in pregnancy, in part, because of hemodilution. Newer studies indicate that the rise in alpha-fetoprotein may cause a drop in serum albumin levels (Williamson, Mackillop & Heneghan, 2014). The production of fibrinogen and coagulation factors VII, VIII, IX, and X is increased under the influence of estrogen. Progesterone stimulates an increase in cytochrome P450 isoenzymes, a group of enzymes that assist in the metabolism of organic substances and are important in the body's processing of many drugs. Thyroxine-binding and corticosteroidbinding globulins increase as estrogen levels increase (Nader, 2014a). Serum alkaline phosphatase (ALP) increases due to placental production, while other liver enzymes are slightly decreased or stay the same (Williamson, et al., 2014). Table 3.5 lists the changes in liver function tests during pregnancy.

The gallbladder is affected by progesterone-induced slowed peristalsis that will cause an increased in bile volume, bile stasis, and cholesterol saturation (Williamson et al., 2014). These changes create an environment ripe for gallstone formation. The two most common indications for nonobstetric surgery in pregnant women are acute appendicitis and acute biliary disease.

Metabolic System Adaptations

The maternal metabolism adjusts to ensure that glucose, protein, and fat are metabolized in a way that will meet the energy needs of the mother, the uteroplacental unit, and the fetus. To better understand this adaptation, several significant components involved in the process will be described.

Basal Metabolic Rate

By the end of a normal pregnancy, the maternal metabolic rate has increased eight times the nonpregnancy rates (Blackburn, 2013). This requires an average of an additional 300 kcal/day, generally starting in the second trimester. Most of this energy is needed for the growth of the fetus, placenta, uterus, and breasts. Some energy is set aside, stored as fat to be used during the last weeks of pregnancy when the fetus is growing more rapidly.

The first half of pregnancy is dominated by an **ana-bolic** state (Blackburn, 2013). The mother eats more, moves around less, and stores protein and fat substrates. Weight gain during this half of pregnancy is due to fat storage and the synthesis of protein into growing tissues. During this anabolic state, insulin is also increased and acts like a growth hormone, facilitating the processes of growth.

Catabolism occurs during the second half of pregnancy. **Lipolytic** activity is increased and pregnancy hormones lead to a relative insulin resistance. Human placental lactogen (hPL), produced by the placenta, has anti-insulin and lipolytic properties that help the mother change from glucose usage for energy to lipid usage for energy (Blackburn, 2013). This change leads to **accelerated starvation**. When a nonpregnant woman is deprived of food, it takes about 24–36 hours before she has used all the glucose-based energy and begins to burn fat. In pregnant women, lipolysis begins in about 12 hours.

Carbohydrate Metabolism

Serum glucose levels during fasting are lower in pregnancy than in the nonpregnant state. After eating, serum glucose and insulin levels are higher for a longer time in pregnancy. Higher levels of insulin cause a suppression of glucagon and maternal insulin resistance increases as the pregnancy advances. Insulin resistance in the maternal skeletal muscle and adipose tissue is mediated by progesterone, estrogen, hPL, and possibly by free fatty acids released by lipolysis (Cunningham et al., 2014).

Protein Metabolism

Protein is essential to tissue building in pregnancy. The placenta and fetus use amino acids and protein as they grow in mass and develop structure. These substances are also diverted to the liver for gluconeogenesis. Consequently, serum amino acid and serum protein levels are lower in pregnancy (Blackburn, 2013). At the same time, urinary excretion of protein byproducts does not change. This indicates that maternal muscle breakdown is not used to meet fetal needs (Cunningham et al., 2014).

Table 3.6 Lipid and lipoprotein levels in the third trimester

Cholesterol	Increased
VLDL	Increased
LDL-C	Increased
HDL-C	Increased
Triglycerides	Increased

Adapted from: Creasy et al. (2013); Cunningham et al. (2014), and Liu (2014).

Fat Metabolism

Lipids, lipoproteins, and apolipoproteins increase in maternal serum during pregnancy. These increases are due to lipolysis and decreased lipoprotein lipase action in fat tissue. Estradiol and progesterone effects on the liver also contribute to these changes (Cunningham et al., 2014). Interestingly, these increases are not associated with vascular endothelial dysfunction in healthy pregnant women. Table 3.6 lists the changes expected in cholesterol, triglycerides, and lipoproteins in late pregnancy.

Leptin and Ghrelin

Leptin is produced and secreted by maternal fat cells and the placenta. This peptide hormone helps regulate appetite and enhances energy use. It also contributes significantly to fetal growth and development. Maternal serum leptin is two to four times higher than in nonpregnant women (Cunningham et al., 2014). Leptin is increased even further in women with preeclampsia and gestational diabetes. It is well established that leptin levels are increased in women with obesity and the risk of both preeclampsia and gestational diabetes increases with body mass index. Leptin may mediate the relationship between body mass index and these pregnancy complications (Sommer et al., 2015; Taylor et al., 2016).

Ghrelin is a hormone secreted by stomach cells and the placenta that also has a role in fetal growth. Maternal serum levels of this hormone increase during the first half of pregnancy and decrease during the second half when insulin resistance increases. A similar decrease in ghrelin is seen in metabolic syndrome in nonpregnant individuals (Cunningham et al., 2014).

Insulin

Insulin is a polypeptide hormone produced and secreted by the beta cells of the islet of Langerhans of the pancreas. It is secreted in response to increased serum glucose, amino acids, free fatty acids, GI hormones, and the parasympathetic nervous system stimulation of the beta cells.
It functions to facilitate glucose entry into cells (Brashers, Jones & Huether, 2014).

Pregnant women with normal glucose tolerance will have an increase in insulin in response to estrogeninduced increased hepatic glucose production, and the increase in serum glucose produced after a meal. Insulin will facilitate the movement of glucose into maternal muscle and fat cells and will suppress further liver production of glucose. Late in pregnancy, insulin resistance increases and more insulin is produced. If a woman is obese or has an abnormal glucose tolerance before pregnancy, her pancreas may not be able to produce the amount of insulin needed to overcome the insulin resistance induced by pregnancy hormones, and gestational diabetes can result (Moore, Hauguel-DeMouzon, & Catalano, 2014).

Skin Changes

The skin is the body's largest organ. Skin functions as a barrier to infection and ultraviolet radiation; it retains body fluids, regulates body temperature, and produces vitamin D. Skin contains touch and pressure receptors and nociceptors that transmit pain sensation. Skin is part of the integumentary system, which also includes hair, nails, sebaceous glands, and sweat glands. The entire integumentary system is changed during pregnancy. Specifically, there are changes in pigment, vascular supply, and connective tissue of the skin; hair growth; nail structure; and in the sebaceous and sweat gland functions.

Pigmentation Changes

Estrogen and progesterone produced during pregnancy will stimulate the production of melanocytestimulating hormone (MSH). The most frequently seen manifestations of increased MSH are hyperpigmentation of the areolae, genital skin, axillae, inner thighs, and the **linea alba**, which becomes the **linea nigra** during pregnancy. Freckles and moles will also darken. These pigment changes can also be seen in women taking oral contraceptives. Pigment changes usually fade after pregnancy or when oral contraceptives are discontinued; however, women with darker skin are more likely to have persistent hyperpigmentation (Blackburn, 2013).

Melasma, or the "mask of pregnancy," occurs as a result of increased MSH in about 70% of pregnant women (Rapini, 2014). This patch of hyperpigmentation is distributed over the forehead, cheeks, and bridge of the nose in a symmetric pattern. About 30% of women affected will have persistent melasma months to years after delivery. Exposure to sunlight will exacerbate the

hyperpigmentation. Sunscreen routinely used during pregnancy can decrease the degree of discoloration.

Vascular Changes

The hormones of pregnancy cause vasodilation and the proliferation of capillaries in the skin and can result in the development of **telangiectasias** (small dilated blood vessels near the skin surface) and palmar erythema. These changes help in thermoregulation by dissipating the heat generated by the fetus, increased maternal metabolic rate, and the thermogenic effects of progesterone (Blackburn, 2013).

Connective Tissue Changes

Estrogen, relaxin, and adrenocorticoids, along with stretching, contribute to striae gravidarum, commonly known as stretch marks. The hormones are thought to relax collagen adhesiveness and facilitate the formation of mucopolysaccharide substance that will cause a separation of collagen fibers. Increased cortisol during pregnancy causes the striae to be purplish in color. The usual locations for striae are over the abdomen, breasts, thighs, and buttocks where skin is stretched by the growing fetus, enlarged breast tissue, and weight gain. Striae become prominent by 6-7 months of gestation and are most prevalent in younger, white women (Blackburn, 2013). The more severe striae occur in teenagers, women with maternal family history of striae, women with obesity or who gain more than 30 lbs in the pregnancy, or women with large babies (Rapini, 2014). Interestingly, there is an increased incidence of pelvic relaxation and prolapse among women who have moderate to severe striae (Norton et al., 2015).

Skin tags are another connective tissue phenomenon seen in pregnant women. These tags are soft, **pedunculated** growths that are the same color of the surrounding skin or are hyperpigmented. They appear on the neck, face, axillae, groin, and between and under the breasts (Blackburn, 2013; Rapini, 2014). Skin tags will usually disappear after birth; however, sometimes they persist, particularly among obese women.

Sebaceous and Sweat Gland Changes

Sebaceous glands secrete more sebum during pregnancy secondary to increased ovarian and placental androgens (Blackburn, 2013). Apocrine sweat glands found in the axillae, scalp, face, abdomen, and genital area have decreased activity during pregnancy related to hormonal changes (McCann & Huether, 2014). Eccrine sweat glands that are distributed over the body have an increased activity during pregnancy. This activity increases under the influence of increased thyroid activity, increased maternal metabolic rate, and increased fetal-produced heat. Their main function is to secrete sweat that will evaporate and help dissipate heat.

Hair and Nail Changes

During pregnancy, estrogen causes an increased number of hairs to remain in the **anagen** phase (growing phase), and a decreased number enter the **telogen** phase (resting phase). When pregnancy hormones are removed after the birth of the placenta, the number of hairs that enter the telogen phase increases, resulting in hair loss. This hair loss is called telogen effluvium and can also occur after surgery, illness, crash dieting, or other stressful life events. Hair loss after giving birth is expected and is easily distinguished from alopecia of other causes. This hair loss will generally resolve by 9 months postpartum without treatment.

Changes in the nails are uncommon in pregnancy; however, phenomena such as transverse grooves, increased brittleness, separation of the nail bed at the toe or fingertip, and whitish discoloration have been reported. These changes are benign and will disappear during the postpartum period (Blackburn, 2013; Rapini, 2014).

Immune System Adaptations

Pregnancy requires changes in the immune system of the woman. In order to accept and maintain a pregnancy to term, some innate, humoral, and cell-mediated immunologic functions must be altered. This section will outline those changes and explain how these alterations may increase risks for infection or provide remission for some autoimmune conditions for the mother.

Fetus as Allograft

The fetus is a semiallograft (an allograft is transplanted tissue; "semi" refers to the fact that fetal tissue carries half of mother's genetic material) that is not rejected by the mother's immune system. Even though half of the genetic material in the fetus is from the father, in most cases, the mother's immune system does not reject the foreign antigens on fetal cells. Several possible theories explain this phenomenon (Mor & Abrahams, 2014): The placenta is a selective barrier; the mother's immune system is suppressed; there is a cytokine shift; there is an absence of major histocompatibility complex (MHC) class I molecules on the conceptus; and there is a local immune suppression mediated by Fas/FasL (molecules involved with regulation of cell death). More recently, pregnancy protein 13 (PP13), produced solely by the syncyiotrophoblast and released into the maternal circulation during implantation, has been identified as an agent that diverts the mother's immune system so that the paternal antigen (placenta) will be well established and grow (Than, et al., 2014). Studies have shown that decreased placental production of PP13 contributes to the development of preeclampsia, a syndrome that begins due to impaired implantation and **placentation** (Meiri et al., 2014). A PP13 blood test for predicting preeclampsia is currently under investigation.

The placenta as barrier theory has been discounted; the placenta acts as only a partial barrier to selected substances. In fact, fetal cells can cross into maternal blood and have been found in maternal circulation or organs years after pregnancy (Body et al., 2015). Cell-free fetal DNA also enters the maternal system and new laboratory tests can isolate fetal DNA from a maternal venous blood sample and perform a limited number of genetic tests on the DNA.

Systemic immune suppression does not fully explain how the conceptus is accepted. How could mothers have lived to give birth through the millennia if they could not defend themselves against bacteria and viruses? Today, the best argument against this theory is that women with human immunodeficiency virus (HIV) infection do not progress into AIDS during pregnancy (Mor & Abrahams, 2014).

Another theory has been that pregnancy is antiinflammatory in nature, which causes abnormal shifts in **cytokines**, the molecular messengers that regulate responses to inflammation. This can contribute to spontaneous pregnancy loss or preeclampsia. Newer information indicates that pregnancy actually occurs in three different phases with regard to maternal immune response: (1) a strong inflammatory response is required for the invasion of the trophoblast and placentation; (2) a quiet anti-inflammatory state follows when the fetus is growing; and (3) a renewed inflammatory response with an increase of immune cells migrating into the uterus to promote contractions, birth, and the rejection of the placenta (Mor & Abrahams, 2014).

Another theory is that there is no MHC class I antigen on the trophoblast, so the mother's immune system does not recognize it as foreign antigens. In fact, the placenta does express human leukocyte antigens (HLA-C, HLA-G, and HLA-E). These are subsets of MHC antigens. So, fetal tissues are capable of initiating a maternal T-cell response (Mor & Abrahams, 2014). Interestingly, women who have HLAs similar to those of the father of the baby will not produce the immune substances necessary to prevent rejection of the fetus (Cunningham et al., 2014). This can explain different pregnancy outcomes for the same woman with a new partner.

The theory of local immune suppression postulates that the maternal immune cells that would recognize the paternal antigens are removed from the mother's system through **apoptosis** (Mor & Abrahams, 2014). In addition, a subset of T lymphocytes called T regulatory cells has been identified as being able to control other T cells that would attack paternal antigens. These are both possible explanations for the survival of the fetal allograft.

It is also important to recognize that several cells of the innate immune system have been identified at the site where the trophoblast implants, including uterine natural killer (uNK) cells, macrophages, and dendritic cells. Basically, this part of the mother's immune system does respond to the conceptus. These noncytotoxic uNK cells, which are specific to pregnancy, contribute to **angiogenesis** and implantation (Mor & Abrahams, 2014). Macrophages clean out dead cells and debris, while dendritic cells help with early implantation. These activities are crucial to placentation and the immune adjustments necessary for a successful pregnancy.

Disorders Related to Immunologic Changes in Pregnancy

During pregnancy, T-helper cells type 1 (Th1) and Tcytotoxic cells (Tc) are suppressed. This has been identified as a reason for remission of maternal autoimmune disorders such as rheumatoid arthritis, multiple sclerosis, and autoimmune thyroiditis (Blackburn, 2013). Suppression of Th1 has also been implicated in the increased susceptibility to viruses, Candida albicans, and other organisms. In fact, vulvovaginal candidiasis occurs more often in pregnant women due to increased estrogen and the changes in the cell-mediated immune response. This cell-mediated immune response, along with the changes in the lungs and heart, has also been identified as an explanation for the increase in influenza severity during pregnancy (CDC, 2016). Autoimmune disorders such as uncomplicated systemic lupus erythematosis (SLE) often remain stable during pregnancy due to the increase in Type 2 helper cells (Th2) that is normally seen in pregnancy (Blackburn, 2013). Unfortunately, these diseases often flare within 6-8 weeks after birth.

There are five inflammatory markers that are increased during pregnancy. These include leukocyte ALP, C-reactive protein, erythrocyte sedimentation rate (due to increased plasma globulins and fibrinogen), complement factors C_3 and C_4 , and procalcitonin (Cunningham et al., 2014). This should be taken into consideration when interpreting laboratory measures of these markers during pregnancy.

Some spontaneous abortions are a result of immune system changes in pregnancy. Immunologic factors that have been implicated in spontaneous abortion include infection; increased Th1 activity against the trophoblast; an immune-related failure of the corpus luteum to produce progesterone; HLAs similar to those of the father; and, in women with SLE, antiphospholipid antibodies that prevent the development of the placenta (Blackburn, 2013; Cunningham et al., 2014). Recurrent (more than three) spontaneous abortions have been linked with the presence of uNK cells like those found in the periphery rather than the noncytotoxic uNK cells usually found in the decidua (Kuon et al., 2017).

Preterm labor and birth can result from infection that triggers the innate immune system to release inflammatory cytokines, interleukin, and tumor necrosis factors. These cytokines increase the production of prostaglandin that will stimulate contractions. At the same time, enzymes that cause a weakening of the fetal membranes are released and the membranes may rupture prematurely (Cunningham et al., 2014). It is estimated that up to 40% of preterm births occur because of intrauterine infection and inflammatory processes (Cunningham et al., 2014).

Preeclampsia is specific to pregnancy and is a complex chronic disorder that affects many maternal systems. Evidence suggests that preeclampsia has an immunologic component. In fact, preeclampsia has some of the same cellular changes seen in graft rejection including reduced HLA-G on the trophoblast, an increase in Th1 rather than suppression, more immune complexes, increased fibronectin, increased inflammatory cytokines, changes in complement, and the absence of PP13 (Blackburn, 2013, Than et al., 2014).

Unlike the cell-mediated and innate immune systems, the humoral system in pregnancy does not change significantly. However, maternal antibodies can have an effect on the fetus. Humoral immunity occurs when immunoglobulins (Ig) or antibodies are produced by B lymphocytes (plasma cells) in response to a specific antigen. There are five classes of Ig: IgG, IgM, IgE, IgA, and IgD. IgA and IgG are of particular interest during pregnancy. IgA normally protects body surfaces. Its primary benefit in pregnancy is that it is secreted in breast milk and serves to protect the newborn from GI infections (Rote & McCance, 2014; Blackburn, 2013). IgG is also present in breast milk; however, its primary function is due to its smaller size and ability to cross the placenta. IgG provides passive immunity to the fetus from infections for which the mother has manufactured specific antibodies (Rote & McCance, 2014).

There are potential problems for the newborn related to IgG crossing the placenta. Women with Graves' disease have thyroid-stimulating IgG that may cross the placenta and cause hyperthyroidism in about 1% of newborns of women with this disorder (Cunningham et al., 2014). Similarly, women with myasthenia gravis have antibodies against acetylcholine receptors that may cross the placenta and cause transient treatable muscular weakness in the newborn that will last only a few weeks (Cunningham et al., 2014).

A more frequently encountered disorder related to the placental transfer of IgG is rhesus (Rh) incompatibility. This example of isoimmunization has the potential for causing severe hemolytic disease in the fetus. In order to develop IgG antibodies against Rh-positive RBCs, the maternal system must be exposed to the antigen. This means that Rh-positive RBCs must have entered the mother's system, either from an earlier pregnancy or from transfusion. Once the IgG to Rh antigen is established, it can cross the placenta to the fetus, recognize fetal Rh-positive RBCs as foreign, mount an attack, and destroy the fetal RBCs. The formation of this antibody occurs only among women with an Rh-negative blood type. The resulting IgG that passes to the fetus is harmful only to the fetus who has inherited Rh-positive RBCs from the father. The Rh antigen that is most associated with Rh incompatibility and fetal hemolytic disease is D. For this reason, passive immunization has been developed that prevents humoral production of antibodies in women who receive Rh-positive RBCs from the fetus.

Other RBC antigen incompatibilities exist including, but not limited to, anti-c, anti-Kell, Kidd, and Duffy. For this reason, RBC antibody titers are drawn from pregnant women during the first prenatal visit.

ABO incompatibility can also cause newborn hemolytic disease. However, this form of isoimmunization causes a very mild hemolysis and jaundice due to the increased bilirubin release when the RBC is destroyed. Unlike Rh isoimmunization, this incompatibility does not worsen with each pregnancy. The reason ABO incompatibility is less severe is that most of the anti-A and anti-B antibodies from women with O-type blood are IgM type and are too large to cross the placenta (Blackburn, 2013; Cunningham et al., 2014). If a woman has an O-negative blood type and her fetus is A positive, the Rh and ABO incompatibility can both occur. However, the mother's natural anti-A antibody will recognize and destroy fetal RBCs that may enter her system before these cells can cause an antibody response against the Rh positive factor.

Neurological System and Sensory Adaptations

Cognitive changes in pregnancy such as problems with memory, attention, and concentration, do not seem to have a basis in normal physiologic adaptations (Hampson et al., 2015; Logan et al., 2014). However, some evidence indicates that more women self-report difficulty with memory during pregnancy and early postpartum than nonpregnant women (Logan et al., 2014). One factor implicated in the cognitive changes of pregnancy reported by some women is the change in sleep patterns. During the first trimester, women tend to sleep longer at night and nap during the day if their schedules allow. This is in response to fatigue related to increased metabolism and the sedative effects of progesterone (Blackburn, 2013). As the pregnancy advances and placental progesterone and estrogen increase, sleep patterns are further altered. Approximately 76% of pregnant women report difficulty falling asleep, staying asleep, frequent nighttime wakening, and poor quality of sleep across all months of gestation (Mindell, Cook & Nikolovski, 2015). Studies have shown that the rise in the hormones of pregnancy change both rapid eye movement (REM) and nonrapid eye movement (NREM) sleep. Specifically, progesterone seems to enhance NREM, while estrogen and cortisol decrease REM sleep (Blackburn, 2013). An active fetus, increased discomforts of pregnancy, a growing uterus that limits position change, and decreased REM sleep combine to increase sleep disturbances during the last weeks of pregnancy.

Eye changes during pregnancy include corneal edema, decreased corneal sensitivity, decreased intraocular pressure, and transient loss in accommodation (Blackburn, 2013). Corneal edema and decreased sensitivity has been attributed to fluid retention. Decreased intraocular pressure is due to increased aqueous outflow and the effects of progesterone, relaxin, and hCG (Blackburn, 2013). Pregnancy is not an ideal time for a woman to be measured for new contact lenses or eyeglasses. The changes in the eyes will resolve after birth.

Estrogen-induced swollen membranes will affect the sense of smell, and in some women, the sense of hearing (Blackburn, 2013). The diminished sense of smell will affect taste and can lead to food aversions.

Musculoskeletal System Adaptations

The enlarging uterus changes the maternal center of gravity. The spine adjusts by increasing **lordosis**. At the same time, there is increased mobility of the sacroiliac, sacrococcygeal, and pubic joints related to changes in the cartilage brought about by relaxin and progesterone. Changes in the low back and pelvis can cause low-back discomfort, aching, numbness, and tingling in the legs as the pregnancy progresses. Changes in the cervical spine, along with slumping of the shoulders and upper back due to heavier breasts, can stretch the ulnar and median nerves, causing tingling discomfort in the arms and hands.

The growing fetus needs calcium for the formation and calcification of the skeleton and teeth. Calcium demands are the greatest in the third trimester of pregnancy. Much of the calcium needed is drawn from the maternal skeleton. At the same time, the absorption of calcium from the maternal intestine doubles and urinary excretion is decreased. Changes in calcium concentration require changes in parathyroid hormone, magnesium, phosphate, vitamin D, and calcitonin physiology. Lowered calcium or magnesium levels have a negativefeedback effect that increases calcitonin and parathyroid hormone release (Monga & Mastrobatista, 2014). Parathyroid hormone acts on bone **resorption**, intestinal absorption, and kidney reabsorption of calcium and phosphate. Parathyroid hormone plasma levels increase steadily as the fetus draws more calcium for bone growth. At the same time, increased maternal glomerulofiltration rate (GFR) and increased plasma volume cause a lower serum calcium level.

Vitamin D is either ingested or obtained via synthesis in sun-exposed skin. During pregnancy, the kidney, decidua, and placenta change vitamin D to 1,25-dihdroxyvitamin D_3 . This compound enhances calcium resorption and intestinal absorption of calcium during pregnancy (Cunningham et al., 2014).

Calcium serum levels begin to fall after fertilization regardless of maternal diet (Blackburn, 2013). Calcium levels may be compromised by increased ingestion of phosphate. Too much phosphate will limit calcium absorption in the intestine and increase calcium urinary excretion. Foods high in phosphorus include processed meats, chips and sodas that are commonly consumed as part of American diet.

Endocrine System Adaptations

Like other systems, the endocrine glands undergo changes during pregnancy that support fetal growth and pregnancy maintenance. This section is limited to an outline of the changes that occur in the pituitary, thyroid, and adrenal glands, and their hormones. The changes in the parathyroid and the endocrine pancreas have been described earlier in this chapter. Changes in the gonads are explained in Chapter 2.

Anatomical Changes

Physiological pituitary growth occurs in normal pregnancies. In fact, the pituitary will grow to 135% of its original size (Nader, 2014b). Very rarely, the enlargement will be big enough to increase intracranial pressure or put pressure on the optic chiasm. This may cause headaches or vision changes that will resolve after birth.

The thyroid gland will also increase in size during pregnancy as a result of increased vascularity and some hyperplasia of normal gland cells. Significant enlargement, however, may be a sign of iodine deficiency or other thyroid abnormalities (Nader, 2014a). The adrenal glands do not change in size.

Pituitary Function Changes

The pituitary has two lobes, anterior and posterior, and each lobe secretes hormones in response to the secretion of releasing hormones from the hypothalamus. Table 3.7 lists the hormones secreted by the anterior and posterior lobes of the pituitary.

In pregnancy, the most dramatic change in anterior pituitary function is that it secretes 10 times more prolactin (Nader, 2014b). The lactotrophs (cells that secrete prolactin) are stimulated by estrogen and account for most of the cellular growth of the pituitary. Prolactin prepares the breasts for breastfeeding and will maintain breast milk production for the duration of the lactation period.

Pituitary growth hormone secretion decreases beginning in the second trimester when placental growth hormone is produced (Nader, 2014b). Thyroidstimulating hormone (TSH) secretion decreases slightly in the first 12 weeks under the influence of hCG. TSH levels then become static as the pregnancy progresses. Adrenocorticotropic hormone (ACTH) secretion increases, reaching its highest level during labor (Blackburn, 2013).

The posterior pituitary function also changes. The threshold for the release of antidiuretic hormone (ADH) is reset so that the decline in plasma osmolarity can occur. However, the amount of ADH released is not changed (Nader, 2014b). Also, thirst is stimulated by lower levels of osmolarity in pregnant women than in nonpregnant women.

The second posterior pituitary hormone, oxytocin, is increased during pregnancy and spikes during labor to

Table 3.7 Pituitary hormones

Anterior Pituitary	Target Organs
Growth hormone	Bone, muscle
Adrenocorticotropic hormone (ACTH)	Adrenal cortex
Thyroid-stimulating hormone (TSH)	Thyroid gland
Gonadotropic hormones (FSH, LH, and ICSH)	Testis, ovary
Melanocyte-stimulating hormone (MSH)	Skin
Prolactin	Mammary glands
Posterior Pituitary	Target Organs
[TBTX1]Antidiuretic hormone (ADH)	Kidney tubules
Oxytocin (OT)	Uterine smooth muscle, mammary glands

Adapted from: Brashers, Jones, & Huether (2014).

stimulate uterine contractions. Oxytocin does not start labor but is necessary to sustain the contractions needed for birth. Oxytocin continues to be elevated during lactation and is released when the suckling infant triggers a neural impulse. This surge of oxytocin causes contractions of the myoepithelial cells surrounding the mammary alveoli and the smooth muscle of the mammary ductal system, resulting in milk ejection (Nader, 2014b).

Oxytocin is also an important facilitator of the bonding process. Oxytocin is an evolutionary substance unique to mammals and has central nervous system effects, in addition to effects on the reproductive organs. The importance of oxytocin in regard to social recognition, pair bonding, and other social behaviors has been investigated. Oxytocin release appears to promote feelings of security in women, promotes bonding with the newborn, and leads to improved mental health and social outcomes (IsHak, Kahloon, Fakhry, 2011; Lee et al., 2009).

Thyroid Function Changes

The thyroid gland increases production of thyroid hormones in pregnancy. Increased estrogen causes the liver to produce more thyroxine-binding globulin (TBG) early in pregnancy. As thyroxine (T_4) is bound to TGB, there is a decrease in free T_4 that results in stimulation of the hypothalamus to release thyroxine-releasing hormone and, in response, the anterior pituitary is stimulated to release TSH (Nader, 2014a). This series of events is an example of a negative-feedback control loop.

At the same time, the thyroid is being stimulated by hCG, which acts like TSH. By 12 weeks of gestation, hCG has reached serum levels that inhibit pituitary production of TSH (Nader, 2014a). Free serum T_4 peaks at around the same time that hCG peaks (Cunningham et al., 2014). Thyroid clearance of iodine increases three-fold. Free and total T_3 increase. All these changes in thyroid function lead to an increase in maternal basal metabolic rate.

There are significant changes in the thyroid laboratory testing parameters during pregnancy. The laboratory tests that provide the best clinical information for the evaluation of thyroid function in pregnancy are the third-generation TSH and free T_4 index using the product of T_4 and T_3 resin uptake (Nader, 2014a).

Adrenal Function Changes

The adrenal cortex, after stimulation by ACTH, releases glucocorticoids (primarily cortisol), mineralocorticoids (primarily aldosterone), and adrenal androgens and estrogens (Brashers, Jones, & Huether, 2014). Serum ACTH is lower in early pregnancy but begins to increase as pregnancy progresses. Serum cortisol is increased in pregnancy, and much of it is bound by cortisol-binding globulin that is three times higher during pregnancy. This causes the total cortisol levels to rise significantly. Aldosterone levels increase 20-fold during late pregnancy (Nader, 2014b). This increase is necessary because of the antagonistic effects of progesterone including increased sodium excretion (Cunningham et al., 2014). Adrenal testosterone increases in pregnancy because of increased sex hormone-binding globulin produced by the liver (Nader, 2014b).

Corticotropin-releasing hormone (CRH) and ACTH are produced by the placenta and increase significantly during the last weeks of pregnancy. Both hormones are considered very important to the initiation of labor (Cunningham et al., 2014). In addition, the fetal adrenal gland secretes high levels of cortisol and dehydroepiandrosterone sulfate (DHEA-S). These substances cause an increase in the production of maternal estriol that will enhance uterine muscle gap junctions and facilitate the development of oxytocin receptors within uterine tissue in preparation for rhythmic, uniform, and coordinated contractions.

Summary

Virtually all maternal body systems undergo changes during pregnancy that are necessary for maternal adaptation and fetal growth and development. Understanding the physiology foundational to these changes is imperative for healthcare professionals caring for pregnant women and their babies. Differentiating normal changes from potential or real abnormalities and being able to interpret laboratory findings accurately depend on knowledge of these miraculous, complex adaptations.

Resources for Women and Their Families

Pregnancy Week by Week: http://www.medicinenet.com/pregnancy/ article.htm

Resources for Healthcare Providers

- Physiology of Pregnancy: http://www.glowm.com/?p =glowm.cml/ section_view&articleid = 103
- Seasonal Flu Vaccine Safety and Pregnant Women: http://www.cdc. gov/flu/protect/vaccine/qa_vacpregnant.htm

References

Blackburn, S. (2013). *Maternal, fetal, and neonatal physiology* (4th ed., pp. 218, 220). Maryland Heights, MO: Elsevier.

- Boddy, A. M., Fortunato, A., Wilson Sayres, M., & Aktipis, A. (2015). Fetal microchimerism and maternal health: A review and evolutionary analysis of cooperation and conflict beyond the womb. *BioEssays*, 37(10), 1106–1118.
- Bowersox, N. (2016, September 30). Thrombocytopenia in pregnancy. *Medscape: Drugs & Diseases*. Retrieved from http://emedicine. medscape.com/article/272867-overview#a2
- Brashers, V., Jones, R., Huether, S. (2014). Mechanisms of hormonal regulation. In K. McCance, S. Huether, V. Brashers, & N. Rote (Eds.), *Pathophysiology: The biologic basis for disease in adults and children* (7th ed., pp. 689–716). St. Louis, MO: Elsevier/Mosby.
- Centers for Disease Control and Prevention (CDC). (2016, November 14). Seasonal influenza: Pregnant women and influenza. Retrieved from http://www.cdc.gov/flu/protect/vaccine/pregnant.htm
- Cunningham, F., Leveno, K., Bloom, S., Spong, C, Dashe, J., Hoffman, B., Casey, B., Sheffield, J. (2014). Williams obstetrics (24th ed.). New York: McGraw-Hill Medical.
- Hampson, E., Phillips, S. D., Duff-Canning, S. J., Evans, K. L., Merrill, M., Pinsonneault, J. K., ... & Steiner, M. (2015). Working memory in pregnant women: relation to estrogen and antepartum depression. *Hormones and Behavior*, 74, 218–227.
- IsHak, W. W., Kahloon, M., & Fakhry, H. (2011). Oxytocin role in enhancing well-being: a literature review. *Journal of Affective Disorders*, 130(1), 1–9.
- Kelly, T., & Savides, T. (2014). Gastrointestinal disease in pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.). Creasy and Resnik's maternal-fetal medicine: Principles and practice (7th ed., pp. 1059–1074). Philadelphia: Elsevier/ Saunders.
- Kilpatrick, S. (2014). Anemia and pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.). *Creasy and Resnik's maternal-fetal medicine: Principles and practice* (7th ed., pp. 918–931). Philadelphia: Elsevier/Saunders.
- Kuon, R. J., Weber, M., Heger, J., Santillán, I., Vomstein, K., Bär, C., ... & Toth, B. (2017). Uterine natural killer cells in patients with idiopathic recurrent miscarriage. *American Journal of Reproductive Immunology*.
- Lanni, S. M., Tillinghast, J., & Silver, H. M. (2002). Hemodynamic changes and baroreflex gain in the supine hypotensive syndrome. American Journal of Obstetrics and Gynecology, 187(6), 1636-1641.
- Lassiter, N., & Manns-James, L. (2017). Pregnancy. In M. Brucker & T. King. *Pharmacology for women's health*. (2nd ed., pp. 1025–1059). Burlington, MA: Jones & Bartlett.
- Lee, H. J., Macbeth, A. H., Pagani, J. H., & Young, W. S. (2009). Oxytocin: the great facilitator of life. *Progress in Neurobiology*, 88(2), 127–151.
- Liu, J. (2014). Endocrinology of pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy and Resnik's maternal-fetal medicine: Principles and practice* (7th ed., pp. 100–111). Philadelphia: Elsevier/Saunders.
- Logan, D. M., Hill, K. R., Jones, R., Holt-Lunstad, J., & Larson, M. J. (2014). How do memory and attention change with pregnancy and childbirth? A controlled longitudinal examination of neuropsychological functioning in pregnant and postpartum women. *Journal of Clinical and Experimental Neuropsychology*, 36(5), 528–539.
- McCann, S., & Huether, S. (2014). Structure, function and disorders of the skin. In K. McCance, S. Huether, V. Brashers, & N. Rote (Eds.), *Pathophysiology: The biologic basis for disease in adults and children* (7th ed., pp. 1616–1652). St. Louis, MO: Elsevier/Mosby.

- Meiri, H., Sammar, M., Herzog, A., Grimpel, Y. I., Fihaman, G., Cohen, A., ... & Gonen, R. (2014). Prediction of preeclampsia by placental protein 13 and background risk factors and its prevention by aspirin. *Journal of Perinatal Medicine*, 42(5), 591–601.
- Mindell, J. A., Cook, R. A., & Nikolovski, J. (2015). Sleep patterns and sleep disturbances across pregnancy. *Sleep Medicine*, *16*(4), 483–488.
- Mohamad, T. N. (2017, January 10). Cardiovascular disease and pregnancy. Retrieved from http://emedicine.medscape.com/ article/162004-overview
- Monga, M. & Mastrobatista, J. (2014). Maternal cardiovascular, respiratory, and renal adaptation to pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), Creasy and Resnik's maternal-fetal medicine: Principles and practice (7th ed., pp. 93–99). Philadelphia: Elsevier/Saunders.
- Moore, T., Hauguel-DeMouzon, S., & Catalano, P. (2014). Diabetes in pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy and Resnik's maternal-fetal medicine: Principles and practice* (7th ed., pp. 988–1021). Philadelphia: Elsevier/ Saunders.
- Mor, G., & Abrahams, V. (2014). The immunology of pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy and Resnik's maternal-fetal medicine: Principles and practice* (7th ed., pp. 80–92). Philadelphia: Elsevier/Saunders.
- Nader, S. (2014a). Thyroid disease and pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy* and Resnik's maternal-fetal medicine: Principles and practice (7th ed., pp. 1022–1037). Philadelphia: Elsevier/Saunders.
- Nader, S. (2014b). Other endocrine disorders of pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy and Resnik's maternal-fetal medicine: Principles and practice* (7th ed., pp. 1038–1058). Philadelphia: Elsevier/Saunders.
- Norton, P. A., Allen-Brady, K., Wu, J., Egger, M., & Cannon-Albright, L. (2015). Clinical characteristics of women with familial pelvic floor disorders. *International Urogynecology Journal*, 26(3), 401–406.
- Rapini, R. (2014). The skin and pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy and Resnik's maternal-fetal medicine: Principles and practice* (7th ed., pp. 1146–1155). Philadelphia: Elsevier/Saunders.
- Rodgers, M., & Silver, R. (2014). Coagulation disorders in pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy and Resnik's maternal-fetal medicine: Principles and practice* (7th ed., pp. 878–905). Philadelphia: Elsevier/ Saunders.
- Rote, N., & McCance, K. (2014). Adaptive immunity. In K. McCance, S. Huether, V. Brashers, & N. Rote (Eds.), *Pathophysiology: The biologic basis for disease in adults and children* (7th ed., pp. 224–257). St. Louis, MO: Elsevier/Mosby.
- Scott, J. M., Weir, D. G., Molloy, A., McPartlin, J., Daly, L., & Kirke, P. (1994). Folic acid metabolism and mechanisms of neural tube defects. In *Neural Tube Defects. CIBA Foundation Symposium* (No. 181, pp. 180–191).
- Sommer, C., Jenum, A. K., Waage, C. W., Mørkrid, K., Sletner, L., & Birkeland, K. I. (2015). Ethnic differences in BMI, subcutaneous fat, and serum leptin levels during and after pregnancy and risk of gestational diabetes. *European Journal of Endocrinology*, 172(6), 649–656.
- Taylor, B. D., Tang, G., Ness, R. B., Olsen, J., Hougaard, D. M., Skogstrand, K., ... & Haggerty, C. L. (2016). Mid-pregnancy circulating immune biomarkers in women with preeclampsia and

normotensive controls. *Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health*, 6(1), 72–78.

- Than, N., et al. (2014). Placental protein 13 (PP13)—a placental immunoregulatory galectin protecting pregnancy. *Frontiers in Immunology*, 5.
- Whitty, J., & Dombrowski, M. (2014). Respiratory diseases in pregnancy. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), Creasy and Resnik's maternal-fetal medicine:

Principles and practice (7th ed., pp. 965–987). Philadelphia: Elsevier/Saunders.

Williamson, C., Mackillop, L. & Heneghan, M. (2014). Diseases of the liver, biliary system and pancreas. In R. Creasy, R. Resnik, J. Iams, C. Lockwood, T. Moore, M. Greene (Eds.), *Creasy and Resnik's maternal-fetal medicine: Principles and practice* (7th ed., pp. 1075–1089). Philadelphia: Elsevier/Saunders.

Physiological Alterations during the Postnatal Period

Kaitlin Wilson and Cindy L. Farley

Relevant Terms

- Afterpains—uterine contractions that occur after childbirth that produce a range of discomfort perceived as mild to labor-like in intensity
- Diastasis recti—a midline separation of the rectus abdominus muscles at the linea alba
- Hyperplasia—enlargement of tissue by an increase in the number of cells
- **Hypertrophy**—enlargement of tissue by the enlargement or growth of cells
- Involution—the postpartum process by which the reproductive organs return to their prepregnant state
- Lochia—vaginal discharge resulting from the sloughing of decidual tissue, debris from the products of conception, epithelial cells, red blood cells, white blood cells, and serum
- Maternal reset hypothesis—a theory that lactation downregulates the metabolic hyperactivity of pregnancy, thus leading to the many short- and long-term maternal health benefits seen in women who breastfeed
- **Postpartum**—period after birth beginning at the time of complete expulsion of the placenta and membranes, and ending in 6–8 weeks when the reproductive system is returned to nonpregnant status; also known as the puerperium or postnatal period
- Telogen gravidarum—diffuse hair loss due to postpartum hormonal changes
- Uterotonic—substance that induces uterine contractions

Introduction

The **postpartum** period begins with the expulsion of the placenta after the birth of the infant and continues for 6–8 weeks following birth. This period is characterized by the **involution** of the reproductive system to its prepregnant state as well as extensive physiological changes throughout the maternal organism. This chapter

reviews the normal maternal physiological changes that occur in the maternal body systems during the postpartum period. Lactogenesis and the process of breastfeeding are described in Chapter 26. The return to fertility and the resumption of ovulation and menstruation are detailed in Chapter 27.

Uterus

In a nonpregnant state, the uterus is roughly the size and shape of an inverted pear and weighs only about 100 g. During pregnancy, uterine muscle fibers undergo extensive **hyperplasia** and **hypertrophy**, increasing uterine weight approximately 10-fold to an average weight of about 1000 g (Katz, 2012).

Immediately after the infant is born, the stretched-tocapacity smooth muscle fibers recoil and contract when the uterus is emptied, resulting in a smaller endometrial surface area. This change in the endometrial surface area leads to placental separation, and the placenta and membranes are usually born shortly thereafter. This site of placental separation is palm-sized. After the birth of the placenta, the uterus is usually located at about the level or slightly below the maternal umbilicus and remains there for the first two days after birth. The uterus should be firmly contracted and the consistency and size of a softball, approximately 15 cm in height, 12 cm in width, and 10 cm thick. In the immediate postpartum period, the uterus is retroverted (Diniz et al., 2014).

The uterus begins the process of involution at about 2 days after birth (Figure 4.1). During pregnancy, there is an increase in blood flow to the uterus with hypertrophy and adaptation of the pelvic vessels. In the puerperium, blood flow decreases and the vessels revert to their prepregnant state. Involution occurs by a dramatic reduction in the size of the myometrial cells

Prenatal and Postnatal Care: A Woman-Centered Approach, Second Edition. Edited by Robin G. Jordan, Cindy L. Farley and Karen Trister Grace. © 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc. Companion website: www.wiley.com/go/jordan/prenatal