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xv

Preface

Many mathematics departments in universities in the United States now offer
courses intended to introduce students to mathematical proof and transition
students to the study of advancedMathematics. Such courses typically focus on
proof techniques, mathematical content foundational to the study of advanced
Mathematics, and some explicit attention to the conventions and best practices
of mathematical writing.
Across such courses, there seems to be general agreement about the

important proof techniques students should learn, and similarly, there is
little substantial disagreement regarding the principles of good mathematical
writing. However, these transition courses do vary widely in regard to the
mathematical content taught. Some courses focus almost entirely on proof
techniques and introduce almost no new mathematical content. Some focus
first on elementary logic and set theory and then move on to other content,
such as discrete mathematics, geometry, or analysis.
As hinted by the title, this book is intended to be an introduction to proof

through analysis. It is a development of notes Daniel Madden has created over
many years of teaching the proofs course at the University of Arizona, and the
approach taken in this text is different in a number of ways.
First, although this is not an analysis book, the content is heavily focused

on analysis. And second, foundational material such as logic, sets, relations,
functions are not explicitly studied until the middle of the book, after we have
had a go at developing the real numbers. We have found that this approach,
while challenging, rewards the effort. Students come away with a solid under-
standing of mathematical proof techniques and ample experience using those
techniques in a robust mathematical context. In addition, students leave the
course very well prepared for their advanced mathematics courses and with
particularly strong readiness for analysis.
This study has three parts. First, there is a careful review of the basic ideas of

numbers, not entirely rigorous, but distinctly careful. This first part will cover
select results about natural numbers, integers, rational numbers. We will look
at the things we learned in grade school very carefully. Our goal is to reset the
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stage so that we can examine all our basic notions about numbers.This will end
in a definition of the real numbers based on “the completeness axiom.” This is
the key to truly understanding the real numbers as most people know them,
decimals. As we learn more mathematical analysis in this study and any that
follow, we will learn how to correctly understand and apply all sorts of infinite
processes that describe real numbers.
In the second part, we will shore up our intuitive understanding of logic and

set theory by formalizing both subjects. We will go over basic logic and simple
set theory. Here we begin the mathematical practice of giving precise defini-
tions for even the simplest of mathematical terms. This is not surprising at all,
but it is abstract. We will talk about true and false statements without regard
to what those statements are. We will see how to interpret (parse) a compli-
cated sentence to extract its logical meaning. We will use logic to redefine our
terminology for numbers so that it can be used in more general mathematical
context. We will take the ideas about the various systems of numbers in part
1 to set up a mathematical language that can be used for other mathematical
systems. None of this is difficult, but it will be a challenge to keep up with a
large number of abstract (but very familiar) definitions.
The third part begins with a repeat of most of part 1. With the terminol-

ogy and logic of part 2, many things that seemed difficult or unnecessarily long
in the first pass at numbers will be much clearer. The second pass will go by
quicker, but it should gomuch easier. A lot of results and proofs will be repeated
almost as new. By this time, the basic structure of all proofs will be much more
familiar and setup time greatly reduced.The ideas behind a proof will be much
more apparent now that the logic and structure of the exposition are more
familiar. Finally, in this third part, the new Mathematics begins with the intro-
duction of topology on the real line. The mathematical goal of the course is to
prove that the real numbers are all that is needed to measure all distances.This
goal is achieved with a proof of “the intermediate value theorem.” The educa-
tional goal of the course, however, is to learn how to use logic to understand,
explain, and prove Mathematics in a careful and rigorous manner.
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Introduction

Why proof?

For most people, Mathematics is about using mathematical facts to solve
practical problems. Users of Mathematics are rarely concerned about why the
methods work and care only that they do work. To too many people, Math-
ematics is a collection of arcane techniques known only to a select few with
“math brains.” It is troublesome when those arcane techniques that confuse
people are differentiation, integration, or matrix manipulation. It is downright
frightening when the confusing problems are adding fractions or computing
a restaurant tip. The worst way to view Mathematics is as a long collection of
hard-to-remember techniques for solving specific problems. A much better
way is to think ofMathematics as an organization of basic ideas that can solve all
sorts of problems as needed.When you understand whatMathematics actually
means, you can use that understanding to produce your own problem-solving
techniques. The key to understanding any piece of Mathematics (or anything
else for that matter) is to understand why it works the way it does.
Since the ancient Greeks first studied Mathematics in a careful way, the

subject has been built on deductive proof. Mathematical results are accepted
as facts only after they have been logically proved from a few basic facts. Once
mathematical facts are established, they can be used to solve practical and
theoretical mathematical problems. Mathematicians have two reasons for
proving a mathematical statement rigorously: first, to be sure that the result is
true, and second, to understand when and how it works.
Following the ancient Greek process, mathematicians want a proof for

everything - whether it is on the cutting edge of mathematics and science or
it is an apparently obvious fact about grade school arithmetic. The idea is to
understand why a mathematical result is true and to move on to what you
know because it is true. Most of the Mathematics we see in school is about
the “moving on” variety. Once school children understand the connection
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between combining small groups of objects and adding numbers, they can
move on to the arithmetic algorithm of adding larger numbers. Thus,

278
+ 394

672

is just the theoretical way to combining 278 objects and 394 objects and
counting the combination. Once school children understand the connection
between groups of groups and multiplication, they can learn the algorithm for
multiplication. Then

2 5 7
× 3 5
1 2 8 5
7 7 1
8 9 9 5

is just the theoretical way of counting 35 rows of 257 objects.
At the very beginning, every child is given some simple justifications for

the validity of these algorithms. The strong belief among math educators and
education researchers is that students who understand those justifications best
are the students that will learn the algorithms best. Granted in the long run,
it is a child’s ability with the algorithm that is considered most important. In
time, greater facility with the algorithms supplants a person’s need for the logic
behind those algorithms. But the complete understanding of the operation
behind the algorithm is always essential for its proper use in odd situations.
There is a popular notion that the logic behind the techniques of Mathemat-

ics can be ignored once the procedures ofMathematics are learned.This notion
seems to work well for the basic arithmetic of whole numbers. There is a lot
of evidence, however, that this is why so many people stumble over problems
involving fractions. Too many people “move on” to memorizing the algorithms
of fractional arithmetic before they understand the meaning of that arithmetic
or why the things they are memorizing work. It is hard to memorize anything
and harder still to hold that memory without knowing the context of what you
are learning. “To add fractions, find a common denominator.” “To divide frac-
tions, invert and multiply.” Everyone knows this, but how many can correctly
add 33

4
to 57

8
or divide 21 by 2

3
?

As perplexing as fractions are to the general population, decimal numbers are
even worse. Thanks to calculators, everyone knows 𝜋 = 3.14159… where the
dots tell us a better calculator would give more digits. Everyone also seems to
know that 1

3
= 0.33333…where here the dotsmean that the 3s go on forever, or

at least they would if it were actually possible for written digits to go on forever.
Most people understand decimal numbers well enough that they can move on
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to using them very well and very effectively without error. But even the most
highly trained person can be tripped up by an unexpected decimal question
that involves infinitely many decimals. In the next section, we consider some
surprisingly confusing questions about simple numbers.
Before we get to these confusing examples, let us set up a plan for curing any

resultingmathematical confusion. Early schoolmathematical training generally
concentrates on the problem-solving problems using Mathematics. Some the-
oretical or intuitive explanations of the ideas and techniques are given, but the
level of logical rigor in these justifications varies greatly depending on the topic
under discussion. If we are interested in a more advanced education in Math-
ematics, we must revisit these past justifications of the mathematical ideas we
now hold so dear. The time must come when we understand and appreciate a
rigorous justification of every mathematical result we will use. This turns out
to be a rather difficult step to make. We will work on it in stages.

Why analysis?

Our main objective in this study is to develop a precise description of the real
numbers for use as a foundation for the ideas andmethods of calculus.There are
two ingredients in this development: algebra and analysis. “Algebra” generally
refers to the arithmetic of the numbers: addition, subtraction, multiplication,
and division. The ways in which these operations interact form the “algebraic
structure” of the number systems that we will consider. “Analysis” refers to the
study of the distinctions between exact numbers and their approximations. It is
simply a fact that certain real numbers cannot be expressed exactly using only
finitelymanywhole numbers. Analysis allows us to say precise things about real
numbers that cannot be precisely described with a finite expression.
Problems in analysis typically occur whenwe use numbers tomeasure things.

Given an isosceles right triangle, two squares drawn with sides the length of
the short sides of the triangle will have a combined area equal to a square
with a side whose length is the same as the hypotenuse. If we measure the
sides as n units, the hypotenuse will measure n

√
2 units. Thus, to measure the

hypotenuse, theremust be a number we write as
√
2, which whenmultiplied by

itself is 2. A good calculator will approximate
√
2 as 1.41421. A better calculator

will approximate it as 1.41421356237, and a sensational one as
1.4142135623730950488016887242096980785696718753769.

But, as the Greeks discovered, the only way to write an exact representation of
the number is by saying that it is a number that when squared is 2 and then to
make up a symbol for it, such as

√
2.

Since our goal is to develop a rigorous description of the real numbers, we
must be able to use it to work with numbers we can describe exactly but cannot
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calculate exactly. We will use algebra and analysis to allow us to do arithmetic
with numbers such as this. Suppose, for example, that we need a number x so
that x3 + x = 7. Once we are sure that it exists, we can assign it a symbol. For
now, let us say ♮. As it turns out, ♮ is like

√
2.We can approximate it as accurately

as we like, but it may be that the only way to write it exactly is ♮. We can use
algebra to do some exact calculations with ♮. For example, ♮4 = 7♮ − ♮2, but it
is a matter of opinion whether 7♮ − ♮2 is a better name for ♮4 or if it is the other
way around.
For a more famous example, suppose that we need a number that is the ratio

between the circumference of a circle and the diameter of the circle. First, we
need to know that it exists, but we can thank the ancient Greeks for that. We
can assign it a symbol 𝜋. We can approximate it as accurately as we like, but
the only way to write it exactly is 𝜋. The situation is even worse than

√
2 or

♮; mathematicians have proved that there is no polynomial P(x) of any degree
with rational coefficients so that P(𝜋) = 0. This means that the only possible
way to write 𝜋4 exactly is 𝜋4.
The way most people know 𝜋 is “3.14159 . . . . where the digits continue

forever without a pattern.” So the question is, “Does anyone know 𝜋 exactly?”
If there is no pattern to the digits and they go on forever, then no one can know
them all. These digits may look random after a while, but because we believe 𝜋
is a real number, we believe that all the digits are exactly described even if they
may never be all known. Most educated people have a working knowledge of
the real numbers, but mostly because they have a reasonable understanding of
decimal approximation. Thus, they are not bothered by questions about exact
values of 𝜋.
On the other hand, consider 2𝜋 . With a calculator, almost anyone can find

that 2𝜋 = 8.8249778, and many will guess that this is simply an approximation
of the exact value. But scratch the surface of this general understanding of real
numbers and you discover a problem: what have we approximated? That is,
“What is the meaning of 2𝜋?” Now 2

22
7 = 7

√
222, but 𝜋 is not a rational fraction.

So this is of little help describing what the number 2𝜋 means. The only reason
most people have to believe that it has a meaning at all is that their calculator
will calculate it.
Next consider a problem with infinite decimal arithmetic that most

people avoid by using approximations. Consider the numbers: 𝛼 =
0.91260 91260 91260… and 0.142857 142857 142857…, where the ellip-
sis (…) means that the pattern of digits repeats forever. Now if we believe
that we can make 𝜋 a number by saying “𝜋 is 3.14159 . . . . where the digits
continue forever without a pattern,” then knowing all the digits of 𝛼 and 𝛽
should make them even better known numbers. The question is, can we find
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an exact decimal expression for 𝛼 − 𝛽? Does it even have one? If we line them
up to subtract using the familiar algorithm, it is hard to know where to start
working on the digits. If we know enough about real and rational numbers,
we may know a better approach that tells us that the answer will have its
own repeating decimal form. But finding that exact answer means having the
patience to calculate and recognize the 30 digit repeating pattern it turns out
to have.
The final example has been known to be good bait used by trolls on math-

ematical discussion boards since the invention of the internet. Consider two
other numbers 𝛼 = 0.5 and 𝛽 = 0.499999…. The question is, “Is one of these
numbers greater than the other, and if so which?” Now as we know, the number
𝛼 has a better name. The decimal point in 0.5 is mathematical notation where
the next digits give the number of parts where the previous unit is divided into
10 equal parts. Thus, 𝛼 = 5

10
= 1

2
. Comparing the first decimal digits, we know

that, 𝛼 is definitely greater than or equal to 𝛽. Its first digit is larger than the
first digit of 𝛽, and some might say that that makes it greater. But it really only
tells us that 𝛼 ≥ 𝛽. We might try to subtract to see if the difference is 0. If we
line them up

0.50000000000000…
0.49999999999999…

we run into the same problem we just saw; where to start? The fact that most
of the digits in 𝛽 are greater than the ones in 𝛼 above them forces us to guess
how that arithmetic will go. Still, we can certainly see that the result will start:
0.00000. We can guess that it will never give a digit other than 0 until it ends
and that it will, in fact, never end.The result of the subtraction will be a decimal
with infinitely many 0 digits. That must be 0, right? In the end, we can only use
the finite versions of subtraction to approximate the infinite arithmetic. If we
are lucky, we can identify a pattern and guess an answer. But can we be sure? It
does look like 𝛽 − 𝛼 = 0 and so 𝛼 = 𝛽, but can one real number really have two
decimal expansions?
InMathematics, we often describe a precise number that we can only approx-

imate using decimal numbers. We then give the number a name or symbol and
work with the number by working with the name.We did this earlier by setting
𝛼 = 0.5 and 𝛽 = 0.499999…. We then interpreted 𝛼 = 0.5 tomean 5 divided by
10. We then argued that there was reason to suspect 𝛼 = 𝛽. The most famous
case of naming numbers we do not know exactly is 𝜋, but the base of the natural
logarithms e is basically the same. From this point of view, for any positive real
number a, we use the symbol n

√
a as a name for the real solution to xn = a. In

addition, for any real number 𝜃, we use geometry to precisely describe a number
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between 0 and 1 thatwe call sin(𝜃). A lot ofMathematics is about finding precise
relations between the different numbers we have named. If the real numbers
work as we expect, it should come as no surprise that 0.5 = 0.499999…. We
should be able to prove this from basic undeniable principles. We also should
know that sin

(
𝜋

4

)
= 1

√
2
, and we expect someone is able to prove it. A bit more

surprising is that ♮, the real solution of x3 + x = 7 can also be given as

♮ = − 3

√
2

189 +
√
35829

+
3

√
63 +

√
3981

18
.

However, mathematicians were mostly shocked when Niels Abel proved that
the real solution ♭ to x5 + 10x2 = 40 cannot be given precisely in terms of nat-
ural numbers and radical signs alone.
Numbers such as 𝜋 and e have no pattern in their decimal expansions. We

can, however, describe𝜋 and e using infinite representationswhere all the terms
are known:

𝜋 = 4
1
− 4

3
+ 4

5
− 4

7
+ 4

9
+…

e = 1 + 1
1!

+ 1
2!

+ 1
3!

+ 1
4!

+…

𝜋 = 2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅ · · ·

These are at least a bit better than the decimal approximations because the pat-
terns they follow do give all the terms. If we prove that these infinite expressions
actually give numbers, we can claim to know them exactly.We still cannot write
them down exactly without alluding to infinitely many terms. We can use our
names for them to do calculations with them using algebra. We can do approx-
imate calculations with them by keeping just the first terms in their infinite
expressions. However, knowingwhy the first and last infinite expressions can be
given the same name is an issue for analysis. If we can find some argument that
the difference between 𝛾 = 4

1
− 4

3
+ 4

5
− 4

7
+ 4

9
+… and 𝛿 = 2

1
⋅ 2
3
⋅ 4
3
⋅ 4
5
⋅ 6
5
⋅

6
7
⋅ · · · is zero, we can at least say 𝛾 = 𝛿. But why either of these make

sin
(
𝜋

4

)
= 1

√
2
true requires analysis.

Our goal is to develop a precise description of the real numbers that allows us
to deal with real numbers we can describe precisely but not write out precisely
with finite terms. We will generally use analysis to determine when we have
actually described one and only one real number, that is, to determine when a
number exists and is unique. This will allow us to give it a name. We will then
typically use algebra to use the name to study that number or other numbers
we might be interested in.
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We start by reviewing the most basic aspects of numbers. These are things
thatwemay not have looked at closely sincewe learned about then in preschool,
kindergarten, or elementary school.The object is to practice being very careful
and precise with the most familiar of all Mathematics. But this time, we have
algebra to help. As we have seen, some things about numbers can be confusing.
We can learn to work past any confusion by starting with an extra careful look
at things we know very well.
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Part I

A First Pass at Defining ℝ
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1

Beginnings

1.1 A naive approach to the natural numbers

1.1.1 Preschool: foundations of the natural numbers

One of the first things we learn in mathematics is the counting chant: one,
two, three, four, five . . . . We quickly learn how to count to higher and higher
numbers, and finally, the day comes when we realize that we can continue on
counting forever. At that point, believe it or not, we have all the necessary
assumptions we need to discover all of mathematics. The counting numbers
are often calledwhole numbers, butmathematicians call them natural numbers.
We can express our childhood discovery in four adult principles:

• There is a unique first natural number.
• Every natural number has a unique immediate successor.
• Every natural number except the first has a unique immediate predecessor.
• Every natural number is an eventual successor of the first.

Algebra begins when we introduce symbols to express these principles. Now
there is a unique first natural number; we will write it as 1. Every natural num-
ber has a unique immediate successor.There are many choices for denoting the
successor of a natural number. In a more rigorous course on the foundations of
mathematics, we might write the successor of a natural number n as s(n). We
will choose a notation that anticipates later definitions.The successor of a natu-
ral number n will be written as n + 1. Notice that this is not addition (yet); n + 1
means “the successor of n,” no more and no less. Every natural number except
the first has a unique immediate predecessor. Again, we choose a notation with
an eye on what is coming later. If n ≠ 1, the predecessor of a natural number
n will be written as n − 1. This is not subtraction; it is simply the symbol for
the predecessor. The relationship between successors and predecessors can be
described using this notation. Notice that 1 − 1 is not defined because the first
number does not have a predecessor.

An Introduction to Proof through Real Analysis, First Edition. Daniel J. Madden and Jason A. Aubrey.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Remark. If n is a natural number, then (n + 1) − 1 = n.

Remark. If n is a natural number and n ≠ 1, then (n − 1) + 1 = n.

These are our first algebraic results. Note that they are nothing more than
symbolic representations of the meanings of the words “successor” and “pre-
decessor.” Thus, (n + 1) − 1 = n is just a symbolic statement that means “the
predecessor of the successor of a natural number n is just the number n.”Thus,
(n − 1) + 1 = n means “the successor of the predecessor of a natural number
n other than the first number 1 is just the number n.” That is all algebra really
is: the encoding of ideas expressed in words into symbolic representations of
those ideas.
The fourth principle is the hardest to precisely express in symbols. However,

in this first chapter, we are just setting some groundwork to make later logi-
cally rigorous mathematics easier. We are willing to forgo some rigor to lay this
groundwork. To say this more clearly, we are not going to restrict ourselves to
completely logical proofs and definitions until the end of this chapter.
The fourth principle states: Every natural number is an eventual successor of

the first. That is, every natural number is the successor of the successor of the
successor of… the successor of 1.The loose notation for this is: if n is a natural
number, then n can be written as

n = (((… ((1 + 1) + 1) +… + 1) + 1) + 1. (1.1)

The use of the ellipsis in this bit of algebra kills any hope of making an unam-
biguous statement. It should be clear what this means: n is made up of a series
of (+1)s, each of which signals the successor of a previous number. This is not
the best way to begin a course in rigorous mathematics, and soon we will need
to replace it with something else.
There is one more bit of notation we set for dealing with these basic princi-

ples. We say m is an eventual successor of n if

m = (((… ((n + 1) + 1) +… + 1) + 1) + 1. (1.2)

Again, the use of ellipsis kills any rigor this ideamight have.Whenm is an even-
tual successor of n, we say “m is greater than n”; and we write m > n. Actually,
wemight prefer tomove smaller to larger andwrite n < m and say “n is less than
m.” This leads to some algebra, and a careful name for an important algebraic
property:

Remark. Let k,m and n be natural numbers. If n < m and m < k, then n < k.

We can refer to this remark by saying, “The order of the natural numbers is
transitive.”
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This remark is true because n < m means

m = (((… ((n + 1) + 1) +… + 1) + 1) + 1, (1.3)

and m < k means

k = (((… ((m + 1) + 1) +… + 1) + 1) + 1. (1.4)

Equality means that m is exactly the same as the expression that follows
the equal sign. So we can “substitute” that expression for the m in the later
equation.

k = (((… ((… (n + 1)… + 1) +… + 1) + 1) + 1. (1.5)

So, indeed, k is an eventual successor of n.
Finally, suppose thatwe have natural numbersn andm. Sincewe have not said

otherwise, they could be the same.Thus, it might be that n = m. Both numbers
are eventual successors of 1. If n ≠ m, one of the two must be an eventual suc-
cessor of 1 that appears before the first.Thus, either n < m or m < n.This leads
to our final observation about the order of the natural numbers and another
mathematical term.

Remark. If n andm are natural numbers, then exactly one of the followingmust
be true: n < m; m < n; or n = m.

We refer to this remark by saying, “The order on the natural numbers has
trichotomy.”
Thus, if n < m is not true, then either m < n or n = m. We have notation that

allows us to abbreviate this further. We write n ≤ m to mean either n < m or
n = m. Similarly, we write n ≥ m to mean either n > m or n = m. There is no
notational shortcut for saying either n > m or n < m other than n ≠ m.

1.1.2 Kindergarten: addition and subtraction

The first use we learn for numbers is for counting things. We learn names and
symbols for all the eventual successors of 1.

1 + 1 = 2. (1.6)
(1 + 1) + 1 = 3.

((1 + 1) + 1) + 1 = 4.
(((1 + 1) + 1) + 1) + 1 = 5.

· · · · · · = · · ·

In the early grades, we add the two numbers 2 and 5 by creating two sets (say,
of marbles), one with 2 marbles and another set with 5 marbles. We combine
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the two sets into one and count to find a total of 7 marbles. We learn that the
notation for this is 2 + 5 = 7.

2 = 1 + 1; (1.7)
5 = (((1 + 1) + 1) + 1) + 1;

2 + 5 = (1 + 1) + ((((1 + 1) + 1) + 1) + 1)
= ((((((1 + 1) + 1) + 1) + 1) + 1) + 1)
= 7.

While amain goal in elementary school arithmetic is learning the algorithm for
adding natural numbers, this would be pointlesswithout a few years of counting
and combining so that we know what the addition algorithm does for us. This
algorithm is a theoretical method that allows us to avoid long counts.We even-
tually learn how to find that 27 + 35 = 62 without knowing what objects we
are trying to count. The concrete problem of counting combined sets becomes
the abstract problem of adding numbers. We learn what addition is mostly by
repeated counting. Later, we learn a shortcut that uses an arithmetic procedure.
But addition has never been taught by someone defining it for us, until now.
As adults we need to invent (or define) an operation on natural numbers

where two natural numbers n and m are combined to produce a new natural
number. We denote this new number as n + m. We define this new number by
writing n and m as eventual successors of 1:

n = (((… ((1 + 1) + 1) +… + 1) + 1) + 1; (1.8)
m = (((… ((𝟏 + 𝟏) + 𝟏) +… + 𝟏) + 𝟏.

Then

n + m = [(((… ((1 + 1) + 1) +… + 1) + 1) + 1] (1.9)
+ [(((… ((𝟏 + 𝟏) + 𝟏) +… + 𝟏) + 𝟏]

= (((… ((1 + 1) + 1) +… + 1) + 1) + 1)
+ · · · + 𝟏) + 𝟏) + 𝟏) +… 𝟏) + 𝟏.

The imprecision of the ellipsis almost renders this definition useless, but the
bold 1s help a bit. In a course on the rigorous foundations of mathematics,
we would need to do much better than this. Luckily, years of combining sets
of marbles allows us to realize what we are trying to say in this study with
the aforementioned definition. This almost unintelligible definition does lead
to one very important algebraic fact. It is clear that the definition of addition
is just the rearrangement of the parenthesis around 1s and +s. Thus, we have
an algebraic fact about the addition of counting numbers: parentheses do not
matter.

Remark. If k, m, and n are natural numbers, then (k + n) + m = k + (n + m).
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We refer to this by saying, “Addition of natural numbers is associative.”
A few other algebraic facts follow just as quickly.

Remark. If m and n are natural numbers, then n < n + m.

We refer to this by paraphrasing Euclid, “The whole is greater than the part.”

Remark. If k, m, and n are natural numbers and n < m, then n + k < m + k.

We refer to this by saying, “Addition of natural numbers respects the order.”
If we remember our lessons from counting blocks, we realize that it doesn’t

make a difference which set of blocks we start with when we combine the two
sets – the total always comes out the same. We can turn this observation into
another useful algebraic fact.

Remark. If m and n are natural numbers, then m + n = n + m.

We refer to this by saying, “Addition of natural numbers is commutative.”
The first step after learning the arithmetic operation of addition is the intro-

duction of a new operation, subtraction. At first we learned it as the solution
to an addition puzzle, such as “What number added to 5 gives 7?” We all recall
the problem: Fill in the box

5 + [ ] = 7. (1.10)

Only later, after we understood this type of question better, did we learn a
procedure for subtracting. Soon we learned that there were two arithmetic
operations: addition and subtraction. Asmathematicians, wewill not talk about
subtraction as its own operation, but rather look at it in terms of addition. It is
not that there is anything wrong with thinking of subtraction as its own oper-
ation, but just that it will help later algebraic ideas to try to keep the language
focused on addition. Subtraction will still be a possibility, but we will not fully
admit it, but rather refer to the following property of the natural numbers:

Remark. If n and m are natural numbers with n < m, then there exists a unique
natural number k so that m = n + k.

We refer to this by saying, “There is a conditional subtraction on the natural
numbers.”
We say that this subtraction is conditional because we cannot subtract the

natural number n from m unless n < m (and get a natural number as a result).
Of course, one of our first orders of business will be to create the integers as
a larger collection of numbers that removes this condition on subtraction. As
for notation, it is no surprise that we will eventually write k as m − n. Thus,
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the sign “−” for subtraction is still there. For at least a while, we will not take
advantage of this notation because we are trying to avoid treating subtraction
as an operation. The reason for this should be clearer when we start to discuss
the integers where things work better algebraically.
There are two other “subtraction” properties that we will use frequently.

Remark. If k, n, and m are natural numbers with n + k = m + k, then n = m.

Remark. If k, n, and m are natural numbers with n + k < m + k, then n < m.

Rather than talking about these in terms of subtraction, we will refer to these
as “cancellation properties of addition.”

1.1.3 Grade school: multiplication and division

Once we know that we can add any two natural numbers, we can use that
to invent a new operation, multiplication. Two natural numbers n and m are
combined to produce a new natural number. We denote this new number as
n ⋅ m or nm. We define this new number by writing n as eventual successor
of 1:

n = (((… ((1 + 1) + 1) +… + 1) + 1) + 1. (1.11)

Then

n ⋅ m = (((… ((m + m) + m) +… + m) + m) + m. (1.12)

Again, because of the ellipsis, the only reason this might be considered a defi-
nition is because we already know what it means: to find n ⋅ m add m to itself n
times. For example,

3 × 7 = (7 + 7) + 7. (1.13)

As we move on to a discussion of the properties of multiplication, we lose any
pretense of rigor. We need to refer to geometric intuition to justify our obser-
vations. Luckily, we spent endless hours playing with various objects in the
elementary grades, developing this intuition just to understand the multipli-
cation properties. A geometric representation of n ⋅m is the number of objects
arranged in a rectangle n blocks wide and m blocks long. A geometric repre-
sentation of (n ⋅ m) ⋅ k is the number of objects arranged in k rectangles each
n blocks wide and m blocks long and stacked into a 3-D box. If we turn an n
by m rectangle on its side, it turns into a rectangle that is m objects wide and n
objects long. So we have our first algebraic property of multiplication.

Remark. If m and n are natural numbers, then m ⋅ n = n ⋅ m.
We refer to this by saying, “Multiplication of natural numbers is

commutative.”



�

� �

�

1.1 A Naive Approach to the Natural Numbers 9

If we pile k of these rectangles one on top of each other, we get a box n blocks
wide, m blocks long, and k blocks high. The number of blocks in the box is
k ⋅ (n ⋅ m). But if we stack m walls of rectangles that are m blocks long and k
blocks high, we get the same box.The number of blocks in the box is m ⋅ (n ⋅ k).
But by commutativity of multiplication, we can say

Remark. If k, m and n are natural numbers, then (k ⋅ n) ⋅ m = k ⋅ (n ⋅ m).

We refer to this by saying, “Multiplication of natural numbers is associative.”

The next observation follows directly from the definition of multiplication.

Remark. If n is a natural number, then n ⋅ 1 = 1 ⋅ n = n.

We refer to this by saying, “1 is a multiplicative identity.”
If n < m, then m is an eventual successor of n, and we can write

m = (((… ((n + 1) + 1) +… + 1) + 1) + 1 (1.14)
= (… (.(𝟏 + 𝟏) + ...𝟏) +… + 1) + 1) + 1.

So

m ⋅ k = (… (.(k + k) + ...k) +… + k) + k) + k (1.15)
= (… (kn + k)… + k) + k) + k.

So we know k ⋅ n < k ⋅ m. Thus,

Remark. If k, m, and n are natural numbers and n < m, then n ⋅ k < m ⋅ k.

We refer to this by saying, “Multiplication of natural numbers respects the
order.”
Notice that we have defined three things for the natural numbers: an order

<, and two operations: addition + and multiplication ⋅. We know how addition
interacts with the order. Addition respects the order. We know how multipli-
cation interacts with the order; multiplication respects the order. Next, we see
how multiplication interacts with addition. We leave a geometric justification
of this as an exercise.

Remark. If k, m, and n are natural numbers, then k ⋅ (n + m) = k ⋅ n + k ⋅ m.

We refer to this by saying, “Multiplication of natural numbers distributes over
addition.”
If we were reluctant to talk about subtraction of natural numbers simply

because to subtract n from m we must know n < m, we are definitely going to
wait beforewe discuss division of natural numbers. Division of natural numbers
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is a much more complicated procedure involving remainders as well as quo-
tients. We will get to it, but not just now.
Still we would like some division-like algebraic results to make things easier.

We have two painfully obvious observations:

Remark. If k, n, and m are natural numbers with n ⋅ k = m ⋅ k, then n = m.

Remark. If k, n, and m are natural numbers with n ⋅ k < m ⋅ k, then n < m.

We refer to either of these as “cancellation properties of multiplication.” Be
warned, however, these are very dangerous. We are basically going to find safer
replacements for them as soon as we can.
These are “painfully” obvious because while they are quite obvious after

years of practicing arithmetic, the justifications that they are correct are rather
painful to follow. There are a few ingredients in this justification: trichotomy,
the results of multiplication are unique, multiplication respects order, and
logical reasoning. Let us give a justification a try.
We know that the results of multiplication are unique; however we multiply

two numbers m and k, the result will always be the same.Thus, we can state this
algebraically as: if n = m, then for all natural numbers k, we have n ⋅ k = m ⋅ k.
We really want to be clear about what this says.

If it is true that n = m, then it absolutely must be true that n ⋅ k = m ⋅ k.

(We are just being resolute about our earlier statement.) But then, if we ever see
that n ⋅ k = m ⋅ k is false, then there is no way that n = m could be true. This is
to say:

If n ⋅ k ≠ m ⋅ k, then n ≠ m.

Let us remember this for now.
Because multiplication respects order, we know that if k, m, and n are natural

numbers and n < m, then n ⋅ k < m ⋅ k. So assuming that k,m, and n are natural
numbers, if it is true that n < m, then it absolutely must be the case that n ⋅ k
< m ⋅ k. So as before, if we ever see that n ⋅ k < m ⋅ k is false, then there is no
way that n < m could be true. So

If n ⋅ k < m ⋅ k is not true, then n < m is not true either.

But by trichotomy, saying that n ⋅ k < m ⋅ k is false is the same as saying n ⋅ k
≥ m ⋅ k. By basically the same argument, we can also say:

If m ⋅ k < n ⋅ k is not true, then m < n is not true either.

Now we can justify our first statement that, if n ⋅k = m ⋅k, then n = m. Sup-
pose it is true that n ⋅ k = m ⋅ k. Then by trichotomy, both (n ⋅ k < m ⋅ k) and
(m ⋅ k < n ⋅ k) are not true. (Trichotomy says exactly one must be true.) By our
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two observations, we know (n < m) is not true, and (m < n) is not true. But
trichotomy leaves only one possibility. It must be that n = m. Thus, as we said
in our second remark: if k, n, andm are natural numbers with n ⋅ k < m ⋅ k, then
n < m.
Next, we justify our second statement that, if n ⋅ k < m ⋅ k, then n < m. Sup-

pose n ⋅k < m ⋅k. Then by trichotomy, both (n ⋅k = m ⋅k) and (m ⋅k < n ⋅k) are
not true. By the first observation, we know that (n ⋅k ≠ m ⋅k) impliesn ≠ m.The
last observation says that (m ⋅ k < n ⋅ k) is not true implies that (m < n) is not
true. But again, trichotomy leaves only one possibility. It must be that n < m.
It was a bit painful to follow these justifications of those simple remarks, but

we do now see that they are simply consequences of trichotomy and a unique
result frommultiplication. One of our goals is to create an algebraic and logical
language that makes arguments such as this easier to understand.
There is only one last remark we need to make about the natural numbers.

Remark. Let n and m be natural numbers with n ≤ m ≤ n + 1, then either
n = m or m = n + 1.

We refer to this by saying, “The natural numbers are discrete.”
Again, the justification for this depends on the statements in the earlier

remarks. Suppose n < m < n + 1. Then by subtraction (whoops), we know
that there is a natural number k so that m = n + k. But then n + k = m and
m < n + 1. So by transitivity, n + k < n + 1. But we have a cancellation rule for
addition; so k < 1. But since every natural number is an eventual successor of
1 and trichotomy holds, this cannot happen.
The purpose of algebra is to help make all these justifications easier to

manage.

1.1.4 Natural numbers: basic properties and theorems

We have just reviewed several years of elementary school arithmetic so that we
can identify and name various basic algebraic properties of the natural num-
bers. They are as follows:

• There is a first natural number, which we call 1.
• There is an order on the natural numbers.
• The order is transitive.
• The order has trichotomy.
• For any two natural numbers n and m, there is a unique natural number

n + m.
• This addition is associative.
• This addition is commutative.
• If m and n are natural numbers, then n < n + m.
• If k, m, and n are natural numbers and n < m, then n + k < m + k.
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• If n andm are natural numbers with n < m, then there exists a unique natural
number k so that m = n + k.

• If k, n, and m are natural numbers with n + k = m + k, then n = m.
• If k, n, and m are natural numbers with n + k < m + k, then n < m.
• For any two natural numbers n andm, there is a unique natural number n ⋅ m.
• This multiplication is associative.
• This multiplication is commutative.
• The natural number 1 is a multiplicative identity.
• If k, m, and n are natural numbers and n < m, then n ⋅ k < m ⋅ k.
• If k, n, and m are natural numbers with n ⋅ k = m ⋅ k, then n = m.
• If k, n, and m are natural numbers with n ⋅ k < m ⋅ k, then n < m.
• If m and n are natural numbers and n ≤ m ≤ n + 1, then either m = n or

m = n + 1.
• Multiplication distributes over addition.

1.2 First steps in proof

There are, of course, many more true facts about the natural numbers, but they
all should follow from these basic properties. We will state many further facts
about these numbers as theorems. We will prove these theorems by using the
aforementioned basic properties. If our justifications for these properties are
accepted and are correct, then the theorems we prove by using them must be
perfectly true. Granted our justifications of these properties are a bit dicey, but
we are going to have to start being rigorous somewhere, and it will be easier
starting by assuming a list of basic properties such as those aforementioned.
Let us now use these properties to prove something.

1.2.1 A direct proof

The first proof we will give is called a direct proof . Suppose that we wish to
prove a statement of the form “If P, then Q.” In a direct proof of this statement,
we begin by assuming P. Then we deduce Q using P and any other assumptions
we have available. Let us now prove the statement

If n is a natural number, then (n + 1)2 = n2 + 2n + 1

using a direct proof. This is of the form “If P, then Q” where P is the statement
“n is a natural number” andQ is the statement “(n + 1)2 = n2 + 2n + 1.”Wewill
begin the proof by assuming that n is a natural number. Knowing that, we can
use all of the basic properties of the natural numbers listed earlier. So we will
use those assumptions to deduce that (n + 1)2 = n2 + 2n + 1.

Theorem 1.2.1. If n is a natural number, then (n + 1)2 = n2 + 2n + 1.
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Proof . Assume that n is a natural number. Then n + 1 is a natural number
because addition is always defined. Then

(n + 1)2 = (n + 1)(n + 1), (1.16)

because that is what the exponent means.

(n + 1)(n + 1) = (n + 1)n + (n + 1) ⋅ 1, (1.17)

by the distributive property.

(n + 1)n + (n + 1) ⋅ 1 = (n + 1)n + (n + 1), (1.18)

because 1 is a ⋅ identity.

(n + 1)n + (n + 1) = n(n + 1) + (n + 1), (1.19)

because ⋅ is commutative.

n(n + 1) + (n + 1) = (n ⋅ n + n ⋅ 1) + (n + 1), (1.20)

by the distributive property.

(n ⋅ n + n ⋅ 1) + (n + 1) = (n ⋅ n + n) + (n + 1), (1.21)

because 1 is a ⋅ identity.
(n ⋅ n + n) + (n + 1) = (n2 + n) + (n + 1), (1.22)

because that is what the exponent means.
(n2 + n) + (n + 1) = n2 + (n + (n + 1)), (1.23)

because + is associative.

n2 + (n + (n + 1)) = n2 + ((n + n) + 1), (1.24)

because + is associative.

n2 + ((n + n) + 1) = n2 + ((n ⋅ 1 + n ⋅ 1) + 1), (1.25)

because 1 is a ⋅ identity.

n2 + ((n ⋅ 1 + n ⋅ 1) + 1) = n2 + (n(1 + 1) + 1), (1.26)

by the distributive property.

n2 + (n(1 + 1) + 1) = n2 + (n ⋅ 2 + 1), (1.27)

because that is what 2 means.

n2 + (n ⋅ 2 + 1) = n2 + (2n + 1), (1.28)

because ⋅ is commutative.

n2 + (2n + 1) = n2 + 2n + 1, (1.29)

because + is associative, this is unambiguous.
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Thus, we have

(n + 1)2 = n2 + 2n + 1. (1.30)
◽

This is a completely algebraic proof; it is also a completely boring proof to
anyone who knows algebra.This is the stuff of middle school algebra and is not
the kind of proof that should give us any problems. While we should be able to
justify any step in any algebraic part of any proof we give, there is rarely a reason
to do so. In addition, we can take advantage of algebra’s disregard for the rules
of proper language composition. Notice that each step in the aforementioned
proof is a full English sentence with a subject, a verb (always “equals”), and an
object followed by a prepositional phrase.This is how a paragraph should be in
any English composition.
But in an algebraic proof, we can violate one the major rules of good writing:

no run-on sentences. The aforementioned proof is completely over the top for
mathematical adults. In any work past a high school text, it would be written
more like:

(n + 1)2 = (n + 1)(n + 1) (1.31)
= (n + 1)n + (n + 1)
= n2 + n + n + 1
= n2 + 2n + 1.

Even this might be longer that necessary. Notice that this is a run-on English
sentence. It has one subject, (n + 1)2, several objects, and one word “equals”
used as a verb four times. This is unacceptable in an English composition, but
perfectly acceptable in an algebraic proof.We need to remember that this proof
is an abbreviation of the full proof written earlier as a composition. Each equal
sign has two subjects: the object of the previous line, and by deduction, the orig-
inal subject of the sentence. The conclusion drawn from the four intermediate
sentences is that the original subject is equal to the final object.
In this study, we will not bother to do much more than outline an algebraic

proof such as this. This does not, however, reduce at all our need for detailed
algebraic proofs. As humans we will make algebra mistakes, and we need to
be ready to find them before someone else does. Finding an algebraic mistake
is often nothing more than giving a complete and thorough line-by-line step
through the use of our basic properties until the error reveals itself.

1.2.2 Mathematical induction

Unfortunately, not all theorems about the natural numbers are easily proved by
a direct proof or simple algebra. Consider

For all natural numbers n, 2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1).
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The dreaded rigor killer, ellipsis, appears again. Mathematics has notation
that allows us to write such a summation in a more precise mathematical way.
However, in this case, it is pretty clear what this claim is: if we add all the num-
bers starting at 1 and stop when we get to n and then double the result, the
answer would be the same as if we multiplied n by its successor. Unfortunately,
the only direct proof of this involves using geometric intuition. This is a per-
fectly fine proof, but there is an alternate proof that uses a much more general
method with many more applications.
We will prove this claim using a “proof by mathematical induction.” Such a

proof is a two-step process. Both steps must be completed successfully for the
proof to be valid.The first step is to prove that the result is true for the first nat-
ural number. The second step takes advantage of a logical loophole. To prove a
statement of the form “If something, then something else,” onemay assume that
something is true. Once something is assumed true for a valid logical reason,
we can use that assumption to draw additional conclusions. The second step
in induction is to prove the following: “If the statement is true for a particular
natural number, then it will be true for its successor.”
If we can accomplish both these steps, we will know

• that the statement is true for 1;
• that anytime the statement is true for a particular number, it will be true for

its successor.

So we know that the statement is true for 1, and 1 is certainly a particular
number. Since the statement is true for 1, it is true for the successor of 1. But
2 is a particular number, and the statement is true for it; so because we have
proved the second step of induction, the statement is true for the successor of
2. Because every natural number is an eventual successor of 1, wewill eventually
know that the statement is true for any number.
Here is the claim written as a theorem, and this is followed by its (mostly

rigorous) proof. Notice that, as we write out exactly what we are proving, our
statement about n reappears three times. It may look like we are proving or
assuming the same thing over and over. But a more careful look reveals that in
each statement, the meaning of the variable n changes. Thus, the statements
are actually about different numbers.

Theorem 1.2.2. For all natural numbers n, 2 ⋅ (1 + 2 + 3 +…(n − 1) + n) =
n(n + 1).

Proof . The proof is by induction on n. Thus, we will actually prove two other
mini theorems:

1. If n = 1, then 2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1).
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2. If for a particular n = n0,

2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = (n + 1)n, (1.32)

then for n = n0 + 1,

2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1). (1.33)

Proof of Step 1. Assume that n = 1. To prove that two expressions are the same,
consider them one at a time. First, (1 + 2 + 3 +…(n − 1) + n)means start at 1
and stop when you get to n. But we are working under the assumption that
n = 1. So

(1 + 2 + 3 +…(n − 1) + n) = 1. (1.34)

So

2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = 2 ⋅ 1 = 2. (1.35)

Now consider the other expression, n(n + 1). We are still assuming n = 1.

(n + 1)n = (1 + 1) ⋅ 1 = 2. (1.36)

Since 2 = 2, we have shown that if n = 1, then 2 ⋅ (1 +…(n − 1) + n) =
n(n + 1). ◾

Proof of Step 2. Assume for a particular n = n0, 2 ⋅ (1 +…(n − 1) + n) =
n(n + 1). Thus, we can say

2 ⋅ (1 +…(n0 − 1) + n0) = n0.(n0 + 1). (1.37)

Under this assumption, we want to prove, for n = n0 + 1, that we also have
2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1). That is to say, we want to show

2 ⋅ (1 + 2 +…((n0 + 1) − 1) + (n0 + 1)) = (n0 + 1)((n0 + 1) + 1). (1.38)

To prove that two expressions are equal, we consider each side. Consider
2 ⋅ (1 +…((n0 + 1) − 1) + (n0 + 1)). We have

2 ⋅ (1 +…((n0 + 1) − 1) + (n0 + 1)) (1.39)
= 2 ⋅ [(1 + 2 + 3 +… n0) + (n0 + 1)]
= 2 ⋅ [1 + 2 + 3 +… n0] + 2[n0 + 1]
= n0(n0 + 1) + 2(n0 + 1)

because that is the assumption we are working under in this step. Then

2 ⋅ (1 +…((n0 + 1) − 1) + (n0 + 1)) (1.40)
= n0(n0 + 1) + 2(n0 + 1)
= (n0 + 2)(n0 + 1).
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Next, consider the other side, (n0 + 1)((n0 + 1) + 1).

(n0 + 1)((n0 + 1) + 1) = (n0 + 1)(n0 + 2). (1.41)

The two expressions are equal. So we have proved: if for a particular n = n0,
we have 2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = (n + 1)n, then for n = n0 + 1, we have
2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1). ◾

These two steps complete the proof by induction. So we have proved: for all
natural numbers n, 2 ⋅ (1 + 2 + 3 +…(n − 1) + n) = n(n + 1). ◽

There are a few final comments on this write-up. Much of the exposition is a
matter of taste, but no matter what, the proof must be an English essay. It may
contain some headings, but everything in the content should be a full sentence.
This includes the algebraic calculations. The logic is easier if all statements to
be proved are written in the “If P, then Q” form.The proof of one of these state-
ments should begin with “Assume P.” After that assumption, the goal becomes
to prove Q. The use of n0 to stand for a particular value of n in the induction
step is completely optional. With more experience in writing induction proofs,
it becomes a distraction. However, even with experience, the second step of
an induction step can get rather confusing when the statement being proved is
long. Using the n0 can be a valuable tool in fighting through that kind of confu-
sion. For beginners, it is not a bad idea to take the time to use that extra notation
so that it will always be available when needed.

1.3 Problems

1.1 (a) Use n = 2, m = 3, and k = 4 to provide an example of the distribu-
tive property n(m + k) = nm + nk using either ellipsis arguments or
a geometric construction.

(b) Provide a justification of the general distributive property n(m + k) =
nm + nk using either ellipsis arguments or a geometric construction.

1.2 Provide justifications for the cancellation properties of addition. (Hint:
look at the justifications for multiplication.)

1.3 Prove that for all natural numbers n,
n∑

k=1
k2 = n(n+1)(2n+1)

6
.

1.4 Be careful while reading these formulas.

(a) Prove that for all natural numbers n,
n∑

k=1
(2k − 1) = n2.
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(b) Prove that for all natural numbers n,
n∑

k=1
2k − 1 = n2 + n − 1.

1.5 Prove that for all natural numbers n, n2
≥ n.

1.6 Prove that for all natural numbers n ≥ 2, n2
≥ n + 2. (Hint: when trying to

prove an inequality a ≤ b, it can help to write the objective as a ≤ ? ≤ b.
Then the idea is to find a value we can use in place of the question mark.
If we can prove the two inequalities a ≤ ? and ? ≤ b, the result we want
follows from transitivity. If we are lucky, one of these two inequalities is
already known to be true.)

1.7 Prove that for all natural numbers n,
n∏

k=1

(
1 + 1

k

)
= n + 1. (Hint: the

symbol
∏

is similar to the symbol
∑

except it means multiply instead of
add.)

1.8 Let n be any natural number greater than or equal to 7.

(a) Prove that if there is a natural number q so that n = 7 ⋅ q, then
n + 1 = 7 ⋅ q + 1.

(b) Prove that if there are natural numbers q and r so that n = 7 ⋅ q + r
and r < 6, then there is a natural number r′ so that n + 1 = 7 ⋅ k + r′
with r′ < 7.

(c) Prove that if there are natural numbers q and r so that n = 7 ⋅ q + r
and r = 6, then there is a natural number q′ so that n + 1 = 7 ⋅ q′.

(d) Prove the following statement using induction.

For all natural numbers n ≥ 7, either there exists a natural
number q so that n = 7q or there exists a pair of natural
numbers q and r so that n = 7q + r with r < 7.


