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Preface

Looking for counterexamples is one of important things a mathematician does.
Once a conjecture is proposed, if no proof can be found, the next step is to look
for a counterexample. If no counterexample can be found, the next step is to try
to find a proof again, and so on. On a more routine level, counterexamples play
an important role for students as they learn new mathematical concepts. To
best understand a theorem, it can be useful to see why each of the hypotheses
of the theorem is necessary by finding counterexample when the hypotheses
fails.

In this book, we present counterexamples related to different concepts and
results on the uniform convergence usually studied in advanced calculus
and real analysis courses. It includes the convergence of sequences, series
and families of functions, and also proper and improper integrals depending
on a parameter. The corresponding false statements are not formulated
explicitly, but instead are invoked implicitly by the form of counterexamples.

The text is divided into six parts: the introductory chapter and five chapters
of counterexamples. The first part contains some introductory material such as
comments on notations, presentation form, and background theory. Chapter 1
considers conditions of uniform convergence. Chapter 2 deals with such prop-
erties of the limit functions as boundedness, existence of the limit and continu-
ity. Chapter 3 analyzes the conditions of differentiability and integrability of the
limit functions. Chapters 4 and 5 consider the properties of integrals (proper
and improper) depending on a parameter.

The goal of the book is threefold. First, it provides a brief survey and discus-
sion of principal results of the theory of uniform convergence in real analysis.
Second, it supplies a material for a deeper study of the concepts and theorems
on uniform convergence using counterexamples as a main technique. Finally,
the text shows to the reader how such important mathematical tool as coun-
terexamples can be used in different situations. We restricted our exposition to
the main definitions and theorems in order to explore different versions (wrong
and correct) of the fundamental concepts. Hence, many interesting (but more
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specific and applied) problems not related directly to the main notions and
results are left out of the scope of this manuscript.

The selection and exposition of the material are directed, in the first place, to
those advanced calculus and analysis students who are interested in a deeper
understanding and broader knowledge of the topics of uniform convergence.
We think the presented material may also be used by instructors that wish to go
through the examples (or their variations) in class or assign them as homework
or extracurricular projects. To this end, the main text is accompanied by
the Instructor’s Solutions Manual containing the detailed solutions to all the
exercises proposed at the end of each chapter.

It is assumed that a reader has knowledge of a traditional university course
of calculus. In order to make the majority of the examples and solutions acces-
sible to calculus and analysis students, we tried to keep the level of reasoning
as simple as possible. As in the majority of the mathematics books, the logical
sequence of the material just follows the chapter sequence, that is, the content
of the next chapter may depend on the previous text, but not vice-versa.

The book is not appropriate as the main textbook for a course, but rather, it
can be used as a supplement that can help students to master important con-
cepts and theorems. So we think the best way to use the book is to read its parts
while taking a respective calculus/analysis course. On the other hand, the stu-
dents already familiarized with the subjects of university calculus can find here
deeper interpretation of the results and finer relation between concepts than
in standard presentations. Also, more experienced students will better under-
stand provided examples and ideas behind their construction.

To facilitate the reading of the main text (containing counterexamples) and
make the text self-contained, and also to fix terminology, notation, and con-
cepts, we gather the relevant definitions and results in the introductory chapter.
For many examples, we make explicit references to the concepts/theorems to
which they are related.

A short (but representative) list of bibliography can be found at the end
of the book, including both collections of problems and textbooks in cal-
culus/analysis. On the one hand, these references are the sources of some
examples collected here, although it was out of our scope to trace all the
original sources. On the other hand, they may be used for finding further
information (examples and theory) on various topics. Some of these references
are classic collections of the problems, such as that by Demidovich [6] and
by Gelbaum and Olmsted [8]. Our preparation of the text was inspired, in
the first place, by the latter book. We tried to extend its approach to the
specialized topics of the uniform convergence, which frequently are sources
of misunderstanding and confusion for fresh mathematics students. We hope
that both students and professionals will find our book useful and (at least
partly) challenging.
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