

FPGA PROTOTYPING
BY SYSTEMVERILOG
EXAMPLES

FPGA PROTOTYPING
BY SYSTEMVERILOG
EXAMPLES
Xilinx MicroBlaze MCS SoC Edition

Pong P. Chu
Cleveland State University

This edition first published 2018
© 2018 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by law. Advice on how to obtain permission to reuse material from this title is available
at http://www.wiley.com/go/permis- sions.

The right of Pong P. Chu to be identified as the author of this work has been asserted in accordance with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of merchantability
or fitness for a particular pur- pose. No warranty may be created or extended by sales representatives, written
sales materials or promotional state- ments for this work. The fact that an organization, website, or product
is referred to in this work as a citation and/or potential source of further information does not mean that the
publisher and authors endorse the information or services the organization, website, or product may provide
or recommendations it may make. This work is sold with the understanding that the publisher is not engaged
in rendering professional services. The advice and strategies con- tained herein may not be suitable for your
situation. You should consult with a specialist where appropriate. Further, readers should be aware that
websites listed in this work may have changed or disappeared between when this work was written and when
it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial
damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data
Names: Chu, Pong P., 1959- author.
Title: FPGA prototyping by systemVERILOG examples. Xilinx MicroBlaze MCS SoC Edition
 / by Pong P. Chu, Cleveland State University.
Description: Hoboken, NJ, USA : Wiley, 2018. | Includes bibliographical
 references and index. |
Identifiers: LCCN 2018005487 (print) | LCCN 2018006519 (ebook) | ISBN
 9781119282693 (pdf) | ISBN 9781119282709 (epub) | ISBN 9781119282662

 (cloth)
Subjects: LCSH: Field programmable gate arrays--Design and construction. |

 Prototypes, Engineering. | VHDL (Computer hardware description language)
Classification: LCC TK7895.G36 (ebook) | LCC TK7895.G36 C4835 2018 (print) |
 DDC 621.39/5--dc23
LC record available at https://lccn.loc.gov/2018005487

Cover image: Courtesy of Pong P. Chu
Cover design by Wiley

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://www.wiley.com
https://lccn.loc.gov/2018005487

To my mother, Chi-Te, my wife, Lee, and my
daughter, Patricia

CONTENTS

Preface xxvii

Acknowledgments xxxiii

PART I BASIC DIGITAL CIRCUITS DEVELOPMENT

1 Gate-Level Combinational Circuit 1

1.1 Introduction 1

1.1.1 Brief history of Verilog and SystemVerilog 1

1.1.2 Book coverage 2

1.2 General description 3

1.3 Basic lexical elements and data types 4

1.3.1 Lexical elements 4

1.3.2 Data types used in the book 5

1.3.3 Number representation 6

1.3.4 Operators 7

1.4 Program skeleton 7

1.4.1 Port declaration 7

1.4.2 Signal declaration 8

1.4.3 Program body 8

1.4.4 Concurrent semantics 9

1.4.5 Another example 10

1.5 Structural description 10

vii

viii CONTENTS

1.6 Top-level signal mapping 13

1.7 Testbench 14

1.8 Bibliographic notes 16

1.9 Suggested experiments 16

1.9.1 Code for gate-level greater-than circuit 17

1.9.2 Code for gate-level binary decoder 17

2 Overview of FPGA and EDA Software 19

2.1 FPGA 19

2.1.1 Overview of a general FPGA device 19

2.1.2 Overview of the Xilinx Artix-7 devices 20

2.2 Overview of the Digilent Nexys 4 DDR board 21

2.3 Development flow 22

2.4 Xilinx Vivado Design Suite 24

2.5 Bibliographic notes 24

2.6 Suggested experiments 24

2.6.1 Gate-level greater-than circuit 24

2.6.2 Gate-level binary decoder 26

3 RT-Level Combinational Circuit 29

3.1 Operators 29

3.1.1 Arithmetic operators 31

3.1.2 Shift operators 31

3.1.3 Relational and equality operators 32

3.1.4 Bitwise, reduction, and logical operators 32

3.1.5 Concatenation and replication operators 33

3.1.6 Conditional operators 34

3.1.7 Operator precedence 35

3.1.8 Expression bit-length adjustment 35

3.1.9 Synthesis of z and x values 36

3.2 Always block for a combinational circuit 38

3.2.1 Overview of always block 39

3.2.2 Procedural assignment 40

3.2.3 Conceptual examples 40

3.3 Coding guidelines 43

3.4 If statement 43

3.4.1 Syntax 43

3.4.2 Examples 44

3.5 Case statement 45

3.5.1 Syntax 45

3.5.2 Examples 46

CONTENTS ix

3.5.3 The casez and casex statements 47

3.5.4 Full case and parallel case 48

3.6 Routing structure of conditional control constructs 49

3.6.1 Priority routing network 49

3.6.2 Multiplexing network 51

3.7 Additional coding guidelines for an always block 52

3.7.1 Common errors in combinational circuit codes 52

3.7.2 Guidelines 56

3.8 Parameter and constant 56

3.8.1 Constant 56

3.8.2 Parameter 58

3.9 Replicated structure 59

3.9.1 Generate-for statement 59

3.9.2 Procedural-for statement 60

3.9.3 Example 60

3.10 Design examples 62

3.10.1 Hexadecimal digit to seven-segment LED decoder 62

3.10.2 Sign-magnitude adder 65

3.10.3 Barrel shifter 68

3.10.4 Simplified floating-point adder 69

3.11 Bibliographic notes 73

3.12 Suggested experiments 73

3.12.1 Multi-function barrel shifter 73

3.12.2 Parameterized barrel shifter 74

3.12.3 Dual-priority encoder 74

3.12.4 BCD incrementor 74

3.12.5 Floating-point greater-than circuit 74

3.12.6 Floating-point and signed integer conversion circuit 74

3.12.7 Enhanced floating-point adder 75

4 Regular Sequential Circuit 77

4.1 Introduction 77

4.1.1 D FF and register 78

4.1.2 Basic block system 78

4.1.3 Code development 79

4.1.4 Sequential circuit coding guidelines and style 79

4.2 HDL code of the FF and register 80

4.2.1 D FF 80

4.2.2 Register 85

4.3 Simple design examples 85

4.3.1 Shift register 85

4.3.2 Binary counter and variant 87

x CONTENTS

4.4 Testbench for sequential circuits 89

4.5 Case study 93

4.5.1 LED time-multiplexing circuit 93

4.5.2 Stopwatch 101

4.6 Timing and clocking 104

4.6.1 Timing of FF 104

4.6.2 Maximum operating frequency 104

4.6.3 Clock tree 107

4.6.4 GALS system and CDC 107

4.7 Bibliographic notes 108

4.8 Suggested experiments 108

4.8.1 Programmable square wave generator 108

4.8.2 PWM and LED dimmer 108

4.8.3 Rotating square circuit 109

4.8.4 Heartbeat circuit 109

4.8.5 Rotating LED banner circuit 109

4.8.6 Enhanced stopwatch 110

5 FSM 111

5.1 Introduction 111

5.1.1 Mealy and Moore outputs 112

5.1.2 FSM representation 112

5.2 FSM code development 115

5.2.1 Enumerated data type and state assignment 115

5.2.2 Multi-segment code 116

5.2.3 Two-segment code 117

5.3 Design examples 118

5.3.1 Rising-edge detector 118

5.3.2 Debouncing circuit 123

5.3.3 Testing circuit 126

5.4 Bibliographic notes 128

5.5 Suggested experiments 128

5.5.1 Dual-edge detector 128

5.5.2 Early detection debouncing circuit 128

5.5.3 Parking lot occupancy counter 129

6 FSMD 131

6.1 Introduction 131

6.1.1 Single RT operation 132

6.1.2 ASMD chart 132

6.1.3 Decision box with a register 134

CONTENTS xi

6.2 Code development of an FSMD 137

6.2.1 Debouncing circuit based on RT methodology 137

6.2.2 Code with explicit data path components 137

6.2.3 Code with implicit data path components 140

6.2.4 Comparison 142

6.3 Design examples 144

6.3.1 Fibonacci number circuit 144

6.3.2 Division circuit 147

6.3.3 Binary-to-BCD conversion circuit 150

6.3.4 Period counter 153

6.3.5 Accurate low-frequency counter 156

6.4 Bibliographic notes 159

6.5 Suggested experiments 159

6.5.1 Early detection debouncing circuit 159

6.5.2 BCD-to-binary conversion circuit 160

6.5.3 Fibonacci circuit with BCD I/O: design approach 1 160

6.5.4 Fibonacci circuit with BCD I/O: design approach 2 160

6.5.5 Auto-scaled low-frequency counter 161

6.5.6 Reaction timer 161

6.5.7 Babbage difference engine emulation circuit 162

7 RAM and Buffer of FPGA 165

7.1 Embedded memory of FPGA device 165

7.1.1 Memory of an Artix device 166

7.1.2 Memory available in the Nexys 4 DDR board 166

7.2 General description for a RAM-like component 167

7.2.1 Register file 167

7.2.2 Dynamic array indexing operation 169

7.2.3 Key aspects of a RAM module 170

7.2.4 Genuine ROM 171

7.3 FIFO buffer 173

7.3.1 FIFO read configuration 174

7.3.2 Circular queue implementation 175

7.4 HDL templates for memory inference 178

7.4.1 Methods to incorporate memory modules 178

7.4.2 Synchronous dual-port RAM 179

7.4.3 “Simple” synchronous dual-port RAM 180

7.4.4 Synchronous single-port RAM 181

7.4.5 Synchronous ROM 182

7.4.6 BRAM-based FIFO buffer 183

7.4.7 Design considerations 183

7.5 Overview of memory controller 184

xii CONTENTS

7.6 Bibliographic notes 185

7.7 Suggested experiments 186

7.7.1 ROM-based sign-magnitude adder 186

7.7.2 ROM-based temperature conversion 186

7.7.3 FIFO with data width conversion 186

7.7.4 Standard FIFO to FWFT FIFO conversion circuit 187

7.7.5 FIFO buffer with extended status 187

7.7.6 Stack 187

8 Selected Topics of SystemVerilog 189

8.1 Timing model 189

8.1.1 Concurrent constructs 190

8.1.2 Assignment statement 190

8.1.3 Basic model 190

8.1.4 Blocking versus nonblocking assignment 192

8.2 Coding guidelines revisited 194

8.2.1 “Single variable assignment” guideline 195

8.2.2 “Blocking assignment for combinational circuit” guideline 195

8.2.3 “Nonblocking assignment for register” guideline 197

8.3 Alternative coding style 198

8.3.1 First coding style revisited 198

8.3.2 Sequential circuit with mixed blocking and nonblocking

assignments 199

8.3.3 Combined coding style 201

8.3.4 Summary 206

8.4 Data types 206

8.4.1 The net and variable types 206

8.4.2 The logic data type 207

8.4.3 Limitation of the logic data type 208

8.4.4 New data types in SystemVerilog 208

8.5 Use of the signed data type 209

8.5.1 Overview 209

8.5.2 Signed number conversion 210

8.6 Bibliographic notes 211

8.7 Suggested experiments 211

8.7.1 Shift register with blocking and nonblocking assignments 211

8.7.2 Alternative coding style for the BCD counter 212

8.7.3 Alternative coding style for the FIFO buffer 212

8.7.4 Alternative coding style for the Fibonacci circuit 212

8.7.5 Dual-mode comparator 212

CONTENTS xiii

PART II EMBEDDED SOC I:

VANILLA FPRO SYSTEM

9 Overview of Embedded SoC Systems 215

9.1 Embedded SoC 215

9.1.1 Overview of embedded systems 215

9.1.2 FPGA-based SoC 216

9.1.3 IP cores 216

9.2 Development flow of the embedded SoC 217

9.2.1 Hardware–software partition 217

9.2.2 Hardware development flow 217

9.2.3 Software development flow 219

9.2.4 Physical implementation and test 219

9.2.5 Custom IP core development 219

9.3 FPro SoC Platform 220

9.3.1 Motivations 220

9.3.2 Platform hardware organization 221

9.3.3 Platform software organization 223

9.3.4 Modified development flow 224

9.4 Adaptation on the Digilent Nexys 4 DDR board 224

9.5 Portability 226

9.5.1 Processor Module and Bridge 226

9.5.2 MMIO subsystem 227

9.5.3 Video subsystem 227

9.6 Organization 228

9.7 Bibliographic notes 228

10 Bare Metal System Software Development 231

10.1 Bare metal system development overview 231

10.1.1 Desktop-like system versus bare metal system 231

10.1.2 Basic embedded program architecture 232

10.2 Memory-mapped I/O 233

10.2.1 Overview 233

10.2.2 Memory alignment 234

10.2.3 I/O register map 234

10.2.4 I/O address space of the FPro system 234

10.3 Direct I/O Register Access 235

10.3.1 Review of C pointer 235

10.3.2 C pointer for I/O register 236

10.4 Robust I/O register access 237

10.4.1 chu io map.h and chu io map.svh 237

10.4.2 inttypes.h 238

xiv CONTENTS

10.4.3 chu io rw.h 239

10.5 Techniques for low-level I/O operations 241

10.5.1 Bit manipulation 241

10.5.2 Packing and unpacking 242

10.6 Device Drivers 243

10.6.1 Overview 243

10.6.2 GPO and GPI drivers 243

10.6.3 Timer driver 245

10.6.4 UART driver 247

10.7 FPro utility routines and directory structure 248

10.7.1 Minimal hardware requirements 248

10.7.2 Utility routines 248

10.7.3 Directory structure 251

10.8 Test program 252

10.8.1 IP core verification routine 252

10.8.2 Programming with limited memory 252

10.8.3 Test function integration 252

10.8.4 Test program for the vanilla FPro system 253

10.8.5 Implementation 254

10.9 Bibliographic notes 255

10.10 Suggested experiments 255

10.10.1Chasing LEDs 255

10.10.2Collision LEDs 256

10.10.3Pulse width modulation 256

10.10.4System time display 256

11 FPro Bus Protocol and MMIO Slot Specification 257

11.1 FPro bus 257

11.1.1 Overview of the bus 257

11.1.2 SoC interconnect 258

11.1.3 FPro bus protocol specification 259

11.2 Interface with the bus 260

11.2.1 Introduction 260

11.2.2 Write interface and decoding 261

11.2.3 Read interface and multiplexing 263

11.2.4 FIFO buffer as an I/O register 264

11.2.5 Timing consideration 265

11.3 MMIO I/O core 266

11.3.1 MMIO slot interface specification 266

11.3.2 Basic MMIO I/O core construction 268

11.3.3 GPO and GPI cores 269

11.4 Timer core development 270

CONTENTS xv

11.4.1 Custom logic 270

11.4.2 Register map 271

11.4.3 Wrapping circuit for the slot interface 271

11.5 MMIO controller 272

11.5.1 chu io map.svh file 273

11.5.2 HDL code 273

11.5.3 Vanilla MMIO subsystem 275

11.6 MCS I/O bus and bridge 278

11.6.1 Overview of Xilinx MicroBlaze MCS 278

11.6.2 MicroBlaze MCS I/O bus 278

11.6.3 MCS-to-FPro bridge 279

11.7 Vanilla FPro system construction 281

11.8 Bibliographic notes 282

11.9 Suggested experiments 283

11.9.1 FPro bus with a byte-lane enable signal 283

11.9.2 Seven-segment control with a GPO core 283

11.9.3 GPIO core 283

11.9.4 Blinking-LED core 284

11.9.5 Timer core with a programmable period 284

11.9.6 Timer core with a run-once mode 284

12 UART Core 287

12.1 Introduction 287

12.1.1 Overview of serial communication 287

12.1.2 Overview of the UART 288

12.1.3 Oversampling procedure 288

12.2 UART construction 289

12.2.1 Conceptual design 289

12.2.2 Baud rate generator 290

12.2.3 UART receiver 291

12.2.4 UART transmitter 293

12.2.5 Top-level HDL code 295

12.3 UART core development 296

12.3.1 Register map 296

12.3.2 Wrapping circuit for the slot interface 297

12.4 UART driver 298

12.4.1 Class definition 299

12.4.2 Basic methods 300

12.4.3 ASCII code 301

12.4.4 Display methods 303

12.4.5 Test 305

12.5 Additional project ideas 305

xvi CONTENTS

12.5.1 Original serial port 305

12.5.2 Emulated serial port 305

12.5.3 Direct connection 306

12.5.4 USB-to-UART adaptor 306

12.5.5 Wireless adaptor 307

12.6 Bibliographic notes 308

12.7 Suggested experiments 308

12.7.1 UART-controlled chasing LEDs 308

12.7.2 Alternative read configuration 308

12.7.3 UART controller with a parity bit 308

12.7.4 UART core with an error status 309

12.7.5 Configurable UART core 309

12.7.6 UART core with automatic baud rate detection 309

12.7.7 UART core with enhanced automatic baud rate detection 310

12.7.8 UART core with an automatic baud rate and a parity

detection circuit 310

PART III EMBEDDED SOC II:

BASIC I/O CORES

13 Xilinx XADC Core 313

13.1 Overview of XADC 313

13.1.1 Block diagram 313

13.1.2 Configuration 314

13.2 XADC core development 315

13.2.1 XADC instantiation 315

13.2.2 Basic wrapping circuit design 316

13.2.3 Register map 318

13.2.4 HDL code 318

13.3 XADC core device driver 320

13.3.1 Class definition 320

13.3.2 Class implementation 321

13.3.3 Testing for the XADC core 322

13.4 Sampler FPro system 323

13.4.1 Testing procedure of an FPro core 323

13.4.2 System configuration 323

13.4.3 Hardware derivation 324

13.4.4 Software verification program 331

13.5 Additional project ideas 332

13.6 Bibliographic notes 333

13.7 Suggested experiments 333

13.7.1 Real-time voltage display 333

CONTENTS xvii

13.7.2 Potentiometer-controlled chasing LEDs 333

13.7.3 Potentiometer-controlled LED dimmer 333

13.7.4 Enhanced wrapping circuit: part I 333

13.7.5 Enhanced wrapping circuit: part II 333

14 Pulse Width Modulation Core 335

14.1 Introduction 335

14.1.1 PWM as analog output 335

14.1.2 Main characteristics 336

14.2 PWM design 336

14.2.1 Basic design 336

14.2.2 Enhanced design 337

14.3 PWM core development 339

14.3.1 Register map 339

14.3.2 Wrapped PWM circuit 340

14.4 PWM driver 341

14.4.1 Class definition 341

14.4.2 Class implementation 342

14.5 Testing 343

14.6 Project ideas 343

14.7 Suggested experiments 345

14.7.1 Police dash light 345

14.7.2 Rainbow night light 345

14.7.3 Enhanced PWM core: part I 345

14.7.4 Enhanced PWM core: part II 346

14.7.5 Enhanced GPIO core 346

14.7.6 Servo motor driver 346

15 Debouncing Core and LED-Mux Core 347

15.1 Debouncing Core 347

15.1.1 Multi-bit debouncing circuit 347

15.1.2 Register map and the slot wrapping circuit 350

15.1.3 Driver 351

15.1.4 Test 352

15.2 LED-mux core 352

15.2.1 Eight-digit seven-segment LED display multiplexing circuit 352

15.2.2 Register map and the slot wrapping circuit 354

15.2.3 Driver 355

15.2.4 Test 358

15.3 Project ideas 358

15.4 Suggested experiments 360

xviii CONTENTS

15.4.1 Area comparison of two debouncing circuits 360

15.4.2 Enhanced debouncing core: part I 360

15.4.3 Enhanced debouncing core: part II 360

15.4.4 Rotating square pattern revisited 360

15.4.5 Heartbeat pattern revisited 360

15.4.6 Stopwatch 360

15.4.7 Enhanced LED-mux core 361

16 SPI Core 363

16.1 Overview 363

16.1.1 Conceptual architecture 364

16.1.2 Multiple-device configuration 364

16.1.3 Basic timing 366

16.1.4 Operation modes 367

16.1.5 Undefined aspects 368

16.2 SPI controller 369

16.2.1 Basic design 369

16.2.2 FSMD construction 370

16.2.3 HDL implementation 370

16.3 SPI core development 374

16.3.1 Register map 374

16.3.2 Wrapping circuit for the slot interface 374

16.4 SPI driver 376

16.4.1 Class definition 376

16.4.2 Class implementation 377

16.5 Test 378

16.5.1 ADXL362 accelerometer 378

16.5.2 Test program 380

16.6 Project ideas 381

16.6.1 SD card 381

16.6.2 TFT LCD module 382

16.7 Bibliographic notes 382

16.8 Suggested experiments 382

16.8.1 Inclination sensing 382

16.8.2 “Tapping” detection 382

16.8.3 ADXL362 C++ class 383

16.8.4 Enhanced SPI controller: part I 383

16.8.5 Enhanced SPI controller: part II 383

16.8.6 “Automatic-read” ADXL362 wrapper: part I 383

16.8.7 “Automatic-read” ADXL362 wrapper: part II 384

16.8.8 Flash memory access 384

16.8.9 SPI slave controller: part I 384

CONTENTS xix

16.8.10SPI slave controller: part II 385

17 I2C Core 387

17.1 Overview 387

17.1.1 Electrical characteristics 388

17.1.2 Basic bus protocol 388

17.1.3 Basic timing 389

17.1.4 Additional features 390

17.2 I2C controller 391

17.2.1 Basic design 391

17.2.2 Conceptual FSMD construction 391

17.2.3 Output control logic 394

17.2.4 I2C bus clock generation 394

17.2.5 HDL implementation 395

17.3 I2C core development 400

17.3.1 Register map 400

17.3.2 Wrapping circuit for the slot interface 400

17.4 I2C driver 401

17.4.1 Class definition 401

17.4.2 Class implementation 402

17.5 Test 405

17.5.1 ADT7420 temperature sensor 405

17.5.2 Test program 406

17.6 Project idea 406

17.7 Bibliographic notes 407

17.8 Suggested experiments 407

17.8.1 Thermometer 407

17.8.2 ADT7420 C++ class 407

17.8.3 Enhanced I2C core 408

17.8.4 “Automatic-read” ADT7420 wrapper 408

17.8.5 I2C slave controller: part I 408

17.8.6 I2C slave controller: part II 408

18 PS2 Core 409

18.1 Introduction 409

18.1.1 PS2-device-to-host communication protocol and timing 410

18.1.2 Host-to-PS2-device communication protocol and timing 410

18.2 PS2 controller 411

18.2.1 Conceptual design 411

18.2.2 PS2 receiving subsystem 411

18.2.3 PS2 transmitting subsystem 415

xx CONTENTS

18.2.4 Complete PS2 system 419

18.3 PS2 core development 420

18.3.1 Register map 420

18.3.2 Wrapping circuit for the slot interface 421

18.4 PS2 driver 422

18.4.1 Class definition 422

18.4.2 Lower layer methods 422

18.4.3 PS2 initialization routine 423

18.4.4 Keyboard routine 425

18.4.5 Mouse routine 428

18.5 Test 430

18.6 Bibliographic notes 431

18.7 Suggested experiments 431

18.7.1 PS2 receiving subsystem with watchdog timer 431

18.7.2 Keyboard-controlled LED flashing circuit 432

18.7.3 Enhanced keyboard driver routine: part I 432

18.7.4 Enhanced keyboard driver routine: part II 432

18.7.5 Remote-mode mouse driver 432

18.7.6 Scroll-wheel mouse driver 432

19 Sound I: DDFS Core 433

19.1 Introduction 433

19.2 Design and implementation 434

19.2.1 Direct synthesis of a digital waveform 434

19.2.2 Direct synthesis of an unmodulated analog waveform 435

19.2.3 Direct synthesis of a modulated analog waveform 436

19.3 Fixed-point arithmetic 437

19.4 DDFS construction 438

19.5 DAC (digital-to-analog converter) 440

19.5.1 Conceptual design 440

19.5.2 HDL implementation 441

19.6 DDFS core development 442

19.6.1 Register map 442

19.6.2 Wrapping circuit for the slot interface 443

19.7 DDFS driver 444

19.7.1 Class definition 444

19.7.2 Class implementation 445

19.8 Test 447

19.9 Bibliographic notes 448

19.10 Suggested experiments 448

19.10.1Quadrature phase carrier generation 448

19.10.2Reduced-size phase-to-amplitude lookup table 448

CONTENTS xxi

19.10.3Additive harmonic synthesis 449

19.10.4Simple function generator 449

19.10.5Arbitrary waveform generator 449

19.10.6Sample-based synthesis 449

20 Sound II: ADSR Core 451

20.1 Introduction 451

20.2 ADSR envelope generator 452

20.2.1 Conceptual FSMD design 453

20.2.2 ASMD chart 453

20.2.3 HDL implementation 455

20.3 ADSR core development 457

20.3.1 Register map 457

20.3.2 Wrapped ADSR circuit 458

20.4 ADSR driver 460

20.4.1 Class definition 460

20.4.2 Configuration methods 461

20.4.3 calc note freq() method 463

20.4.4 play note() method 465

20.5 Test 465

20.6 Project idea 466

20.7 Bibliographic notes 467

20.8 Suggested experiments 467

20.8.1 RTTTL music player 467

20.8.2 ADSR envelope testing 467

20.8.3 Pushbutton piano 467

20.8.4 Keyboard piano 468

20.8.5 Keyboard recorder 468

20.8.6 Real-time mode ADSR generator 468

20.8.7 Real-time mode pushbutton piano 468

20.8.8 Merged DDFS and ADSR core 468

20.8.9 ADSR core with an automatic play FIFO buffer 468

20.8.10ADSR core for frequency modulation 468

PART IV EMBEDDED SOC III:

VIDEO CORES

21 Introduction to the Video System 471

21.1 Introduction to a video display 471

21.1.1 Conceptual video display 471

21.1.2 VGA interface 472

21.2 Stream interface 473

xxii CONTENTS

21.2.1 Random-access interface versus stream interface 473

21.2.2 Flow control of the stream interface 473

21.3 VGA synchronization 475

21.3.1 Basic operation of a CRT monitor 475

21.3.2 Horizontal synchronization 476

21.3.3 Vertical synchronization 478

21.3.4 Pixel clock rate 479

21.3.5 VGA synchronization circuit 480

21.4 Bar test-pattern generator 483

21.5 Color-to-grayscale conversion circuit 485

21.6 Demo video system 486

21.7 Advanced video standards 488

21.8 Bibliographic notes 489

21.9 Suggested experiments 489

21.9.1 Horizontal bar test-pattern generator 489

21.9.2 Color channel selection circuit 489

21.9.3 Enhanced color-to-grayscale conversion circuit 489

21.9.4 Square test-pattern generator: part I 489

21.9.5 Square test-pattern generator: part II 489

21.9.6 Square test-pattern generator: part III 490

21.9.7 Square test-pattern generator: part IV 490

22 FPro Video Subsystem 491

22.1 Organization of the video subsystem 491

22.1.1 Overview 491

22.1.2 Video controller 493

22.1.3 HDL of the video controller 494

22.2 FPro video IP core 495

22.2.1 Basic functionality 495

22.2.2 Blending operation 496

22.2.3 Core architecture 498

22.2.4 Alternative core partition 500

22.3 Example video cores 500

22.3.1 Bar test-pattern generator core 500

22.3.2 Color-to-grayscale conversion core 503

22.3.3 “Dummy” core 504

22.4 FPro video synchronization core 504

22.4.1 Line buffer 505

22.4.2 Enhanced video synchronization circuit 508

22.4.3 HDL code 511

22.5 Daisy video subsystem 512

22.5.1 Subsystem overview 512

CONTENTS xxiii

22.5.2 Interface to the video synchronization core 513

22.5.3 HDL code 513

22.5.4 Timing and performance considerations 517

22.6 Vanilla daisy FPro system 517

22.6.1 Clock management core 518

22.6.2 Updated chu io map.svh 519

22.6.3 HDL code 519

22.7 Video driver and test program 521

22.7.1 Updated chu io map.h and chu io rw.h files 521

22.7.2 GPV core driver 522

22.7.3 Test program 523

22.8 Bibliographic notes 524

22.9 Suggested experiments 525

22.9.1 Color channel selection core 525

22.9.2 Enhanced color-to-grayscale conversion core 525

22.9.3 Square test-pattern generator core 525

22.9.4 Alpha blending circuit 525

22.9.5 “Highlight” core 525

22.9.6 SVGA synchronization core 526

22.9.7 Configurable video synchronization core 526

22.9.8 Pipelined video subsystem 526

23 Sprite Core 527

23.1 Introduction 527

23.2 Basic design 528

23.2.1 Sprite RAM 528

23.2.2 In-region comparison circuit 529

23.3 Mouse pointer core 530

23.3.1 Pointer sprite RAM 530

23.3.2 Pixel generation circuit 531

23.3.3 Top-level design 532

23.4 “Ghost” character core 534

23.4.1 Multiple images and animation 534

23.4.2 Overview of the palette scheme 535

23.4.3 Ghost sprite RAM and the palette circuit 535

23.4.4 Animation timing circuit 537

23.4.5 Pixel generation circuit 537

23.4.6 Top-level design 540

23.5 Sprite core driver and test program 541

23.5.1 Sprite core driver 541

23.5.2 Test program 543

23.6 Bibliographic notes 544

xxiv CONTENTS

23.7 Suggested experiments 544

23.7.1 Mouse pointer control with PS2 core 544

23.7.2 Emulated ghost core 544

23.7.3 Palette circuit for the mouse pointer sprite 544

23.7.4 Sprite scaling circuit 544

23.7.5 Portrait mode display 545

23.7.6 Multiple-object generation 545

23.7.7 Animation speed control 545

23.7.8 Imitated blinking LED: part I 545

23.7.9 Imitated blinking LED: part II 545

23.7.10 Imitated blinking LED: part III 546

24 On-Screen-Display Core 547

24.1 Introduction to tile graphics 547

24.2 Basic OSD design 549

24.2.1 Text-mode display 549

24.2.2 Font ROM 550

24.2.3 Tile RAM 550

24.2.4 Basic organization 551

24.3 OSD core 552

24.3.1 Font ROM 552

24.3.2 Pixel generation circuit 553

24.3.3 Top-level design 555

24.4 OSD core driver and test program 557

24.4.1 OSD core driver 557

24.4.2 Testing program 558

24.5 Bibliographic notes 559

24.6 Suggested experiments 559

24.6.1 Rotating banner 559

24.6.2 Text console 559

24.6.3 Underline for the cursor 559

24.6.4 Portrait-mode display 560

24.6.5 Font scaling circuit: part I 560

24.6.6 Font scaling circuit: part II 560

24.6.7 Extended font 560

24.6.8 Tile-based ghost core 560

25 VGA Frame Buffer Core 561

25.1 Overview 561

25.2 Frame buffer core 562

25.2.1 FPGA memory consideration 562

CONTENTS xxv

25.2.2 Video memory module 562

25.2.3 Address translation 563

25.2.4 Pixel generation circuit 564

25.2.5 Register map 566

25.2.6 Top-level HDL code 566

25.3 Driver and test program 567

25.3.1 Frame buffer core driver 567

25.3.2 Geometrical modeling 568

25.3.3 Test program 570

25.4 Project ideas 570

25.5 Bibliographic notes 572

25.6 Suggested experiments 572

25.6.1 Virtual prototyping board panel 572

25.6.2 Virtual analog wall clock 572

25.6.3 Geometrical model functions 572

25.6.4 Simulated “Etch a Sketch” toy 572

25.6.5 Frame buffer core with 3-bit color depth 573

25.6.6 Frame buffer core with 1-bit color depth 573

25.6.7 QVGA frame buffer core 573

25.6.8 Line drawing hardware accelerator 573

25.6.9 Bidirectional frame buffer access: part I 573

25.6.10Bidirectional frame buffer access: part II 573

PART V EPILOGUE

26 What’s Next 577

References 581

Appendix A: Tutorials 585

A.1 Overview of Xilinx Vivado IDE 585

A.2 Short tutorial on Vivado hardware development 589

A.2.1 Create a design project 590

A.2.2 Add or create Xilinx IP core instances 591

A.2.3 Add or create HDL design files 591

A.2.4 Add a constraint file 592

A.2.5 Perform synthesis, implementation, and bitstream generation 593

A.2.6 Program an FPGA device 593

A.3 Short tutorial on Vivado simulation 594

A.3.1 Add or create HDL testbench 596

A.3.2 Perform initial simulation 596

A.3.3 Customize waveform display 597

xxvi CONTENTS

A.4 Tutorial on IP instantiation 597

A.4.1 Dual-clock FIFO core via HDL templates 598

A.4.2 IP Catalog utility 599

A.4.3 Generate a MicroBlaze MCS component 600

A.4.4 XADC IP core 601

A.4.5 Clock management IP core 602

A.5 Short tutorial on FPro system development 604

A.5.1 Derive FPro system hardware 605

A.5.2 Export hardware configuration 605

A.5.3 Derive software 605

A.5.4 Embed elf file into FPGA’s memory module and regenerate

bitstream 608

A.5.5 Set up the terminal emulator program 610

A.5.6 Program an FPGA device 610

A.6 Bibliographic notes 611

Topic Index 613

PREFACE

HDL (hardware description language) and FPGA (field-programmable gate array)
devices allow designers to quickly develop and simulate a sophisticated digital cir-
cuit, realize it on a prototyping device, and verify operation of the physical im-
plementation. As the capacity of FPGA devices continues to grow, a device can
accommodate an SoC (system on a chip) design, which integrates a processor, mem-
ory modules, I/O peripherals, and custom hardware accelerators into a single chip.
This book uses a “learning by doing” approach and illustrates the FPGA and HDL
development and design process by a series of examples in the SoC context.

The examples start with simple gate-level circuits, progress gradually through
the RT (register-transfer) level modules, and lead to a functional embedded system
with custom I/O peripherals and hardware accelerators. A simple SoC framework,
FPro (abbreviated from the book title “FPGA Prototyping”), is introduced as a
platform to integrate all the design examples together. An FPro system contains
a Xilinx MicroBlaze MCS soft-core processor, a video subsystem, and the MMIO
(memory-mapped I/O) subsystem that can incorporate custom I/O cores. Except
for the processor, all components are designed and coded from scratch. All the
hardware and software examples can be synthesized, compiled, and physically tested
on the prototyping board.

Focus and audience

Focus The primary focus of this book is on developing efficient and reliable digital
systems and effectively using HDL as a tool to describe the intended hardware.
The HDL language itself is not the main subject and its coverage is limited to a

xxvii

xxviii PREFACE

small synthesizable subset. The book uses about a dozen proven code templates
to provide the skeletal structures of various types of circuits. These templates are
general and can easily be integrated to construct a large, complex system. Although
this approach limits the “freedom” of syntactic expression, it helps us steer our effort
to develop an innovative and efficient hardware architecture.

After discussing the fundamentals in Part I, the book illustrates more compli-
cated and sophisticated designs in the SoC context. Along the way, readers will
learn many system-level concepts, including the derivation of a soft-core proces-
sor and IP (intellectual property) core based system, the partition and integration
of software and hardware, and the development of custom I/O peripherals and
hardware accelerators.

Although the book is intended for beginning designers, the examples follow strict
design guidelines and prepare readers for future endeavors. The coding and design
practice is “forward compatible,” by which we mean the following:

• The same practice can be applied to large designs in the future.
• The same practice can aid other system development tasks, including simu-
lation, timing analysis, verification, and testing.
• The same practice can be applied to ASIC technology and different types of
FPGA devices.
• The code can be accepted by synthesis software from different vendors.

Audience and prerequisites The intended audience is students in an advanced dig-
ital design course as well as practicing engineers who wish to learn FPGA- and
HDL-based developments. Readers need to have a basic knowledge of digital sys-
tems, usually a required course in electrical engineering and computer engineering
curricula, and a working knowledge of the C/C++ language. Prior exposure to
computer architecture, embedded system, and operating system is not necessary
but will be helpful.

Changes for the MicroBlaze MCS SoC Edition

This book is the successor edition of FPGA Prototyping by Verilog Examples: Xilinx
Spartan 3 Version. The SystemVerilog in the title reflects the fact that the book
uses the new language constructs of SystemVerilog. The most significant change is
that the new edition presents the hardware in the SoC context and covers many
system-level concepts. Instead of treating each module as an isolated entity, the
book integrates them into a single coherent SoC platform that allows readers to
explore both hardware and software “programmability” and develop complex and
interesting embedded system projects. The major revisions in this edition are the
following:

• Add four general-purpose peripheral modules: multi-channel PWM (pulse
width modulation), I2C controller, SPI controller, and XADC (Xilinx analog-
to-digital converter) controller.
• Introduce a music synthesizer constructed with a DDFS (direct digital fre-
quency synthesis) module and an ADSR (attack-decay-sustain-release) enve-
lope generator.
• Expand the original video controller into a complete stream-based video sub-
system that incorporates a video synchronization circuit, a test-pattern gen-

PREFACE xxix

erator, an OSD (on-screen-display) controller, a sprite generator, and a frame
buffer.
• Expand the coverage of timing model and provide an in-depth discussion of
blocking and nonblocking statements.
• Introduce basic concepts of software-hardware co-design with Xilinx Micro-
Blaze MCS soft-core processor.
• Provide an overview of the bus interconnect and interface circuit.
• Introduce basic embedded system software development.
• Suggest additional modules and peripherals for interesting and challenging
projects.

Logistics

FPGA prototyping board This book is prepared to be used with the Nexys 4 DDR
FPGA prototyping board manufactured by Digilent Inc. It contains an Artix FPGA
device and the needed I/O peripherals. All HDL codes and discussions of this book
can be applied to this board directly. The less expensive Basys 3 board can be
used as well. This board incorporates fewer I/O peripherals and contains a smaller
FPGA device.

Most peripherals discussed in the book are de facto industrial standards and
the corresponding HDL codes can be used for other FPGA boards as long as they
provide adequate analog interface circuits and connectors. Another option is to use
stand-alone I/O peripheral modules or to construct the circuits on a breadboard.

Software The book uses the Xilinx Vivado WebPack edition for hardware devel-
opment and Xilinx SDK for software development. Both software packages are free
and can be downloaded from Xilinx’s website.

PC accessories The design examples involve interfaces to several PC peripheral
devices, including a USB keyboard, a USB mouse, a VGA compatible monitor, and
a powered speaker. These accessories are widely available and probably can be
obtained from an old PC.

Book organization

The book is divided into four major parts. Part I introduces the elementary HDL
constructs and their hardware counterparts, and demonstrates the construction of
a basic digital circuit with these constructs. It consists of six chapters:

• Chapter 1 describes the skeleton of an HDL program, the basic language syn-
tax, and the logical operators. Gate-level combinational circuits are derived
with these language constructs.
• Chapter 2 provides an overview of an FPGA device, prototyping board, and
development flow.
• Chapter 3 introduces HDL’s relational and arithmetic operators and routing
constructs. These correspond to medium-sized components, such as com-
parators, adders, and multiplexers. Module-level combinational circuits are
derived with these language constructs.

xxx PREFACE

• Chapter 4 presents the codes for memory elements and the construction of
“regular” sequential circuits, such as counters and shift registers, in which the
state transitions exhibit a regular pattern.
• Chapter 5 discusses the construction of a finite state machine (FSM), which
is a sequential circuit whose state transitions do not exhibit a simple, regular
pattern.
• Chapter 6 presents the construction of an FSM with data path (FSMD). The
FSMD is used to implement the register-transfer (RT) methodology, in which
the system operation is described by data transfers and manipulations among
registers.
• Chapter 7 covers the methods to infer FPGA’s internal memory modules,
which can then be used to construct buffers and lookup tables.
• Chapter 8 provides an in-depth coverage of the timing model and data types
and discusses an alternate coding style. This chapter can be skipped without
affecting the remaining chapters.

Part II introduces the hardware construction of an FPro system and the devel-
opment of embedded software. A basic “vanilla” FPro system, which contains a
timer core, a UART (universal asynchronous receiver and transmitter) core, a GPI
(general-purpose input) core, and a GPO (general-purpose output) core, is used to
illustrate the key concepts of the process. It consists of four chapters:

• Chapter 9 introduces the SoC development and provides an overview of the
hardware organization and software structure of the FPro platform.
• Chapter 10 discusses the software development for an embedded system and
the basic coding techniques to access low-level I/O cores.
• Chapter 11 covers the FPro bus protocol and the bus interface circuit and
demonstrates the construction of basic GPI, GPO, and timer cores.
• Chapter 12 presents the construction of a more sophisticated UART core and
the derivation of software device drivers.

Part III applies the techniques from Parts I and II to develop an array of I/O
cores for the peripherals on the Nexys 4 DDR prototyping board. The I/O cores
are constructed from scratch with custom hardware and device driver. Part III
consists of nine chapters:

• Chapter 13 discusses the Xilinx device’s internal analog-to-digital converter
(XADC) and derives an interface circuit to retrieve the analog readings.
• Chapter 14 presents the design of a multi-channel PWM core and demon-
strates its application for LED brightness adjustment and servo motor con-
trol.
• Chapter 15 converts the seven-segment LED control circuit and the switch
debouncing circuit of Part I into I/O cores and integrates them into an FPro
system.
• Chapter 16 provides an overview of the SPI protocol, covers the design of
an SPI controller core, and shows its operation with Nexys 4 DDR board’s
ADXL362 three-axis accelerometer.
• Chapter 17 provides an overview of the I2C protocol, discusses the design of
an I2C controller core, and demonstrates its operation with Nexys 4 DDR
board’s ADT7420 temperature sensor.
• Chapter 18 covers the design of a PS2 controller core, which can be connected
to a PS2 mouse or a PS2 keyboard, and discusses the device driver routines

PREFACE xxxi

to read and decode keyboard scan codes and to obtain and process mouse
movement information and button activities.
• Chapter 19 discusses the construction of a DDFS (direct digital frequency syn-
thesis) controller core with amplitude and frequency modulation and demon-
strates its application as a music synthesizer.
• Chapter 20 augments the music synthesizer with an ADSR (attack-decay-
sustain-release) envelope generator core, which can produce sound mimicking
various music instruments.

Part IV discusses the development of a stream-based video subsystem. The
subsystem provides a framework to generate and mix multiple video sources into a
single video data stream for display. It consists of four chapters:

• Chapter 21 introduces the concept of stream data processing and constructs
a basic video system with a test-pattern generator, a color-to-grayscale con-
version circuit, and a frame synchronization circuit.
• Chapter 22 provides an overview of the FPro video subsystem framework and
the FPro video core structure and demonstrates the stream interface with a
line buffer.
• Chapter 23 presents the design of a sprite circuit, which adds an overlay of
small animated objects on the screen, and applies the technique for a mouse
pointer core and a “Pac-Man ghost character” core.
• Chapter 24 discusses the design of an OSD (on-screen-display) controller core,
which produces an overlay of text similar to the subtitles on a TV screen.
• Chapter 25 covers the design of a frame buffer, which maintains a bitmap for
one screen.

In addition to the main text chapters, the book includes an Appendix with four
tutorials. The tutorials consist of the following:

• Develop, synthesize, and implement a digital circuit on the Nexys 4 DDR
board with Vivado.
• Perform simulation of an HDL program with Vivado’s built-in simulator.
• Configure and instantiate Xilinx IP cores.
• Construct a basic FPro system with a Xilinx microBlaze MCS IP core and
develop software with the Xilinx SDK platform.

Companion Website

On an accompanying website (http://academic.csuohio.edu/chu p) additional infor-
mation is available, including the following materials:

• Errata
• HDL and C/C++ code listings and relevant files
• Links to synthesis and simulation software
• Links to reference materials

The printed book contains a number of color figures. They are shown as grayscale
in the printed version. These figures can be found in full color on the website as
well.

http://academic.csuohio.edu/chu_p

xxxii PREFACE

Errata The book is self-prepared, which means that the author has produced all
aspects of the text, including illustrations, tables, code listings, indexing, and for-
matting. As errors are always bound to happen, the accompanying website provides
an updated errata sheet and a place to report errors.

P. P. CHU

Cleveland, Ohio

February 2018

ACKNOWLEDGMENTS

Part of this material is based upon work supported by the National Science Foun-
dation under Grant No. 1504030. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation.

All trademarks used or referred to in this book are the property of their respective
owners.

P. P. Chu

xxxiii

PART I

BASIC DIGITAL CIRCUITS
DEVELOPMENT

CHAPTER 1

GATE-LEVEL COMBINATIONAL CIRCUIT

HDL (hardware description language) is used to describe and model digital sys-
tems. SystemVerilog is one of the major HDLs. In this chapter, we use a simple
comparator to illustrate the skeleton of a SystemVerilog program. The description
uses only logical operators and represents a gate-level combinational circuit, which
is composed of simple logic gates. In Chapter 3, we cover the remaining operators
and constructs and examine the register-transfer-level combinational circuits, which
are composed of intermediate-sized components, such as adders, comparators, and
multiplexers.

1.1 INTRODUCTION

1.1.1 Brief history of Verilog and SystemVerilog

Verilog is a hardware description language. It was developed in the mid-1980s and
later transferred to the IEEE (Institute of Electrical and Electronics Engineers).
The language is formally defined by IEEE Standard 1364 and the document is
known as the LRM (Language Reference Manual). The standard was ratified in
1995 (known as Verilog-1995) and significantly revised in 2001 (known as Verilog-
2001). A further revision, which contains a few minor changes, was published in
2005. Unless otherwise specified, the term “Verilog” used in the book is referred to
Verilog-2001.

FPGA Prototyping by SystemVerilog Examples, Pong P. Chu
Copyright c⃝ 2018 John Wiley & Sons, Inc.

1

2 GATE-LEVEL COMBINATIONAL CIRCUIT

Verilog was developed for gate-level and register-transfer-level design and mod-
eling and it did not include advanced high-level verification features, such as as-
sertions, functional coverage, and constrained random testing. SystemVerilog first
served as an extension of Verilog that supports the verification features. The ex-
tension was ratified by IEEE in 2005 and formally defined by IEEE Standard 1800.
It is referred to as SystemVerilog-2005.

In 2009, Verilog and SystemVerilog were combined into a single standard and
defined by IEEE Standard 1800. The merged languages are called SystemVerilog
and referred to as SystemVerilog-2009. The merge and name selection implies that
Verilog is now part of SystemVerilog and the Verilog language has ceased to exist.

The merge and naming scheme may cause some confusion. SystemVerilog-2005 is
a pure hardware verification language but the newer SystemVerilog (SystemVerilog-
2009 and beyond) is a hardware description and verification language that incor-
porates both design and verification features into a single framework.

Unless otherwise specified, the term “SystemVerilog” used in the book is re-
ferred to SystemVerilog-2009, which includes hardware description portion and is
a “superset” of the original Verilog.

1.1.2 Book coverage

SystemVerilog is an extremely complex language. Only a small subset of the lan-
guage constructs is intended to describe gate-level and register-transfer-level sys-
tems and even a smaller subset can be recognized by the synthesis software tool
and transformed into physical hardware.

The focus of this book is on hardware design rather than on the language. We
introduce the key SystemVerilog synthesis constructs by examining a collection of
examples. Although the syntax of SystemVerilog is somewhat like that of the C lan-
guage, its semantics (i.e., “meaning”) is based on concurrent hardware operation
and is totally different from the sequential execution of C. The subtlety of some lan-
guage constructs and certain inherent nondeterministic behavior of SystemVerilog
can lead to difficult-to-detect errors and can introduce a discrepancy between sim-
ulation and synthesis. The coding of this book follows a “better-safe-than-buggy”
philosophy. Instead of writing quick and short codes, the focus is on style and
constructs that are clear and synthesizable and can accurately describe the desired
hardware. The illustration of the covered language subset is shown in Figure 1.1.
Several advanced synthesis related topics are examined further in Chapter 8 and
more detailed SystemVerilog coverage may be explored through the sources listed
in the bibliographic section at the end of the chapter.

Besides merging the two standards, SystemVerilog-2009 made many enhance-
ments in the “hardware description portion” of the original Verilog-2001 standard.
We use some of these new features in the book. The book occasionally includesVerilog

FYI paragraphs to explain the difference between a new SystemVerilog-2009 feature and
the original Verilog-2001 construct. They are highlighted by a Verilog FYI side
bar, as shown at left. The main purpose of these paragraphs is to help the reader un-
derstand the older Verilog codes. Note that SystemVerilog is backward-compatible
with Verilog-2001 and thus these codes can be accepted by the SystemVerilog syn-
thesis tool as well. The paragraphs with side bars can be skipped without affecting
the subsequent reading.

GENERAL DESCRIPTION 3

SystemVerilog

Verilog

synthesizable subset
subset used in the book

Figure 1.1 Subset covered in the book.

Table 1.1 Truth table of 1-bit equality comparator

Input Output
i0 i1 eq

0 0 1
0 1 0
1 0 0
1 1 1

1.2 GENERAL DESCRIPTION

Consider a 1-bit equality comparator with two inputs, i0 and i1, and an output,
eq. The eq signal is asserted when i0 and i1 are equal. The truth table of this
circuit is shown in Table 1.1.

Suppose that we want to use basic logic gates, which include not, and, or, and
xor cells, to implement the circuit. One way to describe the circuit is to use a
sum-of-products format. The logic expression is

eq = i0 · i1 + i0′ · i1′

One possible SystemVerilog code is shown in Listing 1.1. We examine the language
constructs and statements of this code in the following subsections.

Listing 1.1 Gate-level implementation of a 1-bit comparator

module eq1

// I /O por t s
(

input logic i0 , i1,

output logic eq

);

// s i g n a l d e c l a ra t i on
logic p0, p1;

// body
// sum of two product terms
assign eq = p0 | p1;

4 GATE-LEVEL COMBINATIONAL CIRCUIT

(not i0) and (not i1)

i0 and i1

p0 or p1

p0

p1

i0

i1

eq

Figure 1.2 Graphical representation of a comparator program.

// product terms
assign p0 = ~i0 & ~i1;

assign p1 = i0 & i1;

endmodule

The best way to understand an HDL program is to think in terms of hardware
circuits. This program consists of three portions. The I/O port portion describes
the input and output ports of this circuit, which are i0 and i1, and eq, respectively.
The signal declaration portion specifies the internal connecting signals, which are
p0 and p1. The body portion describes the internal organization of the circuit.
There are three continuous assignments in this code. Each can be thought of as
a circuit part that performs certain simple logical operations. We examine the
language constructs and statements of this code in the next two sections.

The graphical representation of this program is shown in Figure 1.2. The three
continuous assignments constitute the three circuit parts. The connections among
these parts are specified implicitly by the signal and port names. The order of
the continuous statements is clearly irrelevant and the three statements can be
rearranged arbitrarily.

1.3 BASIC LEXICAL ELEMENTS AND DATA TYPES

1.3.1 Lexical elements

The basic SystemVerilog lexical elements include identifiers, keyword, white space,
and comment.

Identifier An identifier gives a unique name to an object, such as eq, i0, or p0. It
is composed of letters, digits, the underscore character (), and the dollar sign ($).
$ is usually used with a system task or function.

The first character of an identifier must be a letter or underscore. It is a good
practice to give an object a descriptive name. For example, mem addr en is more
meaningful than mae for a memory address enable signal.

SystemVerilog is a case-sensitive language. Thus, data bus, Data bus, and
DATA BUS refer to three different objects. To avoid confusion, we should refrain
from using the case to create different identifiers.

Keyword A Keyword is a predefined identifier that is used to describe language
constructs. In this book, we use boldface type for SystemVerilog keywords, such as
module and logic in Listing 1.1.

BASIC LEXICAL ELEMENTS AND DATA TYPES 5

White space White space, which includes the space, tab, and newline characters,
is used to separate identifiers and can be used freely in the SystemVerilog code. We
can use proper white spaces to format the code and make it more readable.

Comments A comment is just for documentation purposes and will be ignored by
software. SystemVerilog has two forms of comments. A one-line comment starts
with //, as in

// This i s a comment .

A multiple-line comment is encapsulated between /* and */, as in

/∗ This i s comment l i n e 1 .
This i s comment l i n e 2 .
This i s comment l i n e 3 . ∗/

In this book, we use italic type for comments, as in the examples above.

1.3.2 Data types used in the book

SystemVerilog supports a rich collection of data types. However, we only use a
very small restricted set in the book to describe the circuit. The set consists of the
following:

1. the logic type
2. the integer type
3. the tri type
4. the user-defined enumerate type

The logic type is the most commonly used data type in design. It represents
the value of a one-bit signal or the content of a one-bit memory element. The logic
type can assume a value from a four-state set :

• 0: for “logic 0”, or a false condition
• 1: for “logic 1”, or a true condition
• z: for the high-impedance state
• x: for an unknown value

The z value corresponds to the output of a tristate buffer. The x value is usually
used in modeling and simulation, representing a value that is not 0, 1, or z, such
as an uninitialized input or output conflict.

When a collection of signals is grouped into a bus or a collection of data bits is
grouped into a word, we can represent it using a one-dimensional array (vector), as
in

log ic [7:0] data1 , data2; // 8− b i t data
log ic [31:0] addr; // 32− b i t addre s s
log ic [0:7] reverse_data; // ascend ing index shou l d be avo ided

The one-dimensional array can be interpreted as a collection of independent bits
or an unsigned binary number. While the index range can be either descending
(as in [7:0]) or ascending (as in [0:7]), the former is preferred since the leftmost
position (i.e., 7) corresponds to the MSB (most significant bit) of a binary number.

A two-dimensional array is sometimes needed to represent a memory. For exam-
ple, a 4-by-32 memory (i.e., a memory has 4 words and each word is 32 bits wide)
can be represented as

6 GATE-LEVEL COMBINATIONAL CIRCUIT

…
…mem[0]

mem[1]

mem[2]

mem[3]

03031

Figure 1.3 Illustration of a two-dimensional array.

log ic [31:0] mem [0:3]; // 4−by−32 memory

Note that the outer dimension (i.e., [0:3]) is in ascending order, representing the
memory module depicted in Figure 1.3.

The integer type is a special case of one-dimensional logic array. Its size is
fixed at 32 bits and it is interpreted as a signed binary number. We use the inte-
ger type mainly for constants and parameters to represent threshold values, array
boundaries, etc.

In our book, the tri type is only used to infer the tristate buffer of a bidirectional
port and the user-defined enumerate type is used to represent the symbolic states
of an FSM (finite state machine). These types are discussed in more detail in
Sections 3.1.9 and 5.2.1.

1.3.3 Number representation

The value of a one-dimensional logic array is represented as a constant number.
Its general format is

[sign][size]’[base][value]

The [base] term specifies the base of the number, which can be the following:

• b or B: binary
• o or O: octal
• h or H: hexadecimal
• d or D: decimal

The [value] term specifies the value of the number in the corresponding base.
The underline character () can be included for clarity.

The [size] term specifies the number of bits in a number. It is optional. The
number is known as a sized number when a [size] term exists and is known as an
unsized number otherwise.

A sized number specifies the number of bits explicitly. If the size of the value
is smaller than the [size] term specified, zeros are padded in front to extend the
number, except in several special cases. The z or x value is padded if the MSB of
the value is z or x, and the MSB is padded if the signed data type is used. Several
sized number examples are shown in the top portion of Table 1.2.

An unsized number omits the [size] term. Its actual size depends on the host
computer but must be at least 32 bits. The ’[base] term can also be omitted if
the number is in decimal format. Assume that 32 bits are used in the host machine.
Several unsized number examples are shown in the bottom portion of Table 1.2.

PROGRAM SKELETON 7

Table 1.2 Examples of sized and unsized numbers

Number Stored value Comment

5’b11010 11010

5’b11 010 11010 ignored
5’o32 11010

5’h1a 11010

5’d26 11010

5’b0 00000 0 extended
5’b1 00001 0 extended
5’bz zzzzz z extended
5’bx xxxxx x extended
5’bx01 xxx01 x extended
-5’b00001 11111 2’s complement of 00001

’b11010 00000000000000000000000000011010 extended to 32 bits
’hee 00000000000000000000000011101110 extended to 32 bits
1 00000000000000000000000000000001 extended to 32 bits
-1 11111111111111111111111111111111 extended to 32 bits

1.3.4 Operators

SystemVerilog has several dozens operators and only a subset of them can be synthe-
sized. For the gate-level description, we need only the following bitwise operators:
~ (not), & (and), | (or), and ^ (xor). These operators infer basic gate-level cells.
Other operators are discussed in Section 3.1.

1.4 PROGRAM SKELETON

As its name indicates, HDL is used to describe hardware. When we develop or
examine a SystemVerilog code, it is much easier to comprehend if we think in
terms of “hardware organization” rather than “sequential algorithm.” Most HDL
codes in this book follow the basic skeleton shown in Listing 1.1. It consists of three
portions: I/O port declaration, signal declaration, and module body.

1.4.1 Port declaration

The module declaration and port declaration of Listing 1.1 are

module eq1

(

input logic i0 , i1 ,

output logic eq

);

The I/O declaration specifies the modes, data types, and names of the module’s
I/O ports. The simplified syntax is

8 GATE-LEVEL COMBINATIONAL CIRCUIT

module [module_name]

(

[mode] [data_type] [port_names],

[mode] [data_type] [port_names],

. . .

[mode] [data_type] [port_names]

);

The [mode] term can be input, output, or inout, which represent the input,
output, or bidirectional port, respectively. Note that there is no comma in the last
declaration. Since the book focuses on design description, we only use the logic
type for the input and output ports and use the tri type for bidirectional port

Verilog-1995 port declaration In Verilog-1995, port names, modes, and data types
are declared separately. For example, the preceding port declaration becomesVerilog

FYI module eq1 (i0 , i1 , eq); // on ly por t names in b r a c k e t s
// d e c l a r e mode
input i0, i1;

output eq;

// d e c l a r e data t ype
log ic i0, i1;

log ic eq;

We do not use this format in this book.

1.4.2 Signal declaration

The declaration portion specifies the internal variables and local parameters used
in the module. Since the variables frequently resemble the interconnecting wires
between the circuit parts, as shown in Figure 1.2, we call them “signals” when
appropriate.

The simplified syntax of signal declaration is

[data_type] [port_names];

Two internal signals are declared in Listing 1.1:

log ic p0, p1;

Note that an identifier does not need to be declared explicitly. The previous
declaration statement is actually optional. If a declaration is omitted, the signal
is assumed to be an implicit net. Although the code is more compact, it may
introduce subtle errors of misspelled identifiers. For clarity and documentation, we
always use explicit declarations in this book.

1.4.3 Program body

The program body of a synthesizable SystemVerilog module can be thought of as
a collection of circuit parts. These parts are operated in parallel and executed
concurrently. There are several ways to describe a part:

• Continuous assignment
• “Always block”
• Module instantiation

PROGRAM SKELETON 9

The first way to describe a circuit part is by using a continuous assignment . It
is useful for simple combinational circuits. Its simplified syntax is

assign [signal_name] = [expression];

Each continuous assignment can be thought as a circuit part. The signal on the
left-hand side is the output and the signals used in the right-hand-side expression
are the inputs. The expression describes the function of this circuit. For example,
consider the statement

assign eq = p0 | p1;

It is a circuit that performs the or operation. There are three continuous as-
signments in Listing 1.1 and they correspond to the three circuit parts shown in
Figure 1.2.

The second way to describe a circuit part is by using an always block. More
abstract procedural assignments are used inside the always block and thus it can be
used to describe a more complex circuit operation. The always block is discussed
in Section 3.2.

The third way to describe a circuit part is by using module instantiation. In-
stantiation creates an instance of another module and allows us to incorporate pre-
designed modules as subsystems of the current module. Instantiation is discussed
in Section 1.5.

1.4.4 Concurrent semantics

Although the “appearance” of an HDL program is somewhat like a traditional
programming language, such as C, its semantics is very different. The statements
in a C programs are run on a centralized processor and executed sequentially. The
statements of an HDL program are “autonomous” and executed concurrently. For
example, consider the statement

assign eq = p0 | p1;

It is executed as follows:

1. When a signal on the left-hand-side expression (i.e., p0 or p1) changes, the
statement is activated.

2. The left-hand-side expression (i.e., p0 | p1) is evaluated.
3. The evaluated result is passed to the right-hand signal after a delay (an im-

plicit delta delay or an explicitly specified delay).
4. Repeat the process continuously.

Note that the execution resembles the operation of a circuit.
The continuous assignments can be activated at the same time and run concur-

rently. Its behavior is totally different from a C program statement. We intention-
ally put the assignment

assign eq = p0 | p1;

as the first line of the program body in Listing 1.1. The arrangement will lead to
erroneous result in a traditional programming C language but has no effect on an
HDL program since the order of the continuous assignments.

The execution of always block and component instantiation are more complex
but can be reasoned in a similar way. In summary, the continuous assignment,

10 GATE-LEVEL COMBINATIONAL CIRCUIT

always block, and module instantiation can be treated as “concurrent building
constructs.” Each construct runs autonomously and continuously and the overall
operation of the code is executed in parallel.

1.4.5 Another example

We can expand the comparator to 2-bit inputs. Let the input be a and b and the
output be aeqb. The aeqb signal is asserted when both bits of a and b are equal.
The code is shown in Listing 1.2.

Listing 1.2 Gate-level implementation of a 2-bit comparator

module eq2_sop

(

input logic [1:0] a, b,

output logic aeqb

);

// i n t e r na l s i g n a l d e c l a r a t i on
logic p0, p1 , p2, p3;

// sum of product terms
assign aeqb = p0 | p1 | p2 | p3;

// product terms
assign p0 = (~a[1] & ~b[1]) & (~a[0] & ~b[0]);

assign p1 = (~a[1] & ~b[1]) & (a[0] & b[0]);

assign p2 = (a[1] & b[1]) & (~a[0] & ~b[0]);

assign p3 = (a[1] & b[1]) & (a[0] & b[0]);

endmodule

The a and b ports are now declared as a two-element array. Derivation of the
architecture body is similar to that of the 1-bit comparator. The p0, p1, p2, and p3

signals represent the results of the four product terms, and the final result, aeqb,
is the logic expression in the sum-of-products format.

1.5 STRUCTURAL DESCRIPTION

A digital system is frequently composed of several smaller subsystems. This allows
us to build a large system from simpler or predesigned components. SystemVerilog
provides a mechanism, known as module instantiation, to perform this task. This
type of code is called structural description.

An alternative to the design of the 2-bit comparator of Section 1.4.5 is to utilize
previously constructed 1-bit comparators as the building blocks. The diagram is
shown in Figure 1.4, in which two 1-bit comparators are used to check the two
individual bits and their results are fed to an and cell. The aeqb signal is asserted
only when both bits are equal. The corresponding code is shown in Listing 1.3.

Listing 1.3 Structural description of a 2-bit comparator

module eq2

(

input logic [1:0] a, b,

output logic aeqb

);

STRUCTURAL DESCRIPTION 11

e0

b(0)

eq_bit0_unit

i0

i1
eqeq1

a(0)

e1

eq_bit1_unit

i0

i1
eqeq1

a(1)

b(1)

aeqb

Figure 1.4 Construction of a 2-bit comparator from 1-bit comparators.

// i n t e r na l s i g n a l d e c l a ra t i on
logic e0, e1;

// body
// i n s t a n t i a t e two 1− b i t comparators
eq1 eq_bit0_unit (.i0(a[0]), .i1(b[0]), .eq(e0));

eq1 eq_bit1_unit (.eq(e1), .i0(a[1]), .i1(b[1]));

// a and b are equa l i f i n d i v i d u a l b i t s are equa l
assign aeqb = e0 & e1;

endmodule

The code includes two module instantiation statements. The simplified syntax
of module instantiation is

[module_name] [instance_name]

(

.[port_name]([signal_name]),

.[port_name]([signal_name]),

. . .

);

The first line of the statement specifies which component is used. The [module name]

term indicates the name of the module and the [instance name] term gives a
unique id for an instance. The remaining portion is port connection, which indi-
cates the connections between the I/O ports of an instantiated module (the lower-
level module) and the external signals used in the current module (the higher-level
module). This form of mapping is known as connection by name. The order of the
port-name and signal-name pairs does not matter.

In Listing 1.3, the first component instantiation statement is

eq1 eq_bit0_unit (.i0(a[0]), .i1(b[0]), .eq(e0));

The eq1 is the module name defined in Listing 1.1. The port mapping reflects the
connections shown in Figure 1.4. The component instantiation statement represents
a circuit that is encompassed in a “black box” whose function is defined in another
module.

This example demonstrates the close relationship between a block diagram and
code. The code is essentially a textual description of a schematic. Although it is
a clumsy way for humans to comprehend the diagram, it puts all representations
into a single HDL framework.

12 GATE-LEVEL COMBINATIONAL CIRCUIT

i0_n

i1
eq

i0

i1_n

p0

p1

Figure 1.5 Low-level diagram of a 1-bit comparator.

The port names and signal names are sometimes identical and these mappings
can be represented as “.*” in SystemVerilog. For example, the instantiation state-
ment

eq1 eq_unit (.i0(i0), .i1(i1), .eq(eq));

can be abbreviated as

eq1 eq_unit (.*);

and the instantiation statement

eq1 eq_unit (.i0(i0), .i1(i1), .eq(result));

can be abbreviated as

eq1 eq_unit (.*, .eq(result));

Connection by ordered list An alternative scheme to associate the ports and exter-
nal signals is connection by ordered list (sometimes also known as connection by
position). In this scheme, the port names of the lower-level module are omittedVerilog

FYI and the signals of the higher-level module are listed in the same order as the lower-
level module’s port declaration. With this scheme, the two module instantiation
statements in Listing 1.3 can be rewritten as

eq1 eq_bit0_unit (a[0], b[0], e0);

eq1 eq_bit1_unit (a[1], b[1], e1);

Although this scheme makes the code more compact, it is error prone, especially
for a module with many I/O ports. For example, if we modify the code of the
lower-level module and switch the order of two ports in the port declaration, all
the instantiated modules need to be corrected as well. If this is done accidentally
during code editing, the altered port order may be left undetected during synthesis
and lead to difficult-to-find bugs. We always use the connection-by-name scheme
in this book.

Verilog primitive Verilog includes a set of predefined primitives that can be instan-
tiated as modules. These primitives correspond to simple gate-level function blocks,Verilog

FYI such as the and, or, and not cells. For example, the eq1 circuit can be implemented
by using simple cells, as shown in Figure 1.5. The corresponding primitive-based
code is shown in Listing 1.4.

TOP-LEVEL SIGNAL MAPPING 13

Listing 1.4 Implementation with Verilog primitive

module eq1_primitive

(

input logic i0 , i1 ,

output logic eq

);

// i n t e rna l s i g n a l d e c l a ra t i on
logic i0_n , i1_n , p0 , p1;

// p r im i t i v e ga te i n s t a n t i a t i o n s
not unit1 (i0_n , i0); // i0 n = ˜ i0 ;
not unit2 (i1_n , i1); // i1 n = ˜ i1 ;
and unit3 (p0, i0_n , i1_n); // p0 = i0 n & i1 n ;
and unit4 (p1, i0 , i1); // p1 = i0 & i1 ;
or unit5 (eq, p0 , p1); // eq = p0 | p1 ;

endmodule

This form of code is very tedious and can easily be replaced with simple bitwise
logical operators. We do not use primitives in this book.

In addition to the predefined primitives, we can define customized primitives,
known as user-defined primitives (UDPs). For example, we can define a 1-bit Verilog

FYIcomparator circuit in a UDP, as shown in Listing 1.5.

Listing 1.5 UDP of a 1-bit comparator

primitive eq1_udp(eq, i0, i1);

output eq;

input i0, i1;

table
// i0 i1 : eq

0 0 : 1;

0 1 : 0;

1 0 : 0;

1 1 : 1;

endtable
endprimitive

A UDP is essentially a table-based description of a circuit. The same table can
also be described by a case statement (discussed in Section 3.5). We use the latter
approach and do not use UDPs in this book.

1.6 TOP-LEVEL SIGNAL MAPPING

When an HDL program is targeted to a physical device of a prototyping board,
the design is subject to a variety of constraints. One constraint is the locations of
the I/O pins. For example, the switches and LEDs of the board are “pre-wired”
to specific I/O pins of the FPGA device and they cannot be altered. The pin
assignment is defined in a constraint file, which is processed in conjunction with
HDL files.

The designs of this book use a constraint file that specifies the pin assignment
for all the I/O signals on the Nexys 4 DDR prototyping board. To use this file,
the top-level HDL module must have the same predefined I/O signal names. This
can be achieved by creating an HDL file to “wrap” the original design and map

14 GATE-LEVEL COMBINATIONAL CIRCUIT

test vector
generator eq2

uut

test_in_0
a aeqb

test_out

monitor
b

test_in_1

Figure 1.6 Testbench for a 2-bit comparator.

its original I/O signals to the prototyping board’s I/O signals. For example, we
name the I/O pins connected to the slide switches and LEDs as sw and led and
specify their pin assignment in the constraint file. For a physical implementation,
the a and b signals of the previous comparator circuit can be connected to the four
switches and the output, aeqb, can be connected to an LED. The corresponding
wrapping code is shown in Listing 1.6.

Listing 1.6 Top-level wrapping circuit

module eq2_top

(

input logic [3:0] sw,

output logic [0:0] led

);

// body
// i n s t a n t i a t e 2− b i t comparator
eq2 eq_unit (.a(sw[3:2]) , .b(sw[1:0]) , .aeqb(led [0]));

endmodule

The code essentially maps the “logical” port names of the comparator to the phys-
ical signals on the prototyping board. Note that the output led signal is defined as
a one-element vector to accommodate future expansion. The procedure to include
the constraint file is demonstrated in Appendix A.2.

1.7 TESTBENCH

After code is developed, it can be simulated in a host computer to verify the correct-
ness of the circuit operation and then synthesized to a physical device. Simulation
is usually performed within the same language framework. We create a special
program, known as a testbench, to mimic a physical lab bench.

The development of testbench and verification are beyond the scope of this book.
We just provide several examples to illustrate the basic concepts. The templates can
be used to simulate and observe inputs and outputs of a simple circuit. The sketch
of a 2-bit comparator testbench is shown in Figure 1.6. The uut segment is the unit
under test, the test vector generator segment generates testing input patterns,
and the monitor segment examines the output responses. A simple testbench for
the 2-bit comparator is shown in Listing 1.7.

TESTBENCH 15

Listing 1.7 Testbench for a 2-bit comparator

// The ‘ t ime s c a l e d i r e c t i v e s p e c i f i e s t ha t
// the s imu la t ion time uni t i s 1 ns and
// the s imu la t ion t imes tep i s 10 ps
‘timescale 1 ns/10 ps

module eq2_testbench;

// s i g n a l d e c l a ra t i on
logic [1:0] test_in0 , test_in1;

logic test_out;

// i n s t a n t i a t e the c i r c u i t under t e s t
eq2 uut

(.a(test_in0), .b(test_in1), .aeqb(test_out));

// t e s t vec to r generator
i n i t i a l
begin

// t e s t vec to r 1
test_in0 = 2’b00;

test_in1 = 2’b00;

200;

// t e s t vec to r 2
test_in0 = 2’b01;

test_in1 = 2’b00;

200;

// t e s t vec to r 3
test_in0 = 2’b01;

test_in1 = 2’b11;

200;

// t e s t vec to r 4
test_in0 = 2’b10;

test_in1 = 2’b10;

200;

// t e s t vec to r 5
test_in0 = 2’b10;

test_in1 = 2’b00;

200;

// t e s t vec to r 6
test_in0 = 2’b11;

test_in1 = 2’b11;

200;

// t e s t vec to r 7
test_in0 = 2’b11;

test_in1 = 2’b01;

200;

// s top s imu la t ion
$stop;

end
endmodule

The code consists of a module instantiation statement, which creates an instance
of the 2-bit comparator, and an initial block, which generates a sequence of test pat-
terns. The initial block is a special language construct, which is executed once when
simulation starts. The statements inside an initial block are executed sequentially.
Each test pattern is generated by three statements, as in the test vector 2:

test_in0 = 2’b01;

test_in1 = 2’b00;

200;

16 GATE-LEVEL COMBINATIONAL CIRCUIT

Figure 1.7 Simulated waveforms.

The first two statements specify the values for the test in0 and test in1 signals
and the third indicates that the two values will last for 200 time units. The last
statement, $stop, is a system function that stops the simulation and returns the
control to simulation software.

The code has no monitor. We can observe the input and output waveforms
on a simulator’s display, which can be treated as a “virtual logic analyzer.” The
simulated timing diagram of this testbench is shown in Figure 1.7.

Writing code for a comprehensive testbench requires detailed knowledge of Sys-
temVerilog and is beyond the scope of this book. However, this listing can serve
as a testbench template for other simple combinational circuits. We can substitute
the uut instance and modify the test patterns according to the new circuit.

1.8 BIBLIOGRAPHIC NOTES

In this book, a short bibliographic section is included in the end of each chapter to
provide the most relevant references for further exploration. A more comprehensive
bibliography can be found in the end of the book.

SystemVerilog is a very complex language. The standard is specified in IEEE
Standard for SystemVerilog–Unified Hardware Design, Specification, and Verifica-
tion Language, IEEE Std 1364-2001. Logic Design and Verification Using Sys-
temVerilog, by D. Thomas highlights the usage and capability of the language.
SystemVerilog for Design, second ed. by S. Sutherland et al. and SystemVerilog
for Verification by T. Fitzpatrick et al. provide detailed coverage on the design
and modeling portion and the verification portion of the language, respectively.
Derivation of the testbench for a large digital system is a difficult task. Writing
Testbenches Using SystemVerilog by J. Bergeron focuses on this topic.

1.9 SUGGESTED EXPERIMENTS

At the end of each chapter, some experiments are suggested as exercises. The exper-
iments help us better understand the concepts and provide a hands-on opportunity
to design and debug actual circuits.

SUGGESTED EXPERIMENTS 17

1.9.1 Code for gate-level greater-than circuit

Develop the HDL codes in Experiment 2.6.1. The code can be simulated and
synthesized after we complete Chapter 2.

1.9.2 Code for gate-level binary decoder

Develop the HDL codes in Experiment 2.6.2. The code can be simulated and
synthesized after we complete Chapter 2.

CHAPTER 2

OVERVIEW OF FPGA AND EDA SOFTWARE

An FPGA (field-programmable gate array) prototyping board is used to implement
the design examples and projects of this book. We provide an overview of FPGA
devices, the Nexys 4 DDR prototyping board, and the development process in this
chapter.

2.1 FPGA

2.1.1 Overview of a general FPGA device

An FPGA (field-programmable gate array) is a logic device that contains a two-
dimensional array of generic logic cells and programmable switches. The conceptual
structure of an FPGA device is shown in Figure 2.1. A logic cell can be configured
(i.e., programmed) to perform a simple function, and a programmable switch can be
customized to provide interconnections among the logic cells. A custom design can
be implemented by specifying the function of each logic cell and selectively setting
the connection of each programmable switch. Once the design and synthesis are
completed, we can use a simple adaptor cable to download the desired logic cell
and switch configuration to the FPGA device and obtain the custom circuit. Since
this process can be done “in the field” rather than “in a fabrication facility (fab),”
the device is known as field programmable.

FPGA Prototyping by SystemVerilog Examples, Pong P. Chu
Copyright c⃝ 2018 John Wiley & Sons, Inc.

19

20 OVERVIEW OF FPGA AND EDA SOFTWARE

logic
cell

C programmable
interconnect

LUT d q

clk

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

logic
cell

C C

C C

programmable switch

Figure 2.1 Conceptual structure of an FPGA device.

LUT-based logic cell A logic cell usually contains a small configurable combina-
tional circuit with a D FF (D-type flip-flop). The most common method to imple-
ment a configurable combinational circuit is an LUT (lookup table). An n-input
LUT can be considered as a small 2n-by-1 memory. By properly writing the mem-
ory content, we can use the LUT to implement any n-input combinational function.
The conceptual diagram of a five-input LUT-based logic cell is shown in the top
right of Figure 2.1. Note that the output of the LUT can be used directly or stored
to the D FF. The latter can be used to implement sequential circuits.

Macro cell Most FPGA devices also embed certain macro cells or macro blocks.
These are designed and fabricated at the transistor level, and their functionalities
complement the general logic cells. Commonly used macro cells include memory
blocks, combinational multipliers, clock management circuits, and I/O interface
circuits. Advanced FPGA devices may even contain one or more prefabricated
processor cores.

2.1.2 Overview of the Xilinx Artix-7 devices

This book uses Xilinx Artix-7 family FPGA devices and we provide a brief overview
of this device in this section.

Logic cell, slice, and CLB The most basic element of an Artix-7 device is a logic cell
(LC). A logic cell contains one LUT, which can be configured either as one 6-input
LUT or as two 5-input LUTs, and two FFs. In addition, a logic cell contains a
carry circuit, which is used to implement arithmetic functions, and a multiplexing
circuit, which is used to implement wide multiplexers. Some LUTs can also be
configured as a small distributed SRAM (static random access memory) module or
a shift register. To increase flexibility and improve performance, eight logic cells
are combined together with a special internal routing structure. In Xilinx terms,
four logic cells are grouped to form a slice, and two slices are grouped to form a
configurable logic block (CLB).

OVERVIEW OF THE DIGILENT NEXYS 4 DDR BOARD 21

Table 2.1 Devices in the Artix-7 family

Device Num. of Num. of BRAM Num. of Num. of
LCs 36-Kb BRAMs bits DSP slices MMCMs

XC7A15T 16,640 25 900K 45 5
XC7A35T 33,280 50 1,800K 90 5
XC7A50T 52,160 75 2,700K 120 5
XC7A75T 75,520 105 3,780K 180 6
XC7A100T 101,440 135 4,860K 240 6
XC7A200T 215,360 365 13,140K 740 10

Macro cell The Artix-7 device contains several types of macro cells. The MMCM
(mixed-mode clock manager) macro cell is a clock management core that can pro-
duce a wide range of frequencies from a single oscillator input, reduce clock skew,
and adjust the phase shift of a clock signal. The BRAM (block random access mem-
ory) macro cell is a 36K-bit dual-port synchronous SRAM that can be arranged in
various types of configurations. The DSP (digital signal processing) macro cell is
composed of a 25-by-18 binary multiplier and a 48-bit accumulator and is intended
to support computation intensive DSP algorithms. An IOB (input/output block)
macro cell is associated with a physical I/O pin of the FPGA device. It can be
configured to support a wide variety of I/O signaling standards and high-speed se-
rial data links. The XADC (Xilinx analog-to-digital converter) contains two 12-bit
analog-to-digital converters. In addition to these, the device may include special
blocks for the gigabit ethernet transceivers and the PCI express bus.

Devices in the Artix-7 family Although Artix-7 FPGA devices have similar types
of logic cells and macro cells, their densities differ. The family contains an array
of devices of various densities. The numbers of logic cells, 36K-bit BRAMs, DSP
slices, and MMCMs of the devices are summarized in Table 2.1. The Nexys 4 DDR
prototyping board used in the book contains an Artix XC7A100T device. The
simpler Basys 3 board contains a smaller Artix XC7A35T device

2.2 OVERVIEW OF THE DIGILENT NEXYS 4 DDR BOARD

The Digilent Nexys 4 DDR board is designed around an Artix XC7A100T device
and has an array of built-in peripherals. The layouts of the board are shown in
Figure 2.2.

The main components and connectors are as follows:

1. Power jack for optional external power supply
2. Shared USB JTAG and UART port
3. Artix XC7A100T FPGA device
4. Pmod port (JD)
5. Pmod port (JC)
6. Sixteen discrete LEDs
7. Sixteen slide switches
8. Temperature sensor
9. Eight-digit seven-segment LED display

22 OVERVIEW OF FPGA AND EDA SOFTWARE

2

3

4

5

1

1

6

7

14

12

11

10

15

8

9

13

1618

1

19 17

Figure 2.2 Nexys 4 DDR board.

10. Pmod port (JB)
11. Five pushbutton switches
12. Pmod port (JA)
13. Soft-core processor reset button
14. Pmod port with analog input (connected to XADC)
15. Audio jack
16. VGA port
17. Ethernet connector
18. USB host port (connected to USB mouse/keyboard)
19. Power-on switch

2.3 DEVELOPMENT FLOW

The simplified development flow of an FPGA-based system is shown in Figure 2.3.
To facilitate further reading, we follow the terms used in the Xilinx documentation.
The left portion of the flow is the refinement and programming process, in which a
system is transformed from an abstract textual HDL description to a device cell-
level configuration and then downloaded to the FPGA device. The right portion
is the validation process, which checks whether the system meets the functional
specification and performance goals. The major steps in the flow are as follows:

1. Design the system and derive the HDL file(s). We may need to add a separate
constraint file to specify certain implementation constraints, such as the pin
assignment and the clock frequency.

DEVELOPMENT FLOW 23

synthesis RTL
simulation

input
file

RTL code testbench

implemen-
tation

post-synthesis
simulation

static
timing

analysis
device

programming
post-

implementation
simulation

FPGA
chip

constraint

process

1

23

6

4 static
timing

analysis

5

Figure 2.3 Development flow.

2. Develop the testbench in HDL and perform RTL simulation. The RTL term
reflects the fact that the HDL code is done at the register-transfer level. The
simulation is performed to verify code syntax and to confirm that the HDL
description meets the intended specification and functions.

3. Perform synthesis. The synthesis process is generally known as logic synthesis,
in which the software transforms the HDL constructs to generic gate-level
components, such as simple logic gates and FFs.

4. Perform implementation. The implementation process consists of three smaller
subprocesses: translate, technology mapping, and placement and routing.
The translate subprocess merges multiple design files to a single netlist. The
technology mapping subprocess maps the generic gates in the netlist to FPGA’s
logic cells. The placement and routing subprocess derives the physical layout
inside the FPGA chip. It places the cells in physical locations and determines
the routes to connect various signals.

5. Examine the timing report. In the Xilinx flow, static timing analysis, which
determines various timing parameters, such as the setup time slack, is per-
formed at the end of the synthesis process and at the end of the implementa-
tion process. The latter is more accurate since the wire delays (correlated to
path’s length) are known and can be used for calculation.

6. Generate and download the programming file. In this process, a configuration
file, which is also known as a bit file, is generated according to the final netlist.
This file is downloaded to an FPGA device serially to configure the logic cells
and programmable switches. The physical circuit can be verified accordingly.

24 OVERVIEW OF FPGA AND EDA SOFTWARE

The optional post-synthesis simulation can be performed after synthesis, and the
optional post-implementation simulation can be performed after implementation.
Post-synthesis simulation uses a synthesized netlist to replace the RTL description
and checks the correctness of the synthesis process. Post-implementation uses the
final netlist, along with detailed wire delay timing data, to perform simulation.
Because of the complexity of the netlist, post-synthesis and post-implementation
simulation may require a significant amount of time. If we follow good design and
coding practices, the HDL code will be synthesized and implemented correctly. We
only need to use the RTL simulation to check the correctness of the HDL code
and use static timing analysis to verify the relevant timing information. Both
post-synthesis and post-implementation simulations may be omitted from the de-
velopment flow.

2.4 XILINX VIVADO DESIGN SUITE

We use Vivado Design Suite for hardware development in this book. Vivado is an
integrated design environment for the Xilinx FPGA product and incorporates all
the software tools discussed in Figure 2.3. A typical Vivado window is shown in Fig-
ure 2.4. A “watered-down” version, Vivado WebPack edition, can be downloaded
for free and is adequate for the designs and projects in this book.

As FPGA capability and capacity continue to grow, the EDA (electronic design
automation) tools evolve in a similar pace. The software is updated and patched
almost at a quarterly basis. While the detailed description of the vendor’s tools
is beyond the scope of this book, several short tutorials are provided in the Ap-
pendix. Appendix A.1 provides an overview of the Vivado Design Suite environ-
ment, Appendix A.2 illustrates the hardware development flow, and Appendix A.3
demonstrates the RTL simulation.

2.5 BIBLIOGRAPHIC NOTES

Relevant information for the Artix-7 device can be found in its data sheets. Xilinx’s
7 Series FPGAs Overview provides a high-level overview and its user guide, UG474
7 Series FPGAs Configurable Logic Block User Guide gives a detailed explanation of
the logic cells. The Design Warrior’s Guide to FPGAs by Clive Maxfield provides
a comprehensive review of FPGA-related issues.

The detailed layout and relevant information of the Nexys 4 DDR board can be
found in Nexys 4 DDR FPGA Board Reference Manual.

2.6 SUGGESTED EXPERIMENTS

2.6.1 Gate-level greater-than circuit

The greater-than circuit compares two inputs, a and b, and asserts an output when
a is greater than b. We want to create a 4-bit greater-than circuit from the bottom
up and use only gate-level logical operators. Design the circuit as follows:

SUGGESTED EXPERIMENTS 25

Tabs Flow Navigator area

Console area

Task area

Figure 2.4 Vivado window.

26 OVERVIEW OF FPGA AND EDA SOFTWARE

Table 2.2 Truth table of a 2-to-4 decoder with enable

Input Output
en a(1) a(0) bcode

0 – – 0000
1 0 0 0001
1 0 1 0010
1 1 0 0100
1 1 1 1000

1. Derive the truth table for a 2-bit greater-than circuit and obtain the logic
expression in the sum-of-products format. Based on the obtained expression,
derive the HDL code using only logical operators.

2. Derive a testbench for the 2-bit greater-than circuit. Perform a simulation
and verify the correctness of the design.

3. Use four switches as the inputs and one LED as the output. Synthesize the
circuit and download the configuration file to the prototyping board. Verify
its operation.

4. Use the 2-bit greater-than circuits and 2-bit equality comparators and a min-
imal number of “glue gates” to construct a 4-bit greater-than circuit. First
draw a block diagram and then derive the structural HDL code according to
the diagram.

5. Derive a testbench for the 4-bit greater-than circuit. Perform a simulation
and verify the correctness of the design.

6. Use eight switches as the inputs and one LED as the output. Synthesize the
circuit and download the configuration file to the prototyping board. Verify
its operation.

2.6.2 Gate-level binary decoder

An n-to-2n binary decoder asserts one of 2n bits according to the input combination.
The functional table of a 2-to-4 decoder with an enable signal is shown in Table 2.2.
We want to create several decoders using only gate-level logical operators. The
procedure is as follows:

1. Determine the logic expressions for the 2-to-4 decoder with enable and derive
the HDL code using only logical operators.

2. Derive a testbench for the decoder. Perform a simulation and verify the
correctness of the design.

3. Use two switches as the inputs and four LEDs as the outputs. Synthesize the
circuit and download the configuration file to the prototyping board. Verify
its operation.

4. Use the 2-to-4 decoders to derive a 3-to-8 decoder. First draw a block diagram
and then derive the structural HDL code according to the diagram.

5. Derive a testbench for the 3-to-8 decoder. Perform a simulation and verify
the correctness of the design.

SUGGESTED EXPERIMENTS 27

6. Use three switches as the inputs and eight LEDs as the outputs. Synthesize
the circuit and download the configuration file to the prototyping board.
Verify its operation.

7. Use the 2-to-4 decoders to derive a 4-to-16 decoder. First draw a block dia-
gram and then derive the structural HDL code according to the diagram.

8. Derive a testbench for the 4-to-16 decoder. Perform a simulation and verify
the correctness of the design.

