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Preface

The theory of elasticity is not applied mathematics. Solving differential equations and integral
equations is not the objective of the theory of elasticity. Students and young researchers, who
can use the modern commercial finite element method (FEM) software, are not attracted by the
classical approach of applied mathematics. This situation is not good. Students, young
researchers and young engineers skip directly from the elementary theory of the strength of
materials to FEM without understanding the basic principles of the theory of elasticity. The
author has seen many mistakes and judgement errors made by students, young researchers
and young engineers in their applications of FEM to practical problems. These mistakes
and judgement errors mostly come from a lack of basic knowledge of the theory of elasticity.
Firstly, this book provides the basic but very important essence of the theory of elasticity. Sec-
ond, many useful and interesting applications of the basic way of thinking are presented and
explained. Readers do not need special mathematical knowledge to study this book. They will
be able to understand the new approach of the theory of elasticity which is different from the
classical mathematical theory of elasticity and will enjoy solving many interesting problems
without using FEM.
The basic knowledge and engineering judgement acquired in Part I will encourage the

readers to enter smoothly into Part II in which various important new ways of thinking and sim-
ple solution methods for stress concentration problems are presented. Approximate estimation
methods for stress concentration will be very useful from the viewpoint of correct boundary
conditions as well as the magnitude and relative importance of numerical variables. Thus,
readers will be able to quickly find approximate solutions with practically sufficient accuracy
and to avoid fatal mistakes produced by FEM calculations, performed without basic knowledge
of the theory of elasticity and stress concentration.
The author believes with confidence that readers of this book will be able to develop

themselves to a higher level of research and structural design.





Preface for Part I: Theory of
Elasticity

Part I of this book presents a new way of thinking for the theory of elasticity. Several good
quality textbooks on this topic have already been published, but they tend to be too mathem-
atically based. Students can become confused by the very different approaches taken towards
the elementary theory of strength of materials (ETSM) and the theory of elasticity and, there-
fore, believe that these two cannot be easily used cooperatively.
To study this book, readers do not need special mathematical knowledge such as differential

equations, integral equations and tensor analysis. The concepts of stress field and strain are the
most important themes in the study of the theory of elasticity. However, these concepts are not
explored in sufficient depth within ETSM in order to teach engineers how to apply simple solu-
tions using the theory of elasticity to solve practical problems. As various examples included in
this book demonstrate, this book will help readers to understand not only the difference
between ETSM and the theory of elasticity but also the essential relationship between them.
In addition to the concepts of field, the concepts of infinity and infinitesimal are also import-

ant. It is natural that everyone experiences difficulties in imagining infinity or infinitesimal. As
a result, we must use caution when using unbounded or very small values, as the results are
sometimes unexpected. We should be aware that infinity and infinitesimal are relative
quantities.
Once the concepts of field and those of infinity and infinitesimal are mastered, the reader will

become a true engineer having true engineering judgement, even if they cannot solve the prob-
lems using lengthy and troublesome differential or integral equations. However, the existing
solutions must be used fully and care must be taken at times, very large values being treated
as infinitesimal and very small values as infinite values depending on the specific problem. It
will be seen in many cases treated in this book that small and large are only our impressions and
that approximation is not only reasonable but very important.





Part I Nomenclature

Stresses and strains in an orthogonal coordinate system
(x, y, z)

Normal stress (σx, σy, σz)
Normal strain (εx, εy, εz)
Shear stress (τxy, τyz, τzx)
Shear strain (γxy, γyz, γzx)

Stresses and strains in a cylindrical coordinate system
(r, θ, z)

Normal stress (σr, σθ, σz)
Normal strain (εr, εθ, εz)
Shear stress (τrθ, τθz, τzr)
Shear strain (γrθ, γθz, γzr)

Rotation ω
Normal stress and shear stress in a ξ-η-ζ coordinate
system

Normal stress (σξ, ση, σζ)
Shear stress (τξη, τηζ, τζξ)

Remote stress σ0, τ0 or σx∞, σy∞, τxy∞
Principal stresses σ1, σ2, σ3
Principal strains ε1, ε2, ε3
Direction cosines li, mi, ni (i = 1, 2, 3)
Pressure p or q
Concentrated force P, Q
Body force X, Y, Z or Fr, Fθ

Bending moment per unit length Mx, My

Twisting moment per unit length Mxy or Myx

Twisting moment (torsional moment) or temperature T
Torsional angle per unit length or crack propagation
angle

θ0

Surface tension S
Airy’s stress function or stress function in torsion ϕ
Stress concentration factor Kt

Stress intensity factor of Mode I KI

Stress intensity factor of Mode II KII

Stress intensity factor of Mode III KIII



Radius of circle or major radius of ellipse or crack
length

a

Minor radius of ellipse b
Notch root radius or radius of curvature in membrane ρ
Notch depth t
Young’s modulus E
Poisson’s ratio ν
Shear modulus G
Displacement in x, y, z coordinate system u, v, w

(Note: v looks the same as
Poisson’s ratio but is different.)

Displacement of membrane z
Width of plate W

xviii Part I Nomenclature



Preface for Part II: Stress
Concentration

Part II of this book is a compilation of the ideas on stress concentration which the author
has developed over many years of teaching and research. This is not a handbook of stress con-
centration factors. This book guides a fundamental way of thinking for stress concentration.
Fundamentals, typical misconceptions and new ways of thinking about stress concentration
are presented. One of the motivations for writing this book is the concern about a decreasing
basic knowledge of recent engineers about the nature of stress concentration.
It was reported in the United States and Europe [1–3] that the economic loss of fracture acci-

dents reaches about 4% of GDP. Fracture accidents occur repeatedly regardless of the progress
of science and technology. It seems that the number and severity of serious accidents is increas-
ing. The author was involved in teaching strength of materials and theory of elasticity for many
years in universities and industry and a recent impression based on the author’s experience is
that many engineers do not understand the fundamentals of the theory of elasticity.
How many engineers can give the correct answers to basic problems such as those in

Figures 1 and 2?
The theory of elasticity lectures are likely to be abstract and mathematical. This trend is evi-

dent in the topics and emphasis of many text books. Such textbooks may be useful for some
researchers but are almost useless for most practicing engineers. The author has been aware of
this problem for many years and has changed the pedagogy of teaching the theory of elasticity
by introducing various useful ways of thinking (see Part I). Engineers specializing in strength
design and quality control are especially requested to acquire the fundamentals of theory of
elasticity and afterwards to develop a sense about stress concentration. The subject is not dif-
ficult. Rather, as readers become familiar with the problems contained in this book, they will
understand that the problems of stress concentration are full of interesting paradoxes.
Few accidents occur because of a numerical mistake or lack of precision in a stress analysis.

A common attitude that analysis by FEM software will guarantee the correct answer and safety
is the root cause of many failures. Most mistakes in the process of FEM analysis are made at the



beginning stage of determining boundary conditions regarding forces and displacements. Even
worse, many users of FEM software are often not aware of such mistakes even after looking at
strange results because they do not have a fundamental understanding of theory of elasticity and
stress concentration.
The origin of fracture related accidents are mostly at the stress concentrations in a structure.

As machine components and structures have various shapes for functional reasons, stress con-
centration cannot be avoided. Therefore, strength designers are required to evaluate stress con-
centration correctly and to design the shape of structures so that the stress concentration does
not exceed the safety limits.
In this book, various elastic stress concentration problems are the main topic. The strains in

an elastic state can be determined by Hooke’s law in terms of stresses. In elastic–plastic con-
ditions, the relationship between stresses and strains deviates from Hooke’s law. Once plastic

O x

y

a

A

B

2σ0 2σ0

σ0

σ0

Figure 1 Stress concentration at a circular hole in a wide plate. How large is the maximum stress?
(See Figure 1.2 in Example problem 1.1 in Part II, Chapter 1.)
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Figure 2 A cylindrical specimen for comparison of the fracture strengths at a smooth part and a notched
part under tension (material is 0.13% annealed carbon steel, dimension unit is mm). Where does this
specimen fracture from by tensile test? (See Figure 14.7 in the Example problem 14.1 in Part II, Chapter 14.)

xx Preface for Part II: Stress Concentration



yielding occurs at a notch root, the stress concentration factor decreases compared to the elastic
value and approaches one. However, the strain concentration factor increases and approaches
the elastic value squared. Therefore, in elastic–plastic conditions, fatigue behavior is described
in terms of strain concentration. However, if the stress and strain relationship at the notch root
does not deviate much from Hooke’s law or work hardening of material occurs after yielding,
the description based on elastic stress concentration is valid. In general, in the case of high cycle
fatigue, it is reasonable and effective for the solution of practical problems to consider only the
elastic stress concentration. Thus, it is crucially important for strength design engineers to
understand the nature of elastic stress concentration.

References
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of the September 30, 1982, Report to NBS. National Bureau of Standards and National Information Service,
Washington, DC.
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Part II Nomenclature

Stresses and strains in orthogonal coordinate system (x, y, z) Normal stress (σx, σy, σz)
Normal strain (εx, εy, εz)
Shear stress (τxy, τyz, τzx)
Shear strain (γxy, γyz, γzx)

Stresses and strains in cylindrical coordinate system (r, θ, z) Normal stress (σr, σθ, σz)
Normal strain (εr, εθ, εz)
Shear stress (τrθ, τθz, τzr)
Shear strain (γrθ, γθz, γzr)

Normal stress and shear stress in ξ–η coordinate system Normal stress (σξ, ση),
shear stress τξη

Remote stress σ0, τ0 or σx∞, σy∞, τxy∞
Principal stresses σ1, σ2
Pressure p or q
Concentrated force P, Q
Stress concentration factor Kt

Stress concentration factor in elastic plastic state Kσ

Strain concentration factor in elastic plastic state Kε

Stress intensity factor of Mode I KI

Stress intensity factor of Mode II KII

Stress intensity factor of Mode III KIII

Radius of circle or major radius of ellipse a
Minor radius of ellipse (or Burger’s vector of dislocation) b
Notch root radius ρ
Notch depth t
Young’s modulus E
Poisson’s ratio ν
Shear modulus G
Displacement in x, y, z coordinate system u, v, w

Shape parameter of ellipse R= a + b a−b
Plastic zone size R
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Part I
Theory of Elasticity





1
Stress

1.1 Stress at the Surface of a Body

1.1.1 Normal Stress

When a body is in a liquid of pressure p, the surface of the body is subject to the same pressure p
everywhere, irrespective of the material. Naturally the pressure acts perpendicular to the curved
surface, unless the surface is subject to a frictional force. However, the action of frictional force
is impossible because a liquid cannot sustain shear stress.
We describe this condition by saying that the normal stress σn at the surface of the body

is −p, that is σn = −p. Thus, the normal stress is the force per unit area, when a force acts per-
pendicular to the surface (Figure 1.1).

1.1.2 Shear Stress

When a block, of weightW, is on a flat plate, there is a minimum force, F, which is necessary to
move the block (Figure 1.2). This force is expressed by the equation

F = μW 1 1

where μ is the coefficient of static friction. Hence, both the bottom surface of the block and the
top surface of the plate are subject to the same frictional force, F. In this situation both surfaces
are subject to a shear stress τ. Denoting the average magnitude of the shear stress by τave,
we have
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τave =
F

A
1 2

where A is the area of the bottom surface of the block. In this way we can use the term shear
stress to express the tangential force per unit area.

1.2 Stress in the Interior of a Body

If we consider the small area, ΔA, in the body shown in Figure 1.1, we can see that it is sub-
jected to a force acting on the area ΔA. However, we cannot talk about the normal stress σn at
that point yet, because we do not know either the magnitude or the direction of the internal
force. However, supposing that there exists a normal component of the internal force, ΔFn,
we can use this to define the normal stress σn at that same point in the same way as we did
at the surface by the limiting expression

σn = lim
ΔA 0

ΔFn

ΔA
1 3

p

ΔA

Figure 1.1

w

F

Figure 1.2
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Similarly, supposing there exists a tangential component ΔFt of the internal force, we can
define the shear stress, τ, at ΔA by a similar equation,

τ = lim
ΔA 0

ΔFt

ΔA
1 4

In the previous case shown in Figure 1.1 we see that, irrespective of the position and direction
of the area, the only force acting is the normal one. That is to say, σn = −p and τ= 0 everywhere
in the body. However, in general problems the conditions are different and the stress varies
from point to point and the stress field is not uniform.
When we first meet a problem, we usually have no information about the stress state inside

the body, as only the stresses at the surface are known. Hence, we can only use this information
to solve the problem. The stresses at the surface of the body are the keys to solving the problem.
These, already known stresses (or deformations), are called boundary conditions.
So nowwe can start to use the theory of elasticity using boundary conditions, but how can we

use them to obtain the stresses inside the body?

1.3 Two Dimensional Stress, Three Dimensional Stress and Stress
Transformation

1.3.1 Normal Stress

When a plate of uniform thickness having an arbitrary shape (Figure 1.3) is subjected to a con-
stant pressure, p, along its periphery Γ, the normal stress σn and the shear stress τ at the per-
iphery Γ are σn = −p and τ= 0, respectively. However, we still cannot determine the values of
σn and τ at an arbitrary point A. How to find the stresses at point A will be explained later.
Now let us consider a rectangular plate of uniform thickness, as illustrated in Figure 1.4. Its

boundary conditions are σn = σx0 along the side BC and AD, σn = σy0 along the side AB and CD

A

p

p

Γ

Figure 1.3
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and τ = 0 along all sides. The usual method of describing these conditions is to say, σx = σx0,
τxy = 0 along BC and AD, and σy = σy0, τyx = 0 along AB and CD. The subscripts, x and y in σx
and σy mean that σx and σy are normal stresses in the directions of the x and y axes respectively.
The order of the double subscripts, like xy in τxy, have a universal meaning. The first indicates
the face on which the stress acts and the second indicates the direction of the shear stress. Thus,
τxy acts on a face normal to the x axis and acts in the y direction.
If σy0 = 0, we can easily see that σx = σx0 at an arbitrary point, E, inside the plate. Likewise, if

σx0 = 0, then σy = σy0 everywhere in the plate. Therefore, when either σx0 or σy0 is not zero, we
can easily see that σx = σx0 and σy = σy0 in the plate. This interpretation comes from considering
the equilibrium of forces within the plate.

1.3.2 Shear Stress

Considering the case where shear stresses are the only boundary conditions, as shown in
Figure 1.5, how do we find the stresses inside the plate? From the equilibrium of forces we
can see that if τyx0 acts along AB in the negative x direction, τyx0 along CD must act in the
positive x direction, otherwise the plate would not be in equilibrium. By the same reasoning
we can see that the shear stresses along BC and AD will act in opposite directions.
In addition, the plate must be in equilibrium from the viewpoint of rotation as well. There

must be no effective moments to cause rotation. This is known as the condition of rotation.
Considering the condition of rotation we can use any z axis which pierces the plate. If we
choose the z axis which pierces the plate at the point, A, then the equilibrium condition for
rotation is written as follows.

BC τxy0 AB−CD τyx0 AD= 0 1 5

and as CD=AB and AD=BC then this simplifies to

τxy0 = τyx0 1 6

D

E

O

y

x

BA

C

σy0

σy0

σx0σx0

Figure 1.4
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This is simple, but a very important relationship. Equation (1.6) means that shear stresses exist
only as shown in Figure 1.6a, b. All the shear stresses are equal in magnitude and a shear stress
cannot exist only on a single side (e.g. AB) or only on a couple of parallel sides (e.g. a couple of
AB and CD). This rule also holds inside the plate. Although students and engineers sometimes
underestimate this rule, an exact understanding of it will help to solve advanced problems later.

1.3.3 Stress in an Arbitrary Direction

1.3.3.1 Two Dimensional Stress Transformation

If the boundary conditions of a rectangular plate are like those shown in Figure 1.7, we can
immediately see that the stresses at an arbitrary point inside the plate are σx = σx0, σy = σy0
and τxy = τxy0. However, these stresses are those defined in the x-y coordinate system. In many
practical problems the stresses in different coordinate systems are needed.
Now let us determine the stresses σξ, ση and τξη defined in the coordinate system (ξ, η) which

is rotated by the angle θ from the x axis in the counterclockwise direction.
If we imagine a right angle triangle ABC as in Figure 1.8, inside the rectangular plate of

Figure 1.7, the stresses σx, σy and τxy along the sides AB and AC are σx = σx0 (along AC)
σy = σy0 (along AB) and τxy = τxy0 (along AB and AC) respectively. For the sake of simplicity
we take the length of the side BC to be unity, that is BC = 1.

D

B OA

(a) (b)

C D
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C
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x

τ τ

τ τ

Figure 1.6
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Using the direction cosines of the ξ and η axes with respect to the x and y axes, we can
express the equilibrium conditions of the triangle ΔABC in the ξ and η directions.
Table 1.1 defines the direction cosines as follows:

l1 = cosθ, m1 = sinθ

l2 = −sinθ, m2 = cosθ

σξ 1 1 = σx l1 l1 + σy m1 m1 + τxy l1 m1 + τxy m1 l1 1 7

τξη 1 1 = σx l1 l2 + σy m1 m2 + τxy l1 m2 + τxy m1 l2 1 8

In the above equations, the quantities in the parentheses are forces acting on the side of the
triangle, (stress ∙ area), and the direction cosines that follow the parentheses are the operators for

BA

O

C

y

x

σε
ξ

η

θ

τxy

τξη

σx

σy

τxy

Figure 1.8

τxy0
τxy0

τxy0 τxy0

σy0

σy0

σx0σx0
B

x

y

A

O

C

Figure 1.7

8 Theory of Elasticity and Stress Concentration



obtaining the components of the forces. A common mistake students make when using the
stress transformation is that they multiply stresses and direction cosines only once. This is
because they use the wrong condition of stress instead of force1 when they are trying to solve
for equilibrium conditions.
Arranging Equations 1.7 and 1.8 and adding that for ση gives:

σξ = σxl1
2 + σym1

2 + 2τxyl1m1 1 9

ση = σxl2
2 + σym2

2 + 2τxyl2m2 1 10

τξη = σxl1l2 + σym1m2 + τxy l1m2 + l2m1 1 11

Rewriting these equations using the angle θ in Figure 1.8 gives:

σξ = σx cos2θ + σy sin
2θ + 2τxy cosθ sinθ

ση = σx sin
2θ + σy cos2θ−2τxy cosθ sinθ

τξη = σy−σx cosθ sinθ + τxy cos2θ−sin2θ

1 12

When students look at Equation 1.12, they often forget that it was derived using the equi-
librium condition of forces. This is a very important equation and later we will use it often to
solve various problems.
On deriving Equation 1.12, we usually draw a diagram similar to that in Figure 1.8. How-

ever, it should be noted that in Figure 1.8 we know the stresses on two sides (AB, AC) of the
triangle and on only one side, (BC), is the stress unknown.
If we draw the figure like Figure 1.9 instead of Figure 1.8 then we cannot derive

Equation 1.12 because we know only the stresses on the side (AB) and we do not know the
stresses σξ, ση and τξη acting on BC and AC. This is another mistake that confuses many
students.
Equation 1.12 was derived assuming that the plate of Figure 1.7 was subjected to a uniform

stress. However, as we did not talk about the size of the plate we can also use Equation 1.12 in
the cases of non-uniform stress, simply by imagining a sufficiently small rectangle inside the
arbitrarily shaped plate, over which the stresses do not vary. As we shall see, Equation 1.12 is
used often in such cases.

Table 1.1 Direction cosine

x y

ξ l1 m1

η l2 m2

1 The author believes that the teaching of Mohr’s circle is another major cause of misunderstanding. This is because the
use of Mohr’s circle is usually taught after the derivation of Equation 1.12 and cosine and sine appear only once in its
analysis.
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Example problem 1.1
When an arbitrarily shaped plate of uniform thickness is subjected to a constant pressure, p
along its periphery, Γ, verify that the normal stress, σ, and the shear stress, τ, are σ = −p
and τ = 0 throughout the plate (Figure 1.10).

Solution
We cannot solve this problem by dividing the plane into small parts. We will solve the problem
by visualizing the plate as an arbitrary shaped part within a larger, known plate instead.
Look at Figure 1.11. We know that the plate is subject to a constant pressure p along its per-

iphery.We also know that the stresses inside the plate will be σx = −p, σy = −p and τxy = 0 when
the x–y coordinate system is used. Now, drawing in the periphery Γ, as shown with the dotted
line in Figure 1.11, we take the ξ axis to be normal to periphery at the arbitrary point B on the
periphery Γ. Now we take an arbitrary point on the axis, the point O , and define a ξ-η

BA

C

η
ση

τξη

τξη

τxy σy

ξ

σε

θ

O

y

x

Figure 1.9
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p
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coordinate system with the origin at the point O . When the angle between the x axis and the ξ
axis is θ, the stresses at the point B can be obtained from Equation 1.12 and are as follows:

σξ = σxcos
2θ + σysin

2θ + 2τxycosθ sinθ = −pcos2θ−psin2θ + 0 = −p

τξη = σy−σx cosθ sinθ + τxy cos2θ− sin2θ

= −p+ p cosθ sinθ + 0 cos2θ− sin2θ = 0

Point B is not a special point on the periphery of the plate and so we can see that the normal
stress and shear stress will be the same everywhere along the periphery. This means that the
conditions on the boundary of the plate in Figure 1.10, correspond to those of the periphery
of the plate indicated by Γ, described within the rectangular plate in Figure 1.11. Consequently,
to determine the stress state at point A in Figure 1.10, we have only to think of the stress state of
the identical point A in Figure 1.11.
As was noted before, point B is not a special point in the rectangular plate and so the stresses

at point A can be expressed in the same way as those at point B. Thus we can see that the stres-
ses will be σ = −p and τ = 0 at any point and direction within Γ.
This example demonstrates how we can determine the stress state inside a plate, knowing

only the boundary conditions and the stress transformation equation. We should notice the fact
that we did not mention the material of the plate besides its uniform thickness. Never forget the
conclusion gained from this problem. It is very important not only in elasticity but also in vari-
ous problems of plasticity.

1.3.3.2 Three Dimensional Stress Transformation

This section describes the method to find the stresses in an arbitrary direction, when a solid,
brick-like body is subjected to a uniform stress (Figure 1.12).
Suppose that the stresses σx, σy, σz, τxy, τyz, τzx (note: τyx = τxy, τyz = τzy, τxz = τzx) are known

and the stresses in the ξ−η−ζ coordinate system are required. We denote the direction cosines
between these two coordinate systems as shown in Table 1.2.

B
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η θ
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Γ

Figure 1.11

11Stress



Even before we find the solution it is possible to guess the form of the final solution. It is
similar to the method adopted for the two dimensional (2D) case (Section 1.3.3.1) but is length-
ier. So, before taking the lengthy approach, let us look at Equations 1.9 to 1.11 carefully, spe-
cifically by paying attention to the regularity of the direction cosines. In addition, we should be
aware of the fact that the 2D case is just a special case of a 3D case, that is in 2D cases the z and
ζ axes are perpendicular to the 2D plane (x–y and ξ–η planes). Thus, from these considerations
and Equations 1.9 to 1.11, we can predict the following equations for the 3D case:

σξ = σxl1
2 + σym1

2 + σzn1
2 + 2 τxyl1m1 + τyzm1n1 + τzxn1l1

τξη = σxl1l2 + σym1m2 + σzn1n2 + τxy l1m2 + l2m1

+ τyz m1n2 +m2n1 + τzx n1l2 + n2l1

τξζ = σxl1l3 + σym1m3 + σzn1n3 + τxy l1m3 + l3m1

+ τyz m1n3 +m3n1 + τzx n1l3 + n3l1

1 13

Actually, Equation 1.13 is an exact expression. The orthodox, and lengthy, derivation of
Equation 1.13 was obtained by considering a triangular pyramid (tetrahedron) instead of the
triangle that was used for the 2D case (Figure 1.8). We take the ξ axis to be perpendicular
to the plane ABC and the area of ΔABC to be 1. Denoting the areas of ΔOBC, ΔOAC and

τxy

τyz

τzx

τxz τxy

τyz

σy

σz

σx

z

y

xO

Figure 1.12

Table 1.2 Direction cosines

x y z

ξ l1 m1 n1
η l2 m2 n2
ζ l3 m3 n3
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ΔOAB by Ax, Ay and Az, respectively, we can see that Ax = l1, Ay =m1 and Az = n1. Using these
relationships and by following a similar method based on the equilibrium condition of force, we
can obtain Equation 1.13.
How the stresses of Equation 1.13 act on the plane ABC is illustrated in Figure 1.13. In

Figure 1.14, we denote σξ by σ and express the resultant shear stress, τ, on the plane ABC
(ξ–η plane), as follows:

τ2 = τξη
2 + τξζ

2 1 14

We also express the resultant stress, p, on the ξ–η plane by the following equation:

p2 = σ2 + τ2 1 15

B

Q

A

C Ax

Az

Ay σx

σz

σy

ξ(l1, m1, n1)τxy
τyx

τyz
τyz

τzx

τzx

y

z

x

Figure 1.13

σ

σ

τξζ

τξη

τ

τ

ξ

Q
p

Figure 1.14

13Stress



When τ = 0, we have p= σ and the resultant force acts perpendicular to the ξ–η plane. In this
case, we call ξ a principal axis. As will be shown later, there are three principal axes.

1.3.4 Principal Stresses

1.3.4.1 Principal Stresses in 2D Stress State

By looking at Figures 1.7 and 1.8, we can see that in general there will be two kinds of stresses
acting on the plane BC: normal stress σξ and shear stress τξη. However, if we vary the angle θ
continuously from 0 to 2π, we will find that τξη vanishes at certain values of θ.
In Figure 1.15, p is the resultant stress, where p2 = σξ2 + τξη2. If we take the length BC = 1

then we have AB =m1 and AC = l1. Now, by considering the equilibrium conditions of the
element ABC and denoting the x and y components of the force acting on the side BC by px and
py, respectively, we have:

px = σxl1 + τxym1

py = τxyl1 + σym1
1 16

As was mentioned before, at certain values of θ, τξη vanishes, so we can write

px = σξl1

py = σξm1
1 17

because p = σξ at those special angles.

B
A

C
p

τξη
σξσx

σy

ξ

τxy

τxy

η

θ

y

x

Figure 1.15

14 Theory of Elasticity and Stress Concentration



From Equations 1.16 and 1.17 and denoting σξ by σ, we have

σxl1 + τxym1 = σl1

τxyl1 + σym1 = σm1
1 18

Rewriting Equation 1.18 gives

σx−σ l1 + τxym1 = 0

τxyl1 + σy−σ m1 = 0
1 19

And by considering the properties of the direction cosines so that we know l1 and m1 cannot
both be zero at the same angle, (i.e. l1

2 +m1
2 0) then the following equation must hold.

σx−σ τxy

τxy σy−σ
= 0 1 20

Solving Equation 1.20 gives us two roots of σ. Denoting these roots by σ1 and σ2, we obtain,

σ1,σ2 =
σx + σy ± σx−σy

2
+ 4τxy2

2
1 21

σ1 and σ2 are the principal stresses (we define σ1 > σ2). In a 2D stress state, such as this, there
are usually two principal stresses.
From the above discussion, the principal stresses are the normal stresses acting on the

planes with no shear stress. We can see that the process to obtain Equation 1.21 from
Equation 1.16 is identical with that to obtain the eigenvalues in linear algebra. This means that
σ1 and σ2 correspond to the eigenvalues and, therefore, are the maximum and minimum normal
stresses, respectively. The directions they act in are called the principal axes. The direction
cosines for the principal axes can be obtained from Equation 1.19, that is

m1

l1
= tanθ =

σ−σx
τxy

or θ = tan−1 σ−σx
τxy

1 22

In linear algebra, two eigenvectors, (i.e. the two principal axes), orthogonally intersect one
another. This means l1,m1 l1 ,m1 = 0. The same result can be derived by differentiating σξ
with respect to θ in Equation 1.12 and using the condition dσξ dθ = 0. However, the author
recommends readers to memorize Equation 1.20 rather than Equation 1.21 or the conventional
derivation by dσξ dθ= 0, because Equation 1.20 is not only easy to memorize but it also helps
us to see the physical meaning in a compact way. This method for the interpretation of the phys-
ical meaning of the principal stresses helps us to move easily into 3D problems, in which the
conventional method of reduction becomes very lengthy and boring.
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Example problem 1.2
Verify that the principal stresses σ1 and σ2 are the maximum and minimum values which nor-
mal stress can take.

Solution
Denoting the direction cosines between the principal axis 1 and the axes (ξ, η) by (l1, l2) and the
direction cosines between the principal axis 2 and (ξ, η) by (m1, m2), from Equation 1.9:

σξ = σ1l1
2 + σ2m1

2 ≤ σ1l1
2 + σ1m1

2 = σ1

σξ = σ1l1
2 + σ2m1

2 ≥ σ2l1
2 + σ2m1

2 = σ2
Hence, σ2 ≤ σξ ≤ σ1.

Example problem 1.3
Find the principal stresses on the surface of a uniform round bar which is subjected to torsion,
by determining a shear stress τ on the surface.

Solution

σx−σ τxy

τxy σy−σ
=

−σ τ

τ −σ
= σ2−τ2 = 0

σ1 = τ, σ2 = −τ

θ1 = tan−1 σ1−σx
τxy

= tan−1 σ1
τ
= tan−11 =

π

4

θ2 = tan−1 σ2−σx
τxy

= tan−1 σ2
τ
= tan−1 −1 = −

π

4

This result means that, as shown in Figure 1.16, the stress state of σx = σy = 0, τxy = τ is iden-
tical to the stress state of σ1 = τ (tension) and σ2 = −τ (compression) if looked from ± 45 . The
phenomena of shear fracture of ductile materials along the plane perpendicular to the axis of

σ1 = τ

σ2 = – τσ1

σ2

45°
T T

τ

τ

Figure 1.16
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twisting moment and spiral shape fracture of brittle materials along the plane of 45 are
related to this stress state.

1.3.4.2 Principal Stresses in 3D Stress State

In a manner similar to that used with 2D problems, we can obtain an equation which determines
the three principal stresses σ1, σ2 and σ3, (σ1 > σ2 > σ3) in 3D problems:

σx−σ τxy τzx

τxy σy−σ τyz

τzx τyz σz−σ

= 0 1 23

Resolving Equation 1.23:

σ3− σx + σy + σz σ2 + σxσy + σyσz + σzσx−τxy2−τyz2−τzx2 σ

− σxσyσz + 2τxyτyzτzx−σxτyz2−σyτzx2−σzτxy2 = 0
1 24

If we denote the roots by σ1, σ2 and σ3, Equation 1.24 can be rewritten in the following form:

σ−σ1 σ−σ2 σ−σ3 = 0 1 25

And resolving again we have

σ3−J1σ
2−J2σ−J3 = 0 1 26

where

J1 = σ1 + σ2 + σ3

J2 = − σ1σ2 + σ2σ3 + σ3σ1

=
1
6

σ1−σ2
2 + σ2−σ3

2 + σ3−σ1
2−2 σ1 + σ2 + σ3

2

J3 = σ1σ2σ3

Since the principal stresses σ1, σ2 and σ3 are independent of the coordinates chosen, J1, J2 and
J3 are constant in a certain stress state and are called the first, second and third stress invariants.
If we note the equivalence of Equations 1.24 and 1.26, we will understand that

J1 = σ1 + σ2 + σ3 = σx + σy + σz = σξ + ση + σζ 1 27

J2 = − σ1σ2 + σ2σ3 + σ3σ1 = − σxσy + σyσz + σzσx−τxy2−τyz2−τzx2

= − σξση + σησζ + σζσξ−τξη2−τηζ2−τζξ2
1 28
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J3 = σ1σ2σ3 = σxσyσz + 2τxyτyzτzx−σxτyz2−σyτzx2−σzτxy2

= σξσησζ + 2τξητηζτζξ−σξτηζ2−σητζξ2−σζτξη2
1 29

We have obtained these important equations (Equations 1.27 to 1.29) without solving
Equations 1.23 and 1.24. In general we cannot solve Equation 1.24 in the traditional manner,
using a compass and triangles (which are used to find the principal stresses in 2D problems).
This means that we cannot draw a so-called Mohr’s circle from the stresses (σx, σy, σz, τxy
τyz, τzx). However, we should not be disappointed, because Mohr’s circles are not as important
as they are widely assumed to be. J1 is the quantity related to the component of hydrostatic com-
pression of a stress state and, as explained later, it is the quantity related to the volume change in
termsof strains throughHooke’s law. J2 is thequantity related to the cause of plastic deformation.
Themeaning of J3 is not clear as J1 and J2. Equation 1.23 is simple and impressive, and as engin-
eers know there is beauty in simplicity. This equation will also be very useful in later problems.

Example problem 1.4
Verify that the three principal axes intersect each other orthogonally in 3D problems.

Hint
Pay attention to the definition of the principal stress and the nature of shear stress.

1.3.5 Principal Shear Stresses

In the case of 2D stress states, the principal shear stress is called the maximum shear stress.
Materials can fail by tensile normal stress or by shear stress depending on their ductility or
brittleness. Failure of materials by shear stress occurs mostly in a plane with the maximum
shear stress.
First we shall consider the maximum shear stress in a 2D stress state. From Equation 1.11,

when σx, σy and τxy are known, the shear stress on the plane ξ= constant, or η= constant, can be
expressed as

τξη = σxl1l2 + σym1m2 + τxy l1m2 + l2m1

Since σx, σy and τxy are known, we can determine the principal stresses σ1 and σ2 and the
direction cosines. Now, supposing that l1 , l2 and so on are direction cosines defined between
the ξ and η axes and the principal axes (direction of the principal stresses), we have

τξη = σ1l1 l2 + σ2m1 m2 , σ1 > σ2 1 30

and by considering the nature of the direction cosines (see Appendix A.1 of Part I),

l1 l2 +m1 m2 = 0

we obtain,

τξη = σ1−σ2 l1 l2 1 31
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Nowwe need to know the direction in which l1 l2 becomesmaximum. Since (σ1−σ2) is a quan-
tity that is constant irrespective of the direction, we must make l1 l2 the maximum.
Since l 12 + l 22 = 1, we have the absolute maximum value of τξη when l1 = l2 and so we

have the angle at which the maximum shear stress acts:

θ = π 4 or π 2 + π 4 1 32

τmax = ∓
1
2
σ1−σ2 1 33

In Equation 1.33, the plus and minus signs in front of the parentheses are not important, they
only indicate the direction of the shear stress. This result means that the maximum shear stress is
in the plane at an angle of π /4 from both the principal axes. Looking at the stress state from the
direction of one of the principal axes and using a similar method, we can derive the principal
shear stresses in three dimensions that correspond to τmax in 2D problems as follows:

τ1 =
1
2
σ2−σ3 , τ2 =

1
2
σ3−σ1 , τ3 =

1
2
σ1−σ2 1 34

One of the shear stresses is algebraically maximum, another minimum and the last one is
between these. τ1 acts on the plane which divides equally the angle made by two planes on
which σ2 and σ3 act. The same rule applies to τ2 and τ3 respectively.

Problems of Chapter 1

1. A tensile test was carried out on a belt which was made by bonding the straight ends, as
shown in Figure 1.17a. A tensile fracture occurred from the bonded end at 1/400 of the
original strength of the belt. In order to increase the strength of the bonded end, the belt
was sliced in an inclined direction and was bonded again with the same bond. Determine
the approximate angle of slicing in Figure 1.17b to prevent fracture at the bonded interface.
Assume that the bonded interface fractures only by tensile normal stress and the fracture is
not influenced by shear stress.

2. Determine the stress inside a cylinder which is subjected to the same internal pressure pi
and external pressure po, that is pi = po = −p0.

3. When the normal stress σξ and shear stress τξη in the direction of θ = θ0 against the axis of
the bar at the outer radius of a cylindrical bar under a twisting moment are σξ = σ0 and

Bonding
(a) (b)

Bonding

θ

Figure 1.17
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