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Preface

This third edition marks some 18 years since the second edition of this book appeared
and what seems like half a lifetime ago—some 31 years—since the first edition was
written. It has been extremely gratifying that the book has lasted this long, that it
continues to be used by many and that a new edition was welcomed by Wiley.

Since the second edition the subject has consolidated and largely turned to more and
more areas of application, including a renewed interest from the geotechnical engi-
neering research community. But also in practice structural reliability increasingly is
being applied, particularly for situations where quantitative, data-based risk assessment
of non-elementary structural or other systems is required. Overviews of the papers con-
tributed to conferences such as ICASP, ICOSSAR, IFIP, IALCCE and CSM shows much
attention paid to applications and relatively little to sorting out some of the remaining
really challenging theoretical problems such as how to deal with complex systems with a
multitude of random variables or processes, and for which many potential failure modes
and combination of such modes may exist. Fortunately, the availability of ever greater
computational power has meant that enumeration methods, once thought to be the way
forward for dealing with really complex problems, can be cast aside in favour of sheer
brute force number crunching. In this sense Chapter 3 and the parts of Chapter 5 deal-
ing with Monte Carlo methods are now more important, for practical problems, than
the elegant but simpler FOSM/FOR/SOR methods that allow easier insight into ‘what
was driving what’.

The present edition follows much of the second edition but updates areas such as
Monte Carlo methods, systems reliability, some aspects of load and resistance mod-
elling, code calibration, analysis of existing structures and adds, for the first time, a
chapter on optimization in the context of structural reliability. The co-author for this
edition, André T. Beck, has contributed much to these changes, as well as to the worked
examples provided where relevant for each chapter and collected together in Appendix
F. We have had the good fortune to have at hand the many comments and corrections,
principally supplied by Dr. Bill Gray during his post-doctoral days at The University of
Newcastle. As before, we have had to be selective in our coverage and have had to make
difficult decisions about what to include and what leave out.

Now, as 18 years ago, a surf or a beach run at Newcastle’s wonderful Pacific Ocean
beaches, a surf or a bike ride along the south-eastern Brazilian coast, seem better ways
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xvi Preface

to spend one’s time than revising a book. Our spouses tell us so, our colleagues tell us
so, our minds tell us so, but what do we do?

10 February 2017 Robert E. Melchers
Bar Beach, Newcastle

André T. Beck
Florianópolis, SC
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Preface to the Second Edition

It is over ten years since the first edition of this book appeared and more than 12 years
since the text was written. At the time structural reliability as a discipline was evolving
rapidly but was also approaching a degree of maturity. Perhaps it is not surprising, then,
that rather little of the first edition now seems out-dated.

This edition differs from the first mainly in matters of detail. The overall layout has
been retained but all of the original text has been reviewed. Many sections have been
partly rewritten to make them clearer and more complete and many, often small but
annoying, errors and mistakes have been corrected. Hopefully not too many new ones
have crept in. Many new references have been added and older, now less relevant, ones
deleted. This is particularly the case in referring to applications, in which area there has
been much progress.

The most significant changes in this edition include the up-dating of the sections deal-
ing with Monte Carlo simulation, the addition of the Nataf transformation in the discus-
sion of FOSM/FORM methods, some comments about asymptotic methods, additional
discussion of structural systems subject to multiple loads and a new chapter devoted to
the safety checking of existing structures, an area of increasing importance.

Other areas in which there have been rapid developments, such as simulation of
random processes and random fields, applications in structural dynamics and fatigue
and specialist refinements of theory are all of interest but beyond the scope of an
introductory book. Readers might care to refer to the specialist literature, proceedings
of conferences such as the ICASP, ICOSSAR and IFIP series and to journals such as
Structural Safety, Probabilistic Engineering Mechanics and the Journals of Engineering
Mechanics and Structural Engineering of ASCE. Overviews of various aspects of
applications of structural reliability are given also in Progress in Structural Engineering
and Mechanics. There are, of course, other places to look, but these should form a good
starting point for keeping in touch with theoretical developments and applications.

In preparing this edition I had the good furtune to have at hand a range of comments,
notes and advice. I am particularly indebted to my immediate colleagues Mark Stew-
art and Dimitry Val for their critical comments and their assistance with some of the
new sections. Former research students have also contributed and I mention in this
regard particularly H.Y. Chan, M. Moarefzadeh and X.L. Guan. Naturally, I owe a very
significant debt to the international structural reliability community in general and to
some key people in particular, including Ove Ditlevsen, Rudiger Rackwitz, Armen Der
Kiureghian and Bruce Ellingwood—they, and many others, will know that I appreciate
their forebearance and friendship.
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xviii Preface to the Second Edition

The encouragement and generous comments from many sources is deeply appreci-
ated. It has contributed to making the hard slog of revision a little less painful. Some-
times a beach run or a surf seemed a better alternative to spending an hour or so making
more corrections to the text… As before, the forebearance of my family is deeply appre-
ciated. Like many academic households they have learnt that academics are their own
worst enemies and need occasionally to be dragged away from their Macintoshes to
more socially acceptable activities.

August, 1998 Robert E. Melchers
Bar Beach, Newcastle

Preface to the First Edition

The aim of this book is to present a unified view of the techniques and theory for the
analysis and prediction of the reliability of structures using probability theory. By relia-
bility, in this context, will be understood not just reliability against extreme events such
as structural collapse or facture, but against the violation of any structural engineering
requirements which the structure is expected to satisfy.

In practice, two classes of problems may arise. In the first, the reliability of an exist-
ing structure at the ‘present time’ is required to be assessed. In the second, and much
more difficult class, the likely reliability of some future, or as yet uncompleted, structure
must be predicted. One common example of such a requirement is in structural design
codes, which are essentially instruments for the prediction of structural safety and ser-
viceability supported by previous experience and expert opinion. Another example is the
reliability assessment of major structures such as large towers, offshore platforms and
industrial or nuclear plants for which structural design codes are either not available or
not wholly acceptable. In this situation, the prediction of safety both in absolute terms
and in terms of its interrelation to project economics is becoming increasingly impor-
tant. This class of assessment relies on the (usually reasonable but potentially dangerous)
assumption that past experience can be extrapolated into the future.

It might be evident from these remarks that the analysis (and prediction) of structural
reliability is rather different from the types of analysis normally performed in structural
engineering. Concern is less with details of stress calculations, or member behaviour, but
rather with the uncertainties in such behaviour and how this interacts with uncertain-
ties in loading and in material strength. Because such uncertainties cannot be directly
observed for any one particular structure, there is a much greater level of abstraction
and conceptualization in reliability analysis than is conventionally the case for structural
analysis or design. Modelling is not only concerned with the proper and appropriate
representation of the physics of any structural engineering problem, but also with the
need to obtain realistic, sufficiently simple and workable models or representations of
both the loads and the material strengths, and also their respective uncertainties. How
such modelling might be done and how such models can be used to analyse or predict
structural reliability is the central theme of this book.

In one important sense, however, the subject matter has a distinct parallel with
conventional structural engineering analysis and its continual refinement; that is,
that ultimately concern is with costs. Such costs include not only those of design,
construction, supervision and maintenance but also the possible cost of failure (or loss
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of serviceability). This theme, although not explicitly pursued throughout the book,
is nevertheless a central one, as will become clear in Chapter 2. The assessment or
predictions obtained using the methods outlined in this book have direct application
in decision-making techniques such as cost-benefit analysis or, more precisely when
probability is included, risk-benefit analysis. As will be seen in Chapter 9, one important
area of application for the methods presented here is in structural design codes, which,
it will be recognized, are essentially particular (if perhaps rather crude and intuitive)
forms of risk-benefit methodology.

A number of other recent books have been devoted to the structural reliability theme.
This book is distinct from the others in that it has evolved from a short course of lectures
for undergraduate students as well as a 30-h graduate course of lectures which the author
has given periodically to (mainly) practising structural engineers during the last 8 years.
It is also different in that it does not attempt to deal with related topics such as spectral
analysis for which excellent introductory texts are already available.

Other features of the present book are its treatment of structural system reliability
(Chapter 5) and the discussion of both simulation methods (Chapter 3) and modern
second-moment and transformation methods (Chapter 4). Also considered is the
important topic of human error and human intervention in the relationship between
calculated (or ‘nominal’) failure probabilities and those observed in populations of real
structures (Chapter 2).

The book commences (Chapter 1) by reviewing traditional methods of defining struc-
tural safety such as the ‘factor of safety’, the ‘load factor’, ‘partial factor’ formats (i.e.
‘limit state design’ formats) and the ‘return period’. Some consistency aspects of these
methods are then presented and their limited use of available data noted, before a sim-
ple probabilistic safety measure, the ‘safety margin’ and the associated failure probability
are introduced. This simple one-load one-resistance model is sufficient to introduce the
fundamental ideas of structural reliability assessment. Apart from Chapter 2, the rest
of the book is concerned with elaborating and illustrating the reliability analysis and
prediction theme.

While Chapters 3, 4 and 5 deal with particular calculation techniques for
time-independent situations, Chapter 6 is concerned with extending the ‘return period’
concept introduced in Chapter 1 to more general formulations for time-dependent
problems. The three principal methods for introducing time, the time-integrated
approach, the discrete time approach and the fully time-dependent approach, are each
outlined and examples given. The last approach is considerably more demanding than
the other two (classical) methods since it is necessary to introduce elements of stochas-
tic process theory. First-time readers may well decide to skip rather quickly through
much of this chapter. Applications to fatigue problems and structural vibrations are
briefly discussed from the point of view of probability theory, but again the physics of
these problems is outside the scope of the present book.

Modelling of wind and floor loadings is described in Chapter 7 whilst Chapter 8
reviews probability models generally accepted for steel properties. Both load and
strength models are then used in Chapter 9. This deals with the theory of structural
design codes and code calibration, an important area of application for probabilistic
reliability prediction methodology.

It will be assumed throughout that the reader is familiar with modern methods
of structural analysis and that he (or she) has a basic background in statistics and
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probability. Statistical data analysis is well described in existing texts; a summary of
probability theory used is given in Appendix A for convenience.

Further, reasonable competence in applied mathematics is assumed since no mean-
ingful discussion of structural reliability theory can be had without it. The level of pre-
sentation, however, should not be beyond the grasp of final-year undergraduate students
in engineering. Nevertheless, particularly difficult theoretical sections which might be
skipped on a first reading are marked with an asterisk (*).

For teaching purposes, Chapters 1 and 2 could form the basis for a short undergrad-
uate course in structural safety. A graduate course could take up the topics covered in
all chapters, with instructors having a bias for second-moment methods skipping over
some of the sections in Chapter 3 while those who might wish to concentrate on simu-
lation could spend less time on Chapter 4. For an emphasis on code writing, Chapters 3
and 5 could be deleted and Chapters 4 and 6 cut short.

In all cases it is essential, in the author’s view, that the theoretical material be supple-
mented by examples from experience. One way of achieving this is to discuss particular
cases of structural failure in quite some detail, so that students realize that the theory
is only one (and perhaps the least important) aspect of structural reliability. Structural
reliability assessment is not a substitute for other methods of thinking about safety, nor
is it necessarily any better; properly used, however, it has the potential to clarify and
expose the issues of importance.
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Measures of Structural Reliability

1.1 Introduction

The manner in which an engineering structure will respond to loading depends on
the type and magnitude of the applied load and the structural strength and stiffness.
Whether the response is considered satisfactory depends on the requirements that
must be satisfied. These include safety of the structure against collapse, limitations on
damage, or on deflections or other criteria. Each such requirement may be termed a
limit state. The ‘violation’ of a limit state can then be defined as the attainment of an
undesirable condition for the structure. Some typical limit states are given in Table 1.1.

Table 1.1 Typical limit states for structures.

Limit state type Description Examples

Ultimate (safety) Collapse of all or part of
structure

Tipping or sliding, rupture, progressive
collapse, plastic mechanism, instability,
corrosion, fatigue, deterioration, fire.

Damage (often
included in above)

Excessive or premature cracking, deformation
or permanent inelastic deformation.

Serviceability Disruption of normal use Excessive deflections, vibrations, local
damage, etc.

From observation it is known that very few structures collapse, or require major
repairs, etc., so that the violation of the most serious limit states is a relatively rare
occurrence. When violation of a limit state does occur, the consequences may be
extreme, as exemplified by the spectacular collapses of structures such as the Tay
Bridge (wind loading), Ronan Point Flats (gas explosion), Kielland Offshore Platform
(local strength problems), Kobe earthquake (ductility), etc.

The study of structural reliability is concerned with the calculation and prediction of
the probability of limit state violation for an engineered structural system at any stage
during its life. In particular, the study of structural safety is concerned with the viola-
tion of the ultimate or safety limit states for the structure. More generally, the study of
structural reliability is concerned with the violation of performance measures (of which
ultimate or safety limit states are a subset). This broader definition allows the scope
of application to move from structural criteria as specified in traditional design codes

Structural Reliability Analysis and Prediction, Third Edition. Robert E. Melchers and André T. Beck.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
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(Chapter 9) to broader-based performance requirements for structures, such as might
be used in design optimization processes (Chapter 11).

In the simplest case, the probability of occurrence of an event such as limit state vio-
lation is a numerical measure of the chance of its occurrence. This measure either may
be obtained from measurements of the long-term frequency of occurrence of the event
for generally similar structures, or it may be simply a subjective estimate of the numer-
ical value. In practice it is seldom possible to observe for a sufficiently long period of
time, and a combination of subjective estimates and frequency observations for struc-
tural components and properties may be used to predict the probability of limit state
violation for the structure.

In probabilistic assessments any uncertainty about a variable (expressed, as will be
seen, in terms of its probability density function) is taken into account explicitly. This is
not the case in traditional ways of measuring safety, such as the ‘factor of safety’ or ‘load
factor’. These are ‘deterministic’ measures, since the variables describing the structure,
its strength and the applied loads are assumed to take on known (if conservative) values
about which there is assumed to be no uncertainty. Precisely because of their traditional
and really quite central position in structural engineering, it is appropriate to review the
deterministic safety measures prior to developing probabilistic safety measures.

1.2 Deterministic Measures of Limit State Violation

1.2.1 Factor of Safety

The traditional method to define structural safety is through a ‘factor of safety’, usually
associated with elastic stress analysis and which requires that:

𝜎i(𝜀) ≤ 𝜎p i (1.1)

where 𝜎i(𝜀) is the i th applied stress component calculated to act at the generic point 𝜀
in the structure, and 𝜎pi is the permissible stress for the i th stress component.

The permissible stresses 𝜎pi are usually defined in structural design codes. They are
derived from material strengths (ultimate moment, yield point moment, squash load,
etc.), expressed in stress terms 𝜎ui but reduced through a factor F :

𝜎pi = 𝜎ui∕F (1.2)

where F is the ‘factor of safety’. The factor F may be selected on the basis of exper-
imental observations, previous practical experience, economic and, perhaps, political
considerations. Usually, its selection is the responsibility of a code committee.

According to (1.1), failure of the structure should occur when any stressed part of
it reaches the local permissible stress. Whether failure actually does occur depends
entirely on how well 𝜎i(𝜀) represents the actual stress in the real structure at 𝜀 and how
well 𝜎pi represents actual material failure. It is well known that observed stresses do
not always correspond well to the stresses calculated by linear elastic structural analysis
(as commonly used in design). Stress redistribution, stress concentration and changes
due to boundary effects and the physical size effect of members all contribute to the
discrepancies.
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Similarly, the permissible stresses that, commonly, are associated with linear elastic
stress analysis are not infrequently obtained by linear scaling down, from well beyond
the linear region, of the ultimate strengths obtained from tests. From the point of view of
structural safety, this does not matter very much, provided that the designer recognizes
that his calculations may well be quite fictitious and provided that (1.1) is a conservative
safety measure.

By combining expressions (1.1) and (1.2) the condition of ‘limit state violation’ can be
written as

𝜎ui(𝜀)
F

≤ 𝜎i(𝜀) or
𝜎ui(𝜀)

F

/
𝜎i(𝜀) ≤ 1 (1.3)

Expressions (1.3) are ‘limit state equations’ when the inequality sign is replaced by an
equality. These equations can be given also in terms of stress resultants, obtained by
appropriate integration:

Ri(𝜀)
F

≤ Si(𝜀) or
Ri(𝜀)

F

/
Si(𝜀) ≤ 1 for all i (1.4)

where Ri is the i th resistance at location 𝜀 and Si is the i th stress resultant (internal
action). In general, the stress resultant Si are made up of the effects of one or more
applied loads Qj; typically

Si = SiD + SiL + SiW

where D is the dead load, L is the live load and W is the wind load.
The term ‘safety factor’ also has been used in another sense, namely in relation to

overturning, sliding, etc., of structures as a whole, or as in geomechanics (dam failure,
embankment slip, etc.). In this application, expressions (1.3) are still valid provided that
the stresses 𝜎ui and 𝜎i are interpreted appropriately.

1.2.2 Load Factor

The ‘load factor’𝜆 is a special kind of safety factor developed for use originally in the plas-
tic theory of structures. It is the theoretical factor by which a set of loads acting on the
structure must be multiplied, just enough to cause the structure to collapse. Commonly,
the loads are taken as those acting on the structure during service load conditions. The
strength of the structure is determined from the idealized plastic material strength prop-
erties for structural members [Heyman, 1971].

For a given collapse mode (i.e. for a given ultimate ‘limit state’), the structure is con-
sidered to have ‘failed’ or collapsed when the plastic resistances Rpi are related to the
factored loads 𝜆Qj by

WR(RR) ≤ WQ(𝜆Q) (1.5)

where RP is the vector of all plastic resistances (e.g. plastic moments) and Q is the vector
of all applied loads. Also, W R( ) is the internal work function and W Q( ) the external work
function, both described by the plastic collapse mode being considered.

If proportional loading is assumed, as is usual, the load factor can be taken out of
parentheses. Also the loads Qj usually consist of several components, such as dead, live,
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wind, etc. Thus (1.5) may be written in the form of a limit state equation:

WR(Rpi)
𝜆WQ(QD + QL +…)

= 1

with ‘failure’ denoted by the left-hand side being less than unity.
Clearly there is much similarity in formulation between the factor of safety and the

load factor as measures of structural safety. What is different is the reference level
at which the two measures operate: the first at the level of working loads and at the
‘member’ level; the second at the level of collapse loads and at the ‘structure level’.

1.2.3 Partial Factor (‘Limit State Design’)

A development of the above two measures of safety is the so-called ‘partial factor’
approach. For limit state i it can be expressed at the level of stress resultants (i.e. member
design level) as

𝜙iRi ≤ 𝛾DiSDi + 𝛾LiSLi +… (1.6)

where R is the member resistance, 𝜙 is the partial factor on R and SD, SL are the dead
and live load effects respectively with associated partial factors 𝛾D, 𝛾L. Expression (1.6)
was originally developed during the 1960s for reinforced concrete codes. It enabled
the live and wind loads to have greater ‘partial’ factors than the dead load, in view of
the former’s greater uncertainty, and it allowed a measure of workmanship variability
and uncertainty about resistance modelling to be associated with the resistance R
[MacGregor, 1976]. This extension of earlier safety formats had considerable appeal
since it allowed better representation of the factors and uncertainties associated with
loadings and resistances.

For a plastic collapse analysis at the structure level, formulation (1.6) becomes

WR(𝜙R) ≤ WQ(𝛾DQD + 𝛾LQL +…)

where R and Q are vectors of resistance and loads respectively. Clearly the partial factors
(𝜙, 𝛾) in this expression will be different from those of expression (1.6).

Example 1.1 The simple portal frame of Figure 1.1(a) is subject to loads Q1 and Q2. If
the relative moments of inertia of the members are known, the elastic bending moment
diagram can be found as in Fig 1.1(b). The ‘limit states’ for bending capacity are then

section 2: 𝜙MC2 = 𝛾1
3l
16

Q1 + 𝛾2
3l
16

Q2

sections 1 and 3: 𝜙MC1,3 = 𝛾1
l

16
Q1 + 𝛾2

l
16

Q2

where 𝜙, 𝛾1 and 𝛾2 are partial factors described by a structural design code. The MCi are
the ultimate moment capacities required at sections i(i = 1, 2, 3) for the structure to be
considered ‘just safe’.

If the frame is to be designed or analysed assuming rigid-plastic theory, the relative
distribution of the plastic moments Mpi around the frame must be known or assumed.
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Q1, Q2

1
2

3(a)

(b)

(c)

I values

known

elastic BMD

plastic BMD

all Mp equal

(Q1, Q2)
16

l

(Q1, Q2)
3l

16

(Q1, Q2)
l

8
(Q1, Q2)

l

8

(Q1, Q2)
l

8

(Q1, Q2)l
16

Figure 1.1 Bending moment diagrams for Example 1.1.

If they all are equal, the plastic bending moment diagram of [Figure 1.1(c) is obtained
and only one limit state equation is needed for sections 1–3:]

𝜙pMpi = 𝛾p1
l
8

Q1 + 𝛾p2
l
8

Q2

where now Mpi is the required plastic moment capacity at sections 1, 2 and 3 and
where 𝜙p, 𝛾p1 and 𝛾p2 are now code-prescribed partial factors for plastic structural
systems.

1.2.4 A Deficiency in Some Safety Measures: Lack of Invariance

From Example 1.1, it will be evident that the partial factors 𝜙 and 𝛾i(i = 1,…) in (1.6)
depend on the limit state being considered. Hence they depend on the definitions of
R, SD and SL. However, even for a given limit state, these definitions are not necessarily
unique, and therefore the partial factors may not be unique either. This phenomenon is
termed the ‘lack of invariance’ of the safety measure. It arises because there are different
ways in which the relationships between resistances and loads may be defined. Some
examples of this are given below. Ideally, the safety measure should not depend on the
way in which the loads and resistances are defined.

Example 1.2 The structure shown in Figure 1.2 is supported on two columns. The
capacity of column B is R = 24 in compression. The safety of the structure can be mea-
sured in three different ways using the traditional ‘factor of safety’ F :
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Column capacity R = 24

(compression)

BA

V1 V2

H = 10

W = 4

h = 10

d = 10

Figure 1.2 Example 1.2: Structure subject to overturning under lateral load H and with vertical load W
and supported by two columns applying vertical forces V1 and V2.

(a) Overturning resistance about A

F1 =
resisting moment about A

overturning moment about A
= dR

Hh + Wd∕2
= 10 × 24

10 × 10 + 4 × 5
= 2.0

(b) Capacity of column B

F2 =
compression resistance of column B

compressive load on column B
= R

Hh∕d + W∕2
= 2.0

(c) Net capacity of column B (resistance minus load effect of W)

F3 =
net compression resistance of column B

net compressive load on column B
=

R − W∕2
Hh∕d

= 2.2

All three of these factors of safety Fi(i = 1, 2, 3) for column B apply to the same struc-
ture and the same loading, so that the difference in the values of Fi is due entirely what
is considered to represent the resistance of the structure and what is considered to be
the applied load. In general such a difference in outcomes is not helpful for the unique
definition of a factor of safety. However, for some special cases of the partial factors
the outcomes can be made the same. Thus it is easily verified that the calculations give
the identical result F1 = F2 = F3 = 1.0 if a partial safety factor 𝜙 = 1

2
is applied to the

resistance R, thus:

F1 = d𝜙R
Hh + Wd∕2

, F2 = 𝜙R
Hh∕d + W∕2

F3 =
𝜙R − W∕2

Hh∕d

Similarly, the result F1 = F2 = F3 = 1.0 would be achieved if the loads H and W were
factored by 𝛾 = 2. More generally, any choice of combination of 𝜙 and 𝛾 could be
appropriate, provided that Fi = 1. This can be expressed as:

F1 = d𝜙R
𝛾(Hh + Wd∕2)

, F2 = 𝜙R
𝛾(Hh∕d + W∕2)

, F3 =
𝜙R − 𝛾W∕2
𝛾Hh∕d

with F1 = F2 = F3 = 1
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A different way of defining a measure of safety is the ‘safety margin’. It measures the
excess of resistance compared with the stress resultant (or loading); thus:

Z = R − S (1.7)

For the present example, the safety margins are

Z1 = dR − (Hh + Wd∕2) (1.7a)
Z2 = R − (Hh∕d + W∕2) (1.7b)

and

Z3 = R − W∕2 − Hh∕d (1.7c)

It is readily verified that when Z = 0, i.e. at the point of failure, these three expressions
are equivalent. This shows that the safety margin concept of safety is ‘invariant’ with
respect to the limit state functions (1.7a–c).

Example 1.3 [adapted from Ditlevsen, 1973] The reinforced concrete beam shown
in Figure 1.3(a) has a moment capacity R when it is subject to an axial force N and a
moment M applied at the beam centroid 𝜉 = 0. Both N and M are composed of the
effects of a dead load and a live load: N = ND + NL and M = MD + ML. The moment
capacity calculated about 𝜉 = a is R1 = R + aN, from simple statics. (Note that the actual
moment capacity of the beam is not changed!) Also, at 𝜉 = a, the applied moment is
given by M1 = M + aN. The state ‘just safe’ can now be defined for given moment capac-
ity R, and given axial force N , by the factor of safety as:

F0 = R
M

at 𝜉 = 0 (1.8a)

F1 =
R1

M1
= R + aN

M + aN
at 𝜉 = a (1.8b)

In this format F1 = F0 is true only when 𝜉 = a = 0. This means that the factor of safety
depends on the convention chosen for the origin of the applied actions and of the resis-
tance. If, as in Example 1.2, R is replaced by the factored term 𝜙R, such that F0 = 1, then
it follows readily that F1 is also unity. Hence, provided that ‘partial factor’ 𝜙 is chosen in
such a way that the ‘factor of safety’ F is unity, the origin chosen to define R, N and M is
immaterial. A similar result holds if N and M are replaced by 𝛾 N and 𝛾 M, where 𝛾 is
an appropriately chosen partial factor on the loading.

R M
N

a ξ
N

R1 = R + aN

M1 = M + aN

(a) (b)

Figure 1.3 Reinforced concrete beam: Example 1.3.
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The state ‘just safe’ can be written also in the partial factor format of (1.6). Indeed,
noting that M = MD + ML and N = ND + NL, at 𝜉 = 0 it follows that

𝜙R = 𝛾DMD + 𝛾LML (1.9a)

and at 𝜉 = a, treating, as before, R1 = R + aN as the resistance to bending,

𝜙(R + aND + aNL) = 𝛾D(MD + aND) + 𝛾L(ML + aNL) (1.9b)

Subtracting (1.9a) from (1.9b) and dividing out by a leaves

(𝜙 − 𝛾D)ND + (𝜙 − 𝛾L)NL = 0 (1.10)

Since in general ND, NL > 0, it follows that (1.10) will be satisfied only if either
𝛾D ≤ 𝜙 ≤ 𝛾L or 𝛾L ≤ 𝜙 ≤ 𝛾D. Except for 𝜙 = 𝛾D = 𝛾L = 1 these expressions are both
inconsistent with the conventional interpretation that 𝜙 ≤ 1 (to reduce the calculated
resistance) and 𝛾D, 𝛾L ≥ 1 (to increase the loads or applied stresses).

The reason for this result should be clear. In (1.9b) the term (aND + aNL) on the
left-hand side was treated as a resistance, per se, whereas it is strictly a resistance effect
caused directly by the applied loading (note that it is not affected by workmanship,
material strength, etc., as is R). The key to an invariant safety measure is thus at hand.
Partial factors such as 𝜙 should be applied directly to resistances only, and partial
factors such as 𝛾 to loads only, and the direct application of (1.6) to a mixed variable
R1 = R + aN is not correct.

It is important to note that the safety margin Z (Equation 1.7) is invariant for both
definitions of resistance in this example. In the first case Z0 = R − M, while in the second
case Z1 = (R + aN) − (M + aN) = R − M.

1.2.5 Invariant Safety Measures

As can be seen from the above examples, one form of invariant safety measure is
obtained if the resistances Ri and the loads Qj acting on the structure are so factored
that the ratio between any relevant pair 𝜙iRi and 𝛾 jQj is unity at the point of limit state
violation. In simple terms, this requires that all variables be reduced to a common
base before being compared. This is the case for the permissible stress measure of
structural safety expressed by equation (1.3). Another and important form of invariant
safety measure is the safety margin Z = R − S defined in equation (1.7). It will be used
extensively in the sections to follow because of its invariant properties.

Some readers may recognize a parallel between the above discussion and the decision
criteria in cost-benefit analysis. The safety margin corresponds to the ‘net present value’
criterion and the problem of safety factor invariance to the ‘numerator-denominator’
problem [e.g. Prest and Turvey, 1965].

1.3 A Partial Probabilistic Safety Measure of Limit State
Violation—The Return Period

In the historical development of engineering design, loads due to natural phenomena
such as winds, waves, storms, floods, earthquakes, etc. were recognized quite early as
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having randomness in time as well as in space. The randomness in time was considered
in terms of the ‘return period’. The return period is defined as the average (or expected)
time between two successive statistically independent events. Of course, the actual time
T between events is a random variable.

In most practical applications an ‘event’ constitutes the exceedance of a certain
threshold, for example as associated with loading (e.g. wind velocity > 100 m∕s). Such
an event may be used to define a ‘design load’ and the design of the structure itself is
then usually considered deterministically, i.e. using conventional design procedures.
Hence this approach is only a partially probabilistic method.

The return period may be defined as follows. For independent samples from a
population (i.e. for a Bernoulli trial sequence), the trial T on which the first occurrence
of an event takes place is given by the geometric distribution (A.23), which states that
the probability that the first occurrence occurs on the t th trial is:

P(T = t) = p (1 − p)t−1 t = 1, 2,… (1.11)

where p is the probability of occurrence of the event (e.g. X > x) in any one trial and
1 − p is the probability that the event does not occur. If trials are now interpreted as
time intervals, during each of which only the occurrence of events X > x is recorded,
the first occurrence of an event becomes the ‘first occurrence time’, given by expression
(1.11). The ‘mean recurrence time’ or the ‘return period’ is then the expected value of
T (see A. 10):

E(T) = T =
∞∑

t=1
tp(1 − p)t−1 = p[1 + 2(1 − p) + 3(1 − p)2 +…]

=
p

[1 − (1 − p)]2 for (1 − p) < 1.0

= 1
p

or = [1 − Fx(x)]−1 (1.12)

where FX(x) = P(X ≤ x) is the cumulative distribution function of X.
Thus the return period T is equal to the reciprocal of the probability of the occurrence

of the event in any one (or a single) time interval. For most engineering problems, the
chosen time interval is one year, so that p is the probability of occurrence of the event
X > x in any one year (e.g. the probability that a load> x will occur (at least once) during
the year). Then T is the number of years, on average, between events.

Because the exceedance events that occur during a time period (e.g. during a year)
are associated with the end of that period, T is dependent on the time period chosen
[Borgman, 1963]. This is illustrated in Figure 1.4, where four exceedance events, A, B, C
and D are shown occurring after an arbitrary initial event 0. The mean recurrence time
T1 for the actual observations is shown in Figure 1.4(a) and is given by the average of
the distance (i.e. time) between the events, i.e. by T1 ≈ 1.5 years.

In Figure 1.4(b) with the time period taken as 1 year, and the events counted at the
end of each time period, it follows easily that T2 = 7∕4 = 1.75 years. Similarly, for
T3 = 2 years. However, when a 4-year time period is used (Figure 1.4(d)) two of the
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(a)
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O

0
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Event Count.

(X > x)(b)

(c)

(d)

T1 time

years

T2 > T1 time

years

T3 > T2 time

(2 years)

T4 > T3 time

(4 years)

Figure 1.4 Idealizations of actual load phenomenon for the ‘return period’ concept.

events in each period are counted as one at the end of the period, and T4 in this case
becomes 4 years.

This somewhat artificial example shows three things. Firstly, that the return period
depends, as noted, on the definition of the time scale, and secondly that the possible
occurrence of more than one event within a time period is ignored. This means that,
where event occurrence is relatively frequent compared with the time period employed,
the return period measure is not accurate.

The third and a most important point is that the probability distribution of the
magnitude of X (i.e. the phenomenon being considered) is not considered. Only
magnitudes X > x are counted. This means that the return period is a probabilistic
measure in terms of time only, but not in terms of the magnitude of the loading and its
interaction with the resistance.

It should be clear that in practice the events may not be independent, as postulated,
particularly if the events occur rather frequently. Fortunately, the return period concept
is used mainly for rather rare events (i.e. the level X is quite high), and it is then
reasonable to assume event independence. Time scale dependence is then also not a
significant issue. Chapter 6 gives a much more detailed discussion.

Example 1.4 For a structure subject to a ‘50-year wind’ of 60 km/h velocity:

(a) the return period for a 60-km/h wind = T = 50 years
(b) the probability of exceeding 60 km/h in any one year is

p = 1∕T = 1∕50 = 2%;

(c) the probability of exceeding the design wind velocity (i.e. V > 60) for the first time
during the fourth year, is (geometric distribution A.23):

PT (T = 4) = (0.02)(0.98)3 = 0.01882
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(d) the probability of exceeding the design wind velocity in only one of the years in a
4-year period is given by the binomial distribution (A.17):

PX(x = 1) =
(

4
1

)
(0.02)(0.98)3 = 4 × 3 × 2 × 1

1(3 × 2 × 1)
(0.02)(0.98)3 = 0.0753

(e) the probability of exceeding the design wind velocity (i.e. V > 60) during any of the
years in a 4 year period is given by the geometric distribution (A.23):

PT (T ≤ 4) =
4∑

t=1
PT (T = t) =

4∑
t=1

(0.02)(0.98)t−1

= 0.02 + 0.0196 + 0.01921 + 0.01883
= 0.0776

or alternatively,

PT (T ≤ 4) = 1 − [P(V < 60)]4 = 1 − (1 − 0.02)4 = 0.0776

Note that the period 4 years can be generalized to ‘design life’ tL and the question
rephrased to ‘the probability of exceeding the design velocity within the design life’:

PT (T ≤ tL) =
tL∑

t=1
PT (T = t) or = 1 − (1 − p)tL (1.13)

Some typical values for the relationship between the exceedance probability
PT (T ≤ tL) the return period T = 1∕p and the design life tL are given in Table 1.2
[Borgman, 1963].

(f ) the probability of exceeding the design wind velocity within the return period is

PT (T ≤ T) = 1 − [P(V < 60)]T

but P(V < 60) = 1 − P(V ≥ 60) = 1 − p where p = 1∕T . Hence

PT (T ≤ T) = 1 − (1 − p)T

= 1 −

(
1 − Tp + T(T − 1)

2!
p2 −…

)
≈ 1 − exp(−Tp) for large T (i.e. small p)
≈ 1 − exp(−1) = 1 − 0.3679 = 0.6321

Note that even for smaller T , this result is a good approximation; thus, for T = 5,

PT (T ≤ 5) = 1 −
(

1 − 1
5

)5
= 0.6723

This shows that there is a chance of about 2 in 3 that the exceedance event will occur
within a design life equal to the return period.
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Table 1.2 Return period T as function of design life tL and exceedance probability PT (T ≤ tL).

Return period T for the following exceedance probabilities (see 1.13)

Design life tL 0.02 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.70

1 50 20 10 7 5 3 3 2 1
2 99 39 19 13 9 6 4 3 2
3 149 59 29 29 14 9 6 5 3
4 198 78 38 25 18 12 8 6 4
5 248 98 48 31 23 15 10 8 5
6 297 117 57 37 27 17 12 9 6
7 347 137 67 44 32 20 14 11 6
8 396 156 76 50 36 23 16 12 7
9 446 176 86 56 41 26 18 13 8
10 495 195 95 62 45 29 20 15 9
12 594 234 114 74 54 34 24 18 10
14 693 273 133 87 63 40 28 21 12
16 792 312 152 99 72 45 32 24 14
18 892 351 171 111 81 51 36 26 15
20 990 390 190 124 90 57 40 29 17
25 1238 488 238 154 113 71 49 37 21
30 1485 585 285 185 135 85 59 44 25
35 1733 683 333 216 157 99 69 51 30
40 1981 780 380 247 180 113 79 58 34
45 2228 878 428 277 202 127 89 65 38
50 2475 975 475 308 225 141 98 73 42

1.4 Probabilistic Measure of Limit State Violation

1.4.1 Introduction

The return period concept considers only the probability that a loading exceeds a set
limit and assumes such exceedances (or ‘level crossings’ – see Chapter 6) to be randomly
distributed in time. This is a useful improvement over deterministic descriptions of
loading but ignores the fact that, even at a given point in time, the actual value of the
loading is uncertain. This is illustrated in Figure 1.5 for floor loading.

The histogram of Figure 1.5 shows, for example, that the probability that the floor
loading lies between 0.6 and 0.7 kPa is about 7%. Such information is obtained from
actual surveys of floor loads (see Chapter 7), and can be represented by the probability
density function f Q(q). (Recall that f Q( ) denotes the probability that the load Q will take
on a value between q and q + Δq as Δq → 0 - see also Section A.3.) The load Q can
be converted to a load effect S by conventional structural analysis procedures. Using
the same transformation(s), the probability density function f S( ) can be obtained also,
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No. obs  = 625

Max. val.  = 2.22 kN/m2

Mean  = 0.44 kN/m2

Min. val.   = 0 kN/m2

Std. dev.   = 0.27 kN/m2
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Figure 1.5 Histogram of private office live loads [after Culver, 1976].

if necessary, using methods such as outlined in Section A.10. However, details of this
need not be of concern for the present.

Resistance, geometric and workmanship variables and many others may be described
similarly in probabilistic terms. For example, a typical resistance histogram and the
inferred probability distribution for the yield strength of steel are shown in Figure 1.6.
Naturally, material strengths such as steel yield strength can be converted to member
resistance R by multiplying by section properties (such as A, the cross-sectional area).
Then it is possible to determine a probability density function f R( ).

In general, the loads applied to a structure fluctuate with time and are of uncertain
value at any one point in time. This is carried over directly to the load effects (or internal
actions) S. Somewhat similarly the structural resistance R will be a function of time

200
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Figure 1.6 Histogram and inferred distribution for structural steel yield strength [adapted from
Alpsten, 1972 with permission of ASCE].
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fS (s | t = ta)
fS (s | t = tb)

fR (r | t = ta) fR (r | t = tb)

0
ta tt

L
tbTypical Load Effect

Trace S(t)

S(t)

R, S

Figure 1.7 Schematic time-dependent reliability problem.

(but not usually a fluctuating one) owing to fatigue, deterioration and similar actions.
Loads have a tendency to increase, and resistances to decrease, with time. It is likely also
that the uncertainty in both quantities increases with time, particularly if they have to
be predicted. This means that the probability density functions f S( ) and f R( ) become
wider and flatter with time and that the mean values of S and R also change with time.
As a result, the general reliability problem can be represented as in Figure 1.7.

The safety limit state will be violated whenever, at any time t,

R(t) − S(t) < 0 or R(t)
S(t)

< 1 (1.14)

The probability that this occurs for any one (single) load application (or load cycle) is
the probability of limit state violation, or simply the probability of failure pf . Roughly, it
may be represented by, but is not actually equal to, the amount of overlap of the prob-
ability density functions f R and f S in Figure 1.7. Since this overlap may vary with time,
pf also may be a function of time.

To make the problem more tractable, it is convenient for many situations to assume
that Q and R are ‘time-invariant’, that is they are not functions of time. An example of
this is the case when the load Q is applied to the structure only once and the probability
of limit state violation is sought for that particular load application only.

However, if the load is applied many times (e.g. a single time-varying load might be
considered this way) and R is taken as constant, then the maximum value of that load
(within a given time interval [0, T]) is of interest if it is assumed that the structure will fail
under the (once-only) application of this maximum load. One way to properly represent
this maximum load is through the use of an extreme value distribution, such as the Gum-
bel (EV-I) or Frechet (EV-II) distributions (see Appendix A). If this is done, the effect of
time may be ignored in the reliability calculations. This approach is not satisfactory when
more than one load is involved or when the resistance changes with time. Discussion of
these matters and the more general reliability problem is deferred to Chapter 6.

1.4.2 The Basic Reliability Problem

The basic structural reliability problem considers only one load effect S resisted by
one resistance R. Each is described by a known probability density function, f S( ) and
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f R( ) respectively. As noted, S may be obtained from the applied loading Q through a
structural analysis (either deterministic or with random components). It is important
that R and S be expressed in the same units.

For convenience, but without loss of generality, only the safety of a structural element
will be considered here and, as usual, that structural element will be considered to have
failed if its resistance R is less than the stress resultant S acting on it. The probability pf
of failure of the structural element can then be stated in any of the following ways:

pf = P(R ≤ S) (1.15a)
= P(R − S ≤ 0) (1.15b)

= P
(R

S
≤ 1

)
(1.15c)

= P(ln R − ln S ≤ 1) (1.15d)

or in general

= P[G(R, S) ≤ 0] (1.15e)

where G( ) is termed the ‘limit state function’ and the probability of failure is identical
with the probability of limit state violation. Equations (1.15) could, of course, also have
been written in terms of R and Q for the structure as a whole.

Quite general (marginal) density functions f R and f S for R and S respectively are
shown in Figure 1.8 together with the joint (bivariate) density function f RS(r, s) (see also
Section A.6). For any infinitesimal element (Δr Δs), the latter represents the probability
that R takes on a value between r and r + Δr and S a value between s and s + Δs as
Δr and Δs each approach zero. In Figure 1.8, Equations (1.15) are represented by the
hatched failure domain D, so that the failure probability may be written as:

pf = P(R − S ≤ 0) = ∫D∫ fRS(r, s) dr ds (1.16)

fSR(sr) fR(r)

fRS( )

fS(s)

r

μR

μS

s

0

G = 0

G < 0 : Failure

domain D

G > 0 : Safe

domain

Figure 1.8 Space of the two random variable (r, s) and the joint density function fRS(r, s), the marginal
density functions fR and fS and the failure domain D.
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When R and S are independent, fRS(r, s) = fR(r) fS(s) (see A.6.3), and (1.16) becomes:

pf = P(R − S ≤ 0) = ∫
∞

−∞ ∫
S≥r

−∞ fR(r) fS(s)dr ds (1.17)

Noting that for any random variable X, the cumulative distribution function is given
by (A.8):

FX(x) = P(X ≤ x) = ∫
x

−∞ fX(y)dy

provided x ≥ y, it follows that for the common, but special, case when R and S are inde-
pendent, (1.17) can be written in the single integral form:

pf = P(R − S ≤ 0) = ∫
∞

−∞ FR(x)fS(x)dx (1.18)

This is also known as a ‘convolution integral’ with meaning easily explained by reference
to Figure 1.9. FR(x) is the probability that R ≤ x or the probability that the actual resis-
tance R of the member is less than some value x. This represents failure if the loading
is ≥ x. The probability that this is the case is given by the term f S(x) that represents the
probability that the load effect S acting in the member has a value between x and x + Δx
in the limit as Δx → 0. By considering all possible values of x, i.e. by taking the integral
over all x, the total failure probability is obtained. This is also seen in Figure 1.10 where
the (marginal) density functions f R and f S have been drawn along the same axis.

Through integration of f R( ) in (1.17), the order of integration was reduced by one. This
is convenient and useful, but not general. It was only possible because R was assumed
independent of S. In general, dependence between variables should be considered. This
more complex situation is discussed further is Section 1.5 and Chapters 3 and 4.

For the present, restricting attention to simpler formulations, an alternative to
expression (1.18) is:

pf = ∫
∞

−∞ [1 − FS(x)] fR(x)dx (1.19)

This can be seen to be simply the ‘sum’ of the failure probabilities over all the cases of
resistance for which the load exceeds the resistance.

FR (x),  fS (x)

fS (x) = lim P (x ≤ S ≤ x + Δx)

P (R ≤ x) R = x
x + Δx

(Δx→0)

x

1.0

0

FR (x)

fS (x)

Figure 1.9 Basic R − S problem: FR( )fS( ) representation.
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fR(x),fS(x)

FR(x) fS(x)

Load effect - S
e.g. bending moment

Resistance - R
e.g. flexural capacity

x

x
x + Δxx

Failure

density
Area =∫FR(x) fS(x)dx

∞

–∞

Figure 1.10 Basic R − S problem: fR( ) fS( ) representation.

The lower limit of integration shown in Expressions (1.17) to (1.19) may not be totally
satisfactory, since a ‘negative’ resistance usually is physically not possible. The lower
integration limit therefore strictly should be zero, although this may be inconvenient
and slightly inaccurate if R or S or both are modelled by distributions unlimited in the
lower tail (such as the Normal or Gaussian distribution). The inaccuracy arises strictly
from the modelling of R and/or S, and not from the theory involved with (1.17) to
(1.19). This important point is sometimes overlooked in discussions about appropriate
distributions to represent random variables.

1.4.3 Special Case: Normal Random Variables

For a few distributions of R and S it is possible to integrate the convolution integral
(1.18) analytically. The most notable example is when both R and S are normal ran-
dom variables with means 𝜇R and 𝜇S and variances 𝜎2

R and 𝜎2
S respectively. The safety

margin Z = R − S then has a mean and variance given by well-known rules for addition
(subtraction) of normal random variables:

𝜇Z = 𝜇R − 𝜇S (1.20a)
𝜎2

Z = 𝜎2
R + 𝜎2

S (1.20b)

Equation (1.15b) then becomes

pf = P(R − S ≤ 0) = P(Z ≤ 0) = Φ
(0 − 𝜇Z

𝜎Z

)
(1.21)

where Φ( ) is the standard normal distribution function (zero mean and unit variance)
extensively tabulated in statistics texts (see also Appendix D). The random variable
Z = R − S is shown in Figure 1.11, in which the failure region Z ≤ 0 is shown shaded.
Using (1.20) and (1.21) it follows that [Cornell, 1969a]

pf = Φ

[
−(𝜇R − 𝜇S)
(𝜎2

S + 𝜎
2
R)1∕2

]
= Φ(−𝛽) (1.22)

where 𝛽 = 𝜇Z∕𝜎Z is defined as the ‘safety index’ (1.21).
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fZ (z)

Z < 0 Z > 0

Failure   Safety

Pf

Z0 μz

σz σz

βσz

Figure 1.11 Distribution of safety margin Z = R − S.

If either of the standard deviations 𝜎S or 𝜎R or both is increased, the term in square
brackets in (1.22), will become smaller and hence pf will increase, as might be expected.
Similarly if the difference between the mean of the load effect and the mean of the
resistance is reduced, pf increases. These observations may be deduced also from
Figure 1.7, taking the amount of overlap of f R( ) and f S( ) as a rough indicator of pf at
any point in time.

Example 1.5 A simply supported timber beam of length 5 m is loaded with a central
load Q having mean 𝜇Q = 3 kN and variance 𝜎2

Q = 1 (kN)2. The bending strength of
similar beams has been found to have a mean strength 𝜇R = 10 kNm with a coefficient
of variation (COV) of 0.15. It is desired to evaluate the probability of failure.

Assume that the beam self-weight and any variation in the length of the beam can
be ignored. From basic structural theory, the applied moment (the load effect S) at the
centre of the beam (due to the load Q) is given by S = (QL)∕4. Since L = 5 it follows that
the mean load effect and the variance of S are:

𝜇S = 5
4
𝜇Q = 5

4
× 3 = 3.75 kNm (see A.160)

𝜎2
S =

(5
4

)2
𝜎2

Q = 25
16

× 1 = 1.56 (kNm)2 (see A.162)

Also, the mean resistance and its variance are:

𝜇R = 10 kNm
𝜎2

R = [(COV )𝜇R]2 = (0.15 × 10)2 = 2.25 (kNm)2

Hence

𝜇Z = 𝜇R − 𝜇S = 10 − 3.75 = 6.25
𝜎2

Z = 𝜎2
R + 𝜎2

S = 2.25 + 1.56 = 3.81
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Therefore 𝛽 =
𝜇Z

𝜎Z
= 6.25

1.95
= 3.20 and from (1.21) and Appendix D

pf = Φ(−3.20) = 7 × 10−4.

1.4.4 Safety Factors and Characteristic Values

The traditional deterministic measures of limit state violation, namely the factor of
safety and the load factor, can be related directly to the probability pf of limit state
violation. Analytically this is demonstrated most easily for the basic ‘one-resistance
one-load-effect’ case, when R and S (or Q) are each normally distributed.

Consider a convenient simple safety measure sometimes referred to as the ‘central’
safety factor 𝜆0 and defined as

𝜆0 =
𝜇R

𝜇S
or =

𝜇R

𝜇Q
(1.23)

This definition does not accord with conventional usage, since generally some upper
range value of applied load or stress is compared with some lower range value of strength
of material. Such values might be termed ‘characteristic’ values, reflecting that in con-
ventional usage (e.g. in design) the load or strength is described only by this value. Thus
the characteristic yield strength of steel bars is the strength that most (say 95%) bars will
exceed. There is a finite (but small) probability that some bars will have a lower strength.

For resistances, the design or ‘characteristic’ values are defined on the low side of the
mean resistance (see Figure 1.12):

Rk = 𝜇R(1 − kRVR) (1.24)

where Rk is the characteristic resistance, 𝜇R the mean resistance, V R the coefficient of
variation for R and kR a constant. This description is based on the Normal distribution.
Rk is the value of resistance below which only, say 5% of samples will fail. Also, for the
standardized Normal distribution function (see Section A.5.7), it follows that

0.05 = Φ
(
−

Rk − 𝜇R

𝜎R

)
and for a 5% ‘one-sided tail’, k0.05 = 1.645 = (𝜇R − Rk)∕𝜎R (e.g. see Appendix D).
Expression (1.24) now follows directly, noting that the standard deviation can be
expressed as 𝜎R = 𝜇RVR.

Rk = μR (1 – kRVR)
fR

RR0.05

0.05

μR

Figure 1.12 Definition of characteristic resistance.
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Qk = μQ (1+kQVQ)
fQ

QQ0.95

0.05

μQ

Figure 1.13 Definition of characteristic load.

Similarly, for the load effect the characteristic value is estimated on the high side of
the mean:

Sk = 𝜇S(1 + kSVS) (1.25)

where Sk is the characteristic load effect (a design value), 𝜇S the mean load effect, V S
the coefficient of variation for S and kS is a constant. If design values are defined, for
example, as not being exceeded 95% of the time a load effect is applied, then kS = 1.645
if S is Normally distributed (see Figure 1.13). Where loads (actions) are used, Q replaces
S in (1.25).

In codified design, the percentiles used (such as 5% and 95% above) either are explic-
itly specified or may be deduced from the characteristic value specified in existing codes
or documents. Other percentile characteristic values can be obtained in the manner
indicated above for Normal distributions, and also for non-Normal distributions.
Example 1.6 below shows a typical calculation, while Table 1.3 summarizes 5 and 95

Table 1.3 5% and 95% values for Xk∕𝝁X .

Xk∕𝝁X for the following coefficients of variation

Distribution type q % 0.1 0.2 0.3 0.4 0.5

Normal 5 0.8355 0.6710 0.5065 0.3421 0.1176
95 1.164 1.329 1.493 1.658 1.822

Lognormal 5 0.8445 0.7080 0.5910 0.4927 0.4112
95 1.172 1.358 1.552 1.750 1.945

Gumbel 5 0.8694 0.7389 0.6083 0.4778 0.3472
95 1.187 1.373 1.560 1.746 1.933

Frechet 5 0.8802 0.7809 0.6999 0.6344 0.5818
95 1.187 1.367 1.534 1.681 1.809

Weibull 5 0.8169 0.6470 0.4979 0.3736 0.2747
95 1.142 1.305 1.489 1.689 1.903

Gamma 5 0.8414 0.6953 0.5608a) 0 4355a) 0.3416
95 1.170 1.350 1.541a) 1.752a) 1.938

a) Note that values are for VX = 0.302 and 0.408 respectively, since the Gamma distribution usually only
allows discrete values of V 2

X (= k) (see Section A.5.6).
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percentile values for some common distributions. Similar results may be derived for
other percentile values.

In some situations it may be appropriate to use the mean of the extreme value
distribution to define a design load value. The precise choice is rather arbitrary and
need not be of specific concern provided it is consistent. The important point is that
the characteristic values are derived values and are convenient and useful for practical
design rules but they have no fundamental meaning.

Using the characteristic values for the basic variables, it is now possible to define the
so-called ‘characteristic safety factor’ 𝜆k :

𝜆k =
Rk

Sk
or =

Rk

Qk
(1.26)

which corresponds closely to the conventional understanding of the factor of safety if
the characteristic values are taken to correspond to the usual design values.

A relationship can be established between the characteristic safety factor 𝜆k (and the
central 𝜆0) and the probability pf of limit state violation. Obviously this relationship will
depend on the probability distributions for R and S, so that no general result can be given.
Again, a particularly simple but quite useful case is when both R and S are described by
Normal distributions. From (1.22), the probability of failure is

pf = Φ

[
−(𝜇R − 𝜇S)

(V 2
R𝜇

2
R + V 2

S 𝜇
2
S)1∕2

]
(1.27)

and dividing through by 𝜇S

pf = Φ

[
−(𝜆0 − 1)

(V 2
R𝜆

2
0 + V 2

S )1∕2

]
= Φ(−𝛽) say (1.28)

where 𝜆0 is given by (1.23) and 𝛽 is the ‘safety index’ as before. It follows that

𝜆0 =
1 + 𝛽(V 2

R + V 2
S − 𝛽2V 2

R V 2
S )

1∕2

1 − 𝛽2V 2
R

(1.29)

Also (1.24)–(1.26) give

𝜆k =
1 − kRVR

1 + kSVS
𝜆0 (1.30)

so that a relationship between pf , 𝜆0 and 𝜆k for given V R, V S, kR and kS follows
immediately. Some typical relationships obtained by numerical integration are given in
Figure 1.14.

Expressions (1.29) and (1.30) indicate that the factors 𝜆0 and 𝜆k depend on the
variability or uncertainty associated with R and S; with greater V R and V S requiring
greater factors if the failure probability pf is to be kept constant (Figure 1.14). This
demonstrates again the deficiencies of the deterministic measures of limit state
violation. They ignore much information that may be available about uncertainties in
structural strengths or applied loads.
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Figure 1.14 Failure probability pf versus central safety factor 𝝀0 for lognormal (LN) and extreme value
(EV-) distributions and different coefficients of variation.
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Example 1.6 For a random variable S with 𝜇S = 60, VS = 0.2, the 95 percentile for the
Gumbel (EV-I) distribution, for example, may be determined as follows (see A.77)

0.95 = FY (y) = exp[−e−𝛼(y−u)]

where, from (A.79), 𝛼2 = 𝜋2∕6 𝜎2
Y and, from (A.78), u = 𝜇Y − 𝛾∕𝛼 with 𝛾 = 0.57722.

Now 𝜎Y = 𝜎S = 0.2 × 60 = 12, 𝜇Y = 𝜇S = 60, so that 𝛼 = (𝜋∕
√

6)∕12 = 0.1069 and
u = 60 − 0.57722∕0.1069 = 54.60. Hence

0.95 = exp[−e−0.1069(S−54.60)]

or

S0.95 = 82.38

Alternatively, Table 1.3 shows that, for the Gumbel distribution, S0.95∕𝜇S = 1.373. Thus
the 95 percentile value of S is S0.95 = 1.373𝜇S = 82.38.

1.4.5 Numerical Integration of the Convolution Integral

As noted above, closed-form integration of Expressions (1.16) or (1.18) is only possible
for some special cases. One of these cases, when both R and S are normally distributed,
has already been considered (see Section 1.4.3). When both R and S are lognormal, and
failure is defined as Z = R∕S < 1, an exactly parallel result is obtained (see Example 1.7
below).

In general, however, to evaluate (1.16) or (1.18) for non-normal distributions, recourse
must be made to numerical integration. The simplest approach, using the trapezoidal
rule, is often quite effective [e.g. Dahlquist and Bjorck, 1974; Davis and Rabinowitz,
1975]. Step sizes around x = 0.2𝜎R have proved sufficiently accurate together with an
integration range of about ± 5 𝜎Z instead of ±∞ [Ferry-Borges and Castenheta, 1971].

Some typical results obtained by numerical integration are given in Figure 1.14.
Other, and similar, results have been given by Freudenthal (1964) and Ferry-Borges and
Castenheta (1971).

Example 1.7 As an exercise for readers, use the probability density function (A.61) for
the lognormal variable Z = R∕S, where R and S are each lognormal, to show that

pf = Φ(−𝛽1) = Φ

⎧⎪⎪⎨⎪⎪⎩
−

ln
{
𝜇R

𝜇S
[(1 + V 2

S )∕(1 + V 2
R )]

1|2}
{ln[(1 + V 2

R )(1 + V 2
S )]}1∕2

⎫⎪⎪⎬⎪⎪⎭
Also show that this simplifies to

pf = Φ(−𝛽1) ≈ Φ

{
−

ln(𝜇R∕𝜇S)
(V 2

R + V 2
S )1|2

}
for VR < 0.3, VS < 0.3
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Finally, show that the expression for the central safety factor 𝜆0 = 𝜇R∕𝜇S simplifies to

𝜆0 ≈ exp[𝛽1(V 2
R + V 2

S )
1∕2]

1.5 Generalized Reliability Problem

For many problems the simple formulations (1.15a)–(1.15e) are not entirely adequate,
since it may not be possible to reduce the structural reliability problem to a simple R
versus S formulation with R and S independent random variables.

In general, R is a function of material properties and element or structure dimensions,
while S is a function of applied loads Q, material densities and perhaps dimensions of the
structure, each of which may be a random variable. Also, R and S may not be indepen-
dent, such as when some loads act to oppose failure (e.g. overturning) or when the same
dimensions affect both R and S. In this case it is not valid to use the convolution integral
(1.18). It is also not valid when there is more than one applied stress resultant acting at a
section, or more than one factor contributing to the resistance of the structure. A more
general formulation is required. The first step is to define the variables involved in the
generalized reliability problem.

1.5.1 Basic Variables

The fundamental variables that define and characterize the behaviour and safety of a
structure may be termed the ‘basic’ variables. Usually they are the variables employed in
conventional structural analysis and design. Typical examples are dimensions, densities
or unit weights, materials, loads, material strengths. The compressive strength of
concrete would be considered a basic variable even though it can be related to more
fundamental variables such as cement content, water-to-cement ratio, aggregate size,
grading and strength, etc. However, structural engineers do not normally use these
latter variables in strength or safety calculations.

It is very convenient to choose the basic variables such that they are independent.
However, this may not always be possible. Thus the compressive and tensile strengths
and the elastic modulus of concrete are related; yet in a particular analysis they might
each be treated as a basic variable. Dependence between basic variables usually adds
some complexity to a reliability analysis. It is important that the dependence structure
between dependent variables be known and expressible in some form. Usually this will
be through a correlation matrix; however, as noted in Appendix A, this can at best
provide only limited information.

The probability distributions to be assigned to the basic variables depend on the
knowledge that is available. If it can be assumed that past observations and experience
for similar structures can be used, validly, for the structure under consideration the
probability distributions might be inferred directly from such observed data. More
generally, subjective information may be employed or some combination of techniques
may be required. Thus, in practice some subjective influence is nearly always present,
since only seldom are sufficient data available to identify unambiguously only one
distribution as the most appropriate.

Sometimes physical reasoning may be used to suggest an appropriate probability
distribution. Thus, where a basic variable consists of the sum of many other variables
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(which are not explicitly considered), the central limit theorem (see Section A.5.8) can
be invoked to suppose that a normal distribution (see Section A.5.7) is appropriate.
This reasoning would be appropriate for the compressive strength of concrete (many
component strengths) and for the dead load of a beam or slab (again many components
of weight and several dimensions). In another example, the maximum wind velocity
per year might be represented by the Gumbel (EV-I) distribution (see Section A.5.11),
as this is based on an underlying wind phenomenon that, at any instantaneous point
in time can be considered described as essentially Normal in probability distribution
(see Chapter 7).

The parameters of the distribution may be estimated from the data using one of the
usual methods, e.g. methods of moments, maximum likelihood, or order statistics.
These are well described in standard statistics texts and will not be considered here
[e.g. Ang and Tang, 1975]. However, it must be emphasized that such techniques should
not be used blindly. Critical examination of the data for trends and outliers is always
necessary, and the reasons for these phenomena should be established. It is quite
possible for such behaviour to be the result of data recording and storage procedures
rather than the behaviour of the variable itself.

Finally, when model parameters have been selected, the model should be compared
with the data if at all possible. A graphical plot on appropriate probability paper is often
very revealing, but analytical ‘goodness of fit’ tests (e.g. Kolmogorov-Smirnov test) can
be used also.

It may not be possible, always, to describe each basic variable by an appropriate
probability distribution. The required information may not be available. In such
circumstances a ‘point estimate’ of the value of the basic variable might be used, i.e.
the best estimate, given the known information. If some uncertainty information
about the variable is also available, it might be appropriate to represent it by an
estimate of its mean and its variance only. This is then known as a ‘second moment’
representation. One way in which such a representation might be interpreted is that
in the absence of more precise data, the variable might be assumed to have a normal
distribution (as this is completely described by the mean and variance, i.e. the first two
moments (see Section A.5.7)). However, other probability distributions might be more
appropriate, even if only the first two moments are known or can be determined.

1.5.2 Generalized Limit State Equations

With the basic variables and their probability distributions established, the next step
is to replace the simple R − S form of limit state function with a generalized version,
expressed directly in terms of basic variables.

Let the vector X represent all the basic variables involved in the problem. Then the
resistance R can be expressed as R = GR(X) and the loading or load effect as S = GS(X).
Since the functions GR and GS may be non-linear, the cumulative distribution function
FR( ), for example, must be obtained by multiple integration over the relevant basic
variables (see A.155):

FR(r) = ∫r …∫ fX(x)dx

A similar expression would apply for S and FS( ). These could then be used in (1.18)
or (1.19). Fortunately, it is seldom necessary to follow this somewhat complex and
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piecemeal approach. Instead it is noted that in (1.l5e) the limit state function G(R, S)
itself can be generalized. When the functions GR(X) and GS(X) are used in G(R, S), the
resulting limit state function can be written simply as G(X), where X is the vector of all
relevant basic variables and G( ) is some function expressing the relationship between
the limit state and the basic variables. The limit state equation G(x) = 0 now defines
the boundary between the satisfactory or ‘safe’ domain G > 0 and the unsatisfactory
or ‘unsafe’ domain G ≤ 0 in n-dimensional basic variable space. Usually the limit state
equation(s) is derived from the physics of the problem. (Note that X is the vector of
random variables and that X = x defines a particular ‘point’ x in the basic variable space.)

Where some loads may influence resistance (e.g. in overturning situations
(see Figure 1.2)) care should be taken that G(X) is defined properly. Again by
analogy with the simple case of Figure 1.2 a useful rule is that any basic variable adding
resistance to the limit state should have a positive gradient, that is: 𝜕G∕𝜕Xi > 0.

Example 1.8 Consider a simple pin-ended strut supporting one end of a simply
supported beam of length L1, loaded at midpoint by a load Q. The actual load on the
strut is thus QL1 / 2. The strength of the strut is governed by its length L2, its radius
r of gyration, its cross-sectional area A and either the yield strength 𝜎Y of the steel
or some combination of axial load capacity and bending capacity, usually expressed
by an interaction rule in structural design codes. Such rules are based, usually, on
experimental observations and are then modified for code users by adding conservative
assumptions and factors of safety. It is apparent, therefore, that code rules must be used
with great caution in reliability analyses. A better approach is to use the original data
and/or original relationships for ultimate strength.

For the squash load limit state, it follows easily that the relevant limit state equation is:

G1(X) = 𝜎Y A −
QL1

2
Here usually all the variables may be considered to be random variables, although some
might be considered closely deterministic, for example the variable A since usually
there is little uncertainty about its value.

For the interaction case, the limit state equation is:

G2(X) = FN
(
𝜎Y A,

L2

r

)
−

QL1

2

where FN( ) is an appropriate interaction equation for ultimate strength of pin-ended
struts.

1.5.3 Generalized Reliability Problem Formulation

With the limit state function expressed as G(X), the generalization of (1.16) becomes:

pf = P[G(X) ≤ 0] = ∫…∫G(X)≤0 fX(x)dx (1.31)

Here f X(x) is the joint probability density function for the n-dimensional vector X
of basic variables. Note that the resistance R and load effect S are not shown in the
formulation — they are implicit in X. Moreover, even if X were dissected, R and S
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may not show up explicitly and may be represented by the variables of which they are
composed. If the basic variables are all independent, formulation (1.31) is simplified,
with (see A.117):

fX(x) =
n∏

i=1
fXi
(xi) = fX1

(x1). fX2
(x2). fX3

(x3)… (1.32)

Here fXi
(xi) is the ‘marginal’ probability density function for the basic variable Xi.

The region of integration G(X) ≤ 0 in (1.31) denotes the (hyper-)space in which
limit state violation occurs. It is directly analogous to the failure domain D shown
in Figure 1.8. Except for some special cases, the integration of (1.31) over the failure
domain G(X) ≤ 0 cannot be performed analytically. However, the solution of (1.31)
can be made more tractable by simplification or by numerical treatment (or both) of
(i) the integration process, (ii) the integrand f X( ) and (iii) the definition of the failure
domain. Each approach has been explored in the literature. Two dominant approaches
have emerged:

(a) using numerical approximations such as simulation to perform the multidimen-
sional integration required in (1.31)—the so-called ‘Monte Carlo’ methods;

(b) sidestepping the integration process completely by transforming f X(x) in (1.31) to
a multi-Normal probability density function and using some remarkable properties
which may then be used to determine, approximately, the probability of failure—the
so-called ‘First Order Second Moment’ methods and developments thereof.

These methods are described in more detail in Chapters 3 and 4 respectively. Some
special results are given also in Appendix C.

1.5.4 Conditional Reliability Problems*

The probability estimate given by (1.31) becomes conditional when complete statistical
information about the random variables X is not available. For example, the means or
the variances might be estimated or not known with precision. In this case the probabil-
ity expressed by (1.31) is a ‘point estimate’, given a particular set of assumptions about
the probability distributions for X. If the relevant statistical parameters are denoted 𝜽
and are considered as random variables, the probability estimate becomes a conditional
estimate and is a function of 𝜽. Further, the limit state function now will be a function
of 𝜽 as well, i.e. G(x, 𝜽) = 0 and the joint probability function in X will be a function
of 𝜽 also, thus fX|𝜽( ). It should be noted that the nature of the uncertainties for the
basic random variables X are different from the uncertainties in 𝜽, the first expressing
inherent variability (see Chapter 2) and the latter expressing uncertainty, which can be
influenced by the collection of additional data (and perhaps by the use of alternative
probability models). The net result is that the probability can now be expressed as a
conditional probability estimate:

pf (𝜽) = ∫G(x,𝜽)≤0 fx|𝜽(x |𝜽)dx (1.33)

Of course, for decision-making an unconditional probability estimate is required.
This can be done by invoking the total probability theorem (see A.6). For the present
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this can be done by taking the expected value of the conditional probability estimate
[Der Kiureghian, 1990]:

pf = E[pf (𝜽)] = ∫𝜽 pf (𝜽)f𝚯(𝜽)d𝜽 (1.34)

where E[ ] is the expectation operator and f𝚯(𝜽) is the joint probability density function
of the parameters 𝜽. Substitution of (1.33) into (1.34) then yields the unconditional
probability estimate.

In passing it is noted that the integral of fX|𝚯( ) over 𝜽 sometimes is referred to, in the
present context, as a ‘predictive’ distribution (since it takes into account uncertainties
in 𝜽), defined as:

fX(x) = ∫𝜽 fX|𝚯(x |𝜽)f𝚯(𝜽)d𝜽 (1.35)

Methods to solve for these integrals are the subject of discussion in Chapters 3 and 4
and are relevant also to Bayesian updating in Chapter 10.

Another way in which the probability estimate (1.31) can be conditional is if the limit
state function is given a more general interpretation. Consider, for convenience, the
indicator function I( ) defined such that (Figure 1.15(a)):

I(x) = 0 if x ≤ 0
= 1 if x > 0

(1.36)

It follows that I[G(X)] may then be interpreted as a ‘utility function’ with the failure
state G(X) ≤ 0 having a ‘utility’ of zero, and the safe state G(X) > 0 having unit ‘utility’.

In practice, such as in problems involving serviceability considerations, the distinc-
tion between full utility and zero utility may not always be clear cut, and values between
zero and unity may be appropriate (see Figure 1.15). Thus it may be that utility depends
inversely on concrete crack size, with no cracks having a utility of 1, cracks < 0.1 mm
a utility of 0.5 and greater cracks zero utility. Clearly many other possibilities and
applications exist [e.g. Reid and Turkstra, 1980; Stewart, 1996b; Augusti and Ciampoli,
2008; Barbato et al., 2013].

If now J(x) denotes the above more general interpretation of the indicator function
(see Figure 1.15(b)) and Jc( ) = 1 − J( ) defines the complement of J , the generalization
of (1.31) becomes:

pf = P{Jc[G(X)]} = ∫∫X {Jc[G(x)] fx(x)}dx (1.37)

As might be imagined, evaluation of (1.34) is not necessarily a simple matter.

(b)(a) (c)

I[Z]

Z0

1
J[Z]

Z0

1
J[Z]

State i
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1

δZ→0

Figure 1.15 Limit state violation indicators.
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If J (or Jc) is defined as a probability distribution function (see A.8), then (1.37) may be
interpreted also as a total probability (see A.6) with (1.31) providing only the conditional
probability of failure for a given realization of the limit state function. This more general
interpretation is useful in structural reliability problems that are part of more general
risk and reliability studies. For these, a range of possible limit state functions, not all
structural, might arise. A good example is that of Probabilistic Safety Analysis (PSA)
for nuclear facilities such as power stations or Probabilistic Risk Analysis (PRA) for
other potentially hazardous facilities. In the case of nuclear power stations suffering
a ‘loss of coolant accident’ (LOCA), the ability of the reactor block and its building to
contain the resulting run-away reaction and its products is critical. The conditional
probability of failure under a LOCA can be estimated for a defined external event such
as for a level of (earthquake-induced) ground shaking. Repeating this for other levels
of ground shaking and using the probability density for these levels together with the
conditional probabilities of plant failure in the theorem of total probability allows the
total probability of failure to be estimated. Similarly the occurrence of a LOCA may by
the result of failure of critical pipework, and this may depend on the relative dynamic
response of the reactor block and the reactor building under earthquake conditions (and
others). More details of integrating structural reliability estimates as conditional events
in larger risk assessments are discussed elsewhere [e.g. Stewart and Melchers, 1997].

1.6 Conclusion

Various ways in which structural reliability may be defined have been reviewed in this
chapter. To do so it was necessary to introduce the concept of ‘limit states’. This was seen
to be a formalization of the possibly multiple criteria under which the structure can be
considered to have ‘failed’ or have reached an unsatisfactory state.

Traditional measures of limit state violation were reviewed, including the factor of
safety, the load factor and possible ‘limit state design’ concepts. It was shown that care is
required in their definition; otherwise the safety measure might depend on how safety
is defined, i.e. the formulation might not be ‘invariant’.

Another common measure, the return period, was reviewed prior to the introduction
of a fully probabilistic measure of limit state violation. Several aspects of this were then
outlined and generalizations given.
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2

Structural Reliability Assessment

2.1 Introduction

Before proceeding to elaborate the concepts introduced in Chapter 1, it is necessary to
address fundamental questions about the meaning of the calculated probability of limit
state violation (whether for ultimate limit states or otherwise). Specifically, what does
the calculated probability pf mean? Can it be related to observed rates of failure for real
structures? How can knowledge of pf help in achieving better (safer?) or more econom-
ical structures? And how does it relate to failure probabilities for other constructed or
existing facilities? Surprising as it may seem, a degree of controversy and disagreement
still remains about these important questions.

It will be helpful to examine the meaning of some terms. ‘Probability’ has already been
used in Chapter 1. It denotes the chance that a particular, predefined event occurs. Clas-
sically, the probability of event occurrence was considered to be obtainable only from
many repeated observations of the process that led to the event, the so-called ‘frequen-
tist’ (or objective) definition. Obviously, the events must be observed. The observation
process itself immediately adds an element of subjectivity, even to an otherwise frequen-
tist meaning, in much the same way that observations in, say, physics are always partly
subjective [de Finetti, 1974; Popper, 1959; Blockley, 1980; Jeffrey, 2004]. This aspect
is sometimes (erroneously) ignored, and relative frequency data assumed to be purely
‘objective’ information.

An alternative interpretation is that probability expresses a ‘degree of belief’ about the
occurrence of an event, rather than the actual (but unknown) frequency. It is therefore
a ‘subjective’ or ‘personal’ probability. This interpretation is much wider than the rela-
tive frequency definition, and in its extreme form could be based on no previous data
or experience of any sort to express degree of belief. Subjective probabilities are often
referred to as ‘Bayesian’ probabilities, reflecting the tract on probability theory express-
ing these ideas, written by the Rev. Thomas Bayes in the early 1700s and since developed
by many others. It is sometimes noted that a subjective probability estimate reflects the
degree of ignorance about the phenomenon under consideration. There is a large lit-
erature on subjective probabilities [e.g. as summarized in Lindley, 1972; Jeffrey, 2004].
Reconciliation of the various interpretations of the meaning of probability still has inter-
esting practical and sometimes quite controversial issues, although the latter are more
philosophical than practical in nature [e.g. Fishburn, 1964; Kyburg, 1978; Hasofer, 1984;
Lind, 1996; CIRIA 2014].
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