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1
Membrane Theory of Shells
of Revolution

1.1 Introduction

All thin cylindrical shells, spherical and ellipsoidal heads, and conical transition sections are
generally analyzed and designed in accordance with the general membrane theory of shells
of revolution. These components include those designed in accordance with the ASME pres-
sure vessel code (Section VIII), boiler code (Section I), and nuclear code (Section III). Some
adjustments are sometimes made to the calculated thicknesses when the ratio of radius to thick-
ness is small or when other factors such as creep or plastic analysis enter into consideration. The
effect of these factors is discussed in later chapters, whereas assumptions and derivation of the
basic membrane equations needed to analyze shells of revolution due to various loading con-
ditions are described here.

1.2 Basic Equations of Equilibrium

The membrane shell theory is used extensively in designing such structures as flat bottom
tanks, pressure vessel components (Figure 1.1), and vessel heads. The membrane theory
assumes that equilibrium in the shell is achieved by having the in-plane membrane forces resist
all applied loads without any bending moments. The theory gives accurate results as long as the
applied loads are distributed over a large area of the shell such as pressure and wind loads. The
membrane forces by themselves cannot resist local concentrated loads. Bending moments are
needed to resist such loads as discussed in Chapters 3 and 5. The basic assumptions made in
deriving the membrane theory (Gibson 1965) are as follows:

1. The shell is homogeneous and isotropic.
2. The thickness of the shell is small compared with its radius of curvature.

Stress in ASME Pressure Vessels, Boilers, and Nuclear Components, First Edition. Maan H. Jawad.
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3. The bending strains are negligible and only strains in the middle surface are considered.
4. The deflection of the shell due to applied loads is small.

In order to derive the governing equations for the membrane theory of shells, we need to
define the shell geometry. The middle surface of a shell of constant thickness may be con-
sidered a surface of revolution. A surface of revolution is obtained by rotating a plane curve
about an axis lying in the plane of the curve. This curve is called a meridian (Figure 1.2).
Any point in the middle surface can be described first by specifying the meridian on which
it is located and second by specifying a quantity, called a parallel circle, that varies along
the meridian and is constant on a circle around the axis of the shell. The meridian is defined
by the angle θ and the parallel circle by ϕ as shown in Figure 1.2.
Define r (Figure 1.3) as the radius from the axis of rotation to any given point o on the sur-

face; r1 as the radius from point o to the center of curvature of the meridian; and r2 as the radius
from the axis of revolution to point o, and it is perpendicular to the meridian. Then from
Figure 1.3,

r = r2 sinϕ, ds = r1dϕ, and dr = dscosϕ (1.1)

The interaction between the applied loads and resultant membrane forces is obtained from
statics and is shown in Figure 1.4. Shell forcesNϕ andNθ are membrane forces in the meridional

Figure 1.1 Pressure vessels. Source: Courtesy of the Nooter Corporation, St. Louis, MO.
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and circumferential directions, respectively. Shearing forces Nϕθ and Nθϕ are as shown in
Figure 1.4. Applied load pr is perpendicular to the surface of the shell, load pϕ is in the merid-
ional direction, and load pθ is in the circumferential direction. All forces are positive as shown
in Figure 1.4.

Surface of
revolution

Parallel circle

Meridian

θ

ϕ

Figure 1.2 Surface of revolution

r

r2

ϕ
dz

dϕ

o

ds

r1

z

dr

r

ϕ

Figure 1.3 Shell geometry
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The first equation of equilibrium is obtained by summing forces parallel to the tangent at the
meridian. This yields

Nθϕr1dϕ− Nθϕ +
∂Nθϕ

∂θ
dθ r1dϕ−Nϕr dθ

+ Nϕ +
∂Nϕ

∂ϕ
dϕ r +

∂r

∂ϕ
dϕ dθ

+ pϕr dθr1 dϕ−Nθr1 dϕdθ cosϕ= 0

(1.2)

The last term in Eq. (1.2) is the component of Nθ parallel to the tangent at the meridian
(Jawad 2004). It is obtained from Figure 1.5. Simplifying Eq. (1.2) and neglecting terms of
higher order results in

∂

∂ϕ
rNϕ −r1

∂Nθϕ

∂θ
−r1Nθ cosϕ+ pϕrr1 = 0 (1.3)

The second equation of equilibrium is obtained from summation of forces in the direction of
parallel circles. Referring to Figure 1.4,

Nθ + dθ∂Nθ
∂θ

Nϕ + dϕ
∂ϕ

∂Nϕ

Nθϕ + dθ
∂θ

∂Nθϕ

Nθϕ

Nϕθ

Nϕ

Nθ

Nϕθ + dϕ
∂ϕ

∂Nϕθ
D

C

A

r2

r1

Br

Pr

Pθ

Pϕ

ϕ
dϕ

dθ

θ

Figure 1.4 Membrane forces and applied loads
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Nϕθr dθ− Nϕθ +
∂Nϕθ

∂ϕ
dϕ r +

∂r

∂ϕ
dϕ dθ

−Nθr1dϕ+ Nθ +
∂Nθ

∂θ
dθ r1dϕ

+ pθrdθr1dϕ−Nθϕr1dϕ
cosϕdθ

2

− Nθϕ +
∂Nθϕ

∂θ
dθ r1dϕ

cosϕdθ
2

= 0

(1.4)

The last two expressions in this equation are obtained from Figure 1.6 (Jawad 2004) and are the
components of Nθϕ in the direction of the parallel circles. Simplifying this equation results in

F = (F1 + F2)sin ϕ

Q = (F1 + F2)cos ϕ

F1 + F2

F1

F2

Nθ + dθ
∂θ

ϕ

∂Nθ

(b)(a) Nθ

dθ

Figure 1.5 Components of Nθ: (a) circumferential cross section and (b) longitudinal cross section

T2 T1

r′

r2

dα

dα

dθ r

(a) (b)

Nθϕ + Nθϕdθ
∂θ

∂Nθϕ
ϕ

Figure 1.6 Components of Nθϕ: (a) side view and (b) three-dimensional view
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∂

∂ϕ
rNϕθ −r1

∂Nθ

∂θ
+ r1Nθϕ cosϕ−pθrr1 = 0 (1.5)

This is the second equation of equilibrium of the infinitesimal element shown in Figure 1.4.
The last equation of equilibrium is obtained by summing forces perpendicular to the middle
surface. Referring to Figures 1.4, 1.5, and 1.7,

Nθr1dϕdθ sinϕ−prrdθr1dϕ+Nϕrdθdϕ = 0

or

Nθr1 sinϕ +Nϕr = prrr1 (1.6)

Equations (1.3), (1.5), and (1.6) are the three equations of equilibrium of a shell of revolution
subjected to axisymmetric loads.

1.3 Spherical and Ellipsoidal Shells Subjected to Axisymmetric Loads

In many structural applications, loads such as deadweight, snow, and pressure are symmetric
around the axis of the shell. Hence, all forces and deformations must also be symmetric around
the axis. Accordingly, all loads and forces are independent of θ and all derivatives with respect
to θ are zero. Equation (1.3) reduces to

∂

∂ϕ
rNϕ −r1Nθ cosϕ = −pϕrr1 (1.7)

F3 + F4 = Nϕrdθdϕ

F3

Pr

F4
Nϕ +

Nϕ

dϕ
∂ϕ

∂Nϕ

dϕ

Figure 1.7 Components of Nϕ
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Equation (1.5) becomes

∂

∂ϕ
rNθϕ + r1Nθϕ cosϕ= pθrr1 (1.8)

In this equation, we let the cross shears Nϕθ =Nθϕ in order to maintain equilibrium.
Equation (1.6) can be expressed as

Nθ

r2
+
Nϕ

r1
= pr (1.9)

Equation (1.8) describes a torsion condition in the shell. This condition produces deform-
ations around the axis of the shell. However, the deformation around the axis is zero due to
axisymmetric loads. Hence, we must set Nθϕ = pθ = 0 and we disregard Eq. (1.8) from further
consideration.
Substituting Eq. (1.9) into Eq. (1.7) gives

Nϕ =
1

r2sin
2ϕ

r1r2 pr cosϕ−pϕ sinϕ sinϕdϕ +C (1.10)

The constant of integration C in Eq. (1.10) is additionally used to take into consideration the
effect of any additional applied loads that cannot be defined by pr and pϕ such as weight of
contents.
Equations (1.9) and (1.10) are the two governing equations for designing double-curvature

shells under membrane action.

1.3.1 Spherical Shells Subjected to Internal Pressure

For spherical shells under axisymmetric loads, the differential equations can be simplified by
letting r1 = r2 = R. Equations (1.9) and (1.10) become

Nϕ +Nθ = prR (1.11)

and

Nϕ =
R

sin2ϕ
pr cosϕ−pϕ sinϕ sinϕdϕ +C (1.12)

These two expressions form the basis for developing solutions to various loading conditions
in spherical shells. For any loading condition, expressions for pr and pϕ are first determined and
then the previous equations are solved for Nϕ and Nθ.
For a spherical shell under internal pressure, pr = P and pϕ = 0. Hence, from Eqs. (1.11)

and (1.12),

Nϕ =Nθ =
PR

2
=
PD

4
(1.13)
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where D is the diameter of the sphere. The required thickness is obtained from

t =
Nϕ

S
=
Nθ

S
(1.14)

where S is the allowable stress.
Equation (1.14) is accurate for design purposes as long asR/t ≥ 10. If R/t < 10, then thick shell

equations, described in Chapter 3, must be used.

1.3.2 Spherical Shells under Various Loading Conditions

The following examples illustrate the use of Eqs. (1.11) and (1.12) for determining forces in
spherical segments subjected to various loading conditions.

Example 1.1
A storage tank roof with thickness t has a dead load of γ psf. Find the expressions forNϕ andNθ.

Solution
From Figure 1.8a and Eq. (1.12),

pr = −γ cosϕ and pϕ = γ sinϕ

Nϕ =
R

sin2ϕ
−γcos2ϕ−γsin2ϕ sinϕdϕ +C

Nϕ =
R

sin2ϕ
γ cosϕ +C (1)

As ϕ approaches zero, the denominator in Eq. (1) approaches zero. Accordingly, we must let
the bracketed term in the numerator equal zero. This yields C = –γ. Equation (1) becomes

Nϕ =
−Rγ 1−cosϕ

sin2ϕ
(2)

The convergence of Eq. (2) as ϕ approaches zero can be checked by l’Hopital’s rule. Thus,

Nϕ
ϕ = 0

=
−Rγsinϕ

2sinϕcosϕ ϕ = 0

=
−γR

2

Equation (2) can be written as

Nϕ =
−γR

1 + cosϕ
(3)
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From Eq. (1.11), Nθ is given by

Nθ = γR
1

1 + cosϕ
−cosϕ (4)

A plot of Nϕ and Nθ for various values of ϕ is shown in Figure 1.8b, showing that for angles ϕ
greater than 52 , the hoop force, Nθ, changes from compression to tension and special attention
is needed in using the appropriate allowable stress values.

Example 1.2
Find the forces in a spherical head due to a vertical load Po applied at an angle ϕ = ϕo as shown
in Figure 1.9a.

γ

ϕ
R

(a)

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

20

N

Nθ

Nϕ

γR

40 60 80 20 40 60 80

0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

N

γR

ϕ ϕ

(b)

Figure 1.8 Membrane forces in a head due to deadweight: (a) dead load and (b) force patterns
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Solution
Since pr = pϕ = 0, Eq. (1.12) becomes

Nϕ =
RC

sin2ϕ
(1)

From statics at ϕ = ϕo, we get from Figure 1.9b

Nϕ =
Po

sinϕo

Substituting this expression into Eq. (1), and keeping in mind that it is a compressive membrane
force, gives

C =
−Po

R
sinϕo

and Eq. (1) yields

Nϕ = −Po
sinϕo

sin2ϕ

From Eq. (1.11),

Nθ =Po
sinϕo

sinϕ

In this example there is another force that requires consideration. Referring to Figure 1.9b, it
is seen that in order for Po and Nϕ to be in equilibrium, another horizontal force, H, must be
considered. The direction of H is inward in order for the force system to have a net resultant
force Po downward. This horizontal force is calculated as

H =
−Po cosϕo

sinϕo

Po Po

A

(a) (b)

AH

Po

R

ϕo

Nϕ

ϕ

Figure 1.9 Edge loads in a spherical head: (a) edge load and (b) forces due to edge load
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A compression ring is needed at the inner edge in order to contain force H.
The required area, A, of the ring is given by

A=
H Rsinϕo

σ

where σ is the allowable compressive stress of the ring.

Example 1.3
The sphere shown in Figure 1.10a is filled with a liquid of density γ. Hence, pr and pϕ can be
expressed as

pr = γR 1−cosϕ

pϕ = 0

a. Determine the expressions for Nϕ and Nθ throughout the sphere.
b. Plot Nϕ and Nθ for various values of ϕ when ϕo = 110 .
c. Plot Nϕ and Nθ for various values of ϕ when ϕo = 130 .
d. If γ = 62.4 pcf, R = 30 ft, and ϕo = 110 , determine the magnitude of the unbalanced force H

at the cylindrical shell junction. Design the sphere, the support cylinder, and the junction
ring. Let the allowable stress in tension be 20 ksi and that in compression be 10 ksi.

R

(a)

ϕo

Figure 1.10 Spherical tank: (a) spherical tank, (b) support at 110 , (c) support at 130 , and (d) forces at
support junction
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(b)

(c)

110°

130°

.03

.11

.17

.1074

.8624
.89

.97 .9

.61

.48
1.23

.83

.39

.10

1.0 1.0

Nϕ

Nϕ Nθ

γR2

Nθ

γR2

.03

.11

.17

.22

0@120° .92

.97 .9

.73

1.86

1.50

.83

.39

.10

1.0 1.0

Nϕ

Nϕ Nθ

γR2

Nθ

γR2

130°

130°

(d)

A

C

B R′

0.1074γR2

0.1009γR2

0.0367γR2

0.7095γR2

0.8104γR2

0.8624γR2

0.2950γR2

Figure 1.10 (Continued)
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Solution
a. From Eq. (1.12), we obtain

Nϕ =
γR2

sin2ϕ

1
2
sin2ϕ+

1
3
cos3ϕ+C (1)

As ϕ approaches zero, the denominator approaches zero. Hence, the bracketed term in the
numerator must be set to zero. This gives C = −1/3 and Eq. (1) becomes

Nϕ =
γR2

6sin2ϕ
3sin2ϕ + 2cos3ϕ−2 (2)

The corresponding Nθ from Eq. (1.11) is

Nθ = γR
2 1
2
−cosϕ−

1

3sin2ϕ
cos3ϕ−1 (3)

As ϕ approaches π, we need to evaluate Eq. (1) at that point to ensure a finite solution.
Again the denominator approaches zero and the bracketed term in the numerator must be set
to zero. This gives C = 1/3 and Eq. (1) becomes

Nϕ =
γR2

6sin2ϕ
3sin2ϕ+ 2cos3ϕ + 2 (4)

The corresponding Nθ from Eq. (1.11) is

Nθ = γR
2 1
2
−cosϕ−

1

3sin2ϕ
cos3ϕ + 1 (5)

Equations (2) and (3) are applicable between 0 < ϕ < ϕo, and Eqs. (4) and (5) are applicable
between ϕo < ϕ < π.

b. A plot of Eqs. (2) through (5) for ϕo = 110 is shown in Figure 1.10b. Nϕ below circle ϕo =
110 is substantially larger than that above circle 110 . This is due to the fact that most of the
weight of the contents is supported by the spherical portion that is below the circle ϕo =
110 . Also, because Nϕ does not increase in proportion to the increase in pressure as ϕ
increases, Eq. (1.11) necessitates a rapid increase in Nθ in order to maintain the relationship
between the left- and right-hand sides. This is illustrated in Figure 1.10b.
A plot of Nϕ and Nθ for ϕo = 130 is shown in Figure 1.10c. In this case, Nϕ is in com-

pression just above the circle ϕo = 130 . This indicates that as the diameter of the supporting
cylinder gets smaller, the weight of the water above circle ϕo = 130 must be supported by
the sphere in compression. This results in a much larger Nθ value just above ϕo = 130 .
Buckling of the sphere becomes a consideration in this case.
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c. From Figure 1.10b for ϕo = 110 , the maximum force in the sphere is Nθ = 1.23γR2. The
required thickness of the sphere is

t =
1 23 62 4 30 2 12

20,000

= 0 29 inch

A free-body diagram of the spherical and cylindrical junction at ϕo = 110 is shown in
Figure 1.10d. The values ofNϕ at points A and B are obtained from Eqs. (2) and (4), respect-
ively. The vertical and horizontal components of these forces are shown at points A and B in
Figure 1.10d. The unbalanced vertical forces result in a downward force at point C of mag-
nitude 0.7095γR2. The total force on the cylinder is (0.7095γR2)(2π)(R)(sin (180 − 110)).
This total force is equal to the total weight of the contents in the sphere given by (4/3)
(πR3)γ. The required thickness of the cylinder is

t =
0 7095 62 4 30 2 12

10,000

= 0 33 inch

Summation of horizontal forces at points A and B results in a compressive force of mag-
nitude 0.2583γR2. The needed area of compression ring at the cylinder to sphere junction is

A=
Hr

σ
=
0 2583 × 62 4 × 302 30sin70

10,000

= 40 89 inch2

This area is furnished by a large ring added to the sphere or an increase in the thickness of
the sphere at the junction.

1.3.3 ASME Code Equations for Spherical Shells under
Various Loading Conditions

Loading conditions such as those shown in Examples 1.1 through 1.3 are not specifically
covered by equations in the boiler and pressure vessel codes. However, they are addressed
in paragraph PG-16.1 of Section I, paragraph U-2(g) of Section VIII-1, and paragraph 4.1.1
of Section VIII-2 using special analysis.
In the nuclear code, paragraph NC-3932.2 of Section NC and ND-3932.2 of Section ND

provide equations for calculating forces at specific locations in a shell due to loading conditions
similar to those shown in Examples 1.1 through 1.5. This procedure is discussed further in
Chapter 2.
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1.3.4 Ellipsoidal Shells under Internal Pressure

Ellipsoidal heads of all sizes and shapes are used in the ASME code as end closure for pressure
components. The general configuration is shown in Figure 1.11.
Small-size heads are formed by using dyes shaped to a true ellipse. However, large diameter

heads formed from plate segments are in the shapes of spherical and torispherical geometries
that simulate ellipses as shown in Figures 1.12 and 1.13. Figure 1.12 shows an ASME

Nϕ Nθ
+

+ +

–

ϕ
r2

r1 b

a

Figure 1.11 Ellipsoidal head under internal pressure

D/2h = 2 : 1

h

D

(a)

h
.17D

.9D

D

(b)

Figure 1.12 2 : 1 elliptical head: (a) exact configuration and (b) approximate configuration
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equivalent 2 : 1 ellipsoidal head. It consists of a spherical segment with R = 0.9D and a knuckle
with r = 0.17D where D is the base diameter of the head. Figure 1.13 shows a shallow head
(2.96 : 1 ratio) referred to as flanged and dished (F&D) head consisting of a spherical segment
with R =D and a knuckle section with r = 0.06D.
For internal pressure we define pr = p and pϕ = 0. Then from Eqs. (1.1) and (1.10),

Nϕ =
1

r2sin
2ϕ

p rdr +C

Nϕ =
1

r2sin
2ϕ

pr2

2
+C (1.15)

The constant C is obtained from the following boundary condition:

At ϕ=
π

2
, r2 = r and Nϕ =

pr

2

Hence, from Eq. (1.15) we get C = 0 and Nϕ can be expressed as

Nϕ =
pr2

2r2sin
2ϕ

or

Nϕ =
pr2
2

(1.16)

.06 D

L = D

D

Figure 1.13 Elliptical head with a/b = 2.96 ratio
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From Eq. (1.9),

Nθ = pr2 1−
r2
2r1

(1.17)

From analytical geometry, the relationship between the major and minor axes of an ellipse and
r1 and r2 is given by

r1 =
a2b2

a2sin2ϕ + b2cos2ϕ
3 2

r2 =
a2

a2sin2ϕ + b2cos2ϕ
1 2

Substituting these expressions into Eqs. (1.16) and (1.17) gives the following expressions for
membrane forces in ellipsoidal shells due to internal pressure:

Nϕ =
pa2

2
1

a2sin2ϕ+ b2cos2ϕ
1 2

(1.18)

Nθ =
pa2

2b2
b2− a2−b2 sin2ϕ

a2sin2ϕ + b2cos2ϕ
1 2

(1.19)

The maximum tensile force in an ellipsoidal head is at the apex as shown in Figure 1.11. The
maximum value is obtained from Eqs. (1.18) and (1.19) by letting ϕ = 0. This gives

Nϕ =Nθ =
Pa2

2b
(1.20)

For a 2 : 1 head with a/b = 2 and a =D/2, Eq. (1.18) becomes

Nϕ =Nθ = 0 5PD (1.21)

where D is the base diameter. Comparing this equation with Eq. (1.13) for spherical heads
shows that the force, and thus the stress, in a 2 : 1 ellipsoidal head is twice that of a spherical
head having the same base diameter.
For an F&D head with a/b = 2.96 and a =D/2, Eq. (1.18) becomes

Nϕ =Nθ = 0 74PD (1.22)

Comparing this equation with Eq. (1.13) for spherical heads shows the stress of a 2.95 : 1 F&D
head at the apex is 2.96 times that of a spherical head having the same base diameter.
A plot of Eqs. (1.18) and (1.19) is shown in Figure 1.11. Equation (1.18) for the longitudinal

force, Nϕ, is always in tension regardless of the a/b ratio. Equation (1.19) for Nθ on the other
hand gives compressive circumferential forces near the equator when the value a/b ≥ 2.

17Membrane Theory of Shells of Revolution



For large a/b ratios under internal pressure, the compressive circumferential force tends to
increase in magnitude, whereas instability may occur for large a/t ratios. This extreme care must
be exercised by the engineer to avoid buckling failure. The ASME code contains design rules
that take into account the instability of shallow ellipsoidal shells due to internal pressure as
described in Chapter 5.

Example 1.4
Determine the required thickness of a 2 : 1 ellipsoidal head with a = 30 inches, b = 15 inches,
and P = 500 psi, and allowable stress in tension is S = 20,000 psi.

Solution
At the apex, ϕ = 0, and from Eqs. (1.18) and (1.19),

Nϕ =Pa and Nθ =Pa

At the equator, ϕ = 90 , and from Eqs. (1.18) and (1.19),

Nϕ =
Pa

2
and Nθ = −Pa

Thus, the required thickness is t = Pa/S = 500(30)/20,000 = 0.75 inch.
Notice at the equator,Nθ is compressive andmay result in instability as discussed in Chapter 5.

1.4 Conical Shells

Equations (1.9) and (1.10) cannot readily be used for analyzing conical shells because the angle
ϕ in a conical shell is constant. Hence, the two equations have to be modified accordingly.
Referring to Figure 1.14, it can be shown that

ϕ = β = constant

r1 = ∞ r2 = s tanα r = ssinα

Nϕ =Ns

(1.23)

Equation (1.9) can be written as

Ns

r1
+

Nθ

s tanα
= pr

or since r1 = ∞,

Nθ = prs tanα

= prr2

Nθ =
prr

cosα

(1.24)
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Similarly from Eqs. (1.1) and (1.7),

d

ds
r1 ssinαNs −r1Nθ sinα= −psssinαr1

Substituting Eq. (1.24) into this equation results in

Ns =
−1
s

ps−pr tanα sds+C (1.25)

It is of interest to note that while Nθ is a function of Nϕ for shells with double curvature, it is
independent of Nϕ for conical shells as shown in Eqs. (1.24) and (1.25). Also, as α approaches
0 , Eq. (1.25) becomes

Nθ = prr2

which is the expression for the circumferential hoop force in a cylindrical shell.
The analysis of conical shells consists of solving the forces in Eqs. (1.24) and (1.25) for any

given loading condition. The thickness is then determined from the maximum forces and a
given allowable stress.
Equations (1.24) and (1.25) and Figure 1.15 will be used to determine forces in a conical

shell due to internal pressure.
From Eq. (1.24), the maximum Nθ occurs at the large end of the cone and is given by

Nθ = p
ro

sinα
tanα=

pro
cosα

(1.26)

α

β

r

s

r2

Figure 1.14 Conical shell
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From Eq. (1.25),

Ns =
−1
s

−p tanαsds +C

=
−1
s

−p tanα
s2

2
+C

(1.27)

At s = L, Ns =
pro
2

1
cosα

Substituting this expression into Eq. (1.27), and using the relationships of Eq. (1.23), givesC = 0.
Equation (1.27) becomes

Ns =
pr

2cosα

and max Ns =
pro

2cosα

(1.28)

It is of interest to note that the longitudinal and hoop forces are identical to those of a cylinder
with equivalent radius of ro/cos α.
All sections of the ASME code have equations for designing conical sections based on

Eqs. (1.26) and (1.28).

1.5 Cylindrical Shells

Equipment consisting of cylindrical shells subjected to pressure and axial loads are frequently
encountered in refineries and chemical plants. If the radius of the shell is designated by R,
Figure 1.16a, then from Figure 1.3 r1 =∞, ϕ = 90 , P = pr, and r = r2 = R. The value of the

ro

p

α

Figure 1.15 Conical bottom head
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circumferential force Nθ can be obtained by equating the pressure acting on the cross section,
Figure 1.16a, to the forces in the material at the cross section. This results in

Nθ = prR (1.29)

The required thickness, t, of a cylindrical shell due to internal pressure is obtained from
Eq. (1.29) as

t =
PR

S
(1.30)

where S is the allowable stress and t is the thickness.
The required thickness of cylindrical shells in the ASME code is obtained from a modified

Eq. (1.30) that takes into consideration stress variation in the wall of the cylinder for small R/t
ratios. This equation is described in Chapter 3.
Similarly, the value of the axial force Nϕ is obtained by equating the pressure acting on the

cross section, Figure 1.16b, to the forces in the material at the cross section. This yields

Nϕ =
prR

2
(1.31)

The corresponding stress and thickness are obtained from Eq. (1.31) as

t =
PR

2S
(1.32)

Nϕ

Nθ

Nθ

R

(a)
Nϕ

(b)

Figure 1.16 Cylindrical shell: (a) circumferential force and (b) longitudinal force
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