

Stress in ASME Pressure Vessels, Boilers, and Nuclear Components

Maan H. Jawad

STRESS IN ASME PRESSURE VESSELS, BOILERS, AND NUCLEAR COMPONENTS

Wiley-ASME Press Series List

Stress in ASME Pressure Vessels, Boilers, and Nuclear Components	Jawad	October 2017
Robust Adaptive Control for Fractional-Order Systems with Disturbance and Saturation	Shi	November 2017
Robot Manipulator Redundancy Resolution Combined Cooling, Heating, and Power Systems: Modeling, Optimization, and Operation	Shang	October 2017
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine	Dorfman	February 2017
Bioprocessing Piping and Equipment Design: A Companion Guide for the ASME BPE Standard	Huitt	December 2016
Nonlinear Regression Modeling for Engineering Applications	Rhinehart	September 2016
Fundamentals of Mechanical Vibrations	Cai	May 2016
Introduction to Dynamics and Control of Mechanical	To	March 2016
Engineering Systems		

STRESS IN ASME PRESSURE VESSELS, BOILERS, AND NUCLEAR COMPONENTS

Maan H. Jawad, Ph.D., P.E.
Global Engineering \& Technology, Inc.
Camas, WA, USA

This edition first published 2018
Copyright © 2018, The American Society of Mechanical Engineers (ASME), 2 Park Avenue, New York, NY, 10016, USA (www.asme.org).
Published by John Wiley \& Sons, Inc., Hoboken, New Jersey.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/ permissions.

The right of Maan H. Jawad to be identified as the author of this work has been asserted in accordance with law.

Registered Office(s)

John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley \& Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Jawad, Maan H., author.
Title: Stress in ASME pressure vessels, boilers and nuclear components / by
Maan H. Jawad.
Description: First edition. I Hoboken, NJ : John Wiley \& Sons, 2018. I
Series: Wiley-ASME Press series I Includes bibliographical references and index. I
Identifiers: LCCN 2017018768 (print) | LCCN 2017036797 (ebook) | ISBN
9781119259268 (pdf) | ISBN 9781119259275 (epub) । ISBN 9781119259282 (cloth)
Subjects: LCSH: Shells (Engineering) | Plates (Engineering) | Strains and stresses.
Classification: LCC TA660.S5 (ebook) | LCC TA660.S5 J39 2017 (print) | DDC 624.1/776-dc23

LC record available at https://lcen.loc.gov/2017018768
Cover design by Wiley
Cover image: © I Verveer/Gettyimages
Set in 10/12pt Times by SPi Global, Pondicherry, India

Contents

Series Preface ix
Acknowledgment xi
1 Membrane Theory of Shells of Revolution 1
1.1 Introduction 1
1.2 Basic Equations of Equilibrium 1
1.3 Spherical and Ellipsoidal Shells Subjected to Axisymmetric Loads 6
1.4 Conical Shells 18
1.5 Cylindrical Shells 20
1.6 Cylindrical Shells with Elliptical Cross Section 22
1.7 Design of Shells of Revolution 23
Problems 23
2 Various Applications of the Membrane Theory 27
2.1 Analysis of Multicomponent Structures 27
2.2 Pressure-Area Method of Analysis 35
2.3 Deflection Due to Axisymmetric Loads 42
Problems 47
3 Analysis of Cylindrical Shells 51
3.1 Elastic Analysis of Thick-Wall Cylinders 51
3.2 Thick Cylinders with Off-center Bore 56
3.3 Stress Categories and Equivalent Stress Limits for Design and Operating Conditions 57
3.4 Plastic Analysis of Thick Wall Cylinders 63
3.5 Creep Analysis of Thick-Wall Cylinders 65
3.6 Shell Equations in the ASME Code 69
3.7 Bending of Thin-Wall Cylinders Due to Axisymmetric Loads 71
3.8 Thermal Stress 89
3.9 Discontinuity Stresses 98
Problems 100
4 Buckling of Cylindrical Shells 103
4.1 Introduction 103
4.2 Basic Equations 103
4.3 Lateral Pressure 108
4.4 Lateral and End Pressure 114
4.5 Axial Compression 117
4.6 Design Equations 120
Problems 136
5 Stress in Shells of Revolution Due to Axisymmetric Loads 141
5.1 Elastic Stress in Thick-Wall Spherical Sections Due to Pressure 141
5.2 Spherical Shells in the ASME Code 142
5.3 Stress in Ellipsoidal Shells Due to Pressure Using Elastic Analysis 145
5.4 Ellipsoidal (Dished) Heads in the ASME Code 146
5.5 Stress in Thick-Wall Spherical Sections Due to Pressure Using Plastic Analysis 150
5.6 Stress in Thick-Wall Spherical Sections Due to Pressure Using Creep Analysis 150
5.7 Bending of Shells of Revolution Due to Axisymmetric Loads 151
5.8 Spherical Shells 156
5.9 Conical Shells 165
Problems 174
6 Buckling of Shells of Revolution 175
6.1 Elastic Buckling of Spherical Shells 175
6.2 ASME Procedure for External Pressure 179
6.3 Buckling of Stiffened Spherical Shells 180
6.4 Ellipsoidal Shells 181
6.5 Buckling of Conical Shells 181
6.6 Various Shapes 184
Problems 184
7 Bending of Rectangular Plates 187
7.1 Introduction 187
7.2 Strain-Deflection Equations 189
7.3 Stress-Deflection Expressions 194
7.4 Force-Stress Expressions 196
7.5 Governing Differential Equations 197
7.6 Boundary Conditions 200
7.7 Double Series Solution of Simply Supported Plates 204
7.8 Single Series Solution of Simply Supported Plates 206
7.9 Rectangular Plates with Fixed Edges 211
7.10 Plate Equations in the ASME Code 212
Problems 213
8 Bending of Circular Plates 215
8.1 Plates Subjected to Uniform Loads in the θ-Direction 215
8.2 Circular Plates in the ASME Code 225
8.3 Plates on an Elastic Foundation 227
8.4 Plates with Variable Boundary Conditions 231
8.5 Design of Circular Plates 234
Problems 235
9 Approximate Analysis of Plates 239
9.1 Introduction 239
9.2 Yield Line Theory 239
9.3 Further Application of the Yield Line Theory 247
9.4 Design Concepts 253
Problems 255
10 Buckling of Plates 259
10.1 Circular Plates 259
10.2 Rectangular Plates 263
10.3 Rectangular Plates with Various Boundary Conditions 271
10.4 Finite Difference Equations for Buckling 275
10.5 Other Aspects of Buckling 277
10.6 Application of Buckling Expressions to Design Problems 279
Problems 282
11 Finite Element Analysis 283
11.1 Definitions 283
11.2 One-Dimensional Elements 287
11.3 Linear Triangular Elements 295
11.4 Axisymmetric Triangular Linear Elements 302
11.5 Higher-Order Elements 305
11.6 Nonlinear Analysis 307
Appendix A: Fourier Series 309
A. 1 General Equations 309
A. 2 Interval Change 313
A. 3 Half-Range Expansions 314
A. 4 Double Fourier Series 316
Appendix B: Bessel Functions 319
B. 1 General Equations 319
B. 2 Some Bessel Identities 323
B. 3 Simplified Bessel Functions 325
Appendix C: Conversion Factors 327
References 329
Answers to Selected Problems 333
Index 335

Series Preface

The Wiley-ASME Press Series in Mechanical Engineering brings together two established leaders in mechanical engineering publishing to deliver high-quality, peer-reviewed books covering topics of current interest to engineers and researchers worldwide. The series publishes across the breadth of mechanical engineering, comprising research, design and development, and manufacturing. It includes monographs, references, and course texts. Prospective topics include emerging and advanced technologies in engineering design, computer-aided design, energy conversion and resources, heat transfer, manufacturing and processing, systems and devices, renewable energy, robotics, and biotechnology.

Acknowledgment

Abstract

The author would like to thank Mr. Donald Lange of the CIC Group and Bernard Wicklein and Grace Fechter of the Nooter Corporation in St. Louis, Missouri, for their support. Special thanks are also given to Dr Chithranjan Nadarajah for providing the finite element analysis of the quadratic element in Chapter 11.

1

Membrane Theory of Shells of Revolution

1.1 Introduction

All thin cylindrical shells, spherical and ellipsoidal heads, and conical transition sections are generally analyzed and designed in accordance with the general membrane theory of shells of revolution. These components include those designed in accordance with the ASME pressure vessel code (Section VIII), boiler code (Section I), and nuclear code (Section III). Some adjustments are sometimes made to the calculated thicknesses when the ratio of radius to thickness is small or when other factors such as creep or plastic analysis enter into consideration. The effect of these factors is discussed in later chapters, whereas assumptions and derivation of the basic membrane equations needed to analyze shells of revolution due to various loading conditions are described here.

1.2 Basic Equations of Equilibrium

The membrane shell theory is used extensively in designing such structures as flat bottom tanks, pressure vessel components (Figure 1.1), and vessel heads. The membrane theory assumes that equilibrium in the shell is achieved by having the in-plane membrane forces resist all applied loads without any bending moments. The theory gives accurate results as long as the applied loads are distributed over a large area of the shell such as pressure and wind loads. The membrane forces by themselves cannot resist local concentrated loads. Bending moments are needed to resist such loads as discussed in Chapters 3 and 5. The basic assumptions made in deriving the membrane theory (Gibson 1965) are as follows:

1. The shell is homogeneous and isotropic.
2. The thickness of the shell is small compared with its radius of curvature.

[^0]

Figure 1.1 Pressure vessels. Source: Courtesy of the Nooter Corporation, St. Louis, MO.
3. The bending strains are negligible and only strains in the middle surface are considered.
4. The deflection of the shell due to applied loads is small.

In order to derive the governing equations for the membrane theory of shells, we need to define the shell geometry. The middle surface of a shell of constant thickness may be considered a surface of revolution. A surface of revolution is obtained by rotating a plane curve about an axis lying in the plane of the curve. This curve is called a meridian (Figure 1.2). Any point in the middle surface can be described first by specifying the meridian on which it is located and second by specifying a quantity, called a parallel circle, that varies along the meridian and is constant on a circle around the axis of the shell. The meridian is defined by the angle θ and the parallel circle by ϕ as shown in Figure 1.2.

Define r (Figure 1.3) as the radius from the axis of rotation to any given point o on the surface; r_{1} as the radius from point o to the center of curvature of the meridian; and r_{2} as the radius from the axis of revolution to point o , and it is perpendicular to the meridian. Then from Figure 1.3,

$$
\begin{equation*}
r=r_{2} \sin \phi, \quad d s=r_{1} d \phi, \text { and } d r=d s \cos \phi \tag{1.1}
\end{equation*}
$$

The interaction between the applied loads and resultant membrane forces is obtained from statics and is shown in Figure 1.4. Shell forces N_{ϕ} and N_{θ} are membrane forces in the meridional

Figure 1.2 Surface of revolution

Figure 1.3 Shell geometry
and circumferential directions, respectively. Shearing forces $N_{\phi \theta}$ and $N_{\theta \phi}$ are as shown in Figure 1.4. Applied load p_{r} is perpendicular to the surface of the shell, load p_{ϕ} is in the meridional direction, and load p_{θ} is in the circumferential direction. All forces are positive as shown in Figure 1.4.

Figure 1.4 Membrane forces and applied loads

The first equation of equilibrium is obtained by summing forces parallel to the tangent at the meridian. This yields

$$
\begin{align*}
N_{\theta \phi} r_{1} d \phi & -\left(N_{\theta \phi}+\frac{\partial N_{\theta \phi}}{\partial \theta} d \theta\right) r_{1} d \phi-N_{\phi} r d \theta \\
& +\left(N_{\phi}+\frac{\partial N_{\phi}}{\partial \phi} d \phi\right)\left(r+\frac{\partial r}{\partial \phi} d \phi\right) d \theta \tag{1.2}\\
& +p_{\phi} r d \theta r_{1} d \phi-N_{\theta} r_{1} d \phi d \theta \cos \phi=0 .
\end{align*}
$$

The last term in Eq. (1.2) is the component of N_{θ} parallel to the tangent at the meridian (Jawad 2004). It is obtained from Figure 1.5. Simplifying Eq. (1.2) and neglecting terms of higher order results in

$$
\begin{equation*}
\frac{\partial}{\partial \phi}\left(r N_{\phi}\right)-r_{1} \frac{\partial N_{\theta \phi}}{\partial \theta}-r_{1} N_{\theta} \cos \phi+p_{\phi} r r_{1}=0 \tag{1.3}
\end{equation*}
$$

The second equation of equilibrium is obtained from summation of forces in the direction of parallel circles. Referring to Figure 1.4,

Figure 1.5 Components of N_{θ} : (a) circumferential cross section and (b) longitudinal cross section

Figure 1.6 Components of $N_{\theta \phi}$: (a) side view and (b) three-dimensional view

$$
\begin{align*}
N_{\phi \theta} r d \theta & -\left(N_{\phi \theta}+\frac{\partial N_{\phi \theta}}{\partial \phi} d \phi\right)\left(r+\frac{\partial r}{\partial \phi} d \phi\right) d \theta \\
& -N_{\theta} r_{1} d \phi+\left(N_{\theta}+\frac{\partial N_{\theta}}{\partial \theta} d \theta\right)\left(r_{1} d \phi\right) \tag{1.4}\\
& +p_{\theta} r d \theta r_{1} d \phi-N_{\theta \phi} r_{1} d \phi \frac{\cos \phi d \theta}{2} \\
& -\left(N_{\theta \phi}+\frac{\partial N_{\theta \phi}}{\partial \theta} d \theta\right)\left(r_{1} d \phi\right) \frac{\cos \phi d \theta}{2}=0 .
\end{align*}
$$

The last two expressions in this equation are obtained from Figure 1.6 (Jawad 2004) and are the components of $N_{\theta \phi}$ in the direction of the parallel circles. Simplifying this equation results in

Figure 1.7 Components of N_{ϕ}

$$
\begin{equation*}
\frac{\partial}{\partial \phi}\left(r N_{\phi \theta}\right)-r_{1} \frac{\partial N_{\theta}}{\partial \theta}+r_{1} N_{\theta \phi} \cos \phi-p_{\theta} r r_{1}=0 \tag{1.5}
\end{equation*}
$$

This is the second equation of equilibrium of the infinitesimal element shown in Figure 1.4. The last equation of equilibrium is obtained by summing forces perpendicular to the middle surface. Referring to Figures 1.4, 1.5, and 1.7,

$$
\left(N_{\theta} r_{1} d \phi d \theta\right) \sin \phi-p_{\mathrm{r}} r d \theta r_{1} d \phi+N_{\phi} r d \theta d \phi=0
$$

or

$$
\begin{equation*}
N_{\theta} r_{1} \sin \phi+N_{\phi} r=p_{\mathrm{r}} r r_{1} \tag{1.6}
\end{equation*}
$$

Equations (1.3), (1.5), and (1.6) are the three equations of equilibrium of a shell of revolution subjected to axisymmetric loads.

1.3 Spherical and Ellipsoidal Shells Subjected to Axisymmetric Loads

In many structural applications, loads such as deadweight, snow, and pressure are symmetric around the axis of the shell. Hence, all forces and deformations must also be symmetric around the axis. Accordingly, all loads and forces are independent of θ and all derivatives with respect to θ are zero. Equation (1.3) reduces to

$$
\begin{equation*}
\frac{\partial}{\partial \phi}\left(r N_{\phi}\right)-r_{1} N_{\theta} \cos \phi=-p_{\phi} r r_{1} . \tag{1.7}
\end{equation*}
$$

Equation (1.5) becomes

$$
\begin{equation*}
\frac{\partial}{\partial \phi}\left(r N_{\theta \phi}\right)+r_{1} N_{\theta \phi} \cos \phi=p_{\theta} r r_{1} . \tag{1.8}
\end{equation*}
$$

In this equation, we let the cross shears $N_{\phi \theta}=N_{\theta \phi}$ in order to maintain equilibrium.
Equation (1.6) can be expressed as

$$
\begin{equation*}
\frac{N_{\theta}}{r_{2}}+\frac{N_{\phi}}{r_{1}}=p_{\mathrm{r}} \tag{1.9}
\end{equation*}
$$

Equation (1.8) describes a torsion condition in the shell. This condition produces deformations around the axis of the shell. However, the deformation around the axis is zero due to axisymmetric loads. Hence, we must set $N_{\theta \phi}=p_{\theta}=0$ and we disregard Eq. (1.8) from further consideration.

Substituting Eq. (1.9) into Eq. (1.7) gives

$$
\begin{equation*}
N_{\phi}=\frac{1}{r_{2} \sin ^{2} \phi}\left[\int r_{1} r_{2}\left(p_{\mathrm{r}} \cos \phi-p_{\phi} \sin \phi\right) \sin \phi d \phi+C\right] . \tag{1.10}
\end{equation*}
$$

The constant of integration C in Eq. (1.10) is additionally used to take into consideration the effect of any additional applied loads that cannot be defined by p_{r} and p_{ϕ} such as weight of contents.

Equations (1.9) and (1.10) are the two governing equations for designing double-curvature shells under membrane action.

1.3.1 Spherical Shells Subjected to Internal Pressure

For spherical shells under axisymmetric loads, the differential equations can be simplified by letting $r_{1}=r_{2}=R$. Equations (1.9) and (1.10) become

$$
\begin{equation*}
N_{\phi}+N_{\theta}=p_{\mathrm{r}} R \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{\phi}=\frac{R}{\sin ^{2} \phi}\left[\int\left(p_{\mathrm{r}} \cos \phi-p_{\phi} \sin \phi\right) \sin \phi d \phi+C\right] . \tag{1.12}
\end{equation*}
$$

These two expressions form the basis for developing solutions to various loading conditions in spherical shells. For any loading condition, expressions for p_{r} and p_{ϕ} are first determined and then the previous equations are solved for N_{ϕ} and N_{θ}.

For a spherical shell under internal pressure, $p_{\mathrm{r}}=P$ and $p_{\phi}=0$. Hence, from Eqs. (1.11) and (1.12),

$$
\begin{equation*}
N_{\phi}=N_{\theta}=\frac{P R}{2}=\frac{P D}{4} \tag{1.13}
\end{equation*}
$$

where D is the diameter of the sphere. The required thickness is obtained from

$$
\begin{equation*}
t=\frac{N_{\phi}}{S}=\frac{N_{\theta}}{S} \tag{1.14}
\end{equation*}
$$

where S is the allowable stress.
Equation (1.14) is accurate for design purposes as long as $R / t \geq 10$. If $R / t<10$, then thick shell equations, described in Chapter 3, must be used.

1.3.2 Spherical Shells under Various Loading Conditions

The following examples illustrate the use of Eqs. (1.11) and (1.12) for determining forces in spherical segments subjected to various loading conditions.

Example 1.1

A storage tank roof with thickness t has a dead load of γ psf. Find the expressions for N_{ϕ} and N_{θ}.

Solution

From Figure 1.8a and Eq. (1.12),

$$
\begin{align*}
& p_{\mathrm{r}}=-\gamma \cos \phi \text { and } p_{\phi}=\gamma \sin \phi \\
& N_{\phi}=\frac{R}{\sin ^{2} \phi}\left[\int\left(-\gamma \cos ^{2} \phi-\gamma \sin ^{2} \phi\right) \sin \phi d \phi+C\right] \\
& N_{\phi}=\frac{R}{\sin ^{2} \phi}(\gamma \cos \phi+C) . \tag{1}
\end{align*}
$$

As ϕ approaches zero, the denominator in Eq. (1) approaches zero. Accordingly, we must let the bracketed term in the numerator equal zero. This yields $C=-\gamma$. Equation (1) becomes

$$
\begin{equation*}
N_{\phi}=\frac{-R \gamma(1-\cos \phi)}{\sin ^{2} \phi} \tag{2}
\end{equation*}
$$

The convergence of Eq. (2) as ϕ approaches zero can be checked by l'Hopital's rule. Thus,

$$
\left.N_{\phi}\right|_{\phi=0}=\left.\frac{-R \gamma \sin \phi}{2 \sin \phi \cos \phi}\right|_{\phi=0}=\frac{-\gamma R}{2} .
$$

Equation (2) can be written as

$$
\begin{equation*}
N_{\phi}=\frac{-\gamma R}{1+\cos \phi} \tag{3}
\end{equation*}
$$

(a)

(b)

Figure 1.8 Membrane forces in a head due to deadweight: (a) dead load and (b) force patterns

From Eq. (1.11), N_{θ} is given by

$$
\begin{equation*}
N_{\theta}=\gamma R\left(\frac{1}{1+\cos \phi}-\cos \phi\right) \tag{4}
\end{equation*}
$$

A plot of N_{ϕ} and N_{θ} for various values of ϕ is shown in Figure 1.8 b , showing that for angles ϕ greater than 52°, the hoop force, N_{θ}, changes from compression to tension and special attention is needed in using the appropriate allowable stress values.

Example 1.2

Find the forces in a spherical head due to a vertical load P_{o} applied at an angle $\phi=\phi_{\mathrm{o}}$ as shown in Figure 1.9a.

Figure 1.9 Edge loads in a spherical head: (a) edge load and (b) forces due to edge load

Solution

Since $p_{\mathrm{r}}=p_{\phi}=0$, Eq. (1.12) becomes

$$
\begin{equation*}
N_{\phi}=\frac{R C}{\sin ^{2} \phi} . \tag{1}
\end{equation*}
$$

From statics at $\phi=\phi_{\mathrm{o}}$, we get from Figure 1.9b

$$
N_{\phi}=\frac{P_{\mathrm{o}}}{\sin \phi_{\mathrm{o}}}
$$

Substituting this expression into Eq. (1), and keeping in mind that it is a compressive membrane force, gives

$$
C=\frac{-P_{\mathrm{o}}}{R} \sin \phi_{\mathrm{o}}
$$

and Eq. (1) yields

$$
N_{\phi}=-P_{\mathrm{o}} \frac{\sin \phi_{\mathrm{o}}}{\sin ^{2} \phi} .
$$

From Eq. (1.11),

$$
N_{\theta}=P_{\mathrm{o}} \frac{\sin \phi_{\mathrm{o}}}{\sin \phi}
$$

In this example there is another force that requires consideration. Referring to Figure 1.9b, it is seen that in order for P_{o} and N_{ϕ} to be in equilibrium, another horizontal force, H, must be considered. The direction of H is inward in order for the force system to have a net resultant force P_{o} downward. This horizontal force is calculated as

$$
H=\frac{-P_{\mathrm{o}} \cos \phi_{\mathrm{o}}}{\sin \phi_{\mathrm{o}}}
$$

A compression ring is needed at the inner edge in order to contain force H. The required area, A, of the ring is given by

$$
A=\frac{H\left(R \sin \phi_{\mathrm{o}}\right)}{\sigma}
$$

where σ is the allowable compressive stress of the ring.

Example 1.3

The sphere shown in Figure 1.10a is filled with a liquid of density γ. Hence, p_{r} and p_{ϕ} can be expressed as

$$
\begin{aligned}
& p_{\mathrm{r}}=\gamma R(1-\cos \phi) \\
& p_{\phi}=0 .
\end{aligned}
$$

a. Determine the expressions for N_{ϕ} and N_{θ} throughout the sphere.
b. Plot N_{ϕ} and N_{θ} for various values of ϕ when $\phi_{\mathrm{o}}=110^{\circ}$.
c. Plot N_{ϕ} and N_{θ} for various values of ϕ when $\phi_{\mathrm{o}}=130^{\circ}$.
d. If $\gamma=62.4 \mathrm{pcf}, R=30 \mathrm{ft}$, and $\phi_{\mathrm{o}}=110^{\circ}$, determine the magnitude of the unbalanced force H at the cylindrical shell junction. Design the sphere, the support cylinder, and the junction ring. Let the allowable stress in tension be 20 ksi and that in compression be 10 ksi .

Figure 1.10 Spherical tank: (a) spherical tank, (b) support at 110°, (c) support at 130°, and (d) forces at support junction

Figure 1.10 (Continued)

Solution

a. From Eq. (1.12), we obtain

$$
\begin{equation*}
N_{\phi}=\frac{\gamma R^{2}}{\sin ^{2} \phi}\left(\frac{1}{2} \sin ^{2} \phi+\frac{1}{3} \cos ^{3} \phi+C\right) \tag{1}
\end{equation*}
$$

As ϕ approaches zero, the denominator approaches zero. Hence, the bracketed term in the numerator must be set to zero. This gives $C=-1 / 3$ and Eq. (1) becomes

$$
\begin{equation*}
N_{\phi}=\frac{\gamma R^{2}}{6 \sin ^{2} \phi}\left(3 \sin ^{2} \phi+2 \cos ^{3} \phi-2\right) \tag{2}
\end{equation*}
$$

The corresponding N_{θ} from Eq. (1.11) is

$$
\begin{equation*}
N_{\theta}=\gamma R^{2}\left[\frac{1}{2}-\cos \phi-\frac{1}{3 \sin ^{2} \phi}\left(\cos ^{3} \phi-1\right)\right] . \tag{3}
\end{equation*}
$$

As ϕ approaches π, we need to evaluate Eq. (1) at that point to ensure a finite solution. Again the denominator approaches zero and the bracketed term in the numerator must be set to zero. This gives $C=1 / 3$ and Eq. (1) becomes

$$
\begin{equation*}
N_{\phi}=\frac{\gamma R^{2}}{6 \sin ^{2} \phi}\left(3 \sin ^{2} \phi+2 \cos ^{3} \phi+2\right) \tag{4}
\end{equation*}
$$

The corresponding N_{θ} from Eq. (1.11) is

$$
\begin{equation*}
N_{\theta}=\gamma R^{2}\left[\frac{1}{2}-\cos \phi-\frac{1}{3 \sin ^{2} \phi}\left(\cos ^{3} \phi+1\right)\right] . \tag{5}
\end{equation*}
$$

Equations (2) and (3) are applicable between $0<\phi<\phi_{\mathrm{o}}$, and Eqs. (4) and (5) are applicable between $\phi_{\mathrm{o}}<\phi<\pi$.
b. A plot of Eqs. (2) through (5) for $\phi_{\mathrm{o}}=110^{\circ}$ is shown in Figure 1.10b. N_{ϕ} below circle $\phi_{\mathrm{o}}=$ 110° is substantially larger than that above circle 110°. This is due to the fact that most of the weight of the contents is supported by the spherical portion that is below the circle $\phi_{\mathrm{o}}=$ 110°. Also, because N_{ϕ} does not increase in proportion to the increase in pressure as ϕ increases, Eq. (1.11) necessitates a rapid increase in N_{θ} in order to maintain the relationship between the left- and right-hand sides. This is illustrated in Figure 1.10b.

A plot of N_{ϕ} and N_{θ} for $\phi_{\mathrm{o}}=130^{\circ}$ is shown in Figure 1.10c. In this case, N_{ϕ} is in compression just above the circle $\phi_{\mathrm{o}}=130^{\circ}$. This indicates that as the diameter of the supporting cylinder gets smaller, the weight of the water above circle $\phi_{\mathrm{o}}=130^{\circ}$ must be supported by the sphere in compression. This results in a much larger N_{θ} value just above $\phi_{\mathrm{o}}=130^{\circ}$. Buckling of the sphere becomes a consideration in this case.
c. From Figure 1.10b for $\phi_{\mathrm{o}}=110^{\circ}$, the maximum force in the sphere is $N_{\theta}=1.23 \gamma R^{2}$. The required thickness of the sphere is

$$
\begin{aligned}
t & =\frac{1.23(62.4)(30)^{2} / 12}{20,000} \\
& =0.29 \mathrm{inch} .
\end{aligned}
$$

A free-body diagram of the spherical and cylindrical junction at $\phi_{\mathrm{o}}=110^{\circ}$ is shown in Figure 1.10d. The values of N_{ϕ} at points A and B are obtained from Eqs. (2) and (4), respectively. The vertical and horizontal components of these forces are shown at points A and B in Figure 1.10d. The unbalanced vertical forces result in a downward force at point C of magnitude $0.7095 \gamma R^{2}$. The total force on the cylinder is $\left(0.7095 \gamma R^{2}\right)(2 \pi)(R)(\sin (180-110))$. This total force is equal to the total weight of the contents in the sphere given by (4/3) $\left(\pi R^{3}\right) \gamma$. The required thickness of the cylinder is

$$
\begin{aligned}
t & =\frac{0.7095(62.4)(30)^{2} / 12}{10,000} \\
& =0.33 \mathrm{inch} .
\end{aligned}
$$

Summation of horizontal forces at points A and B results in a compressive force of magnitude $0.2583 \gamma R^{2}$. The needed area of compression ring at the cylinder to sphere junction is

$$
\begin{aligned}
A & =\frac{H r}{\sigma}=\frac{0.2583 \times 62.4 \times 30^{2}(30 \sin 70)}{10,000} \\
& =40.89 \mathrm{inch}^{2} .
\end{aligned}
$$

This area is furnished by a large ring added to the sphere or an increase in the thickness of the sphere at the junction.

1.3.3 ASME Code Equations for Spherical Shells under Various Loading Conditions

Loading conditions such as those shown in Examples 1.1 through 1.3 are not specifically covered by equations in the boiler and pressure vessel codes. However, they are addressed in paragraph PG-16.1 of Section I, paragraph U-2 (g) of Section VIII-1, and paragraph 4.1.1 of Section VIII-2 using special analysis.

In the nuclear code, paragraph NC-3932.2 of Section NC and ND-3932.2 of Section ND provide equations for calculating forces at specific locations in a shell due to loading conditions similar to those shown in Examples 1.1 through 1.5. This procedure is discussed further in Chapter 2.

1.3.4 Ellipsoidal Shells under Internal Pressure

Ellipsoidal heads of all sizes and shapes are used in the ASME code as end closure for pressure components. The general configuration is shown in Figure 1.11.

Small-size heads are formed by using dyes shaped to a true ellipse. However, large diameter heads formed from plate segments are in the shapes of spherical and torispherical geometries that simulate ellipses as shown in Figures 1.12 and 1.13. Figure 1.12 shows an ASME

Figure 1.11 Ellipsoidal head under internal pressure
(a)
$D / 2 h=2: 1$

(b)

Figure 1.12 2:1 elliptical head: (a) exact configuration and (b) approximate configuration

Figure 1.13 Elliptical head with $a / b=2.96$ ratio
equivalent 2 : 1 ellipsoidal head. It consists of a spherical segment with $R=0.9 D$ and a knuckle with $r=0.17 D$ where D is the base diameter of the head. Figure 1.13 shows a shallow head (2.96: 1 ratio) referred to as flanged and dished (F\&D) head consisting of a spherical segment with $R=D$ and a knuckle section with $r=0.06 D$.

For internal pressure we define $p_{\mathrm{r}}=p$ and $p_{\phi}=0$. Then from Eqs. (1.1) and (1.10),

$$
\begin{align*}
& N_{\phi}=\frac{1}{r_{2} \sin ^{2} \phi}\left(p \int r d r+C\right) \\
& N_{\phi}=\frac{1}{r_{2} \sin ^{2} \phi}\left(\frac{p r^{2}}{2}+C\right) . \tag{1.15}
\end{align*}
$$

The constant C is obtained from the following boundary condition:

$$
\text { At } \phi=\frac{\pi}{2}, r_{2}=r \text { and } N_{\phi}=\frac{p r}{2}
$$

Hence, from Eq. (1.15) we get $C=0$ and N_{ϕ} can be expressed as

$$
N_{\phi}=\frac{p r^{2}}{2 r_{2} \sin ^{2} \phi}
$$

or

$$
\begin{equation*}
N_{\phi}=\frac{p r_{2}}{2} . \tag{1.16}
\end{equation*}
$$

From Eq. (1.9),

$$
\begin{equation*}
N_{\theta}=p r_{2}\left(1-\frac{r_{2}}{2 r_{1}}\right) . \tag{1.17}
\end{equation*}
$$

From analytical geometry, the relationship between the major and minor axes of an ellipse and r_{1} and r_{2} is given by

$$
\begin{aligned}
& r_{1}=\frac{a^{2} b^{2}}{\left(a^{2} \sin ^{2} \phi+b^{2} \cos ^{2} \phi\right)^{3 / 2}} \\
& r_{2}=\frac{a^{2}}{\left(a^{2} \sin ^{2} \phi+b^{2} \cos ^{2} \phi\right)^{1 / 2}}
\end{aligned}
$$

Substituting these expressions into Eqs. (1.16) and (1.17) gives the following expressions for membrane forces in ellipsoidal shells due to internal pressure:

$$
\begin{align*}
& N_{\phi}=\frac{p a^{2}}{2} \frac{1}{\left(a^{2} \sin ^{2} \phi+b^{2} \cos ^{2} \phi\right)^{1 / 2}} \tag{1.18}\\
& N_{\theta}=\frac{p a^{2}}{2 b^{2}} \frac{b^{2}-\left(a^{2}-b^{2}\right) \sin ^{2} \phi}{\left(a^{2} \sin ^{2} \phi+b^{2} \cos ^{2} \phi\right)^{1 / 2}} \tag{1.19}
\end{align*}
$$

The maximum tensile force in an ellipsoidal head is at the apex as shown in Figure 1.11. The maximum value is obtained from Eqs. (1.18) and (1.19) by letting $\phi=0$. This gives

$$
\begin{equation*}
N_{\phi}=N_{\theta}=\frac{P a^{2}}{2 b} \tag{1.20}
\end{equation*}
$$

For a 2: 1 head with $a / b=2$ and $a=D / 2$, Eq. (1.18) becomes

$$
\begin{equation*}
N_{\phi}=N_{\theta}=0.5 P D \tag{1.21}
\end{equation*}
$$

where D is the base diameter. Comparing this equation with Eq. (1.13) for spherical heads shows that the force, and thus the stress, in a $2: 1$ ellipsoidal head is twice that of a spherical head having the same base diameter.

For an F\&D head with $a / b=2.96$ and $a=D / 2$, Eq. (1.18) becomes

$$
\begin{equation*}
N_{\phi}=N_{\theta}=0.74 P D \tag{1.22}
\end{equation*}
$$

Comparing this equation with Eq. (1.13) for spherical heads shows the stress of a $2.95: 1 \mathrm{~F} \& \mathrm{D}$ head at the apex is 2.96 times that of a spherical head having the same base diameter.

A plot of Eqs. (1.18) and (1.19) is shown in Figure 1.11. Equation (1.18) for the longitudinal force, N_{ϕ}, is always in tension regardless of the a / b ratio. Equation (1.19) for N_{θ} on the other hand gives compressive circumferential forces near the equator when the value $a / b \geq \sqrt{2}$.

For large a / b ratios under internal pressure, the compressive circumferential force tends to increase in magnitude, whereas instability may occur for large a / t ratios. This extreme care must be exercised by the engineer to avoid buckling failure. The ASME code contains design rules that take into account the instability of shallow ellipsoidal shells due to internal pressure as described in Chapter 5.

Example 1.4

Determine the required thickness of a $2: 1$ ellipsoidal head with $a=30$ inches, $b=15$ inches, and $P=500 \mathrm{psi}$, and allowable stress in tension is $S=20,000 \mathrm{psi}$.

Solution

At the apex, $\phi=0$, and from Eqs. (1.18) and (1.19),

$$
N_{\phi}=P a \text { and } N_{\theta}=P a
$$

At the equator, $\phi=90^{\circ}$, and from Eqs. (1.18) and (1.19),

$$
N_{\phi}=\frac{P a}{2} \text { and } N_{\theta}=-P a
$$

Thus, the required thickness is $t=P a / S=500(30) / 20,000=0.75$ inch.
Notice at the equator, N_{θ} is compressive and may result in instability as discussed in Chapter 5.

1.4 Conical Shells

Equations (1.9) and (1.10) cannot readily be used for analyzing conical shells because the angle ϕ in a conical shell is constant. Hence, the two equations have to be modified accordingly. Referring to Figure 1.14, it can be shown that

$$
\left.\begin{array}{rl}
\phi & =\beta=\text { constant } \tag{1.23}\\
r_{1} & =\infty \\
r_{2}=s \tan \alpha & r=s \sin \alpha \\
N_{\phi} & =N_{\mathrm{s}} .
\end{array}\right]
$$

Equation (1.9) can be written as

$$
\frac{N_{\mathrm{s}}}{r_{1}}+\frac{N_{\theta}}{s \tan \alpha}=p_{\mathrm{r}}
$$

or since $r_{1}=\infty$,

$$
\left.\begin{array}{rl}
N_{\theta} & =p_{\mathrm{r}} s \tan \alpha \tag{1.24}\\
& =p_{\mathrm{r}} r_{2} \\
N_{\theta} & =\frac{p_{\mathrm{r}} r}{\cos \alpha}
\end{array}\right] .
$$

Figure 1.14 Conical shell

Similarly from Eqs. (1.1) and (1.7),

$$
\frac{d}{d s} r_{1}\left(s \sin \alpha N_{s}\right)-r_{1} N_{\theta} \sin \alpha=-p_{s} s \sin \alpha r_{1}
$$

Substituting Eq. (1.24) into this equation results in

$$
\begin{equation*}
N_{\mathrm{s}}=\frac{-1}{s}\left[\int\left(p_{\mathrm{s}}-p_{\mathrm{r}} \tan \alpha\right) s d s+C\right] . \tag{1.25}
\end{equation*}
$$

It is of interest to note that while N_{θ} is a function of N_{ϕ} for shells with double curvature, it is independent of N_{ϕ} for conical shells as shown in Eqs. (1.24) and (1.25). Also, as α approaches 0°, Eq. (1.25) becomes

$$
N_{\theta}=p_{\mathrm{r}} r_{2},
$$

which is the expression for the circumferential hoop force in a cylindrical shell.
The analysis of conical shells consists of solving the forces in Eqs. (1.24) and (1.25) for any given loading condition. The thickness is then determined from the maximum forces and a given allowable stress.

Equations (1.24) and (1.25) and Figure 1.15 will be used to determine forces in a conical shell due to internal pressure.

From Eq. (1.24), the maximum N_{θ} occurs at the large end of the cone and is given by

$$
\begin{equation*}
N_{\theta}=p\left(\frac{r_{\mathrm{o}}}{\sin \alpha}\right) \tan \alpha=\frac{p r_{\mathrm{o}}}{\cos \alpha} . \tag{1.26}
\end{equation*}
$$

Figure 1.15 Conical bottom head
From Eq. (1.25),

$$
\begin{align*}
N_{\mathrm{s}} & =\frac{-1}{s}\left(\int-p \tan \alpha s d s+C\right) \\
& =\frac{-1}{s}\left(-p \tan \alpha \frac{s^{2}}{2}+C\right) . \tag{1.27}\\
& \text { At } s=L, \quad N_{\mathrm{s}}=\frac{p r_{\mathrm{o}}}{2} \frac{1}{\cos \alpha}
\end{align*}
$$

Substituting this expression into Eq. (1.27), and using the relationships of Eq. (1.23), gives $C=0$. Equation (1.27) becomes

$$
\begin{align*}
N_{\mathrm{s}} & =\frac{p r}{2 \cos \alpha} \tag{1.28}\\
\text { and } \max N_{\mathrm{s}} & =\frac{p r_{\mathrm{o}}}{2 \cos \alpha} .
\end{align*}
$$

It is of interest to note that the longitudinal and hoop forces are identical to those of a cylinder with equivalent radius of $r_{\mathrm{o}} / \cos \alpha$.

All sections of the ASME code have equations for designing conical sections based on Eqs. (1.26) and (1.28).

1.5 Cylindrical Shells

Equipment consisting of cylindrical shells subjected to pressure and axial loads are frequently encountered in refineries and chemical plants. If the radius of the shell is designated by R, Figure 1.16a, then from Figure $1.3 r_{1}=\infty, \phi=90^{\circ}, P=p_{\mathrm{r}}$, and $r=r_{2}=R$. The value of the
(a)

Figure 1.16 Cylindrical shell: (a) circumferential force and (b) longitudinal force
circumferential force N_{θ} can be obtained by equating the pressure acting on the cross section, Figure 1.16a, to the forces in the material at the cross section. This results in

$$
\begin{equation*}
N_{\theta}=p_{\mathrm{r}} R \tag{1.29}
\end{equation*}
$$

The required thickness, t, of a cylindrical shell due to internal pressure is obtained from Eq. (1.29) as

$$
\begin{equation*}
t=\frac{P R}{S} \tag{1.30}
\end{equation*}
$$

where S is the allowable stress and t is the thickness.
The required thickness of cylindrical shells in the ASME code is obtained from a modified Eq. (1.30) that takes into consideration stress variation in the wall of the cylinder for small R / t ratios. This equation is described in Chapter 3.

Similarly, the value of the axial force N_{ϕ} is obtained by equating the pressure acting on the cross section, Figure 1.16b, to the forces in the material at the cross section. This yields

$$
\begin{equation*}
N_{\phi}=\frac{p_{\mathrm{r}} R}{2} \tag{1.31}
\end{equation*}
$$

The corresponding stress and thickness are obtained from Eq. (1.31) as

$$
\begin{equation*}
t=\frac{P R}{2 S} \tag{1.32}
\end{equation*}
$$

[^0]: Stress in ASME Pressure Vessels, Boilers, and Nuclear Components, First Edition. Maan H. Jawad. © 2018, The American Society of Mechanical Engineers (ASME), 2 Park Avenue, New York, NY, 10016, USA (www.asme.org). Published 2018 by John Wiley \& Sons, Inc.

