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Preface

Overview

Just as a human body is made up of millions of biological cells, an integrated
circuit is made up of millions of transistors. Transistors are the basic building
blocks of all modern electronic gadgets. Ever since the advent of CMOS circuits,
the dimensions of the transistor have been continuously scaled down in order to
pack more logic on to a silicon wafer and also to reduce power consumption in the
circuits. In recent years, with mobile devices becoming popular, the search for low
power devices with steep switching characteristics has become important. Highly
scaledMOSFETs are rendered unsuitable for low power applications due to a ther-
mal limit on their switching. Hence, the Tunnel Field Effect Transistor (TFET) is
being explored extensively for low power applications. A TFET has a steep
switching characteristic as it works on the phenomena of band-to-band tunnelling.
Over the past few years, TFETs have been heavily researched by various notable
groups in the field of semiconductor devices across the globe.

This book provides a comprehensive guide for those who are beginning their
study on TFETs and also as a guide for those who wish to design integrated cir-
cuits based on TFETs. The book covers the essential physics behind the function-
ing of the TFETs and also the device modelling of TFETs, for the purpose of
circuit design and simulation. It begins with studying the basic principles of quan-
tum mechanics and then builds up to the physics behind the quantum mechanical
phenomena of band-to-band tunnelling. This is followed by studying the basic
functioning of TFETs and their different structural configurations. After explain-
ing the functioning of TFETs, the book describes different approaches used by
researchers for developing the drain current models for TFETs. Finally, to help
new researchers in the field of TFETs, the book describes the process of carrying
out numerical simulations of TFETs using the TCAD tool Silvaco ATLAS.
Numerical simulations are helpful tools for studying the behaviour of any semi-
conductor device without getting into the complex process of fabrication and
characterisation.



Key feature in relation to existing literature

This book is the first comprehensive literature on TFETs, which are very popular
transistors and have been extensively studied in recent years; they are going to be
important building blocks for low power solid state circuits in the future. It is a
one-stop volume for studying TFETs for someone who has a basic knowledge
of MOSFET physics. It covers the physics behind the phenomena of tunnelling
as well as the device physics of TFETs. It also has a unique feature of describing
device simulation along with device physics so as to enable readers to do further
research on TFETs.

The presentation of the book is clear and accurate and is written in simple lan-
guage. The book endeavours to explain different phenomena in the TFETs using
simple and logical explanations so as to enable the reader to get a real feel for the
functioning of the device. Also, each and every aspect of the TFET has been com-
pared to that of the MOSFET so that the facts presented in the book make more
sense to the entire semiconductor device fraternity and help in the integration of
the TFETwith the prevailing technology in the industry. The book also attempts to
cover all the recent research articles published on TFETs so as to make sure that,
along with covering the basics, it also covers state of the art work on TFETs.

PREFACE ix





1

Quantum mechanics

1.1 Introduction to quantum mechanics

Before attempting to investigate theworkings of a tunnelling field-effect transistor, it
is essential to be familiarwith the concept of tunnelling. Tunnelling is a quantumphe-
nomenon,with no counterpart in the everyday physics one encounters, or the physics
that one applies while dealing with devices a few hundred nanometres in length. The
initial two chapterswill, therefore, help us develop an understanding of quantumphe-
nomena. In this chapter,wewill present an introduction to the field of quantummech-
anics and the next chapter will discuss the phenomenon of tunnelling in detail.

The chapter begins with a description of a landmark experiment that conclu-
sively proved the wave nature of particles, after which wewill study the concept of
wavefunctions and how to use Schrodinger’s equation to obtain them. A few basic
problems will be presented so that the readers may familiarise themselves with
basic quantum concepts.

1.1.1 The double slit experiment

There are many experiments that led to the conception of quantum mechanics –
blackbody radiation, the Stern Gerlach experiment, the photoelectric effect, the
line spectrum, etc. However, for our purposes we will concentrate on one of
the landmark experiments, that is the double slit experiment, which demonstrated
the fundamental quantum nature (i.e. both wave and particle) of electrons.

Tunnel Field-Effect Transistors (TFET): Modelling and Simulation, First Edition. Jagadesh Kumar Mamidala,
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You would have read that only waves can undergo superposition, and not par-
ticles. Superposition is the fundamental principle behind the occurrence of
interference – therefore, if something exhibits interference, it must have a wave
nature. The double slit experiment is famously associated with Thomas Young,
who used it for the first time in the early nineteenth century to prove the wave
nature of light. Before this experiment was performed, light had been associated
with a particle nature (since the times of Newton), and the fact that it underwent
interference was conclusive proof of its wave nature.

However, the behaviour of light that led Newton and others to believe that it
had a particle nature could not be reconciled with this newly formed wave picture.
It took another century of research and experiments to establish a rather astonish-
ing result regarding the behaviour of light – that it displays both particle and wave
natures. The particle nature leads to phenomena such as the photoelectric effect
and rectilinear propagation of light in ray optics; the wave nature explained the
interference and diffraction of light.

While this dual nature (that is both particle and wave natures) of light was
being worked out, many people were, independently, studying the behaviour of
subatomic particles. Phenomenon like the discrete line spectrum of hydrogen,
the observed distribution of blackbody radiation, etc., could not be explained
by any established theory. Theoretical physicists were in a quandary. At this point,
de Broglie hypothesised that, just like light, particles possess a dual nature as well.
When de Broglie made this hypothesis, there was little evidence to support his
claim. A few years later, Davisson and Germer experimentally observed that elec-
trons underwent diffraction just as light did. These were landmark moments in the
history of physics – de Broglie received the Nobel Prize in physics (the second
time it was awarded for a PhD thesis) and, later, so did Davisson and Germer.
While the Davisson–Germer experiment was the first to establish the dual nature
of matter, the double slit interference experiment is far easier to conceptually grasp
and visualise, which is why we will use it to embark on our study of quantum
phenomena.

The setup of an electron interferometer used in the double slit experiment is
conceptually quite similar to that of a light interferometer (Figure 1.1). A parallel
beam of electrons is incident on a screen with two slits. The electrons that pass
through the slits impinge upon the optical screen, where their incidence is captured
by a visible spot. First, let us think of these electrons as if they were the kind of
particles we observe in our daily lives (classical particles) and see how they should
behave. All the electrons in the initial beam have the same speed and direction of
motion and they are heading towards the screen with two slits. All the electrons
that hit this screen are blocked, except for the ones passing right through the slits.
These electrons that passed through the slits should have no reason to change
either their speed or the direction of their motion. They do not “know” that there
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was a screen in the first place – they pass through unaffected. They subsequently
keep heading straight and hit the final screen as illustrated in Figure 1.1(a). Two
narrow bands are formed on the screen, corresponding to the two thin beams of
electrons that passed unaffected through the two small slits.

Now let us take a look at what was actually observed in the experiment. There
was an interference pattern on the screen, as shown in Figure 1.1(b), a pattern
uncannily similar to what is observed when we perform the same experiment with
light instead of electrons. At this juncture, youmight hypothesise this behaviour to
result from some sort of statistical phenomenon due to the large number of elec-
trons. However, the experiment is far from finished, and further strangeness
lies ahead.

Let us now adjust the electron source so that instead of a beam of electrons it
sends a single electron at a time. This time, we find something even more extra-
ordinary – after a lot of electrons have hit the screen, the same interference pattern
builds up as in the case of a beam of many electrons. There is no way this electron
“knows” that it has been preceded by, or it will be followed by, another electron.
What, then, could be happening? The answer is even more puzzling than the ques-
tion, and will take you quite a while to come to terms with – each and every elec-
tron is undergoing interference with itself. This is what leads to the final
conclusion that not just aggregates of particles but each and every particle exhibits
a wave nature. To make this point clear, let us modify the experiment such that we
are able to find out throughwhich slit each electron passes. Independent of howwe
find out which slit each electron passes through, we get exactly the same result, that
is the interference pattern vanishes and we get the pattern shown in Figure 1.1(a),
as predicted by classical mechanics. Think about this very carefully, because this

(b)(a)

ScreenDouble slit

Electron
beam

ScreenDouble slit

Electron
beam

Figure 1.1 (a) Classically predicted electron pattern. It can be seen that
interference fringes are experimentally observed, as opposed to the classically
predicted pattern. This establishes the wave-like behaviour of electrons, (b)
experimentally observed electron pattern.
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pointmerits serious investigation. For awave to show interference, there need to be
two sources – the two slits in this case. Thus, for a single electron to show inter-
ference, it must be passing through both slits. However, this is not possible! At the
very least, we cannot imagine such a situation. It is only reasonable to assume that
the electron either goes through one slit or the other, but the moment we impose
such a restriction on the electron, we are thinking of it as a classical particle. By just
knowing which slit the electron is going through, and thereby imposing the con-
dition that it will pass through either one slit or the other, we are restricting it to
behave like a classical particle. While the mathematical foundations will be laid
later in this chapter, for now the reader should try and grasp the underlying
concept – the quantum electron passes through both the slits; it is a superposition
of these two states (corresponding to passing through the upper or lower slit). You
may think that the electron actually passes through either of the two slits and due to
limitations of our experimental techniques, we do not know which slit it passes
through. This is not the case – the electron is indeed passing through both the slits.
This counterintuitive phenomenon is at the very root of quantummechanics and it
will take some time for us to be familiar with this kind of approach. You cannot ask
of the quantum electron (or any general quantum particle), “Which slit does it pass
through?”The question in itself is wrong. It passes through both. It should be noted
that this wave nature of a particle becomes appreciable only at very small sizes,
such as a few nanometres.

1.1.2 Basic concepts of quantum mechanics

1.1.2.1 Wavefunctions

The behaviour of classical particles can be fully explained by describing how their
position changes with time. This information would be sufficient to give us the
trajectory, the velocity, the momentum and the acceleration of the particle. How-
ever, what of the quantum particle? Surely, the electron that passed through both
slits of the double slit experiment cannot be assigned a precise location. This leads
us to the realisation that we need some new method to describe the quantum par-
ticle. The rest of this chapter is devoted to formulating a mathematical picture that
is able to capture the unusual behaviour of quantum particles.

The search for this new method of description was helped by the knowledge
that the quantum behaviour of particles closely resembled the behaviour displayed
by waves.Waves of many kinds – electromagnetic waves, sound waves, etc. – had
been extensively studied, and all these waves were described by wave equations.
These equations described the behaviour of a wave at every point in space, and at
all times. For example, in the case of sound waves, the wave equation described
the displacement (Δr ) of each particle as a function of time:
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Δr = ψ x,y,z, t 1 1

Similarly, for an electromagnetic wave, the wave equations described the
electric (E) or magnetic (B) field at each and every point as a function of time:

E = ψE x,y,z, t 1 2

B = ψB x,y,z, t 1 3

Taking the cue from these equations, physicists assigned a similar wave equa-
tion to the quantumparticle. This equationwas called thewavefunctionof the quan-
tum particle and was usually denoted by the Greek symbol ψ (psi). Just like in the
case of classical waves, this wavefunction contained all the information about the
particle – its current state and the variation of its behaviourwith time. It is important
to note that while the previously described wave equations (1.1) to (1.3) were real
functions, the wavefunction of a quantum particle is a complex function.

1.1.2.2 Born interpretation

While the wavefunction-based formulation of quantum mechanics was proposed
by Erwin Schrodinger quite early, he was at a loss to ascribe any physical meaning
to it. The theory he built up described what sort of mathematical operations one
needed to perform on the wavefunction to get information relating to its various
properties, such as its position, its momentum, its energy, etc. However, what this
wavefunction itself meant was a mystery, especially because it was a complex
function. Many interpretations were proposed as to the meaning of this wavefunc-
tion, but the one that is most widely accepted was proposed by Max Born. It is
known as the “Born interpretation of quantum mechanics” and is one of the
fundamental principles of quantum mechanics. According to this interpretation,
the wavefunction ψ is the “probability amplitude” of the quantum particle, the
square of whose magnitude gives us the probability density ρ of finding that
particle at any point:

ρ = ψ 2 =ψ∗ψ 1 4

where ψ∗ is the complex conjugate of ψ . Using this interpretation, the probability
P of finding the particle in a volume V at any time t would be

P V , t =
V
ρ dx dy dz 1 5
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Since the probability of finding the particle in the entire space should always
be unity, we can say that

∞

-∞
ψ∗ψ dx dy dz= 1 1 6

A wavefunction that displays this property is called a “normalised”
wavefunction.

It is very important to realise that the probabilistic behaviour that follows from
the Born interpretation is different from the probabilistic behaviour encountered in
statistical mechanics. For example, consider an ensemble of particles in a chamber
each occupying a particular position. This allows us to calculate the probability of
finding a particle at any position. If there were only a single classical particle in
this chamber, we could always precisely identify its position. However, in quan-
tum mechanics, every single particle is “spread out” in space, and its position is
uncertain. Even if there is only a single electron, we cannot say, “The electron is at
this particular point”. We can only talk about the probability of finding the elec-
tron at any given point once we measure its position. Thus, the Born interpretation
provided a physical meaning to the wavefunction that was compatible with the
fundamentally probabilistic behaviour of a quantum particle, and gave a mathem-
atical approach to calculate the probability of finding a quantum particle at any
region in space.

1.1.2.3 Measurement

Measurement is a fundamental process in our lives, yet it is so much a part of our
instincts that we barely pay any attention to it. However, if you think carefully,
most of the information you get is by the process of measurement. When you look
at a tree, your eyes measure the frequency and amplitude of the incoming electro-
magnetic waves, giving you information regarding the colour and brightness of
the tree. Subsequently, your eyes measure the angular difference between the sig-
nals received by the two eyes, and calculations by your brain tell you how far away
this tree is. You may hear a bird chirping on this tree – once again, due to your ears
measuring the frequency and location of the pressure waves (sound) impinging
upon them. Similarly, any information we get about a quantum particle is by
the process of measurement – measuring the position, energy, momentum, etc.

However, there is a very fundamental difference between measurement in
classical physics and quantum physics. While the state of a classical particle is
independent of measurements performed on it, in quantum mechanics, the state
of the quantum particle is intricately linked to measurements performed on it.
We shall go back to the double slit experiment to illustrate this point. When
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we measured which slit the electron passed through, that is when we measured its
position, it stopped showing interference. The electron, before measurement,
exhibited interference. After we carried out the measurement, it no longer showed
interference. This shows that measurement changed the state of the electron. In
general, measurement changes the state of a quantum particle, and its final state
(after measurement) depends both on its initial state and the kind of measurement
being performed. Do not be worried if the picture is not completely clear yet – to
fully understand the process of measurement, we will have to know about oper-
ators and eigenvalues, which we will do in the next two sections.

1.1.2.4 Operators

The Born interpretation told us that we can obtain the probability of finding a
quantum particle at any given point if we know its wavefunction. However, the
wavefunction contains far more information than this. If you remember, the wave-
function was supposed to contain all the information about the quantum particle.
How, then, do we extract this information from the wavefunction?

Since the wavefunction is a mathematical function, it is clear that we will be
performing certain mathematical operations on it to get the information we desire.
This mathematical operation must be different, depending on the specific kind of
information – energy, momentum, position, etc. –we need to obtain. This, indeed,
is the case.

Corresponding to every physically observable parameter (also called observa-
bles) of a quantum particle, such as position, momentum, energy, we have math-
ematical operators. The operators for certain common observables are listed below
in Table 1.1, where ι (iota) is the square root of negative unity and ℏ (h-cross or
h-bar) is the reduced Planck’s constant.

To understand the use of these operators, let us imagine an experiment where
we have a large number of quantum particles with the same wavefunction ψ . We
wish to measure a particular observable, the mathematical operator corresponding
to which is O. The outcome of each measurement is o. As the behaviour of

Table 1.1 Quantum mechanical operators
corresponding to physical observables.

Observable Operator

Position (x) x
Momentum (p ) − ιℏ∇
Energy (E)

ιℏ
∂

∂t
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quantum particles is probabilistic, measuring O for every particle will give a dif-
ferent outcome o. Looking back to our example of the double slit experiment, all
the incoming electrons were exactly similar. However, when we start measuring
which slit they pass through, sometimes we find that an electron passes through
the upper slit and at other times through the lower slit. We can, therefore, only
discuss the expectation value o after taking an average of all the measurements.
This expectation value of the observable o is given as

o =
∞
−∞ ψ∗Oψ dx dy dz
∞
−∞ ψ∗ψ dx dy dz

1 7

The above equation tells us about the expectation value when we perform a
large number of measurements, all on particles with the same wavefunction ψ .
However, if we have only one particle, it would be useful to know the probability
of obtaining a particular result. For us to know this, we must find the eigenfunc-
tions of the operator in question.

1.1.2.5 Eigenfunctions

Let us recollect from the section on measurement (Section 1.1.2.3) that the state of
a quantum particle changes upon measurement, and the final state is dependent on
both the initial state and the kind of measurement being performed. However,
there are certain very special states corresponding to every observable that do
not change when it is measured. These special states are the eigenfunctions of that
observable. If, for an operator O, the wavefunction ψo behaves as

Oψo = λψo 1 8

where λ is a constant, then ψo is an eigenfunction (also referred to as an eigenstate
or an eigenvector) of the operator O and λ is the corresponding eigenvalue. Sup-
pose that we measure the observable corresponding to the operatorO on a particle
having the wavefunction ψo. We will find the value of this observable to be λ. This
can be proven by substituting the value of Oψo from Equation (1.8) into
Equation (1.7) that gave us the expectation value corresponding to any operator.
Moreover, the wavefunction ψo will remain unchanged. Therefore, for a particle
whose wavefunction is an eigenfunction of an observable, we can, with absolute
certainty, state the result of measurement. To understand this, let us consider the
energy operator (Table 1.1) as an example. Let us assume ψEi

i= 0,1,2,… to be
the eigenfunctions of the energy operator, having eigenvalues Ei:

ιℏ
∂ψEi

∂t
=EiψEi

1 9
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If we take a particle with wavefunction ψEi
, we know that its energy is Ei.

There is no probability involved in this.
Furthermore, even if we have a wavefunction that is not an eigenfunction of

the operator in question, the result of every measurement can only be one of the
eigenvalues of the operator. Let us again take the energy operator as an example.
Suppose that we measure the energy of a particle having a wavefunction Ψ that is
not one of the eigenfunctions ψEi

of the operator. The result will always be one of
the eigenvalues Ei. Note that every measurement will result in a different energy
being observed each time. You will now say that once you have measured the
energy, and it is found to be a particular Ei, you know the energy of the particle
to be Ei. However, it was stated earlier in this section that we can only know (with
absolute certainty) the energy of the eigenfunctions of an observable. YetΨ is not
an eigenfunction of the energy operator. What happens is that, after measurement,
the wavefunction Ψ “collapses” into the wavefunction ψEi

corresponding to the
observed energy Ei. Remember that measurement changes the state of a quantum
particle. Now we can say thatmeasuring an observable leads us to observe one of
the eigenvalues of that observable, and the state of the quantum particle being
measured changes to the corresponding eigenfunction.

We now face the problem of finding the probability of this “collapse” into a
particular eigenfunction. Linear algebra provides us with a very handy solution to
this problem. Any general wavefunction can be written in terms of the eigenfunc-
tions of an operator. Let us clarify this point. Every operator has a set of eigen-
functions. If we use a linear combination of all these eigenfunctions, we get a
set of states that includes every possible state that the quantum particle can have.
That is, every wavefunction can be decomposed into a linear superposition of the
eigenfunctions of any given operator. Let us once again go back to the energy
operator and its eigenfunctions that we discussed in Equation (1.9). Any general
wavefunction Ψ can be written in terms of the eigenfunctions ψEi

of the energy
operator as

Ψ =ΣaiψEi
1 10

where ai are coefficients corresponding to every wavefunction ψEi
and are

complex numbers.
Unlike in the case of the eigenfunctions ψEi

, we cannot discuss the energy of
this general particle as having wavefunctionΨ. It is a linear superposition of states
ψEi

of different energies Ei. When the energy of this particle is measured, one
obtains any one of the energies Ei, and the particle is found to be in the state
ψEi

after the measurement. However, we cannot say that the particle had energy
Ei because the measurement may very well have led to the observation of a dif-
ferent energy Ej. Now the state of the particle changes after measurement from
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