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1

Status of Wind Power Technologies
Haoran Zhao and Qiuwei Wu

Technical University of Denmark

1.1 Wind Power Development

Although wind power has been utilized by humans for more than 3000 years, the history
of wind power for electricity production is only 120 years long.

In July 1887, Professor James Blyth (1839–1906) of Anderson’s College, Glasgow
built the first windmill for the production of electricity at Marykirk in Kincardineshire,
Scotland [1]. The windmill was 10 m high, and was used to charge accumulators
to power the lighting in the cottage. Around the same period, a wind turbine was
designed and constructed in the winter of 1887-1888 by Charles F. Brush (1849–1929)
in Cleveland, USA [2]. The rotor of Brush’s wind turbine was 17 m in diameter and
had 144 blades. The rated power was 12 kW. It was used either to charge a bank of
batteries or to operate up to 100 incandescent light bulbs and various motors in Brush’s
laboratory.

A pioneer of modern aerodynamics, Poul la Cour (1846–1908) of Askov, Denmark,
built the world’s first wind tunnels for the purpose of aerodynamic tests to identify
the best shape of the blades for turbines. Based on his experiments, he realized that
wind turbines with fewer rotor blades were more efficient for electricity production. He
designed the first four-blade wind turbine in 1891 [3].

The developments in the 20th century can be divided into two periods. From
1900–1973, the prices of wind-powered electricity were not competitive. The gradual
extension of electrical networks and the availability of low-cost fossil fuels lead to the
abandonment of wind turbines. Wind turbine generators (WTGs) were mainly used in
rural and remote areas. Although several wind turbines in the hundred-kilowatt class
were manufactured and installed for testing, due to high capital costs and reliability
problems, they were not widely adopted.

The two oil crises in 1973 and 1979, with supply problems and price fluctuations for
fossil fuels, spurred the adoption of non-petroleum energy sources. As an alternative
to fossil fuels, wind power was once again put on the agenda. European countries and
US government started to invest in research into large commercial wind turbines. The
world’s first multi-megawatt wind turbine was constructed in 1978, and pioneered
many technologies now used in modern wind turbines. From 1975 through to the
mid-1980s, NASA developed 3.2 MW and 4 MW wind turbines. Although they were

Modeling and Modern Control of Wind Power, First Edition. Edited by Qiuwei Wu and Yuanzhang Sun.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/wu/modeling
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2 1 Status of Wind Power Technologies

sold commercially, none of these were ever put into mass production. When oil
prices declined, electricity generated by wind power became uneconomical and many
manufacturers left the business.

At the beginning of the 21st century, although fossil fuels were still relatively cheap,
concerns over energy security, global warming, and eventual fossil fuel depletion
increased, and this led to an expansion of interest in renewable energy. The wind power
industry has since achieved rapid development.

From the point of view of global capacity, according to statistics from the Global Wind
Energy Council (GWEC), the global annual and cumulative installed wind capacities for
the past ten years are as illustrated in Figures 1.1 and 1.2, respectively. In 2015, the global
wind power industry installed 63.5 GW of capacity, representing annual market growth
of 22%. By the end of 2015, the total installed capacity reached 432.4 GW, representing
cumulative market growth of 17%. As estimated by International Energy Agency (IEA),
that figure will reach 2016 GW by 2050, representing 12% of global electricity usage [5].

From the point of view of development in each country, more than 83 countries
around the world were using wind power on a commercial basis by 2010. The top ten
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Figure 1.1 Global annual installed wind capacity 2005-2015 [4].
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Figure 1.2 Global cumulative installed wind capacity 2005-2015 [4].
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Figure 1.3 Newly installed capacity during 2015 [4].
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Figure 1.4 Cumulative capacities at 2015 [4].

countries in terms of 2015-installed and cumulative wind power capacities at 2015
are illustrated in Figures 1.3 and 1.4, respectively. More than half of all new installed
wind power was added outside the traditional markets of Europe and North America.
Asia has been the world’s largest regional market for new wind power development,
with capacity additions of 33.9 GW. China maintained its leadership position. China
accounted for nearly half of the installations (48.4%) and its total wind power reached
145.1 GW.

In many countries, relatively high levels of wind power penetration have been
achieved. Figure 1.5 presents the estimated wind power penetration in leading wind
markets [6]. The installed capacity is estimated to supply around 40% of Denmark’s
electricity demand, and between 20% to 30% in Portugal, Ireland, and Spain, respec-
tively. Denmark has a even more ambitious target of 50% by 2020. In the United States,
5.6% of the nation’s electricity demand is estimated to be covered by the wind power.
On a global basis, the contribution of wind power is estimated to be around 4.3% [6].
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Figure 1.5 Wind power penetration in leading wind markets in 2014∼2015 [6].

1.2 Wind Turbine Generator Technology

As at 2015, the largest wind turbine is the 8 MW capacity Vestas V164, for offshore use.
By 2014, over 240,000 commercial-sized wind turbines were operating in the world, and
these met 4% of the world’s electricity demand. WTG-based wind energy conversion
systems (WECS) can be divided into the following four main types [7, 8].

1.2.1 Type 1

Type 1 generators are directly grid-connected induction generators (IGs) with fixed
rotor resistance. An example is the squirrel cage induction generator (SCIG). As illus-
trated in Figure 1.6, the wind turbine rotor (WTR) is connected to the IG via a gearbox
(GB). Most Type 1 WTGs are equipped with mechanically switched capacitor (MSC)
banks, which provide reactive power compensation. As the protection device, the main

WTR GB IG

MSC

CB TR Grid

Figure 1.6 Structure of Type 1 WTG [8]. Refer to main text for explanation of acronyms.



�

� �

�
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WTR GB WRIG

MSC

CB TR Grid

VRR

Figure 1.7 Structure of Type 2 WTG [8]. Refer to main text for explanation of acronyms.

circuit breaker (CB) disconnects the generator and capacitor from the grid in the event
of a fault. Through a step-up transformer (TR), the WTG is connected to the grid.

Because of the direct connection to the grid, the IG operates at its natural mechanical
characteristic, with an accentuated slope (corresponding to a small slip, normally 1–2%)
from the rotor resistance [7]. The rotational speed of the IG is close to the synchronous
speed imposed by grid frequency, and is not affected significantly by wind variation.

1.2.2 Type 2

Type 2 generators are directly grid-connected IGs with variable rotor resistance (VRR).
Figure 1.7 illustrates the general structure of a Type 2 WTG. As an evolution of Type

1 WTGs, using regulation through power electronics, the total (internal plus external)
rotor resistance is adjustable. In this way, the slip of the generator can be controlled,
which affects the slope of the mechanical characteristic. The range of dynamic speed
variation is decided by the additional resistance. Usually, the control range is up to 10%
over the synchronous speed.

1.2.3 Type 3

Type 3 generators are double-fed induction generators (DFIGs). As illustrated in
Figure 1.8, the DFIG is an induction generator with the stator windings connected

WTR GB DFIG CB TR Grid

GSCRSC

Figure 1.8 Structure of Type 3 WTG [8]. Refer to main text for explanation of acronyms.
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directly to the three-phase, constant-frequency grid and the rotor windings connected
to back-to-back voltage source converters (VSCs), including a rotor-side converter
(RSC) and grid-side converter (GSC) [9]. They are decoupled with a direct current
(DC) link. Conventionally, the RSC controls the generator to regulate the active and
reactive power, while the GSC controls the DC-link voltage to ensure DC voltage
stability.

The power flow of the stator is always from wind turbine to grid. However, the power
flow of the rotor is dependent on the operating point:

• If the slip is negative (over-synchronous operation), it feeds power into the grid.
• If the slip is positive (sub-synchronous operation), it absorbs power from the grid.

In both cases, the power flow in the rotor is approximately proportional to the slip. By
regulation of the generator behaviour through the GSC controller, the rotation speed is
allowed to operate over a larger, but still restricted range (normally 40%).

1.2.4 Type 4

Type 4 WTGs have the wind turbine connected fully through a power converter.
Figure 1.9 shows the general structure of Type 4 WTG. The generator type can be
either an induction generator or a synchronous generator. Furthermore, the syn-
chronous generator can be either a wound-rotor synchronous generator (WRSG) or
a permanent-magnet synchronous generator (PMSG). Currently, the latter is widely
used by the wind turbine industry. The back-to-back VSC configuration is used.
The RSC ensures the rotational speed is adjusted within a large range, whereas the
GSC transfers the active power to the grid and attempts to cancel the reactive power
consumption [7].

The PMSG configuration is considered a promising option. Due to its self-excitation
property, its gives high power factors and efficiency. As it is supplied by permanent
magnets, a PMSG does not require an energy supply for excitation. Moreover, since the
salient pole of a PMSG operates at low speeds, the gearbox (Figure 1.9) can be removed.
This is a big advantage of PMSG-based WECS, as the gearbox is a sensitive device in
wind power systems. The same thing can be achieved using direct driven multipole
PMSGs (DD-PMSGs) with large diameters.

WTR GB IG/SG CB TR GridGSCRSC

Figure 1.9 Structure of Type 4 WTG [8]. Refer to main text for explanation of acronyms.
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1.2.5 Comparison

These four WTG types can also be classified into two categories according to the rotor
speed control criterion: fixed-speed wind turbines (FSWTs), including Type 1, and
variable-speed wind turbines (VSWTs), including Types 2–4 [10].

FSWTs have the advantage of being simple, robust and reliable, with simple and
inexpensive electric systems. They are well-proven in operation. Moreover, they can
naturally provide the inertial response. However, as FSWTs have limited controlla-
bility of rotational speed, the captured aerodynamic efficiency is restricted. Due to
the fixed-speed operation, mechanical stress is important. All fluctuations in wind
speed are transmitted into mechanical torque and then, as electrical fluctuations,
into the grid.

Due to the regulation of rotor speed within a larger range, VSWTs, especially Types 3
and 4, are highly controllable, allowing maximum power extraction over a large range of
wind speeds. In addition, the active and reactive power control can be fully decoupled
and implemented separately, and they are therefore they are more flexible. VSWTs dom-
inate the marketplace, especially in the megawatt class. Due to the electrical decoupling
between the generator and the grid, they cannot contribute to the power system appar-
ent inertial as conventional synchronous generators [11]. However, the inertial response
can be emulated by an additional power or torque loop [12–15].

1.2.6 Challenges with Wind Power Integration

Due to the inherent variability and uncertainty of the wind, the integration of wind
power into the grid has brought challenges in several different areas, including power
quality, system reliability, stability, and planning. The impact of each is largely dependent
on the level of wind power penetration in the grid [16].

Impact on Power Quality
Power quality is evaluated as a deviation from the normal sinusoidal voltage and cur-
rent waveforms in power system network. Power quality distortions of a power system
include flickers and harmonic distortions.

Flickers are periodic voltage and frequency variations, typically of between 0.5 and
25 Hz. The oscillatory output power produced by WTGs can cause flickers in a power
system. Fluctuations due to the tower shadow and turbulence effects in the wind may
cause flickers too. The IEC 61400-21 standard furnishes a measurement procedure to
calculate the flicker impact of wind turbines.

Harmonics can be injected on both the generation and consumer sides. On the con-
sumer side, harmonics are caused by non-linear loads. On the generation side, sources
of harmonics include flexible alternating current transmission systems (FACTS), such
as reactive power compensators and power electronics devices. The power electronic
converters used by VSWTs are considered sources of harmonics.

Impact on System Reliability
The uncertainty of wind generation will increase the requirement for operating reserve,
which will in turn increase generation costs. When the wind penetration level is low, the
wind power fluctuation is comparable to existing load fluctuations. Committed conven-
tional generators, such as thermal or hydro units, have sufficient load-tracking capa-
bility, so no additional operating reserve is required. However, load balancing becomes
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challenging at high wing-power penetration levels. An extra reserve of 3–6% of the rated
capacity of the wind plant is required at 10% wind penetration and 4–8% for 20% wind
penetration.

Impact on System Stability

Frequency stability Conventional synchronous generators can provide inertia response,
which plays a significant role in stabilizing system frequency during a transient scenario.
The inertia value dictates the frequency deviations due to a sudden change in the gener-
ation and load power balance. It affects the eigenvalues and vectors that determine the
stability and mode shape of the transient response [17].

The contributions to the system inertia of WTGs are dependent on the WTG type.
Due to the direct connection of the power system, fixed-speed induction generators can
provide inertia response. Modern VSWTs, whose rotation speed is normally decoupled
from grid frequency by a power electronic converter, may decrease the system inertia
[18]. With high wind power penetration, this decrease aggravates the grid frequency
instability.

Voltage stability Many power system faults are cleared by the relay protection of the
transmission system, either by disconnection or by disconnection and fast reclosure.
There is a short period with a voltage drop beyond a specified threshold, followed by a
period when the voltage returns. Previously, when the voltage dip occurred, the wind
turbine was simply disconnected from the grid. When the fault was cleared and the
voltage returned to normal, the wind turbine was reconnected. When the wind power
penetration level is low, the impact on system stability is limited. However, with high
levels of wind penetration, if the entire wind farm is suddenly disconnected while at
full generation, the system will lose further production capability [17]. This can lead
to a further large frequency and voltage drop and possibly complete loss of power. It is
very important to maintain the connection of WTGs when there are disturbances in the
network. Therefore, modern WTGs are required to have the fault ride-through (FRT)
capability by grid codes.

Since large wind farms are mainly located in areas far from load centres, the
short-circuit ratio (SCR) is small [19], and the grid at the connection point is weak.
Voltage fluctuations caused by the intermittent power of the wind farms are large.

Impact on System Planning
As wind resources are often located far from load centres, it is critical to develop
sufficient transmission to transport wind power to load centres. Old transmission
lines must be updated. On the one hand, transmission planning processes are highly
dependent on regional politics. The generation capacity, transmission location and load
size are different from one place to another. These disparities make the development
of transmission for wind power contentious and complex. On the other hand, in order
to transfer variable and unpredictable wind power, new requirements for transmission
technology arise [20].

Microgrids are considered as an alternative vision of the future grid, with energy gen-
erated and consumed locally. They can significantly reduce the long-distance energy
transmission requirement and transmission losses. The electricity grid could be con-
ceptualized as a collection of independent microgrids [20].
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1.3 Conclusion

There is potential for wind energy to play an important role in future energy supply.
With the development of wind turbine technology, wind power will become more
controllable and grid-friendly. It is desirable to make wind farms operate as conven-
tional power plants. To achieve this objective, more advanced control strategies for
both wind turbines and wind farms are required.
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Grid Code Requirements for Wind Power Integration
Qiuwei Wu

Centre for Electric Power and Energy, Department of Electrical Engineering, Technical University of Denmark

2.1 Introduction

With rapid growth of installed capacity, wind power will have a big impact on the
electricity system steady state and its dynamic operation. In the past, wind power
plants (WPPs) were allowed to be disconnected under system disturbances. However,
with high penetration of wind power in electric power systems, the disconnection of
WPPs will make it difficult for the system to withstand system disturbances. Therefore,
transmission system operators (TSOs) around the world have specified requirements
for WPPs under steady-state and dynamic conditions in their grid codes. WPPs must
have voltage- and frequency-regulation capabilities under steady-state conditions.
Under specified voltage dip conditions caused by the faults within the grid, WPPs have
to stay connected and provide reactive power for the duration of the voltage dip, and to
fulfill recovery requirements.

An analysis of large-scale integration of wind power in Europe has been carried out
[1], with reference to power and energy balancing, grid connection and system stabil-
ity, grid infrastructure extension and reinforcement, power system adequacy, market
design, demand-side management and storage. Recommendations were made for power
system operation when there is a large amount of wind power. The main problems with
connecting wind farms to the grid were reviewed by de Alegria et al. [2], who made
suggestions for the amendment of the grid codes to help integrate wind power into
power systems without affecting the quality and stability of the system. An analysis of
grid codes from Canada, Denmark, Ireland, Scotland, Germany and UK was conducted
by Christiansen at al. [3], with regard to the technical requirements for integrating wind
power into grids.

In this chapter, the requirements on WPPs from the latest grid codes are reviewed
and discussed. The grid codes reviewed are from the UK, Ireland, Germany, Denmark,
Spain, Sweden, the USA, and Canada.

Modeling and Modern Control of Wind Power, First Edition. Edited by Qiuwei Wu and Yuanzhang Sun.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/wu/modeling
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2.2 Steady-state Operational Requirements

Steady-state operational requirements concern the power factor requirement, voltage
operating range, frequency operating range and voltage quality. Usually, the steady-state
operational requirements for WPPs are specified at the point of connection (POC).

2.2.1 Reactive Power and Power Factor Requirements

The reactive power and power factor requirements concern the reactive power capa-
bility of the WPP within the specified voltage range at the POC under the steady-state
conditions. The requirements for reactive power and power factor are similar in different
grid codes and are listed in Table 2.1.

The reactive power requirement in the UK is quite complex, and is shown in Figure 2.1.
WPPs are requested to have reactive power capability as follows:

• from 100% to 50% active power production, from −32.87% to +32.87% of the rated
active power

• from 50% to 20% active power production from −32.87% to −12% for the leading part
up to +32.87% of the rated active power

• from 20% to 0% active power production, −5% to +5% of the rated active power.

Table 2.1 Reactive power/power factor requirement.

Country or region PF requirements

UK 0.95 lagging to 0.95 leading [4]
Ireland 0.95 lagging to 0.95 leading at full production; the same reactive

power capability as at 100% production, when the active power
output decreases from 100% to 12% [5]

Germany 0.95 lagging to 0.925 leading; depending on the voltage at the POC,
the requirement changes [6]

Denmark
(WPP 1.5–25 MW)

Reactive capability equal to 0.975 inductive and capacitive at 1 pu
active power production from 1 pu to 0.2 pu active power
production, straight line from 0.975 inductive and capacitive
according to the rated active power to 0 from 0.2 pu to 0 active
power production [7]

Denmark
(WPP >25 MW)

0.975 inductive and capacitive at 1 pu active power production;
straight line to 0.95 inductive and capacitive according to the rated
active power from 1–0.8 pu active power production; 0.95 inductive
and capacitive according to the rated active power from 0.8–0.2 pu
active power production; straight line from 0.95 inductive and
capacitive according to the rated active power to 0 from 0.2 pu to 0
active power production [7]

Spain 0.98 leading to 0.98 lagging without any penalty [8]
Sweden Reactive exchange can be regulated to zero [9]
US 0.95 leading to 0.95 lagging [10]
Quebec 0.95 leading to 0.95 lagging of the rated capacity over the entire

active power generation range [11]
Alberta 0.90 lagging to 0.95 leading [12]


