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Preface

The ability of railway track engineers to handle and process large and
continuous streams of data will provide a considerable opportunity for railway
agencies. This will help decision makers to make informed decisions about the
maintenance, reliability, and safety of the railway tracks. Now a period is begin-
ning in which the problem is collecting the railway track data and analyzing it
in a defined period of time.Therefore, the tools andmethods needed to achieve
this analysis need to be addressed. Knowledge derived from big data analytics
in railway track engineering will become one of the foundational elements
of any railway organization and agency. Also, another key issue has been the
protection of data by different railway organizations. Therefore, although the
data are available, they are really shared among different agencies. This makes
the issue of differential privacy of utmost importance in the railway industry.
Also, it is not clear if the industry has developed a clear way of both protecting
and accessing the data from third parties.
Data science is an emerging field that has all the characteristics needed by

railway track engineers to address and handle the enormous amounts of data
generated by various technology platforms currently in place.Themajor objec-
tive is for railway track engineers to have an understanding of big data. Using
the right tools and methodologies, railway track big data will also uncover new
directions for monitoring and collecting railway track data; this apart from the
engineering side will also have a major business impact on railway agencies.
This book provides the fundamental concepts needed to work with big data

applications for railway engineers.The concepts serve as a foundation, and it is
assumed that the reader has some understanding of railway engineering. The
book does not attempt to address railway track engineering as a subject, but it
does address the use of data science and the big data paradigm in railway track
applications. Colleagues in industry will find the book very handy, but it will
also serve as a new direction for graduate students interested in data science
and the big data paradigm in infrastructure systems. The work in this book is
intended to be accessible to an audience broader than those in railway track
engineering.
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xii Preface

Furthermore, I hope to shed a bright light on the enormous potential and
future development that the big data paradigm will bring to railway track engi-
neering.The amount of data railway agencies already have and the amount they
are planning to collect in the future make this book an important milestone.
This book attempts to bring together new emerging topics in a coherent way
that can address different methodologies that can be used in solving a variety
of railway track problems in the analysis of large data from various inspection
technologies. In preparing the book, I tried to achieve the following objectives:
(a) to develop some data science ontologies, (b) to provide the formulation of
large railway track data using big data analytics, (c) to provide direction on how
to present the data (visualization of the results), (d) to provide practical appli-
cations for the railway and infrastructure industry, and (e) to provide a new
direction in railway track data analysis.
Finally, I assume full responsibility for any errors in the book. The opinions

presented in the book represent my experiences in civil infrastructure systems,
machine learning, signal analysis, and probability analysis.

January, 2016 Nii O. Attoh-Okine
Newark, Delaware, USA
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1

Introduction

1.1 General

Currently, railroads collect enormous quantities of data through vehicle-based
inspection cars, trackside (or wayside) monitoring systems, hand-held gauges,
and visual inspections. In addition, these data are located geographically using
the global positioning system (GPS). The data from these inspection systems
are collected electronically by hand or using various sensors, video inspections,
machine visions, and many other sources. Furthermore, the data are growing
both in quantity and quality and aremore precise and diverse. Data of extremely
large sizes are difficult to analyze using traditional approaches since they may
exceed the limits of a typical spreadsheet. The railway track data are present
in diverse forms, including categorical, numerical, or continuous values. The
general characteristics of the data dictate which type of method is appropriate
for analysis. For example, categorical and nominal values are unsorted, while
numerical and continuous values are assumed to be sorted or to represent ordi-
nal data (Ramírez-Gallego et al., 2016).
The development of advanced sensors and information technology in railway

infrastructure monitoring and control has provided a platform for the expan-
sive growth of data.This has created a new paradigm in the processing, storing,
streaming, and visualization of data and information. Furthermore, changes in
technology include the possibility of installing sensors and smart chips in criti-
cal infrastructure tomeasure systemperformance, current condition, and other
indicators of imminent failures.Many of the railway infrastructure components
have communication capabilities that allow data to be uploaded on demand.
Big data is about extremely large volumes of data originating from various

sources: databases, audio and video,millions of sensors, and other systems.The
sources of data in some cases provide structured outputs, butmost are unstruc-
tured, semi-structured, or poly-structured. These data are streaming in some
cases with high velocity, and the data exposes at a higher speed or some speed
as it is generated.

Big Data and Differential Privacy: Analysis Strategies for Railway Track Engineering, First Edition.NiiO.Attoh-Okine.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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This chapter presents a general overview, basic description, and properties of
deterministic and random data that are encountered in railway track engineer-
ing data and relies heavily on the data output based on the advances in sensors,
information technology, high information technology, and development that
has led to extremely massive data sets. These large data sets have made the
traditional analytical techniques used for railway track maintenance and safety
issues somewhat obsolete.
The data obtained in railway track monitoring are collected by different sen-

sors, at different times and environmental conditions, at different frequencies,
and at different resolutions. The outputs of these data have different charac-
teristics: discrete or continuous, spatial or temporal, signal and images, and
categorical and objective, among others. All these characteristics, properties,
and the extreme volume of data collected have made traditional analytical
techniques very inefficient; issues like visualization and data streaming, which
are very critical in railway track maintenance and safety, are not adequately
addressed.The traditional statistical techniques fail to scale up to the extremely
large volumes of data collected by railway inspection vehicles and trackside
monitoring devices. Therefore, the growing amount of data generated by
railway track inspection activities is outpacing the current capacity to explore
and interpret these data and hence appropriately addresses maintenance and
safety issues.

1.2 Track Components

The term “tracks” includes superstructure, substructure, and special structures
(Figure 1.1). The superstructure is made of rails, ties, fasteners, turnouts, and
crossings, while the substructure consists of ballast, subballast, the subgrade,
and other drainage facilities.The superstructure and substructure are separated
by the tie–ballast interface.
The main purpose of the railway track structure is to provide a safe and

economical train transportation system through guiding the vehicle and trans-
mitting loads through the track components to the subgrade. The carrying

Rail Fastening system

Tie

Ballast

Subballast

Subgrade

Figure 1.1 Track structure components
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capacity and long-term durability of the track structure highly depend on how
the superstructure and substructure respond to and interact with each other
when subjected to moving trains and environmental factors (Selig andWaters,
1994; Kerr, 2003).
The function of different rail components has been presented by various

authors, such as Hay (1982), Selig and Waters (1994), Esveld (2001), Kerr
(2003), Sadeghi (2010), and Tzanakakis (2013). The aim of this section is to
summarize this function. The rails are the longitudinal steel members that are
placed on spaced ties to guide the train wheels evenly and continuously. Their
strength and stiffness must be sufficient tomaintain a steady shape and smooth
track configuration and to resist various forces (vertical, lateral, and longitudi-
nal) by vehicles. The rails also in some cases serve as electrical conductors for
the signal circuit and also as a groundline for the electric locomotive power
circuit. The profile of the rail surface (transverse and longitudinal) and wheel
surface has a major influence on the operation of the vehicles on the track, and
track defects may in some instances create and cause large dynamic loads that
lead to derailment and safety issues, as well as accelerated degradation.
Most steel rail sections are connected either by bolted joints or by welding.

The bolted joints create several problems, including rough riding track, unde-
sirable vibration, and additional impact loads, among others; hence, the use of
continuous welded rail (CWR) has been the better solution. CWR attempts to
address some of the disadvantages of the bolted joints, which have its own set
of maintenance requirements.
The rail fastener systems, or fastenings, include all the components that con-

nect the rail to the tie, with the tie plate, spike, and anchor forwood ties and clip,
insulator, and elastic fasteners for concrete ties. The function of the fastenings
is to retain the rail against the ties and resist vertical, lateral, longitudinal, and
overturning movements of the rail. They also serve as wheel load impact atten-
uation, increasing track elasticity, as well as electrical isolation between rails.
For concrete tie tracks, rail pads are installed on rail supporting points to

reduce and transfer the stress and dynamic forces from the rail to the ties, and
they reduce the interaction force between the rail and the ties (Choi, 2014).The
pads also provide adequate resistance to longitudinal and rotational movement
of the rail and provide a conforming layer between the rail and tie to avoid
contact areas of high pressure. From a dynamic point of view, the rail pads tend
to influence overall track stiffness.
Ties are transverse beams resting on ballast and support. They span below

and tie together two rails. The main functions of ties are as follows:

• Uniformly transfer and distribute loads from the rail to the ballast
• Hold the fastening system to maintain proper track gage
• Restrain the lateral, longitudinal, and vertical rail movement by anchorage of

the superstructure to the ballast
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• Provide a cant to the rails to help develop proper wheel–rail contact by
matching the inclination of the conical wheel shape

• Provide an insulation layer
• Allow fast drainage of fluid
• Allow for proper ballast maintenance

Ballast is the layer of crushed stone placed at the top layer of the substructure
in which the tie is embedded. It is an elastic support and transfers forces from
the rail and tie to the subballast. As some of its functions, it

• Distributes load from ties uniformly over the subgrade
• Anchors the track in place against lateral, vertical, and longitudinal move-

ments
• Absorbs shock from the dynamic load
• Allows suitable global and local track settlement
• Avoids freezing and melting (thawing) problems by frost action
• Allows for proper drainage
• Allows for maintenance of the track geometry

The subballast is the layer between the ballast and the subgrade. As some of
its functions, it

• Reduces the stress at the bottom of the ballast layers to a reasonable level to
protect the subgrade

• Migrates fines from the subgrade to the upper layer of the ballast
• Protects the subgrade from the ballast
• Permits drainage of water that might otherwise flow upward from the

subgrade

The subgrade is the last support of the track systems and, in some cases, is
the existing soil at the location, unless the existing formation is very weak. In
the case of a weak existing formation, techniques like stabilization and mod-
ification of the existing elevation use more appropriate soil. The addition of
geosynthetic material has been used to improve the subgrade performance and
bearing capacity. Its main functions are the following:

• Provide support to the track structure
• Bear and distribute the resultant load from the train vehicle through the track

structure
• Provide sufficient drainage

1.3 Characteristics of Railway Track Data

Railway track data are similar to data from other infrastructures. Its character-
istics include the following:
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• Massive Data Sets. Railway track data collection andmonitoring has resulted
in extremely large data sets for infrastructure monitoring. In some cases, the
actual data are processed and only the reduced version is stored, while in
most cases smaller amounts of data are stored for further analysis.

• Unstructured Data, Heterogeneous Databases. Some of the railway track data
are stored in databases. In most cases, different agencies and countries have
different data formats, different databasemanagement systems, and different
datamanipulation algorithms.Most of these databases are evolving, which in
some casesmakes analysis and datamining across them challenging. Some of
the databases include unstructured images, plots, and tables, as well as links
to other transportation and infrastructure documents of the agency.This can
be challenging in terms of both analysis and reporting.

• Information in the Form of Images. The analysis of railway track, in terms
of both rail and geometry defects, by its very nature deals with issues associ-
ated with the extraction ofmeaningful information frommassive amounts of
railway track images, thus opening a new direction in railway track analysis.

• Poor Quality of Data. Railway track data analysis, especially the image data,
in most cases is of poor quality due to the railway track environment and
sensor noise. In some cases, data are missing or input incorrectly. Further-
more, the data from different sources can vary in terms of quality. Also, the
railway inspectors may in some cases have incomplete knowledge about the
mechanism and initiation of different defects. This may lead to inconclusive
reporting and analysis.

• Multiresolution and Multisensor Data. Several different sensors are used to
collect different information and data.Thismay create a situation where sev-
eral imagesmay have different resolutions over time.Therefore, caremust be
taken so that the change in resolution can be included.

• Noisy Data. Noisy data cannot be avoided in railway track data collections.
Methods of reducing the noise in data need to be implemented during the
preprocessing of the data for further analysis. For example, shadows and ori-
entations of the vehicle collecting the data can have an impact on the images.
Therefore, poor illumination can have amajor impact on the obtained image.

• Missing Data. The risk of missing data is always present in railway track data
collection; this is mostly due to sensor malfunction. Filling the gaps can be a
daunting task. Again care must be taken with how missing data is included.

• Streaming Data. Some of the data sets collected during railway monitoring
can be streaming in nature; that is, a constant streamof data is being collected
and received. This requires a specialized set of analyses different from the
chunk data methods used in traditional analysis.

More broadly, the data can either be random or deterministic. The random
data is shown in Figure 1.2, and the deterministic data is shown in Figure 1.3,
as presented by Bendat (1998).
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Random

Stationary

Ergodic Nonergodic Transient

Nonstationary

Figure 1.2 Classification of random data (Bendat (1998). Reproduced with their permission
of John Wiley & Sons)

Deterministic

Periodic

Sinusoidal
Complex
periodic

Nonperiodic

Almost periodic Transient

Figure 1.3 Classification of deterministic data (Bendat (1998). Reproduced with their
permission of John Wiley & Sons)

Table 1.1 shows the general taxonomy of big data methods in railway
engineering.

1.4 Railway Track Engineering Problems

Generally, railway track engineering problems can be classified into two
groups according to Santamarina and Fratta (1998): (a) forward problems and
(b) inverse problems. Table 1.2 shows the group of problems that fall under the
two categories. For forward problems, the major objective is to design systems
to satisfy predefined performance criteria. Also, convolution forms part of the
forward problems. In convolution, the input is known, the type of system is
known, and the only unknown is the output.
Inverse problems can either be (a) system identification where the input and

output are known but the system is unknown or (b) deconvolution where the
input is unknown, while the system and output are known. Figure 1.4 shows a
generic representation of general civil engineering problems, including railway
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Table 1.2 Engineering problems.

Forward problems Inverse problems

System design Convolution
System
identification Deconvolution

The system is designed to
satisfy performance criteria
(controlled output for
estimated input)

Input: known
System: known
Output: unknown

Input: known
System: unknown
Output: known

Input: unknown
System: known
Output: known

(Santamarina and Fratta., 1998) Reproduced with the permission of ASCE.

Input signal
System

Output signal

Figure 1.4 Engineering signals

track problems. But there can be different situations, including (a) single-
input–output relationships as shown on the generic representation and
(b) multiple-input–output relationships. Therefore, depending on the struc-
tural and objective analyses, there are different assumptions and analyses.
Systems can be divided into two broad groups, (a) linear and (b) nonlinear.
The linear systems can be further divided into constant parameter and
time-varying systems (Bendat, 1998).
Major parts of railway track data are in the form of signals and images;

therefore, a deeper understanding of analytical issues for signals and images
is needed to analyze and interpret railway track data. A major issue related to
track images is the presence of noise, which tends to affect the overall images
if it is not properly reduced or accounted for. Therefore, efficient algorithms
are needed to reduce noise in railway track images before further analysis can
be done.
Table 1.3 shows examples of different track inspection technologies and their

level of maturity. Railway track conditions are, in most cases, evaluated using
the characteristics of track geometry wave form and vehicle dynamic response
to the track. Also, in some cases, images from high definition cameras are also
collected. It is apparent that to obtain the true picture of the railway track condi-
tion, there should bemethods that can go beyond traditional statistical analysis.
An efficientmethod is one that can perform themining of the data, reduce noise
from the wave forms, and combine data and information from different sources
to provide a clear understanding of whatmaintenance activities to perform and
how to satisfy all safety requirements.
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1.5 Wheel–Rail Interface Data

The wheel–rail contacts at the interface between the wheel and rail determine
in part the reliability of railway systems. Tzanakakis (2013) presented in
Figure 1.5 the different outcomes and effects of wheel–rail contact. The rail
vehicles are supported, accelerated, and decelerated by contact forces acting
on extremely small wheel–rail contact areas (around 1 cm2).
Meymand et al. (2016) presented a comprehensive survey on the topic. The

paper discusses well-known theories for modeling normal contacts based on
Hertzian and non-Hertzian methods and tangential contacts based on Kalker’s
linear theory and Polach theory.
Track irregularities tend to produce different magnitudes of force on the

track. These forces on the track can result in three types of loads: (a) vertical,
(b) lateral, and (c) longitudinal. Lateral loads are transverse to the track, while
longitudinal loads are parallel to the track. Depending on their nature, loads
can be (a) static loads, (b) quasi-static loads, and (c) dynamic loads. The
dynamic loads may cause

• Irregularities in the track geometry
• Wear of the running surface
• Discontinuities on the running surface, which includes switches and frogs
• Dynamic forces, which appear in two categories: P1 and P2 forces. Frequen-

cies of P1 forces range between 100 and 2000Hz, are mainly impact forces.

Wheel–rail
contact

Contact
forces

Dynamic
phenomena

Noise
emissions

Wear

Static forces

Semi-static
forces

Dynamic
forces

Oscillations,
etc.

Figure 1.5 Wheel–rail contact impacts (Tzanakakis (2013). Reproduced with the permission
of Springer)
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P1 forces can cause, among other things, bolt hole failure and cracking of
concrete ties and have minimal effects on the ballast or subgrade. P2 forces
contribute to the degradation of track geometry and are classified in the fre-
quency range between 30 and 100Hz.

The contact between the wheel and the rail is the basic constitutive element
of the railway dynamics (Table 1.4). For modeling purposes, two aspects
are considered (Trzaska, 2012): (a) the geometric or kinematical relations
of the wheel–rail contact and (b) the contact mechanical relations for the
calculation of the contact forces. The wheel–rail contact provides insight into
the formation of corrugation and other rail defects, like wear, crack growth,
and others.The wear depends on tangential forces and creep age at the contact
patch. Using mathematical analysis, it is possible to build a comprehensive and
functional understanding of wheel–rail interaction, suspension and suspension
component behavior, simulation, and experimental validation. This is beyond
the scope of the current analysis.
Figure 1.6 shows various wheel–rail interfaces and their effects.
In wheel–rail contact there are three “zones” of contact, namely, Region A,

RegionB, andRegionC, as shown in Figure 1.7. RegionA is the contact between
the central region of the rail crown and the wheel thread (conicity, hollow wear,
and thermal loads), Region B is the extreme reference gage corner contact of the
two-point contact, and, finally, Region C is the field side contact. At Region A,

Table 1.4 Vertical track forces.

Cause Force Symptom

Impact at rail welds Rail: P1+P2 Rail fatigue failure
Corrugations
Pad degradation
Tie cracking/movement
Ballast degradation
Weld fatigue

Vehicle/track interaction Quasi-static Track geometry deterioration
Dynamic forces Rail failure/fatigue

Ballast failure/degradation
Subgrade failure/degradation

Wheel irregularities Wheel: P1+P2 Tie cracking
Rail breaks
Wheel cracks
Ballast deterioration

Tzanakakis (2013). Reproduced with the permission of Springer.


