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Introduction

WHEN I WAS 10 years old, one of my teachers sat me down in front of a computer at
school. Now, this isn’t what you think. I wasn’t about to be inducted into the mysteries of
computer programming, even though it was a BBC Micro (the most programmable and argu-
ably the most architecturally sophisticated of the British 8-bit microcomputers, on which I
would subsequently cut my teeth in BASIC and assembly language). Instead, I was faced with
a half-hour barrage of multiple choice questions about my academic interests, hobbies and
ambitions, after which the miraculous machine spat out a diagnosis of my ideal future career:
microelectronic chip designer.

This was a bit of a puzzler, not least because what I really wanted to be was a computer game
programmer (okay, okay, astronaut) and there was nobody in my immediate environment
who had any idea what a 10-year-old should do to set him on the path to the sunlit uplands
of microelectronic chip design. Over the next few years, I studied a lot of maths and science
at school, learned to program (games) at home, first on the BBC Micro and then the
Commodore Amiga, and made repeated, not particularly successful, forays into electronics.
As it turned out, and more by luck than judgment, I'd happened on a plausible road to my
destination, but it wasn't until I arrived at Cambridge at the age of 18 that I started to figure
out where the gaps were in my understanding.

Cambridge

Cambridge occupies a special place in the history of computer science, and particularly in the
history of practical or applied computing. In the late 1930s, the young Cambridge academic
Alan Turing demonstrated that the halting problem (the question “Will this computer pro-
gram ever terminate, or halt?”) was not computable; in essence, you can’t write a computer
program that will analyse another arbitrary computer program and determine if it will halt.
At the same time, working independently, Alonzo Church proved the same result, which now
shares their names: the Church-Turing thesis. But it is telling that while Church took a purely
mathematical approach to his proof, based on recursive functions, Turing’s proof cast com-
putation in terms of sequential operations performed by what we now know as Turing
machines: simple gadgets that walk up and down an infinite tape, reading symbols, changing
their internal state and direction of travel in response, and writing new symbols. While most
such machines are specialised to a single purpose, Turing introduced the concept of the uni-
versal machine, which could be configured via commands written on the tape to emulate the
action of any other special-purpose machine. This was the first appearance of a now com-
monplace idea: the general-purpose programmable computer.
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After the outbreak of the Second World War, Turing would go on to play a central role in the
Allied code-breaking effort at Bletchley Park, where he was involved (as a member of a
team—don’t believe everything you see at the movies) in the development of a number of
pieces of special-purpose hardware, including the electromechanical bombe, which auto-
mated the process of breaking the German Enigma cipher. None of these machines used the
specific “finite state automaton plus infinite tape” architecture of Turing’s original thought
experiment; this turned out to be better suited to mathematical analysis than to actual
implementation. And not even the purely electronic Colossus—which did to the formidably
sophisticated Lorentz stream cipher what the bombe had done to Enigma—crossed the line
into general-purpose programmability. Nonetheless, the experience of developing large-scale
electronic systems for code-breaking, radar and gunnery, and of implementing digital logic
circuits using thermionic valves, would prove transformative for a generation of academic
engineers as they returned to civilian life.

One group of these engineers, under Maurice Wilkes at the University of Cambridge’s
Mathematical Laboratory, set about building what would become the Electronic Delay
Storage Automatic Calculator, or EDSAC. When it first became operational in 1949, it
boasted a 500kHz clock speed, 32 mercury delay lines in two temperature-controlled water
baths for a total of 2 kilobytes of volatile storage. Programs and data could be read from, and
written to, paper tape. Many institutions in the U.S. and UK can advance narrow claims to
having produced the first general-purpose digital computer, for a particular value of “first”.
Claims have been made that EDSAC was the first computer to see widespread use outside the
team that developed it; academics in other disciplines could request time on the machine to
run their own programs, introducing the concept of computing as a service. EDSAC was fol-
lowed by EDSAC I, and then Titan. It was only in the mid-1960s that the University stopped
building its own computers from scratch and started buying them from commercial vendors.
This practical emphasis is even reflected in the current name of the computer department:
Cambridge doesn’t have a computer science faculty; it has a computer laboratory, the direct
descendant of Wilkes’ original mathematical laboratory.

This focus on the practical elements of computer engineering has made Cambridge fertile
ground for high-technology startups, many of them spun out of the computer laboratory,
the engineering department or the various maths and science faculties (even our mathemati-
cians know how to hack), and has made it a magnet for multinational firms seeking engineer-
ing talent. Variously referred to as the Cambridge Cluster, the Cambridge Phenomenon or
just Silicon Fen, the network of firms that has grown up around the University represents
one of the few bona fide technology clusters outside of Silicon Valley. The BBC Microcomputer
that told me I should become a chip designer was a Cambridge product, as was its perennial
rival, the Sinclair Spectrum. Your cell phone (and your Raspberry Pi) contains several proces-
sors designed by the Cambridge-based chip firm ARM. Seventy years after EDSAC, Cambridge
remains the home of high technology in the UK.



INTRODUCTION

Cut to the Chase

One of the biggest missing pieces from my haphazard computing education was an idea of
how, underneath it all, my computer worked. While I'd graduated downwards from BASIC to
assembly language, I'd become “stuck” at that level of abstraction. I could poke my Amiga’s
hardware registers to move sprites around the screen but [ had no idea how I might go about
building a computer of my own. It took me another decade, a couple of degrees and a move
out of academia to work for Broadcom (a U.S. semiconductor company that came to
Cambridge for the startups and stayed for the engineering talent) for me to get to the point
where I woke up one morning with “microelectronic chip designer” (in fact the fancier equiv-
alent, “ASIC architect”) on my business card. During this time, I've had the privilege of work-
ing with, and learning from, a number of vastly more accomplished practitioners in the field,
including Sophie Wilson, architect (with Steve Furber) of the BBC Micro and the original
ARM processor, and Tim Mamtora of Broadcom’s 3D graphics hardware engineering team,
who has graciously provided the chapter on graphics processing units (GPUs) for this book.

To a great degree, my goal in writing this book was to produce the “how it works™ title that I
wish I'd had when I was 18. We've attempted to cover each major component of a modern
computing system, from the CPU to volatile random-access storage, persistent storage, net-
working and interfacing, at a level that should be accessible to an interested secondary school
student or first-year undergraduate. Alongside a discussion of the current state of the art,
we've attempted to provide a little historical context; it’s remarkable that most of the topics
covered (though not, obviously, the fine technical details) would have been of relevance to
Wilkes” EDSAC engineering team in 1949. You should reach the end with at least a little
understanding of the principles that underpin the operation of your computer. I firmly
believe that you will find this understanding valuable even if you're destined for a career as a
software engineer and never plan to design a computer of your own. If you don’t know what
a cache is, you'll be surprised that your program'’s performance drops off a cliff when your
working set ends up larger than your cache, or when you align your buffers so that they
exhaust the cache’s associativity. If you don't know a little about how Ethernet works, you’ll
struggle to build a performant network for your datacentre.

It's worth dwelling for a moment on what this book isn’t, and what it won't tell you. It isn’t a
comprehensive technical reference for any of the topics covered. You could write (and people
have written) whole volumes on the design of caches, CPU pipelines, compilers and network
stacks. Instead, we try to provide a primer for each topic, and some suggestions for further
study. It is concerned primarily with the architecture of conventional general-purpose com-
puters (in essence, PCs). There is limited coverage of topics like digital signal processing
(DSP) and field-programmable gate arrays (FPGAs), which are primarily of interest in special
purpose, application-specific domains. Finally, there is little coverage of the quantitative
decision-making process that is the heart of good computer architecture: how do you trade
off the size of your cache against access time, or decide whether to allow one subsystem
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coherent access to a cache that forms part of another component? We can’t teach you to
think like an architect. For the advanced reader, Hennessy and Patterson’s Computer
Architecture: A Quantitative Approach remains an indispensable reference on this front.

The Knee in the Curve

With that last disclaimer in mind, I'd like to share a couple of guiding principles that I have
found useful over the years.

In computer architecture, as in many things, there is a law of diminishing returns. There are,
of course, hard limits to what can be accomplished at any given moment, whether in terms
of raw CPU performance, CPU performance normalised to power consumption, storage den-
sity, transistor size, or network bandwidth over a medium. But it is often the case that well
before we reach these theoretical limits we encounter diminishing returns to the application
of engineering effort: each incremental improvement is increasingly hard won and exacts a
growing toll in terms of cost and, critically, schedule. If you were to graph development
effort, system complexity (and thus vulnerability to bugs) or cash spent against performance,
the curve would bend sharply upward at some point. To the left of this “knee”, performance
would respond in a predictable (even linear!) fashion to increasing expenditure of effort; to
the right, performance would increase only slowly with added effort, asymptotically
approaching the “wall” imposed by fundamental technical limitations.

Sometimes there is no substitute for performance. The Apollo lunar project, for example, was
an amazing example of engineering that was so far to the right of the “knee” (powered by the
expenditure of several percent of the GDP of the world’s largest economy) that it fundamen-
tally misled onlookers about the maturity of aerospace technology. It is only now—after 50
years of incremental advances in rocketry, avionics and material science—that the knee has
moved far enough to permit access to space, and maybe even a return to the Moon, at rea-
sonable cost. Nonetheless, I have observed that teams that have the humility to accurately
locate the knee bring simple, conservatively engineered systems to market in a timely fash-
ion and then iterate rapidly, tend to win over moon-shot engineering.

Conservatism and iteration are at the heart of my own approach to architecture. The three
generations of Raspberry Pi chips that we've produced to date use exactly the same system
infrastructure, memory controller and multimedia, with changes confined to the ARM core
complex, a small number of critical bug fixes and an increase in clock speed. There is a ten-
sion here: engineers (myself included) are enthusiasts and want to push the boundaries. The
job of a good architect is to accurately assign a cost to the risks associated with radical change,
and to weigh this against the purported benefits.
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Forward the Foundation

We founded the Raspberry Pi Foundation in 2008, initially with the simple aim of addressing
a collapse in the number of students applying to study Computer Science at Cambridge.
We're seeing encouraging signs of recovery, both at Cambridge and elsewhere, and applicant
numbers are now higher than they were at the height of the dotcom boom in the late 1990s.

Perhaps the most striking aspect of the change we've witnessed is that the new generation of
young people is far more interested in hardware than we were in the 1980s. Writing an
assembly language routine to move a sprite around on the screen clearly isn’t quite as much
fun as it used to be, but moving a robot around the floor is much more exciting. We see
12-year-olds today building control and sensing projects that I would have been proud of in
my mid-20s. My hope is that when some of these young people sit down in front of the dis-
tant descendants of the BBC Micro careers program of my childhood, some of them will be
told that they’'d make great microelectronic chip designers, and that this book might help
one or two of them make that journey.

—Eben Upton, Cambridge, May 2016






Chapter

The Shape of a Computer
Phenomenon

THAT OLD SAYING about good things coming in small packages describes the Raspberry
Pi perfectly. It also highlights an advance in computer architecture—the system-on-a-chip
(So0), a tiny package with a rather large collection of ready-to-use features. The SoC isn't so
new—it’s been around a long time—but the Raspberry Pi’s designers have put it into a small,
powerful package that is readily available to students and adults alike. All for a very low price.

A tiny piece of electronics about the size of a credit card, the Raspberry Pi single-board com-
puter packs very respectable computing power into a small space. It provides tons of fun and
many, many possibilities for building and controlling all sorts of fascinating gizmos. When
something is small, after all, it fits just about anywhere. The Raspberry Pi does things con-
ventional computers just can't do in terms of both portability and connectivity. Things you
will find inspire your creativity—fun things!

What's not to like? Get ready for some truly exciting computer architecture.

In this chapter introducing the truly phenomenal Raspberry Pi line of computer boards, we
look first at the Raspberry Pi’s goals and history. We include the history of the Raspberry Pi’s
development and the visionary people at the Raspberry Pi Foundation who dreamed up the
concept and achieved the reality, and we look at the advantages this tiny one-board com-
puter has over much larger computers. We then take a tour of the Raspberry Pi board.

Growing Delicious, Juicy Raspberries

As significant advances in computing go, the Raspberry Pi’s primary innovation was the low-
ering of the entry barrier into the world of embedded Linux. The barrier was twofold—price
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and complexity. The Raspberry Pi’s low price solved the price problem (cheap is good!) and
the SoC reduced circuit complexity rather dramatically, making a much smaller package
possible.

The road to the development of the Raspberry Pi originated at a surprising point—through a
registered charity in the UK, which continues to operate today.

The Raspberry Pi Foundation, registered with the Charity Commission for England and
Wales, first opened its doors in 2009 in Caldecote, Cambridgeshire. It was founded for the
express purpose of promoting the study of computer science in schools. A major impetus for
its creation came from a team consisting of Eben Upton, Rob Mullins, Jack Lang and Alan
Mycroft. At the University of Cambridge’s Computer Laboratory, they had noted the declin-
ing numbers and low-level skills of student applicants. They came to the conclusion that a
small, affordable computer was needed to teach basic skills in schools and to instill enthusi-
asm for computing and programming.

Major support for the Foundation’s goals came from the University of Cambridge Computer
Laboratory and Broadcom, which is the company that manufactures the SoC—the Broadcom
2835 or 2836, depending on the model—that enables the Raspberry Pi’'s power and success.
Later in this chapter you will read more on that component, which is the heart and soul of
the Raspberry Pi.

The founders of the Raspberry Pi had identified and acted on the perceived need for a tiny,
affordable computer. By 2012, the Model B had been released at a price of about £25. The
fact that this represented great value for money was recognised immediately, and first-day
sales blasted over 100,000 units. In less than two years of production, more than two million
boards were sold.

The Raspberry Pi continued to enjoy good sales and wide acceptance following the highly suc-
cessful release of the Model B+ (in late 2014). And in 2015, the fast, data-crunching
Raspberry Pi 2 Model B with its four-core ARM processor and additional onboard memory
sold more than 500,000 units in its first two weeks of release. Most recently, the Raspberry
Pi Zero, a complete computer system on a board for £4—yes, £4—was released. It's an awe-
some deal if you can get one—the first batch sold out almost immediately.

In 2016, the Raspberry Pi Model 3 Model B arrived. It sports a 1.2GHz 64-bit quad-core
ARMv8 CPU, 1 GB RAM, and built-in wireless and Bluetooth! All for the same low price.

The original founders of the Raspberry Pi Foundation included:

m Eben Upton
= Rob Mullins
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m Jack Lang
= Alan Mycroft
m Pete Lomas

David Braben

The organisation now consists of two parts:

m Raspberry Pi (Trading) Ltd. performs engineering and sales, with Eben Upton as CEO.

m The Raspberry Pi Foundation is the charitable and educational part.

The Raspberry Pi Foundation’s website at www . raspberrypi . org (see Figure 1-1) presents
the impetus that resulted in the Raspberry Pi. This is what they say on the About Us page:

DOWNLOADS COMMUNITY FORUMS EDUCATION Q

LATEST BLOG POST

DR WHO THEME ON A PI
ZERO
You

elieve that s S5 computer
eird thing

SUBMERSIBLE RASPBERRY PI ASTRO PI: MISSION UPDATE 8 - ISS. DO MORE WITH YOUR #PIZERO IN HIATUS
DRONE DEPLOYMEN HE MAGPI 42

SEE THE BLOG ARCHIVE

TEACH, LEARN AND MAKE WITH RASPBERRY PI

FIGURE 1-1: The Raspberry Pi official website

The idea behind a tiny and affordable computer for kids came in 2006, when Eben Upton, Rob
Mullins, Jack Lang and Alan Mycroft, based at the University of Cambridge’s Computer
Laboratory, became concerned about the year-on-year decline in the numbers and skills levels
of the A Level students applying to read Computer Science. From a situation in the 1990s
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where most of the kids applying were coming to interview as experienced hobbyist program-
mers, the landscape in the 2000s was very different; a typical applicant might only have done
a little web design.

As a result, the founders’ stated goal was “to advance the education of adults and children,
particularly in the field of computers, computer science and related subjects”.

Their answer to the problem, of course, was the Raspberry Pi, which was designed to emulate
in concept the hands-on appeal of computers from the previous decade (the 1990s). The
intention behind the Raspberry Pi was to be a “catalyst” to inspire students by providing
affordable, programmable computers everywhere.

The Raspberry Pi is well on its way to achieving the Foundation’s goal in bettering computer
education for students. However, another significant thing has happened; a lot of us older
people have found the Raspberry Pi exciting. It's been adopted by generations of hobbyists,
experimenters and many others, which has driven sales into new millions of units.

While the sheer compactness of the Raspberry Pi excites, resonates and inspires adults as
well as youngsters, what truly prompted its success was its low price and scope of develop-
ment. Embedded Linux has always been a painful subject to learn, but the Pi makes it simple
and inexpensive. Continuing education in computers gets just as big a boost as initial educa-
tion in schools.

System-on-a-Chip

An SoC or system-on-a-chip is an integrated circuit (IC) that has the major components of a
computer or any other electronic system on a single chip. The components include a central
processing unit (CPU), a graphics processing unit (GPU) and various digital, analogue and
mixed signal circuits on just one chip.

This SoC component makes highly dense computing possible, such as all the power that is
shoehorned into the Raspberry Pi. Figure 1-2 shows the Broadcom chip on the Raspberry Pi 2
Model B. It’s a game-changing advance in computer architecture, enabling single-card com-
puters that rival and often exceed the capabilities of machines that are many times their size.
Chapter 8, “Operating Systems”, covers these small but mighty chips in detail.

The Raspberry Pi features chips that are developed and manufactured by Broadcom Limited.
Specifically, the older models as well as the latest (the £4 Raspberry Pi Zero) come with the
Broadcom BCN2835 and the Raspberry Pi 2 has the Broadcom BCM2836, and the new
Model 3 uses the Broadcom BCM2837. The biggest difference between these two SoC ICs is
the replacement of the single-core CPU in the BCM2835 with a four-core processor in the
BCM2836. Otherwise, they have essentially the same architecture.
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FIGURE 1-2: Broadcom chip on the Raspberry Pi 2 Model B

Here’s a taste of the low-level components, peripherals and protocols provided by the
Broadcom SoCs:

m CPU: Performs data processing under control of the operating system (a CPU with a
single core on most of the Raspberry Pi models and a CPU with four cores on the
Raspberry Pi 2 and Raspberry Pi 3).

m GPU: Provides the operating system desktop.

m Memory: Permanent memory used as registers for CPU and GPU operation, storage
for bootstrap software, the small program which starts the process of loading the
operating system and activating it.

m Timers: Allow software to be time-dependent for scheduling, synchronising and
so on.

= Interrupt controller: Interrupts allow the operating system to control all the com-
puter resources, know when the CPU is ready for new instructions and much more
(this is covered in Chapter 8).

m General purpose input output (GPIO): Provides layout and enables control of
connections, input, output and alternative modes for the GPIO pins that enable the
Raspberry Pi to manage circuits, devices, machines and so on. In short, it turns the
Raspberry Pi into an embeddable control system.

m USB: Controls the USB services and provides the Universal Serial Bus protocols for
input and output, thus allowing peripherals of all types to connect to the Raspberry
Pi’s USB receptacles.

m PCM/I%S: Provides pulse code modulation (PCM, which converts digital sound to ana-
logue sound such as speakers and headphones require) and known as Inter-IC Sound,
Integrated Interchip Sound, or IIS, a high-level standard for connecting audio devices).
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m Direct memory access (DMA) controller: Direct memory access control that
allows an input/output device to bypass the CPU and send or receive data directory to
the main memory for purposes of speed and efficiency.

m I2C master: Inter-integrated circuit often employed for connecting lower-speed
peripheral chips to control processors and microcontrollers.

m I2C/SPI (Serial Peripheral Interface) slave: The reverse of the preceding bullet
point. Allows outside chips and sensors to control or cause the Raspberry Pi to respond
in certain ways; for example, a sensor in a motor detects it’s running hot and the con-
troller chip causes the Raspberry Pi to make a decision on whether to reduce the
motor’s speed or stop it.

m SPI Interface: Serial interfaces, accessed via the GPIO pins and allowing the daisy
chaining of several compatible devices by the use of different chip-select pins.

m Pulse width modulation (PWM): A method of generating an analogue waveform
from a digital signal.

m Universal asynchronous receiver/transmitter (UARTO, UART1): Used for
serial communication between different devices.

An Exciting Credit Card-Sized Computer

Just how powerful is the Raspberry Pi compared to a desktop PC? Certainly, it has far more
computational ability, memory and storage than the first personal computers. That said, the
Raspberry Pi cannot match the speed, high-end displays, built-in power supplies and hard-
drive capacity of the desktop boxes and laptops of today.

However, you can easily overcome any disadvantages by hanging the appropriate peripherals
on your Raspberry Pi. You can add large hard drives, 42-inch HDMI screens, high-level sound
systems and much more. Simply plug your peripherals into the USB receptacles on the board
or via other interfaces that are provided, and you're good to go. Finish it off by clicking an
Ethernet cable into the jack on the Raspberry Pi or sliding in a wireless USB dongle, and
worldwide connectivity goes live.

You can duplicate most features of conventional computers when you attach peripherals to a
Raspberry Pi, such as in Figure 1-3, and you also gain some distinct advantages over large
computers, including:

m The Raspberry Piis really cheap—£25 retail or just £4 for the Raspberry Pi Zero.

m It's really small—all models are credit-card sized or smaller.
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m You can replace the operating system in seconds simply by inserting a new SD or
microSD card for almost instant reconfiguration.

m The Broadcom SoC gives the Raspberry Pi more interfaces, communications protocols
and other features out of the box than conventional computers that sell for many
times the price.

m The GPIO pins (see Figure 1-4) allow the Raspberry Pi to control real-world devices
that have no other method of computer input/output.

FIGURE 1-4: GPIO pins enable control of real world devices.
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What Does the Raspberry Pi Do?

The Raspberry Pi excels as the brains for all sorts of projects. Here are some examples ran-
domly picked from the many thousands of documented projects on the Internet. This list
may inspire you in choosing some projects of your own:

m Home automation m Web camera controller

m Home security m Coffee maker

m Media centre m Ham radio EchoLink server and
JT65 terminal

m Weather station

m Electric motor controller
m Wearable computer

« Robot controller m Time-lapse photography manager

m  Quadcopter (drone) controller = Game controller

m Bitcoin minin
m Web server &

. m Automotive onboard computer
m Email server

m GPS tracker

This list just scratches the surface of possible uses for the Raspberry Pi. There’s not enough
room to list everything you could do, but this book gives you the information you need to
come up with your own ideas. Let your own desires, interests and imagination guide you. The
Raspberry Pi does the rest.

Meeting and Greeting the Raspberry Pi Board

This section begins with an introduction to the features, components and layout of the
Raspberry Piboard. We show contrasts between the various models but with an emphasis on
the Raspberry Pi 2. Reading this section and examining the Raspberry Pi board is like looking
at a map before setting off on a journey—it gives you the lay of the land. If you know where
the various important parts of the board are and how they work, it makes imagining and
creating projects a lot easier because you understand the board better.

We begin with the Raspberry Pi 2 Model B (there was no Model A in the 2 series or the new
3 series). After introducing you to the Raspberry Pi 2, we'll look at the other versions, includ-
ing the Raspberry Pi 3 Model, which includes more processor speed, onboard Wi-Fi and
Bluetooth.
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If you want to follow along with your own board, orient it as shown in Figure 1-5, with the
two rows of GPIO pins at the upper left.

GPIO Pins

The GPIO pins—the row of pins at the top of the board as it’s oriented in Figure 1-5—perform
magic in tying the Raspberry Pi to the real world. Through these pins, you program the
Raspberry Pi to control all sorts of devices. Chapter 12, “Input/Output”, looks at program-
ming the Raspberry Pi and helps you understand inputs and outputs and shows methods of
controlling various devices. Let’s examine these pins and get an understanding of how simple
and powerful they are.

LED status lights GPIO pins (40) USB/Ethernet chip USB receptacles

-
o

0163w
N
o

Hade i the UK

System-on-a-chip | Camera connector Ethernet connector
Power connector 4-pole audio jack
Display connector HDMI connector

FIGURE 1-5: The Raspberry Pi 2 board with the GPIO pins at the upper left
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Real-world devices—doorbells, light bulbs, model aircraft controls, lawn mowers, robots,
thermostats, electric coffeepots and motors of all sorts, to name a few things—cannot nor-
mally connect to a computer or follow its orders. Through GPIO, the Raspberry Pi can do
neat stuff with these real-world objects! That's why we're emphasising the GPIO pins; the
pins enable you to do things with the Raspberry Pi that you can’t do with conventional
computers.

m Being able to interface with real-world devices is not a distinction that's unique to the Raspberry
Pi; embedded computers are able to bridge this gap whereas conventional computers can't.

We have 40 pins—two rows of 20. The bottom row of pins (left to right) consists of odd
numbers: 1, 3, 5, 7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39. The top
are numbered 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38 and 40.

These pins are programmable; you can even change the layout of most of the pins! The power
pins cannot be rerouted.

When you add simple external circuits, it becomes possible for the Raspberry Pi to switch all
sorts of things on or off. It can also sense input from devices and respond accordingly.
Thanks to the Raspberry Pi’s ability to communicate in various ways—such as by wireless, by
Bluetooth or on the Internet—inputs and outputs do not even have to be local. With some
additional hardware, you can control devices, programs and so forth from anywhere in the
world.

m Read Chapter 12 to learn about the several modes of operation for GPIO pins. The majority of
the pins can be input, output or one of six special modes.

Status LEDs

The status light-emitting diodes (LEDs) are to the lower left of the GPIO pins. These tiny
babies put out a good deal of light. On the Raspberry Pi 2, they are labelled (from top to bot-
tom) PWR (power) and ACT (activity); PWR lights red and ACT lights green.

Whenever power is present to the board (that is, a micro USB plug provides 5 volts direct
current (VDC) from a USB source or a wall adapter), the PWR light glows red. The ACT LED
indicates that a microSD card is available, and only lights up when the Raspberry Pi accesses
the card.
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The Model B+ has the same arrangement as on the Model B except that the LED status lights
are located on the opposite side of the board, and there are five LEDs:

m ACT (activity, green): Indicates an SD card is plugged in and accessible

m PWR (power, red): Indicates power is present

m FDX (full duplex, green): Indicates a full duplex local area network (LAN) is connected
m LNK (link, flashing green): Indicates activity is happening on the LAN

m 100 (yellow): Indicates a 100-Mbit/s LAN is connected (as opposed to a 10-Mbit
network)

With the Model B+, the last three LEDs functions were moved to the Ethernet jack, with the
FDX and 100 being combined into one LED. So flashing green on the jack shows network
activity on the right LED and either solid green or yellow on the left, showing a 10-Mbits/s
(megabits per second) or 100-Mbits/s network connections, respectively.

All the Raspberry Pi models actually have five status lights; it's just that on the B+ and Raspberry
Pi 2 there are two LEDs (PWR and ACT) on one side of the board, and the network indicators
are on the other side as part of the Ethernet jack.

The status LEDs give you a quick picture of what transpires on your Raspberry Pi board,
especially during the boot-up process. It goes like this:

1. When you plug in the microUSB connector (there’s no on/off switch), the PWR LED
lights red to show that power is present. The PWR LED stays lit so long as power is
flowing to the board.

2. The ACT LED flashes green a couple of times or so, indicating an SD card is present and
readable. After boot-up, this green light flashes whenever SD card access occurs.

3. As the powering-up process continues, the green light on the right of the Ethernet jack
(Model B+ and later) come on if a network is present. The light flashes whenever there
is traffic on the network. The left LED flashes green for a slow network and is solid
yellow if you are connected to a 100Mbit/s network.

So, at a glance, the status LEDs tell us the board has power, the SD card is working and the
network is active.
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USB Receptacles

On the right-hand side of the board are the Raspberry PI 2 Model B’s four USB 2.0 ports, as
shown in Figure 1-6.

Ethernet socket

USB receptacles

FIGURE 1-6: USB 2.0 ports and Ethernet port

The ports appear in the same way on the Model B+ but the older Model B provides only two
USB receptacles.

USB receptacles—or ports, as some people incorrectly call them—allow you to plug in and
run a keyboard, mouse and all sorts of other devices—even big hard drives!

Ethernet Connection

All sorts of Raspberry Pi tasks require a connection to both your local network and the
Internet itself. Upgrading the operating system and the Raspberry Pi's firmware requires
Internet access. Networking is a necessity for downloading and installing programs, web
surfing, using the Raspberry Pi as a media centre to deliver movies to your humungous flat-
screen TV and many more reasons.

Fortunately, you have two ways of achieving network connectivity with the Raspberry Pi.
The first is a wired connection using the Ethernet socket on the lower-right corner (as the
board is oriented in Figure 1-5). Refer to Figure 1-6 to see what this socket looks like.
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The second way of connecting involves the USB receptacles. You can use a wireless USB don-
gle (a dongle being a plug-in device) or a USB-to-Ethernet adapter. If you use the latter
method, you can connect the Raspberry Pi to more than one network. One reason for doing
this would be a typical server setup where the Raspberry Pi connects to both the Internet and
a more secure local network. Using Raspbian, for example, you can turn your Raspberry Pi
into a classic LAMP (standing for Linux, Apache, mySQL, PHP) server. The Raspberry Pi
serves up websites with database back ends and so on, just like on much larger servers using
the same software.

Using a wireless USB dongle comes in handy if you want your Raspberry Pi to be portable.
With an external battery power supply and wireless access, you can carry it anywhere! Or at
least anywhere with wireless access, which is true of more and more places these days.

Audio Out

On the bottom of the board is the 3.5 millimetre (mm) audio input/output jack (see Figure 1-7).
Here you can plug in headphones, a computer sound card, speakers or anything thing else that
takes and plays audio input.

The Model A and Model B did not have this feature but instead had separate connectors for
video and audio.

FIGURE 1-7: The audio output socket
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The plug that goes into the socket on the Raspberry Piboard is a four-pole plug—in this case,
a tip with three rings. However, it also accepts and works with a standard three-pole mini
plug like those often found on headphones and computer speakers.

m Poles are the tip and rings of conductors. Four-pole had a tip and three rings; three-pole a tip
and two rings.

Figure 1-7 shows how the connector appears on the Model B+ and later, and Figure 1-8
shows the connector’s wiring.

Audio left  Ground

Audio right Video

FIGURE 1-8: Connector for audio socket

Another of the Raspberry Pi limitations concerns quality of sound. The audio out from this
connector is 11-bit (for truly good sounding music you'd want 16-bit). The High-Definition
Multimedia Interface (HDMI) connector, which is described later in this chapter, has better
audio but, of course, you have to have an HDMI device (like a big-screen TV) that has good
speakers attached.

No worries, folks—Ilike the limitations in Raspberry Pi power, solutions abound. For exam-
ple, Adafruit sells a USB audio adapter, which works on the Raspberry Pi, for a very low price.
It puts out better sound and allows for microphone input as well. This lets you use the Pias a
voice or music recorder or teach it to work via voice commands. Various computer sound-
boards designed specifically for the Raspberry Pi are also available

Even better, you can obtain high-quality sound using the I°S interface into an external
digital-to-analogue convertor (DAC). Chapter 11, “Audio”, covers all that good stuff.
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Composite Video

Using the same 3.5mm socket described in the last section, old-style composite video is also
available.

When it boots up and finds a composite video device attached, the Raspberry Pi attempts to
select the right resolution. Mostly it gives a usable display but sometimes it gets things wrong.

Having video composite output may seem old school in light of the modern era’s profusion
of HDMI devices hanging off every wall, but it fits in with the design philosophy Raspberry
Pi Foundation co-founder Eben Upton recently described. He said, “It’s a very cheap Linux
PC device in the spirit of the 1980s, a device which turns your TV into a computer; plug in to
TV, plug a mouse and a keyboard in, give it some power and some kind of storage, an operat-
ing system and you've got a PC".

CSI Camera Module Connector

Camera modules for the Raspberry Pi give you 5-megapixel stills and 1080 high-definition
video for about £16. The Camera Serial Interface (CSI) connector shown in Figure 1-9 (located
between the HDMI socket and the 3.5mm audio socket) provides a place to plug the camera
module into the Pi.

HDMI connector CSI connector
FIGURE 1-9: CSI and HDMI connectors

21



22

LEARNING COMPUTER ARCHITECTURE WITH RASPBERRY PI

CSI connects the camera module via a 15-conductor flat flex cable. Getting this cable con-
nected and the camera module working is a bit tricky sometimes. You can find a how-to
video on the Raspberry Pi website at https://www.raspberrypi.org/help/camera-
module-setup/.

However, after the cable sits in the socket properly, the camera works great. You can pro-
gram it to do all sorts of neat stuff, such as take time-lapse photos and motion-triggered
shots or record video footage.

HDMI

There’s nothing as fine as a nice big display showing the colourful graphical user interface
(GUI) of the Raspberry Pi. A display enables you to surf the web, watch videos, play games—
all the stuff you expect a computer to do. The best solution for that involves HDMI.

High-Definition Multimedia Interface (HDMI) allows the transfer of video and audio from
an HDMI-compliant display controller (in our case, the Raspberry Pi) to compatible com-
puter monitors, projectors, digital TVs or digital audio devices.

HDMT’s higher quality provides a marked advantage over composite video (such as what
comes out of the audio socket on the Raspberry Pi board). It's much easier on the eyes and
provides higher resolution instead of composite video’s noisy and sometimes distorted
video.

The HDMI connector on the Raspberry Pi Model B is approximately centred on the lower
edge of the Raspberry Pi board (as we have it positioned in Figure 1-5). See Figure 1-9 for
what it looks like.

Micro USB Power

The micro USB power connector is on the bottom left edge of the Raspberry Pi, as shown in
Figure 1-10.

The micro USB adapter brings power into the Raspberry Piboard. You might know that most
smartphones use this connector type, which means you can find usable cables and wall
adapters all over the place. (This is one example of how the Raspberry Pi Foundation takes
users’ need for inexpensive operation into consideration.)

You can also get a mobile version of a micro USB charging cable with an automotive power
adaptor so you can power your Raspberry Piin a car, using the built-in car power socket.


https://www.raspberrypi.org/help/camera-module-setup/
https://www.raspberrypi.org/help/camera-module-setup/
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FIGURE 1-10: Micro USB connector used for obtaining power

The micro USB cable supplies SVDC to the Raspberry Pi at about 1 ampere (14) of current for
the model B. Some recommendations for the B+ mention 1.5A, but if you're pushing heavy
current through the USB ports (remember, four instead of two on the B+ and later), a 2A
supply is smarter. For the Raspberry Pi 2, get at least a 2.4A supply.

Remember, there’s no switch for turning the Raspberry Pi on and off (another saving to keep
the price down). You just plug and unplug the micro USB connector. Of course, with a bit of
tinkering and soldering, you could add a switch to the power cable easily enough.

Storage Card

Applying power to the Raspberry Pi causes a bit of computer code stored on the board, the
bootloader, to check for the presence of the SD or (in newer Raspberry Pi versions) microSD
card in its slot (see Figure 1-11) and look for code on the card telling it how to start and what
to load into its RAM. If no card is there or that card has no information on it (because it’s
blank or corrupted) the Raspberry Pi does not start. Read more on the boot process in
Chapter 8.

Do notinsert or remove an SD card while the Raspberry Pi has power attached. Doing so has
a very good chance of corrupting the SD card, causing you to lose the data and programs on it.

The usual minimum size recommended for earlier editions of the Raspberry Pi was 8 giga-
bytes (8GB), although the original recommendation was 4GB. However, a number of people
on the Internet report using 32GB cards, and at least one person even boasted of using a
128GB card. It seems, though, that any card larger than 32GB, under Raspbian at least,
requires partitioning (using a software to specially format the SD).

Of course, you can hang just about any size of USB drive from one of the USB receptacles, if
you use an external power supply. A terabyte would be a good start. The SD card is still
needed to boot.
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FIGURE 1-11: The micro SD slot on the bottom side of the Raspberry Pi 2

DSI Display Connection

Just right of the SD card slot but on top of the board is the Display Serial Interface (DSI)
display connector. The DSI connector’s design accommodates a flat 15-conductor cable that
drives liquid crystal display (LCD) screens. Figure 1-12 shows the connector.

FIGURE 1-12: DSI display connection
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Mounting Holes

It might seem minor, but the Model B+ and later models have four mounting holes—those
reinforced holes in the board. The Model B only has two. Mounting holes come in handy
when you want to secure the Raspberry Pi inside a box or case with other devices.

When you add four standoff insulators, you can use these insulted holes for fastening the
board with screws to the standoffs to have a nice, safe installation.

The Chips

There are two large chips situated roughly on the centre of the left of the board (when the
board is oriented with the GPIO pins at the top left; see Figure 1-13). The larger one shown is
the Broadcom BCM2835 or BCM2836 on the Raspberry Pi 2 or BCM2037 on the Raspberry
Pi 3. The other chip provides the Ethernet protocols for networking. You'll find more infor-
mation about the what these systems-on-a-chip do in Chapter 12.
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FIGURE 1-13: The SoC and USB/Ethernet chips

The Future

From its inception, the guiding principle of the Raspberry Pi was to enable and revolutionise
the teaching of computer science by providing affordable, accessible hardware. It is certainly
achieving this goal successfully through the widespread adoption of the Raspberry Pi as a
teaching tool in schools worldwide.

The inspiration and excitement young people find, the lessons they learn and the experi-
ments and projects they complete are significant. We are seeing the birth of a new generation
of computer experts.
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Something else has also happened. Those of us from prior generations—sometimes called
“adults” and sometimes not—discovered the Raspberry Pi. Millions of us enthusiastically
explore its incredible power and build various projects using its control functions. We, too,
are learning things from this tiny computer, which takes the term “microcomputer” to a
much smaller scale than those now-huge old desktops. Consequently, we are setting an
example for our children. If adults can have so much fun with the Raspberry Pi, younger
people realise they can as well, and so they do.

So the Raspberry Pinot only inspires the younger, student generation; it makes older genera-
tions better and more computer literate. That’s quite a gift.

What happens next? The next great movement, already in progress, is the Internet of Things.
Using the Raspberry Pi, your refrigerator, your car—just about every device you can think
of—can become wireless and be controlled by small, easily embedded computerised con-
trols. More and more people will continue to adopt and adapt the means of making this
automation a reality. With every new release, demand grows for the Raspberry Pi and the
things it can do.

In the next few years, computer architecture will continue to shrink while it grows more
capable. We yearn for a thumb drive-sized device that has a 24-core CPU running at 15GHz
with 10GB of fast memory and a terabyte solid state drive, all on an SoC.

We anticipate that such a device will sport a purple Raspberry logo. It won'’t be long now.
The future rushes toward us.



Chapter
Recapping Computing

NOTE: YOU MAY already know the material in this chapter. Anyone who'’s taken any coursework
in computing, or played around with computers and programming on their own, has at least a mod-
est grasp of what we present here. This chapter is a broad and very high-level overview of what
computers do and what parts of the computer are used to do it. You'll know within a few pages
whether it’s useful for you or not. If it isn't, feel free to skip directly to Chapter 3.

Although we created computers to do calculations, computers are not calculators. We've had
calculators for a very long time. The abacus is known to have been used by the Persians as
early as 600 BCE, and it was probably in use earlier than that. The precursor to the slide rule,
called “Napier's Bones”, was invented by John Napier in 1617. The very first mechanical
calculator, the Pascaline, was invented by Blaise Pascal in 1642—when he was only 19!
Better and more elaborate mechanical calculators were devised over the years until very
recently, when digital calculators shoved mechanical and analogue calculators onto history’s
high shelf.

Charles Babbage is usually credited with the idea of programmability in calculation. He was
too poor and his “analytical engine” too complex for him to construct it in 1837, but his son
built and demonstrated a more modest version of the machine in 1888. However, it wasn’t
until the 1930s that the ideas underlying modern computing began to be understood fully.
Alan Turing laid the theoretical groundwork for fully programmable computers in 1936. In
1941, Konrad Zuse built a programmable electromechanical computer, called the Z3 machine,
that understood binary encoding and floating point numbers. Zuse’s machine was later
proven to be “Turing complete”—that is, capable of implementing Turing’s principles of
general-purpose computing.

Zuse’s Z3 had been created to perform statistical analysis of the German air force’s wing
designs. World War II accelerated the development of digital computers on many fronts,
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driven first by the need to calculate artillery trajectories, and later to handle the complex
mathematics used by the developers of the nuclear bomb. By 1944, the Colossus computers
at Bletchley Park were in daily service aiding the cryptanalysis of German, Italian and
Japanese wartime ciphers.

Not all calculation is done in a single step, as are basic arithmetic operations like addition
and multiplication. Some calculation requires iterative operations that run in sequence until
some limiting condition is reached. There are calculations so complex that the calculator
must inspect its own operations and results as it goes along, to determine whether it has
completed its job or must repeat some tasks or take up new ones. This is where programma-
bility comes in, and where a calculator takes the fateful step away from calculation into true
computing.

It’s this simple: computers are not calculators. Computers follow recipes.

The Cook as Computer

In some respects, we've been computing since long before we were calculating. Homo sapi-
ens broke away from the rest of the primate pack through the ability to pass along knowledge
verbally from one generation to the next. Much of this transmitted knowledge was “how-to”
in nature, such as how to shape an axe head from a piece of stone. Following step-by-step
instructions is now such a pervasive part of life that, most of the time, we don’t even realize
we're doing it. Watch yourself work the next time you cook anything more complex than a
toasted cheese sandwich. You're not just cooking. You're computing.

Ingredients as Data
All recipes begin with a list of ingredients. The list is very specific, in terms of both the ingre-

dients and their quantities: For example, the ingredients for carré d'agneau dordonnaise are:
2 racks of lamb

% cup shelled walnuts

1 small onion

1 3 0z can of liver paté

% cup bread crumbs

2 tablespoons parsley
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1 tsp salt

2 tbsp lemon juice

% tsp finely ground black pepper

The goal in cooking is to combine and process these ingredients to make something that
doesn’t already exist in your refrigerator. In computing, there are also ingredients: text,
numbers, images, symbols, photos, videos and so on. A computer program can take these

ingredients and combine and process them into something new: a PDF document, a web
page, an e-book or a PowerPoint presentation.

Recipes are step-by-step instructions for going from the ingredients to carré d'agneau dordon-
naise. Some recipes may be absurdly simple, but most are very explicit and usually done in a
specified order:

1. Remove the bones from both racks.

2. Trim the fat off the meat.

3. Finely chop the walnuts.
4. Grate the onion.
5. Stir the liver paté until smooth.

6. Beat the walnuts and onion into the paté.
7. Mix the breadcrumbs and parsley together.
8

Season the stuffing mix with salt, lemon juice and pepper.

...and so on. Granted, you could grate the onion before you chopped the walnuts; in many
cases order doesn't matter. However, it does matter sometimes—you can’t beat the chopped
walnuts into the paté before you've chopped the walnuts.

Just like recipes, computer programs are sequences of steps that start at the beginning, do
something with the data and then pause or stop after all the steps have been performed. You
can see simple programs called scripts running in a terminal window on the Raspberry Pi as
they do exactly that: they start, they run and they stop when their job is completed. You can
see each step in the “recipe” scroll by as it is performed.

With more complex programs, like word processors, the recipe isn't as linear and the steps
aren’t reported onscreen. A word processor is a little like a cook in a café. At the counter you
ask for a lunch special, the cook nods and then disappears into the heart of the kitchen to put
your meal together. When it’s done, the cook hands the lunch special over the counter to you
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through the window and waits for another order. When you're not typing or selecting com-
mands from the menu, a word processor is like the cook waiting at the counter. When you
type a character, the word processor takes the character and integrates it with the current
document, then waits for another. Regardless of whether you can see the steps happen, each
time you type a character, a whole long list of things happen in order, for example, to display

« »

the letter “y” at the end of the word “Raspberry”.

Basic Actions

In both recipes and computer programs, individual steps may contain lists of other steps.
The step of grating the onion, for example, is performed in several, smaller steps: first you
have to grab the onion in one hand, then pick up the grater with the other hand, and then
rub the onion against the face of the grater while allowing the grated onion to fall into
a bowl.

In recipes, these internal steps are not called out every time. Most people who have done
some cooking know how to grate an onion, and providing detailed directions for grating an
onion is unnecessary. However, you follow steps when you grate an onion, whether the steps
are spelled out explicitly in the recipe or not. This can happen only because you, the cook,
already knew how to grate an onion.

That’s an important point. Cooks use a large number of specific, named actions to complete
a recipe. Expert cooks know them all and they can use them without explanation: peel, grate,
mix, fold, zest, chop, dice, sift, skim, simmer, bake and so on. Some of these actions are com-
moner than others, while some—like acidulate—are used so rarely that recipes typically do
spell them out in simpler terms, in this case, “Add vinegar or lemon juice to make the sauce
more acidic”.

Computers, like cooks, understand a moderate list of fairly simple actions. These simple
actions are combined into larger and more complex actions, which in turn are combined into
complete operational programs. The simple, basic steps that a computer understands are
called machine instructions. Machine instructions can be combined into more complex actions
called subprograms, functions or procedures. Here’s an example of a machine instruction:

MOV PlaceB, PlaceA
The MOV instruction moves a single piece of data from one place to another place inside the
computer. Machine instructions may be combined into functions that do a great deal more.

Here, for example, is a function:

capitalize (streetname)
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The capitalize () function does what you probably expect: the name of a street is a short
string of text characters, which the previous statement in the program placed in a named
data item called streetname. The function capitalizes the words within the street name
according to standard rules for capitalization. This is how a computer turns the text “garden
of the gods road” into “Garden of the Gods Road.” Inside the capitalize () function may
be dozens or hundreds of machine instructions, just as in a cooking task the instruction to
“reduce” involves a fair bit of fussy adding, simmering, stirring and testing.

The Box That Follows a Plan

That's about as far as we can take the recipe metaphor, and perhaps a little further than we
should. Computers are indeed a little like cooks following recipes. Cooks also improvise, try
weird things and sometimes make a mess. Computers don’t improvise unless we tell them
to, and when they make a mess it’s because we have made some kind of mistake, not them.
A metaphor that is closer to reality is author Ted Nelson’s description of a computer as “a box
that follows a plan”. A computer is a box, and inside the box are the plan, the machinery that
follows the plan and the data upon which the plan acts.

Doing and Knowing

One more metaphor and we'll let it rest: programs are what a computer does and data are
what a computer knows. (This description is credited to computer author Tom Swan.) The
part that “does” is called the central processing unit (CPU). The part that “knows” is called
memory. This “knowing” is done by encoding numbers, characters and logical states using the
binary numeric notation discovered by Gottfried Leibniz in 1679. It wasn’t until 1937 that
Claude Shannon systematized the use of binary numbers into the maths and logic that com-
puters use to this day. A bit is a binary digit, an irreducible atom of meaning that expresses
either 1 or 0. As we explain a little later, bits are represented in computers by on/off electrical
states.

Today, both the CPU and memory are made out of large numbers of transistors etched onto
silicon chips. (A transistor is simply an electrical switch made out of exotic metals called
semiconductors.) This wasn’t always the case; before silicon chips, computers were built out
of individual transistors and even vacuum tubes. (Zuse’s seminal Z3 machine used electro-
mechanical relays.)

Whatever they were made of, early computers followed the general plan shown in Figure 2-1.
A central control console monitored several different subsystems, each of which was gener-
ally in its own cabinet or cabinets. There was the CPU, a punched tape or magnetic tape stor-
age unit and two different memory units. One of the memory units held a series of machine
instructions that comprised a computer program. The other memory unit held the data that
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