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1

Introduction

The field of image registration came to being even before the advent of digital
media. Dressler, in a US patent in 1956 [1], disclosed an electronic image com-
parison device that could register images recorded on films. By providing the
mechanism to translate and rotate one film over the other and by projecting the
images to a subtraction device using a half mirror and a full mirror, he provided
the means to register and compare images. Circuitry was provided to produce
an output at any given time with its amplitude proportional to the degree of
match between the images. While observing the amplitude of the output, the
user was enabled to interactively register the images.
The first work in digital image registration goes as far back as 1963 in the

Ph.D. dissertation of Lawrence Roberts atMIT [2]. By aligning a 2-D projection
of a 3-D polyhedral scene to edges of known polyhedral objects, he was able to
identify polyhedral objects in the scene via image registration.
Image registration as we know it today came to being by the groundbreaking

work of Anuta [3]. Anuta developed an automatedmethod for spatially aligning
remote sensing images by the fast Fourier transform.
Image registration is the process of spatially aligning two images of a scene.

The alignment process determines the correspondence between points in the
images. If the images are taken by the same sensor but at different times, the
correspondence process makes it possible to detect changes in the scene occur-
ring between the times the images are obtained [4]. If the images are obtained
by different sensors, the correspondence process makes it possible to combine
information in the images, creating a richer source of information about the
underlying scene [5, 6].
By registering frames in a video captured by a moving camera, it becomes

possible to distinguish image differences caused by camera motion from
image differences caused by object motion, making it possible to track moving

Theory and Applications of Image Registration, First Edition. Arthur Ardeshir Goshtasby.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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objects in the video [7]. If the images represent different views of a scene, the
correspondence process makes it possible to determine the geometry of the
scene [8].
This monograph covers the fundamentals of digital image registration. Only

feature-based image registration methods are covered. Although a variety of
optimization-based methods have been developed that use image intensities
to register images, such methods are often very time consuming and are influ-
enced by image noise. Feature-based methods are more resistant to noise and
are computationally very efficient.
Image registration methods that use feature points and feature lines will be

covered. Feature points identify locally unique neighborhoods in an image,
facilitating the correspondence process. In addition to its location, a feature
point may have various feature values, characterizing the neighborhood of the
point. Feature points have been referred to as control points, point landmarks,
key points, corners, centroids, and tie points in the literature.
A feature line at theminimumhas a position and an orientation.The position

of a line is the point on the line closest to the origin. The orientation of a line is
the angle the normal to the linemakes with the x-axis.These are the parameters
used to define a line in polar form. In addition to the position and orientation
of a line, the midpoint, length, endpoints, intensities, and gradients along the
line can be used as features to describe the line.
The process of spatially aligning two images involves resampling one image

to the geometry of the other. The image that is kept unchanged is called the
reference image and the image that is resampled to the geometry of the reference
image is called the test image. Reference image has also been called source image
in the literature, and test image has also been called target image and sensed
image in the literature.
An example of image registration is given in Fig. 1.1. Reference image (a) is

a Landsat Multispectral Scanner (MSS) image of Kalkaska County, Michigan,

(a) (b) (c)

Figure 1.1 (a) A Landsat MSS image and (b) a Landsat TM image of Kalkaska County,
Michigan. (c) The TM image is geometrically transformed to spatially align the MSS image.
These images are courtesy of the USGS.
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and test image (b) is a LandsatThematic Mapper (TM) image of the same area.
These images are courtesy of the US Geological Survey (USGS).The registered
image (c) is obtained by geometrically transforming the TM image to spatially
align theMSS image. By registering the images, it is possible to fuse information
in the images or quantify differences between the images.
In this monograph, coordinates of points in the reference image will be

denoted by (x, y), while coordinates of the corresponding points in the test
image will be denoted by (X,Y ). Image registration involves finding the rela-
tion between (x, y) and (X,Y ). This relation is called a transformation model.
A transformation model for registering 2-D images has two components,
denoted by fx and fy:

X = fx(x, y), (1.1)
Y = fy(x, y). (1.2)

Functions fx and fy represent the x- and the y-components of the transforma-
tion. For each point (x, y) in the reference image, fx and fy determine the coor-
dinates of the corresponding point (X,Y ) in the test image.Therefore, once the
components of a transformation model are determined, by scanning the refer-
ence image, for each pixel (x, y) there, the location (X,Y ) of the same pixel in the
test image is determined. Then, the intensity at (X,Y ) in the test image is read
and saved at (x, y) in a new image called the resampled image. The resampled
image, therefore, has the geometry of the reference image and the intensities of
the test image.
Note that functions fx and fy map pixels in the reference image to the corre-

sponding pixels in the test image.This mapping in effect finds intensities in the
test image corresponding to the pixels in the reference image. For integer pixel
coordinates (x, y) in the reference image, fx and fy produce floating-point coor-
dinates (X,Y ) in the test image.The integers closest to X and Y are taken as the
coordinates of the pixel in the test image corresponding to pixel (x, y). Alter-
natively, the intensity at location (X,Y ) in the test image is estimated from the
intensities of pixels surrounding (X,Y ) by bilinear interpolation or cubic con-
volution [9].

1.1 Organization of the Book

This monograph provides theoretical basis and implementation details of
methods for finding feature points/feature lines in images, establishing
correspondence between the feature points/feature lines, and using the
correspondences to compute the parameters of a transformation model to
register the images.

Chapter 2 describes a method for determining the orientation of an image.
An image containing a nonsymmetric pattern has a preferred orientation.
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By determining the orientations of two images and by bringing the images to
the same orientation, steps in image registration are simplified.

Chapter 3 discusses methods for identifying locally unique neighborhoods
in an image. Centers of locally unique neighborhoods are taken as feature
points. Rotation-variant and rotation-invariant methods are described.
Rotation-variant methods are suitable for registering images that have the
same orientation, and rotation-invariant methods are suitable for registering
images that have different orientations.

Chapter 4 covers various line detection methods. Hough transform–based
methods find lines among unorganized points, edge-based and curve-
based methods find lines among edge contours, and region subdivision-based
methods find lines among raw image intensities. Region subdivision-based
methods by subdividing an image into regions of similar gradient directions
and by fitting a line to each region detect lines.

Chapter 5 discusses the point correspondence problem. Given two sets of
points, the problem of finding correspondence between points in the two sets
is addressed. Corresponding points are also referred to as homologous points.
First, clustering methods that use information about the locations of the points
to find homologous points are described. Then, methods that use various
information in addition to point locations to find homologous points are
described. Finally, methods that determine homologous points in images by
template matching are described. Geometric constraints and robust estimators
that remove outliers from obtained correspondences are also discussed.
The problem of line correspondence is covered in Chapter 6. First, formu-

lations that relate the parameters of homologous lines in two images to the
parameters of a transformation model registering the images are derived.
Then,methods that determine homologous lines in images by line grouping are
discussed.

Chapter 7 covers topics relating to nonrigid image registration. Given a set of
homologous points in two images of a scene, the problem of finding the param-
eters of an elastic transformation model to transform the geometry of the test
image to the geometry of the reference image is discussed. Various elastic trans-
formation models suitable for nonrigid image registration are described.
While Chapters 2–7 cover methods for the registration of projective images,

Chapter 8 covers methods for the registration of tomographic images. A tomo-
graphic image sequence represents a stack of cross-sectional images captured
of a 3-D object. In this chapter, after discussing a method for converting a
tomographic image sequence into an isotropic volume, methods for rigid and
nonrigid registration of isotropic volumes are discussed.
In Chapter 9, methods for validating the accuracy of an image registration

software are discussed. Specifically, methods that use a gold standard or sim-
ulation data to determine the accuracy of an image registration software are
discussed. A number of methods that measure registration accuracy in the
absence of simulation data or a gold standard are also discussed.
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In Chapter 10, registration of video images to create panoramas, including
stereo panoramas, is discussed. Registration under different camera motions,
including pure rotation, pure translation, and general motion, are discussed.
The structure of a camera setup to create panoramas in real timewith aminimal
computational requirement is also described.

Chapter 11 discusses registration of multitemporal images. It is found that
feature lines remain more stable than feature points in images of scenes going
through natural disasters. Lines representing roads, bridges, and edges of
building are hardly affected by storms, flooding, and earthquakes. Fusion of
registered images to detect scene changes in multitemporal images is also
discussed.
In Chapter 12, open problems and research topics in image registration are

mentioned. These include rotation-invariant similarity and distance measures
for registration ofmultimodality images, rotation-invariant descriptors for reg-
istration of multimodality images, and the relation between parameters of a
nonrigid transformationmodel and parameters of homologous lines in images.
The majority of algorithms discussed in this monograph have been

implemented and the software packages producing the results reported
in this monograph are made available to the readers as learning tools.
The software packages may be downloaded from http://www.imgfsr.com/
WileyRegistrationBook.html. Appendix A is meant to serve as a user’s guide to
the software packages.

1.2 Further Reading

Image registration has been an active area of research in image processing
and computer vision since early 1970s. Papers on image registration regularly
appear in IEEE Transactions on Pattern Analysis and Machine Intelligence,
IEEE Transactions on Image Processing, IEEE Transactions on Geoscience and
Remote Sensing, IEEE Transactions on Medical Imaging, Medical Image Anal-
ysis, International Journal of Computer Vision, Image and Vision Computing,
Pattern Recognition, Pattern Recognition Letters, and Computer Vision and
Image Understanding journals.
Surveys of image registration methods [10–18], special issues [19–22], and

books on the subject [9, 23–28] also appear in the literature.
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2

Image Orientation Detection

2.1 Introduction

Images that are in different orientations are the most difficult to register.
Just as we can recognize objects in their upright poses more easily than in
upside-down or rotated poses, computer algorithms can more easily locate
patches in one image in another if the images are not rotated with respect to
each other. To simplify the correspondence process, images have to be brought
to the same orientation.
Unless an image contains a perfectly symmetric pattern, it will have a pre-

ferred orientation. Images of natural scenes often possess this property. If the
preferred orientation of each image can be reliably determined, the images can
be brought to the same orientation, simplifying the correspondence process.
In the remainder of this chapter, preferred orientation will be referred to as
orientation.
The orientation of an image depends on the geometric layout of the pattern

within the image. If the images to be registered do not have a sufficient overlap,
they may have different orientations. Images of a scene captured by different
sensorsmay also have different orientations because the same scene can appear
differently in the images. However, when the images are from the same sensor
and there is significant overlap between the images, by knowing the orienta-
tions of the images, it should be possible to bring both images to the same
orientation.
An image’s (global) orientation is calculated from the aggregate of its local

orientations, and a local orientation is determined from intensity gradients or
geometric gradients in a small neighborhood. Since orientation is a geometric
property, we will see that geometric gradients provide a more reliable means of
estimating it than intensity gradients.
Radiometric and geometric noise can influence estimation of an image’s ori-

entation. Radiometric noise is usually zero-mean and can be reduced by image

Theory and Applications of Image Registration, First Edition. Arthur Ardeshir Goshtasby.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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smoothing. However, geometric noise is not zero-mean, and if not removed, it
can adversely influence estimation of an image’s orientation.
To compare image orientations computed from intensity gradients and geo-

metric gradients, consider the noise-free image in Fig. 2.1a.The image contains
a solid circlewith its radius taken in such away that therewould be 360 pixels on
the boundary of the circle. Ideally, pixels along the boundary of the circle should
produce uniform gradient directions between 0∘ and 359∘. The histogram of
intensity gradient directions of pixels with nonzero gradient magnitudes are
shown in Fig. 2.1c in red. While there are many pixels with gradient direc-
tions that are a multiple of 45∘, there are not any pixels at many other gradient
directions.
Denoting the intensity at pixel (x, y) in image I by I(x, y), intensity gradi-

ent in x-direction will be Ix(x, y) = I(x + 1, y) − I(x, y), intensity gradient in
y-direction will be Iy(x, y) = I(x, y + 1) − I(x, y), intensity gradient magnitude
GM(x, y) will be

GM(x, y) =
√

I2x (x, y) + I2y (x, y) (2.1)

and intensity gradient direction 𝜃(x, y) will be

𝜃(x, y) = arctan
( Iy(x, y)

Ix(x, y)

)
. (2.2)

By smoothing the image in Fig. 2.1a with a Gaussian filter of standard devi-
ation 3 pixels and calculating the gradient directions at pixels with gradient
magnitudes greater than 0.5, the blue histogramof Fig. 2.1c is obtained. A larger
number of pixels belong to the blue histogram compared to the red histogram.
Although there are no longer strong preferences toward 45∘, 135∘, 225∘, and
315∘ orientations, there are still strong preferences toward orientations that
are a multiple of 90∘.
By increasing the radius of the circle by a factor of 2 so that there will be

720 pixels along the boundary of the circle as shown in Fig. 2.1b, the gradient
direction histograms shown in Fig. 2.1d are obtained when using the original
image (red) and the image after smoothing with a Gaussian filter of standard
deviation 3 pixels (blue). The preference of gradient directions toward angles
that are a multiple of 90∘ remains, making global orientation detection from
the aggregate of local intensity gradient directions unreliable, even in the
absence of radiometric noise. Local orientations determined by intensity
gradients are biased toward the horizontal and vertical arrangement of pixels
in an image—something that cannot be avoided irrespective of the level of
intensity smoothing applied to the image.
A second example demonstrating the unreliable nature of intensity gradients

in the estimation of an image’s orientation is given in Fig. 2.2. The major axis
of the ellipse in Fig. 2.2a makes a 30∘ angle with the horizontal axis. Therefore,
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Figure 2.1 (a and b) Solid circles with perimeters 360 and 720 pixels, respectively. The intensity of pixels within the circles is 200, while the
intensity of pixels outside the circles is 100. (c and d) Intensity gradient direction histograms of images (a) and (b), respectively, before smoothing
(red) and after smoothing with a Gaussian of standard deviation 3 pixels (blue).
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Figure 2.2 (a) A solid ellipse with its major axis making a 30∘ angle with the x-axis.
(b) Intensity gradient direction histograms of image (a) before smoothing (red) and after
smoothing with a Gaussian of standard deviation 3 pixels (blue).

the preferred orientation of the image is clearly 30∘ or 210∘. Nonetheless, when
local orientations are calculated using intensity gradients, the histograms
shown in Fig. 2.2b are obtained when using the image as is (red) and the image
after smoothing with a Gaussian of standard deviation 3 pixels (blue). Before
smoothing, strong preferences are observed toward angles that are a multiple
of 45∘. After smoothing, the preferences are not as strong but are still there.
Considering that the intensity gradient direction at a boundary pixel is normal
to the boundary contour, the peak intensity gradient direction in this image
should be 120∘ or 300∘.
The circle and the ellipse images in these examples are free of radiometric

noise.When an image of a scene is captured, radiometric and geometric noises
are both present. Radiometric noise is primarily sensor noise, and geometric
noise is the displacement of scene points from their true positions after being
projected to the discrete image space. Radiometric noise can be reduced by
image smoothing; however, geometric noise will not disappear with intensity
smoothing and will be present as long as the created image has discrete pixel
coordinates.
To reliably determine the orientation of an image, two problems must be

solved. First, the image should be converted into a form that is independent
of absolute intensities and so insensitive to changes in scene lighting. Second,
the digital domain of an image should be taken to a continuous one to
remove/reduce geometric noise. To achieve this, the concepts of geometric
gradient and geometric smoothing are introduced.
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2.2 Geometric Gradient and Geometric Smoothing

To reduce the effect of sensor noise, an image is smoothed, and to make an
image insensitive to changes in scene lighting, image edges rather than image
intensities are used. Image edges can be detected by (1) the Canny edge detec-
tor [1], (2) zero-crossings of the second derivative intensities [2] followed by
the removal of phantom edges [3, 4], (3) functional approximation [5], and (4)
one-crossings of intensity ratios [6]. Edges obtained by these methods detect
similar structures. Although Canny edge detector will be used below, other
edge detectors may be used in the same manner. Canny edges represent pix-
els in an image where intensity gradient magnitude in the gradient direction
becomes locally maximum. Canny edges appear in open and closed contours;
they do not appear in structures with branches.
Edges are influenced by the horizontal and vertical arrangement of pixels in

an image. To reduce this dependency, the digital domain should be converted
into a continuous one by approximating each edge contour by a continuous
parametric curve.
Given a sequence of pixels along an edge contour,

P = {pi = (xi, yi) ∶ i = 0,… , n − 1}, (2.3)

the parametric curve approximating the contour takes the form

p(u) = [x(u), y(u)], (2.4)

where x(u) and y(u) are the components of the curve, defined in terms of the
same parameter u. For the curve to approximate the contour, it is required that

x(ui) ≈ xi,

y(ui) ≈ yi,
for i = 0,… , n − 1. (2.5)

In the following, the rational Gaussian (RaG) curve formulation [7] is used
for its ability to approximate a curve of a desired smoothness to a sequence of
points.TheRaGcurve approximating the sequence of edge pixels inP is defined
by

p(u) =
n−1∑
i=0

pigi(u), u ∈ [0, n − 1], (2.6)

where

gi(u) =
Gi(u)∑n−1

j=0 Gj(u)
, i = 0,… , n − 1 (2.7)

are the basis functions of the curve, and

Gi(u) = exp
{
−
(u − ui)2

2𝜎2

}
(2.8)
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is a Gaussian of height 1 and standard deviation 𝜎 centered at parameter
ui. Parameters {ui ∶ i = 0,… , n − 1} are the nodes of the curve. These are
the parameters at which the curve approximates the individual pixels along
the edge contour. 𝜎 is the smoothness parameter. By increasing it, the curve
becomes smoother, and by decreasing it, the curve reproduces more details
along the contour.
The equations above are used for an open curve. For a closed curve, Eq. (2.8)

is replaced with

Gi(u) =
j=∞∑

j=−∞
exp

{
−
[u − (ui + jn)]2

2𝜎2

}
. (2.9)

Since a Gaussian vanishes exponentially from its center point, instead of ∞ in
Eq. (2.9), a small number such as 1 or 2 is sufficient. The addition of jn to ui or
subtraction of jn from ui ensures that at the point where the curve closes, the
Gaussians centered at the nodes corresponding to the contour pixels extend
over the closing point, producing a continuous and smooth curve everywhere.
Examples of curve fitting in thismanner are given in Fig. 2.3.TheCanny edges

of the circle in Fig. 2.1a and the ellipse in Fig. 2.2a obtained with a Gaussian
smoother of 𝜎 = 3 pixels are shown in Fig. 2.3a and b, respectively. The RaG
curves approximating the contours are drawn in red over the edge contours.
As 𝜎 is increased, the approximating curve smoothes more details along the

edge contour, and as 𝜎 is decreased, the curve follows the edge contour more
closely, reproducing the details. In the following, the 𝜎 used in curve fitting
is set to 3 pixels or higher. A 𝜎 lower than 3 pixels will reproduce geomet-
ric noise by closely following pixels along the contour and, therefore, is not
recommended.

(a) (b)

Figure 2.3 (a and b) RaG curves (shown in red) approximating the boundary contours of the
solid circle in Fig. 2.1a and the solid ellipse in Fig. 2.2a obtained by the Canny edge detector
when using a Gaussian smoother of standard deviation 3 pixels.
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2.2.1 Calculating Geometric Gradients

The tangent direction 𝜃 at a curve point with parameter u is defined by

𝜃(u) = arctan
(

dy(u)
dx(u)

)
(2.10)

or

𝜃(u) = arctan
(

dy(u)∕du
dx(u)∕du

)
. (2.11)

Since
dx(u)

du
= x(u + 𝛿u) − x(u)

𝛿u
||||𝛿u→0

, (2.12)

to estimate dx(u)∕du, x(u) is computed at two very close values of u and their
difference is divided by the difference in their u values. That is,

dx(u)
du

= x(u + 𝛿u) − x(u − 𝛿u)
2𝛿u

. (2.13)

Similarly,

dy(u)
du

=
y(u + 𝛿u) − y(u − 𝛿u)

2𝛿u
. (2.14)

𝛿u is a very small increment, such as 0.01. With such a small increment in u,
the difference between the actual and estimated tangent directions will be neg-
ligible considering that 𝜃 will be quantized to create the histogram of tangent
directions. All tangent directions are changed between 0 and 𝜋 so that indepen-
dent of the direction a contour is traced, the same tangent direction is obtained
at a point. The tangent direction 𝜃(ui) at point p(ui) on the curve approximat-
ing contour P is considered the geometric gradient direction at pixel pi on the
contour.
By computing geometric gradient directions along the RaG curve that

approximates the circular edge contour in Fig. 2.3a at uniform increments
du = 0.01 and creating the histogram of the geometric gradient directions,
the histogram depicted in red in Fig. 2.4 is obtained. The histogram is almost
flat, showing no significant preferred orientation. Due to large linear segments
along the contour with angles that are a multiple of 45∘, small bumps are
observed at those angles. The bumps will get smaller by increasing the
smoothness parameter 𝜎 in curve fitting. The histogram of geometric gradient
directions for the curve that approximates the elliptic edge contour in Fig. 2.3b
is depicted in blue in Fig. 2.4. The peak orientation at 30∘ is obvious.
To determine the curvature value at a curve point, first, d2x(u)∕du2 and

d2y(u)∕du2 are estimated from changes in dx(u) and dy(u) over a small change
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Figure 2.4 The red and blue plots show histograms of tangent directions along curves in
Fig. 2.3a and b, respectively.

in u, that is,
d2x(u)

du2 = dx(u + 𝛿u) − dx(u − 𝛿u)
2𝛿u

, (2.15)

d2y(u)
du2 =

dy(u + 𝛿u) − dy(u − 𝛿u)
2𝛿u

, (2.16)

for 𝛿u = 0.01. Note that the difference between the parameters of curve points
corresponding to adjacent pixels along a contour is 1. That is, ui+1 − ui = 1 for
i = 0,… , n − 2.
Denoting dx(u)∕du, dy(u)∕du, d2x(u)∕du2, and d2y(u)∕du2 by x′

, y′, x′′, and
y′′, respectively, the magnitude curvature at the point with parameter u on the
curve can be computed from [8]:

𝜅 =
|x′y′′ − y′x′′|
(x′2 + y′2)3∕2

. (2.17)

Since curvature is independent of the coordinate system of the curve or the
edge contour it is approximating, it produces the same value at a curve point
independent of the location and the orientation of the edge contour in an image.
Examples of image orientation detection by geometric gradients using real

images are given in Fig. 2.5. Figure 2.5a shows a Martian rock, and (b) shows
its Canny edges. The peak geometric gradient direction of RaG curves with
smoothness parameter 𝜎 = 3 pixels fitting the edge contours is found to be 18∘,
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(a) (b)

(c) (d)

Figure 2.5 (a and c) Images of the same Martian rock with a known rotational difference of
30∘. These images are courtesy of NASA. (b and d) Canny edges of images (a) and (c),
respectively, obtained when using a Gaussian smoother of standard deviation 3 pixels.
Image orientations determined from geometric gradients and intensity gradients are shown
with yellow and purple lines, respectively.

shown by the yellow line in Fig. 2.5b. The peak intensity gradient direction for
Fig. 2.5a after smoothing with a Gaussian filter of standard deviation 3 pixels is
found to be 90∘. Since the intensity gradient direction at a pixel along an edge
contour is normal to the edge contour, the image orientation obtained by inten-
sity gradient directions will be 0∘, as depicted in Fig. 2.5b by the purple line. In
order to compare image orientations determined by geometric gradients and
intensity gradients, in all examples given in this chapter, the direction normal
to the intensity gradient direction at a pixel is used as the intensity gradient
direction there.
Figure 2.5a represents a small window of a much larger image. By rotating

the image by 30∘ clockwise and taking a window of the same size from the
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same area, the image in Fig. 2.5c is obtained. Canny edges of this image are
shown in Fig. 2.5d. The peak geometric gradient direction is found to be 169∘,
shown by the yellow line in this image. The peak intensity gradient direction is
found to be 90∘ with the direction normal to it being 0∘, shown by the purple
line in Fig. 2.5d. The difference in orientations of the yellow lines in images
(b) and (d) is 18∘ − 169∘ = −151∘ ≡ 29∘, because no distinction is made
between 𝜃 and 𝜃 ± 𝜋. The true rotational difference between the images is
30∘. The rotational difference between the images estimated by geometric
gradients is off by only 1∘.
Figure 2.6a and b shows the RaG curves approximating the edge contours in

Fig. 2.5b and d, respectively. Curve points drawn with brighter red are points
with higher curvatures. When calculating the histogram of geometric gradi-
ent directions, instead of incrementing the histogram bin representing direc-
tion 𝜃 by 1, the bin is incremented by 1 − 𝜅, where 𝜅 is the curvature at the
point, after normalizing all curvatures to values between 0 and 1. The pro-
cess assigns higher values to curve points with lower curvatures, emphasiz-
ing straight segments over curved ones. The histograms of geometric gradient
directions obtained in thismanner for Fig. 2.6a and b are shown in red and blue,
respectively, in (c).
In the following experiments, the standard deviation of the Gaussian

smoother in the Canny edge detector is set to 3 pixels and the smoothness
parameter of RaG curves approximating the edge contours is set to 5 pixels.
Also, the tangent direction at a curve point is weighted by w = 1 − 𝜅, with 𝜅

being the curvature value at a curve point after normalizing all curvatures to
values between 0 and 1.

2.3 Comparison of Geometric Gradients and Intensity
Gradients

To compare the sensitivities of geometric gradients and intensity gradients to
variations in intensities and geometry of an image, the intensities and geometry
of an image are varied and the stabilities of image orientations determined by
the two methods are compared.
Figure 2.7a depicts a Martian scene. This image is courtesy of NASA. The

image does not have a strong orientation, but it contains a unique pattern;
therefore, it must have a unique orientation. Figure 2.7b shows the image after
smoothing with a Gaussian of standard deviation of 2 pixels. The image after
addition of Gaussian noise of standard deviation 20 is shown in Fig. 2.7c. If by
this addition intensity became less than 0, it was set to 0, and if it became greater
than 255, it was set to 255. The image in Fig. 2.7d is obtained by transforming
the intensities in Fig. 2.7a by the following nonlinear function:

O(x, y) = I(x, y) + 50 sin(4𝜋y∕nr) cos(4𝜋x∕nc). (2.18)
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Figure 2.6 (a and b) RaG curves with 𝜎 = 3 approximating the edge contours in Fig. 2.5b
and d, respectively. A point with a higher curvature is shown with a higher red intensity.
(c) Red and blue plots show histograms of geometric gradient directions or tangent
directions of points along curves in (a) and (b), respectively.

I(x, y) is the intensity at (x, y) in Fig. 2.7a and O(x, y) is the intensity at the
same location in image (d). Parameters nr and nc show the number of rows
and the number of columns in the images. Figure 2.7e is obtained by rotating
image (a) by 90∘. Finally, Fig. 2.7f is obtained by scaling image (a) by 1.5 using
bilinear interpolation. Figure 2.7a–f contains the same pattern but have some-
what different intensities or have different orientations and scales. The ability
of geometric gradients and intensity gradients in determining the orientations
of these images is investigated.
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(a)

(d) (e) (f)

(b) (c)

Figure 2.7 (a) An image of a Martian scene. This image is courtesy of NASA. (b) Blurred,
(c) noisy, (d) nonlinear intensity mapping, (e) rotated, and (f ) scaled versions of image.

Orientations of the images in Fig. 2.7 determined by geometric gradients and
intensity gradients are shownby yellow andpurple lines, respectively, in Fig. 2.8.
The lines in each image pass through the image center and have the orienta-
tions obtained from the highest peaks in the histograms computed from geo-
metric gradient directions and intensity gradient directions. The orientations
estimated by geometric gradients and intensity gradients are listed in Table 2.1.
While geometric gradients assign an orientation to an image that represents the
orientation of the pattern, the orientation assigned to an image by intensity gra-
dients is more representative of the arrangement of pixels in the image than the
orientation of the pattern. Due to preferences toward angles that are a multi-
ple of 45∘ by intensity gradients, when a pattern with a strong orientation does
not appear in an image, the orientation assigned to the image will be a multiple
of 45∘.
Blurring, noise, and change in scene lighting hardly affect estimation of an

image’s orientation by geometric gradients. By performing computations in the
continuous domain, geometric gradients make the orientation detection pro-
cess independent of the horizontal and vertical arrangement of pixels in an
image. Geometric gradients assign an orientation to the pattern in an image
independent of the way the pattern is pixelated.
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(a) (b) (c)

(d) (e) (f)

Figure 2.8 (a)–(f ) Canny edges of images (a)–(f ) in Fig. 2.7. Image orientations obtained by
geometric gradients and intensity gradients are shown by yellow and purple lines,
respectively.

Table 2.1 Orientations of images (a)–(f ) in
Fig. 2.8 estimated by geometric gradients (𝜃gg)
and intensity gradients (𝜃ig).

Figure 2.8 𝜽gg 𝜽ig

(a) 104 135
(b) 96 135
(c) 99 135
(d) 97 135
(e) 16 0
(f ) 105 135

2.4 Finding the Rotational Difference between
Two Images

Now that we have a method for determining the orientation of an image, we
can use it to determine the rotational difference between two images and rotate
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one image to the orientation of the other. Once the images are in the same
orientation, the correspondence process becomes much easier, simplifying
the registration process.
If the pattern appearing in two images has a strong preferred orientation, the

difference in the peak gradient directions of the images is sufficient to find the
rotational difference between the images.However, when the pattern appearing
in the images does not have a strong orientation, information only about the
peak orientations may not be sufficient to determine the rotational difference
between the images, and information about all orientations may be needed to
robustly find the rotational difference between the images.
Sometimes, the images to be registered may not contain exactly the same

scene parts. A part of a scene visible in one image may be hidden in the other
image due to occlusion or by falling outside the view. When the scene pattern
does not contain a strong orientation or the overlap between the images is not
large enough, the peak orientation determined in one image may not be the
same peak orientation in the other image. By using all gradient directions rather
than only the peak gradient direction in each image, the rotational difference
between the images can be more reliably determined.
To compare two gradient direction histograms, one histogram is shifted

cyclically over the other, and at each shift position, the Euclidean distance
between the histograms is determined, and the shift position producing
the smallest Euclidean distance is used as the rotational difference between the
images. Govindu and Shekhar [9] show that the shift amount producing the
smallest Euclidean distance between two histograms provides the maximum
likelihood estimation of the translational difference between the histograms
and, thus, shows the maximum likelihood rotational difference between the
images the histograms are computed from.
Denoting the gradient direction histograms of two images by H1(𝜃) and

H2(𝜃), the Euclidean distance between the histograms when the second
histogram is cyclically shifted over the first by 𝜃i is

D(𝜃i) =

{m−1∑
j=0

[H1(𝜃j) − H2(𝜃j + 𝜃i)]2
} 1

2

, (2.19)

wherem is the number of bins in each histogram. In our case,m = 180. By vary-
ing i from 0 to 179 and computing the Euclidean distance D, the shift value pro-
ducing the smallest distance measure is determined and used as the rotational
difference between the images. Note that cyclic shifting of H2 with respect
to H1 implies that when 𝜃j + 𝜃i ≥ m, H2(𝜃j + 𝜃i − m) is taken as the value for
H2(𝜃j + 𝜃i).
Although discrete angles may be acceptable when determining the orien-

tation of an image, it may not be sufficient when determining the rotational
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difference between two very large images. An error of a single degree can result
in displacement of a few to several pixels when registering the images.
To determine the subdegree rotational difference between two images,

assuming the minimum distance between two histograms when using the
Euclidean norm is 𝜃, we fit a quadratic curve to [(𝜃 − 1),D(𝜃 − 1)], [𝜃,D(𝜃)],
[(𝜃 + 1),D(𝜃 + 1)], find the location of the minimum in the curve, and use that
as the rotational difference between the images with subdegree accuracy.
The histograms of geometric gradient directions of images (a)–(f ) in Fig. 2.8

are shown in Fig. 2.9. Computing the subdegree rotational difference between
histogram (a) and histogram (b) by shifting histogram (b) over histogram
(a) and finding the shift amount where the Euclidean distance between the
histograms becomes minimum, we find the rotational difference of image (b)
with respect to image (a) be 179.7∘ or −0.3∘. Similarly, we find image (c) to be
rotated with respect to image (a) by 0.2∘, image (d) to be rotated with respect
to image (a) by 0.1∘, image (e) to be rotated with respect to image (a) by 90.0∘,
and image (f ) to be rotated with respect to image (a) by 179.7∘ or −0.3∘. Use
of all bins in histograms of geometric gradient directions provides a more
robust means of determining the rotational difference between two images
when compared to the use of only histogram bins corresponding to the peak
orientations.

2.5 Performance Evaluation

In this section, reliability, accuracy, and computational complexity of geometric
gradients in image orientation detection are evaluated.

2.5.1 Reliability

To ascertain the ability of geometric gradients in determining the orientation
of various types of images, experiments were carried out using aerial images
(Fig. 2.10), close-range images captured from different camera views (Fig. 2.11),
images with perspective differences (Fig. 2.12), images with radiometric as well
as structural differences (Fig. 2.13), images with scale and rotational differences
(Fig. 2.14), and images from different sensors (Fig. 2.15).
Edges detected in the images in Figs 2.10–2.15 are shown in Figs 2.16–2.21,

respectively. Edges in color images are obtained by the method outlined in
[6, 10]. Peak tangent directions obtained from the edges in images (a) and (b)
in Fig. 2.16 are 15∘ and 19∘, drawn with yellow lines in the images. By matching
the gradient direction histograms of the images, image (b) is found to be rotated
with respect to image (a) by 3.2∘. The preferred orientations determined for
these images by intensity gradients were both 0∘, shown by purple lines in the
images. Due to the horizontal and vertical preferences of intensity gradients,
direction 0∘ has been selected for both images.
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Figure 2.9 (a)–(f )
Histograms of geometric
gradient directions of
images (a)–(f ) in Fig. 2.8.
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Figure 2.9 (Continued)
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(a) (b)

Figure 2.10 (a and b) Aerial images taken from different views of a suburban area.

(a) (b)

Figure 2.11 (a and b) Images of a garden scene captured from different views.

(a) (b)

Figure 2.12 (a and b) Images captured of a historical building from different views.
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(a) (b)

Figure 2.13 (a and b) Aerial images of the Sendai International Airport taken before and
after the grand tsunami of 2011. These images are courtesy of Google Maps.

(a) (b)

Figure 2.14 (a and b) Radar images of a relatively flat agricultural area captured in different
flight paths. Image (b) is artificially scaled to introduce scale difference between images.
These images are courtesy of Radarsat-1.

(a) (b)

Figure 2.15 (a and b) Corresponding axial slices from registered MR and CT brain volumes.
These images are courtesy of Kettering Medical Center.
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(a) (b)

Figure 2.16 (a and b) Canny edges of aerial images (a) and (b) in Fig. 2.10 and the
orientations detected by geometric gradients (yellow) and intensity gradients (purple).

(a) (b)

Figure 2.17 (a and b) Canny edges of the garden scene images (a) and (b) in Fig. 2.11. The
orientations detected for these images by geometric gradients and intensity gradients are
shown with yellow and purple lines, respectively.

Thepeak orientations determined for the garden scene images in Fig. 2.11 are
shown in Fig. 2.17. The peak orientations determined by geometric gradients
are 27∘ and 123∘ for images (a) and (b), respectively.These peak orientations are
shown with yellow lines in the images. By matching the histograms of geomet-
ric gradient directions, image (b) is found to be rotated with respect to image
(a) by 96.4∘.The peak orientations determined from the histograms of intensity
gradient directions in images (a) and (b) are found to be 0∘ and 90∘, respectively.
Peak orientations determined by the intensity gradients are shown with purple
lines in these images.
Large perspective differences exist between images (a) and (b) in Fig. 2.12.

The orientations determined from geometric gradients of the edge images
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(a) (b)

Figure 2.18 (a and b) Canny edges of the historical building images (a) and (b) in Fig. 2.12.
The orientations detected by geometric gradients and intensity gradients are shown with
yellow and purple lines, respectively.

(a) (b)

Figure 2.19 (a and b) Canny edges of the before and after tsunami images (a) and (b) in
Fig. 2.13. The orientations detected by geometric gradients and intensity gradients are
shown by yellow and purple lines, respectively.

(a) (b)

Figure 2.20 (a and b) Canny edges of the radar images (a) and (b) in Fig. 2.14. The
orientations detected by geometric gradients and intensity gradients are shown with yellow
and purple lines, respectively. The yellow line in (a) is hidden by the purple line and, thus, is
not visible.
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(a) (b)

Figure 2.21 (a and b) Canny edges of the MR and CT brain slices in Fig. 2.15. The
orientations determined by geometric gradients and intensity gradients are shown with
yellow and purple lines, respectively.

depicted in Fig. 2.18 are 10∘ and 4∘, respectively. Bymatching the histograms of
geometric gradient directions, image (b) is found to be rotated with respect to
image (a) by 173.5∘ or−6.5∘. The orientations determined from the histograms
of intensity gradient directions are 90∘ and 0∘, shown with purple lines in
Fig. 2.18.
Figure 2.13a and b not only have very different colors due to change in

ground cover, there are also considerable structural changes in the scene
caused by destructions from tsunami. Examining the images we see, however,
that certain scene structures remain unchanged. Such structures are the air-
port’s runway, the nearby streets, and waterways. Peak orientations obtained
from edge images (a) and (b) in Fig. 2.19 are 12∘ and 179∘, respectively. The
process has assigned the same orientation to the scene independent of the
image differences. Through histogram matching, image (b) is found to be
rotated with respect to image (a) by 13.2∘. The orientations computed from
intensity gradient directions are found to be both 0∘, shown by purple lines in
the images.
Figure 2.14 has rotational and scaling differences. The geometric gradient

direction peaks calculated from the edge images in Fig. 2.20 are 0∘ and 109∘.
These orientations are shown with yellow lines in the images. By matching the
gradient direction histograms of the images, image (b) is found to be rotated
with respect to image (a) by 109.2∘.The orientations determined from the peaks
in the intensity gradient direction histograms of the images are 0∘ and 90∘.
These orientations are shown with purple lines in the images. 0∘ orientation
is detected by both methods for image (a), resulting in the yellow and purple


