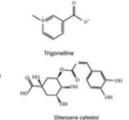
Recovering Bioactive Compounds from Agricultural Wastes


Edited by Van Tang Nguyen

Recovering Bioactive Compounds from Agricultural Wastes

Recovering Bioactive Compounds from Agricultural Wastes

Edited by Van Tang Nguyen

University of Newcastle, Australia Nha Trang University, Vietnam

This edition first published 2017 © 2017 John Wiley & Sons, Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Van Tang Nguyen to be identified as the author of the editorial material in this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SO, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

The publisher and the authors make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or website is referred to in this work as a citation and/or potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this works was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher not the author shall be liable for any damages arising here from.

Library of Congress Cataloging-in-Publication Data

Names: Nguyen, Van Tang, 1979- editor.
Title: Recovering bioactive compounds from agricultural wastes / edited by Van Tang Nguyen.
Description: Hoboken, NJ : John Wiley & Sons, 2017. | Includes bibliographical references and index. |
Identifiers: LCCN 2017009461 (print) | LCCN 2017018525 (ebook) | ISBN 9781119168836 (ePDF) | ISBN 9781119168843 (ePub) | ISBN 9781119168829 (cloth)
Subjects: LCSH: Bioactive compounds. | Agricultural wastes-Recycling.
Classification: LCC QP517.B44 (ebook) | LCC QP517.B44 R43 2017 (print) | DDC 363.72/88-dc23
LC record available at https://lccn.loc.gov/2017009461
Cover Design: Wiley

Cover Images: Courtesy of Van Tang Nguyen

Set in 10/12pt, WarnockPro by SPi Global, Chennai, India

This book is dedicated to my dad Van Tac Nguyen, my mom Thi Thuy Duong, my wife Thi Le Nguyen, my son Trong Nhan Nguyen and my daughter Dan Thanh Nguyen.

Contents

List of Contributors xi About the Editor xiii Preface xv Acknowledgements xvii

- 1 Potential, Uses and Future Perspectives of Agricultural Wastes 1 Van Tang Nguyen
- 1.1 Introduction 1
- 1.2 Potential of Agricultural Wastes 1
- 1.3 Uses of Agricultural Wastes and Recovered Bioactive Compounds 21
- 1.4 Future Perspectives on the Use of Agricultural Wastes and Recovered Bioactive Compounds 30
- 1.5 Conclusion 30 References 30

2 Bioactive Compounds and Extraction Techniques 33

Md. Ariful Alam, Md. Zaidul Islam Sarker, Kashif Ghafoor, Rukshana Akter Happy and Sahena Ferdosh

- 2.1 History and Definition of Bioactive Compounds 33
- 2.2 Classification and Synthesis of Bioactive Compounds 35
- 2.3 Extraction of Bioactive Compounds 35
- 2.3.1 Supercritical Fluid Extraction 37
- 2.3.2 Subcritical Water Extraction 38
- 2.3.3 Microwave-Assisted Extraction 40
- 2.3.4 Ultrasound-Assisted Extraction 41
- 2.3.5 Pulsed Electric Field Extraction 41
- 2.3.6 Enzyme-Assisted Extraction 42
- 2.3.7 Pressurised Liquid Extraction/Pressurised Fluid Extraction/High-Pressure Solvent Extraction/Accelerated Solvent Extraction/Enhanced Solvent Extraction 42
- 2.3.8 Phytonic Process 44
- 2.4 Conclusion 44 Acknowledgement 44 References 45

viii Contents

3 Recovering Bioactive Compounds from Tea, Coffee, Cacao and Cashew Wastes 55

Van Tang Nguyen

- 3.1 Introduction 55
- 3.2 Recovering Bioactive Compounds from Tea Wastes 55
- 3.3 Recovering Bioactive Compounds from Coffee Wastes 61
- 3.3.1 Bioactive Compounds from Green Coffee Production 62
- 3.3.2 Bioactive Compounds from Soluble Coffee Production 62
- 3.4 Recovering Bioactive Compounds from Cacao Wastes 66
- 3.4.1 Bioactive Compounds from Cacao Bean Production 67
- 3.4.2 Bioactive Compounds from Chocolate Production 68
- 3.5 Recovering Bioactive Compounds from Cashew Wastes 70
- 3.6 Conclusion 75 References 75

4 Recovering Bioactive Compounds from Fruit

and Vegetable Wastes 81

- Hong Ngoc Thuy Pham
- 4.1 Introduction 81
- 4.2 Bioactive Compound Resources in Fruit and Vegetable Wastes 81
- 4.3 Recovering Bioactive Compounds from Fruit and Vegetable Wastes 82
- 4.3.1 Preparation of Dried Materials 83
- 4.3.2 Extraction Process 85
- 4.3.2.1 Solvent Extraction 85
- 4.3.2.2 Ultrasound-Assisted Extraction 85
- 4.3.2.3 Microwave-Assisted Extraction 89
- 4.3.2.4 Pressurised Liquid Extraction 90
- 4.3.2.5 Supercritical Fluid Extraction 90
- 4.3.2.6 Enzyme-Assisted Extraction 92
- 4.3.3 Production of Powdered Extract 92
- 4.3.4 Isolation and Purification of Bioactive Compounds 93
- 4.4 Conclusion 94 References 94

5 Recovering Bioactive Compounds from Wine Wastes 101

- Van Tang Nguyen
- 5.1 Introduction 101
- 5.2 Recovering Bioactive Compounds from Wine Wastes 102
- 5.2.1 Polyphenols from Wine Wastes 102
- 5.2.2 Other Bioactive Compounds from Wine Wastes 114
- 5.3 Conclusion 125 References 125
- 6 Recovering Bioactive Compounds from Edible Oil Wastes 129
- Hoang Quoc Tuan and Nguyen Thi Thao
- 6.1 Introduction 129
- 6.2 Edible Oil Processing and Byproducts *130*

Contents ix

- 6.2.1 Solvent Extraction Process and Wastes 131
- 6.2.2 Refining Process and Wastes 131
- 6.2.2.1 Deguming 131
- 6.2.2.2 Alkali Neutralising (Caustic Refining) 131
- 6.2.2.3 Bleaching 133
- 6.2.2.4 Deodorising 133
- 6.3 Recovering Bioactive Compounds from Edible Oil Wastes 133
- 6.3.1 Phenolic Compounds 133
- 6.3.2 Hydrolysis 135
- 6.3.2.1 Solid–Liquid Extraction 136
- 6.3.2.2 Supercritical Fluid Extraction with CO₂ 136
- 6.3.2.3 Membrane Techniques 137
- 6.3.3 Phytosterols and Tocopherols 138
- 6.3.4 γ-oryzanol 143
- 6.3.5 Other Bioactive Compounds 147
- 6.3.5.1 Pectins and Oligosaccharides 147
- 6.3.5.2 Mannitol 148
- 6.3.6 Future Trends 149
- 6.4 Conclusion 151 References 151

7 Recovering Bioactive Compounds from Cane Sugar Wastes 157

- Nguyen Thi Thao and Hoang Quoc Tuan
- 7.1 Introduction 157
- 7.2 Chemical Composition and Functional Properties of Sugarcane 158
- 7.2.1 Sugarcane Juice 158
- 7.2.2 Sugarcane Tops and Leaves 159
- 7.2.3 Sugarcane Wax 160
- 7.3 Cane Sugar Production and Its Byproducts/Wastes 161
- 7.4 Recovering Bioactive Compounds from Cane Sugar Byproducts/Wastes 162
- 7.4.1 Potential Bioactive Compounds in Wastes from the Cane Sugar Industry *162*
- 7.4.1.1 Molasses 162
- 7.4.1.2 Bagasse 163
- 7.4.1.3 Press Mud 164
- 7.4.2 Recovering Bioactive Compounds from Cane Sugar Byproducts/Wastes 165
- 7.4.2.1 Production of Coumaric Acid from Sugarcane Bagasse 165
- 7.4.2.2 Production of Hemicellulosic Furfural from Sugarcane Bagasse 166
- 7.4.2.3 Production of Antioxidants from Sugarcane Molasses 167
- 7.4.2.4 Recovering Bioactive Compounds from Press Mud 167
- 7.5 Conclusion 169 References 169
- 8 Recovering Bioactive Compounds from Starch Wastes 173
- Thang Trung Khong and Van Tang Nguyen
- 8.1 Introduction 173
- 8.2 Recovery of Bioactive Compounds from Potato Wastes 174

x Contents

- 8.3 Recovery of Bioactive Compounds from Rice and Wheat Wastes 179
- 8.4 Recovery of Bioactive Compounds from Other Starch Wastes 189
- 8.5 Conclusion 193 References 193

9 Recovering Bioactive Compounds from Other Agricultural Wastes 197

Giovani L. Zabot and Fiorella P. Cárdenas-Toro

- 9.1 Introduction 197
- 9.2 Recovering Bioactive Compounds from Pepper Waste 198
- 9.2.1 Bioactive Compounds found in Pepper Waste 198
- 9.2.2 Major Techniques for the Recovery of Bioactive Compounds from Pepper Waste 198
- 9.2.2.1 Conventional Extraction 198
- 9.2.2.2 Microwave-Assisted and Ultrasound-Assisted Extraction 200
- 9.2.2.3 Supercritical Fluid Extraction 202
- 9.3 Recovering Bioactive Compounds from Onion Waste 207
- 9.3.1 Bioactive Compounds found in Onion Waste 207
- 9.3.2 Major Techniques for the Recovery of Bioactive Compounds from Onion Waste 209
- 9.3.2.1 Conventional Extraction 209
- 9.3.2.2 Supercritical Fluid Extraction and Subcritical Water Extraction 209
- 9.3.2.3 On-Line Process: Pressurised Liquid Extraction and Particle Formation in Sequence 210
- 9.4 Recovering Bioactive Compounds from Cotton Waste 212
- 9.4.1 Bioactive Compounds found in Cotton Waste 212
- 9.4.2 Main Techniques for the Recovery of Bioactive Compounds from Cotton Waste 212
- 9.5 Conclusion 215 Acknowledgements 215 References 216
- 10 Economics and Market for Recovered Bioactive Compounds from Agricultural Wastes 221

Van Tang Nguyen and Thang Trung Khong

- 10.1 Introduction 221
- 10.2 Economic Analysis of Recovered Bioactive Compounds 222
- 10.3 Market Analysis of Recovered Bioactive Compounds 240
- 10.4 Conclusion 248 References 248

Index 251

List of Contributors

Md. Ariful Alam

Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia (IIUM), Pahang, Malaysia

Fiorella P. Cárdenas-Toro

Department of Engineering, Section of Industrial Engineering, Pontifical Catholic University of Peru, San Miguel, Lima, Peru

Sahena Ferdosh

Department of Plant Science, Faculty of Science, International Islamic University Malaysia (IIUM), Kuantan Campus, Pahang, Malaysia

Kashif Ghafoor

Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia

Rukshana Akter Happy

Department of Biochemistry and Biotechnology, Faculty of Basic Medical and Pharmaceutical Sciences, University of Science and Technology Chittagong (USTC), Foy's Lake, Chittagong, Bangladesh

Thang Trung Khong

Nha Trang University, Nha Trang, Khanh Hoa, Vietnam

Van Tang Nguyen

School of Environmental and Life Sciences, Faculty of Science and Information Technology, University of Newcastle, Ourimbah, NSW, Australia

and

Department of Food Technology, Faculty of Food Technology, Nha Trang University, Nha Trang, Khanh Hoa, Vietnam

Hong Ngoc Thuy Pham

School of Environmental and Life Sciences, Faculty of Science and Information Technology, University of Newcastle, Ourimbah, NSW, Australia

and

Department of Postharvest Technology, Faculty of Food Technology, Nha Trang University, Nha Trang, Khanh Hoa, Vietnam

xii List of Contributors

Md. Zaidul Islam Sarker

Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia (IIUM), Pahang, Malaysia

Nguyen Thi Thao

Department of Quality Management, School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam

Hoang Quoc Tuan

Department of Quality Management, School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam

Giovani L. Zabot

Federal University of Santa Maria (UFSM), Cachoeira do Sul, RS, Brazil

About the Editor

Van Tang Nguyen was born in Hai Duong province, Vietnam. He obtained an Engineer degree in Food Technology from the Hanoi University of Science and Technology, Vietnam. He then received a Master's degree in Food Science from the National Taiwan Ocean University, Taiwan and a PhD in Food Science from the University of Newcastle, Australia. He has worked as a Demonstrator in Food Science and Human Nutrition at the School of Environmental and Life Sciences, Faculty of Science and Information Technology, University of Newcastle, Australia. He also works as a Lecturer in Food Technology at the Department of Food Technology, Faculty of Food Technology, Nha Trang University, Vietnam. His research has focused on natural bioactive compounds, pharmacological activity, value-added products and functional foods. His current expertise is in the extraction, isolation and quantification of bioactive compounds from natural materials and the determination of biological activity *in vitro* and *in vivo*.

Van Tang Nguyen has been interested in the use of agricultural residues/byproducts from the processing and production of food products for the production of value-added products for over a decade. He has published more than 25 research papers in peer-reviewed journals (*Food Science, Chemical Papers, Drying Technology, Chemistry and Biodiversity, Industrial Crops and Products, Food Processing and Preservation,* etc.) and has authored/edited five book chapters and five books in the field of Food Science and Technology. He has presented over 15 scientific reports at international conferences and served as the reviewer for many reputed journals (*Food Science, Food Biochemistry, Pharmaceutical Biology, Industrial Crops and Products, Current*

xiv About the Editor

Pharmaceutical Research, and so on). He is currently Editor-in-Chief and Founder of Bioactive Research and a member of the Institute of Food Technologist (USA) and Pancreatic Cancer Research Group (Australia).

Van Tang Nguyen is married to Thi Le Nguyen. They have two children, Trong Nhan Nguyen and Dan Thanh Nguyen.

Preface

Agriculture is regarded as one of the most important fields of human industry, due to its role in ensuring global food security for over 7 billion people around the world and supporting other industries. Agricultural production creates a great amount of residues/byproducts, which are considered 'wastes'. Interestingly, agricultural wastes contain many valuable bioactive compounds, possessing a wide range of potential pharmacological properties, which have great contributions to make in related industries, such as nutraceuticals/functional foods, medicines, pharmaceuticals and cosmetics. However, they are still underutilised as abundant, inexpensive, renewable and sustainable sources of natural bioactive compounds.

In order to increase the value of agricultural production, reduce pollution risks and promote the development of related industries, we have prepared *Recovering Bioactive Compounds from Agricultural Wastes* to introduce the potential of agricultural wastes obtaining from the different sectors of agricultural production, such as tea, coffee, cacao, cashew, fruit and vegetable, wine, edible oil, starch and sugar, and to present, discuss and recommend various techniques for the extraction, isolation, purification and application of these bioactive compounds in different fields. We also discuss the economic and market analysis of agricultural wastes and bioactive compounds derived from these sources, based on a number of actual recovery processes to be established at pilot and industrial scales. Hopefully, this book will be a helpful reference for researchers, producers and traders in agricultural production and related industries.

Van Tang Nguyen, Editor University of Newcastle, Australia Nha Trang University, Vietnam xv

Acknowledgements

I would like to express my special thanks to John Wiley & Sons for their suggestions and effective cooperation in the preparation and completion of the manuscript of this book. I also sincerely acknowledge the reviewers for their comments on the proposal. I kindly thank all the authors for their valuable contribution to the chapters; their effort is highly appreciated and adequately recorded in this book. Last but not least, I would like to thank my colleagues, friends and family for their support, encouragement and special interest in the preparation and publication of this book.

Potential, Uses and Future Perspectives of Agricultural Wastes Van Tang Nguyen

1

School of Environmental and Life Sciences, Faculty of Science and Information Technology, University of Newcastle, Ourimbah, NSW, Australia Department of Food Technology, Faculty of Food Technology, Nha Trang University, Nha Trang, Khanh Hoa, Vietnam

1.1 Introduction

Agriculture has a developmental history going back thousands of years and is considered one of the most important fields of human knowledge because of its special role in ensuring global food security for over 7 billion people around the world. It also has an important role in supporting and promoting the development of other industries, such as nutraceuticals, medicines, pharmaceuticals and cosmetics. In particular, agriculture produces a large amount of wastes, containing a significant quantity of valuable bioactive compounds, such as polyphenols, phenolic acids, flavonols, flavanols, flavonoids, procyanidins, proanthocyanidins, anthocyanins, glycosides, carotenoids, saponins, tannins, alkaloids, steroils, steroids, triterpenes, quinones, peptides and carbohydrates, which have been proved to possess a variety of biological activities, including antioxidant, antibacterial, antifungal, antiviral, antimicrobial, antidiabetic, anticancer, antidiarrhoeal, antihypertensive, antimutagenic, anti-inflammatory, anticholesterol and anticardiovascular properties (Figure 1.1) (Balasundram et al., 2006; Santana-Méridas et al., 2012). However, the utilisation of agricultural wastes as an abundant, biorenewable and low-cost source for the production of high value-added products is still under investigation, with limited outcomes. Therefore, research is needed into the application of environmentally friendly traditional and advanced techniques with low production costs in the extraction, isolation and purification of phytochemical compounds from agricultural wastes in high yields and at maximal quality. This strategy will increase the value of agricultural wastes and reduce pollution risks for the environment in both the short and the long term, and will enable sustainable development, one of the most important goals of modern global agricultural production.

1.2 Potential of Agricultural Wastes

According to the Food and Agriculture Organization of the United Nations (FAOSTAT, 2015), the total harvested crop area worldwide in 2013 was about 4.36 billion ha, producing approximately 21.70 billion tonnes, with a total gross production value of US\$24

1

2 1 Potential, Uses and Future Perspectives of Agricultural Wastes

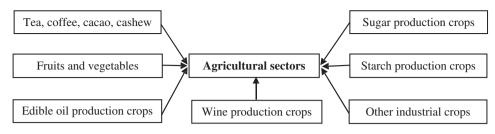


Figure 1.1 Major agricultural sectors in the recovery of bioactive compounds.

 Table 1.1
 Total harvested crop area, total production and total gross agricultural production value in 2013. Source: FAOSTAT (2015).

Location	Total harvested area (billion ha)	Total production (billion tonnes)	Total gross production value (billion US\$)
Africa	0.71	1.90	1295.47
Americas	0.89	5.22	3503.55
Asia	1.82	9.94	15543.06
Europe	0.86	4.43	4350.89
Oceania	0.08	0.21	239.35
Total	4.36	21.70	24932.32

932.32 billion (Table 1.1). In Asia, the total harvested crops area was 1.82 billion ha (41.81% of total), producing 9.94 billion tonnes (45.80%), with a total gross production value of US\$15 543.06 billion (62.34%).

Sugar cane had the highest production globally (1910 million tonnes), followed by maize, rice, wheat, potatoes, fresh vegetable, cassava, soybeans, palm fruit and sugar beet (1020, 741, 716, 376, 280, 277, 276, 266 and 247 million tonnes, respectively) (Table 1.2). All of these crops produced a large amount of relevant wastes, including leaves, tops and bagasse from sugar cane; straw, stalks, husk, bran and cobs from maize, rice and wheat; foliage, tops, peels and pulps from potatoes; leaves, stems, peels, skins and seeds from fresh vegetables; and peels, stalks and bagasse from cassava (FAOSTAT, 2015).

The wastes from crop-based residues, in terms of aerial biomass, roots, leaves, straw and stems, are rich sources of bioactive compounds, including polyphenols, flavonoids, sterols, anthocyanins and carbohydrates, which have direct links with potent pharmacological properties, such as antioxidant, antibacterial, antifungal, antimicrobial, anti-inflammatory and anticholesterol capacity (Table 1.3). Many valuable bioactive compounds, such as glycosides, procyanidins, proanthocyanidins, flavonols, flavanols, flavonoids, phenolic acids, carotenoids, saponins, tannins, alkaloids, steroids, triterpenes, quinones and peptides, can also be isolated from processing-based residues, such as from the fresh fruit, dry fruit, brewing, wine, cereal, oil, essential oil, sugarcane and tobacco industries (Table 1.4). The bioactive compounds isolated from these sources have been proved to possess a wide range of biological activities, including antioxidant, anticancer, antidiarrhoeal, antibacterial, antifungal, antiviral,

Сгор	Total harvested area (million ha)	Total production (million tonnes)	Total gross production value (billion US\$)	Main residues/wastes
Tea, coffee, cacao and	cashew			
Tea	3.52	5.35	22.22	Fruit, flower, old leaves, dust, stalk and fibre
Coffee	10.14	8.92	16.37	Outer skin, pulp/mucilage, parchment/hull/husk, silver skin and spent coffee grounds
Cacao	10.01	4.59	6.95	Leaves, shell, husk, pulp/mucilage and hull
Cashew	5.46	4.44	2.82	cashew apple, outer shell, inner skin and nut shell
Fruits and vegetables				
Fruit fresh nes	5.01	33.52	13.39	Peels, pulps, seeds, stalks and skins
Vegetable fresh nes	19.79	280	135.42	Leaves, stems, peels, skins and seeds
Wine production crop	s			
Grapes	7.16	77.18	78.50	Pomace (seeds, skins), leaves, stalks rachis and lees
Edible oil production c	rops			
Palm fruit	18.05	266	31.34	Shells, husks and fronts
Olives	10.31	20.40	19.47	Leaves and stalks
Coconuts	12.07	62.45	10.47	Shells, husks and fronts
Soybeans	112	276	131.26	Straw and pods
Sunflower seed	25.45	44.55	26.08	Foliage and stems
Rapeseed	36.50	72.70	53.13	Straw
Cotton seed	n/r	47.07	9.75	Stalks
Sugar production crop	DS			
Beet	4.37	247	14.04	Roots, pulps and scums
Cane	26.94	1910	108.55	Leaves, tops and bagasse
Others	0.12	0.93	nr	Pulps and bagasse
Starch production cro	ps			
Rice	165	741	429.27	Straw, husk and bran
Wheat	219	716	242.25	Straw
Maize	185	1020	382.34	Straw, stalks and cobs
Potatoes	19.34	376	149.51	Foliage, tops, peels and pulps
Cassava	20.39	277	47.31	Peels, stalks and bagasse
Barley	49.15	144	36.30	Straw

 Table 1.2
 Total harvested area, total production and total gross production value of major crops in 2013, as well as their main residues/wastes. Source: FAOSTAT (2015).

(Continued)

Сгор	Total harvested area (million ha)	Total production (million tonnes)	Total gross production value (billion US\$)	Main residues/wastes
Other crops				
Beans, dry	29.05	22.81	16.06	Straw and pods
Beans, green	1.54	21.37	40.53	Straw and pods
Pepper	0.48	0.47	2.88	Leaves and stems
Seed cotton	32.17	73.05	82.62	Stalk

Table 1.2 (Continued)

n/r, not reported

Table 1.3 High added-value products from crop-based residues. Source: Santana-Méridas et al. (2012).Reproduced with permission of Springer.

Activity	Species	Waste type	Bioactive compounds	Applications
Horticultural	production			
Melon	Cucumis melo	Aerial biomass	Xanthan	Rheology modifier, food additive
Broccoli	Brassica oleracea	Aerial biomass	Glucosinolates, phenolic acids, flavonoids, vitamin C	Antioxidant
Carrot	Daucus carota	Roots	Hydroxycinnamic acid, anthocyanins	Antioxidant
Spinach	Spinacea oleracea	Leaves	Flavonoids	Antioxidant
Pepper	Capsicum annuum	Leaves, stems	Capsaicin, dihydrocapsaicin	Antioxidant, anti-inflammatory
Cucumber	Cucumis sativus	Leaves	Isovitexin, saponarin, vicenin-2, apigenin	Antioxidant
Tomato	Lycopersicum sculentum	Leaves	Solanesol	Antibacterial, anti-inflammatory
Cereal produ	ction			
Wheat	Triticum sp.	Straw	Xylose, polyphenols	Food ingredient
Others	sp.	Straw	Lignin	Value-added products
Tuber produc	tion			
Potato	Solanum tuberosum	Leaves	Solanesol	Antibacterial, anti-inflammatory

Activity	Species	Waste type	Bioactive compounds	Applications
Fruit productio	on			
Ginja cherry	Prunus cerasus	Stems, leaves	Polyphenols (catechin > 70%)	Antioxidant, antimicrobial
Pineapple	Ananus comosus	Straw (leaves)	Fibre	Polymer reinforcement
Grass product	ion			
Ryegrass	Lolium perenne	Grass chaff	β-adenosine	Mushroom production
Miscanthus	<i>Miscanthus</i> × giganteus	Biomass	Lignin, phenols, sterols	Fuel, antioxidant, anticholesterol
Oil productior	1			
Olive	Olea europaea	Leaves	Polyphenols	Antimicrobial, antioxidant
Medicinal and	l condimentary herbs	5		
Creosote bush	Larrea tridentate	Leaves	Poly and monomeric phenols	Antifungal
Saffron	Crocus sativus	Leaves	Kaempferol, orientin, vitexin	Antioxidant

Table 1.3 (Continued)

Table 1.4 High added-value products from processing-based residues. Source: Santana-Méridas et al.(2012). Reproduced with permission of Springer.

Activity/crops	Species	Waste type	Bioactive compounds	Activity/applications
Fresh fruit indus	stry			
Mango	Mangifera indica	Peels, pits/seeds	Tannins, vanillin, mangiferin	Antioxidant
Apple	Malus domestica	Pomace (peels, core, seeds, calyces, stems)	Pectin, catechins, hydroxycinnamates, phloretin glycosides, quercetin glycosides, procyanidins	Antioxidant
Watermelon	Citrullus lanatus	Rinds, flesh	Lycopene, citrulline, phenolic compounds	Antioxidant, food additives
Rambutan	Nephelium lappaceum	Peels	Ellagitannins	Antioxidant
Mangosteen	Garcinia mangostana	Pericarps	Proanthocyanidins	Antioxidant

(Continued)

Table 1.4 (Continued)

Activity/crops	Species	Waste type	Bioactive compounds	Activity/applications
Guajava	Psidium guajava	Bagasse	Epicatechin, quercetin, syringic acid, mirycetin	Antimicrobial
Banana	Musa sapientum	Dried leaves, pseudostems	Sugars	Fermentation
		Peels	α-amilasa, laccasa, citric acid	Enzyme production
Lemon	Citrus limon	Peels	Flavanoids, saponins, tannins, alkaloids, steroids, triterpenes	Antimicrobial
			Essential oil	Nematostatic activity
			Limonene	Insecticidal (larvicidal)
Orange	Citrus sinensis	Peels	Citric acid	Additive, detergent, cosmetic
			Essential oil	Nematostatic activity
Pineapple	Ananus comosus	Peels, core, crowns, stems	Bromelain	Food and textile industries, anti-inflammatory, anti-diarrhea, digestive
Pomegranate	Punica granatum	Husks	Poly- and monomeric phenols	Antifungal
Grapefruit	Citrus paradisi	Peels	Essential oil	Nematostatic activity
Mandarin	Citrus reticulata	Peels	Phenolic compounds	Antioxidant, antimicrobial
Papaya	Carica papaya	Peels, seeds	Phenolic compounds	Antioxidant, antimicrobial
Bergamot	Citrus bergamia	White tissues	Brutieridin, melitidin	Anticholesterolaemic
		Seeds	Limonoids	Antiviral
Satsuma mandarin	Citrus unshiu	Peels	Hesperidin, narirutin, quercetagetin	Antioxidant
Citrus fruits	<i>Citrus</i> sp.	Seeds, molasses	Limonoids	Anticancer
		Peels	Flavonoids (hesperidin, diosmin, narirutin, didymin, sinesetin), carotenoids (violaxanthin, β -crytoxanthin, β -carotene), vitamin C, essential oils (limonene), minerals	Antioxidant
Horticultural in	dustry			
Artichoke	Cynara scolymus	Bracts, receptacles, stems, juice, heads	Neochlorogenic acid, chlorogenic acid, caffeoylquinic acids	Antioxidant

Activity/crops	Species	Waste type	Bioactive compounds	Activity/applications
Beet	Beta vulgaris	Stalks	Azelaic acid	Antimicrobial
Onion	Allium cepa	Fresh peeling	Condensed tannins, flavonoids, quercetin aglycone	Antioxidant, textile dyes
		Skins, top-bottom wastes, scales, discarded onions	Flavonoids, fructans and alk(en)yl cystein sulphoxides, quercetin aglycone, minerals	Antioxidant, dietary fibre
Tomato	Solanum lycopersicum	Seeds, pulps, skins	Lycopene, β-carotene, sterols, tocopherols, terpenes, glycoalkaloids	Antioxidant, anticholesterol
Coffee industry				
Coffee	Coffea Arabica	Spent coffee grounds	Caffeine, chlorogenic acid	Allelopathy
Dry fruit industi	ry			
Peanut	Arachis hypogaea	Skins, seed coats	Polyphenols oligomeric proanthocyanidins, indole alkaloids, phenolic acids	Antioxidant anticance Blood vessels protecto Antimicrobial
Almond	Prunus dulcis	Hulls	Triterpenes (olcanoic, ursolic, betulinic acids), daucosterol	Anticancer
Hazelnut	Corylus avellana	Skins, hard shells, leafy covers	Phenolic acids (gallic, caffeic, <i>p</i> -coumaric, ferulic, sinapic)	Antioxidant
Chestnut	Castanea sativa	Shells (outer, inner)	Tannins, polyphenols, tocopherols	Antioxidant
Walnut	Juglans regia	Shells	Holocellulose, α-cellulose, lignin	Panel manufacture
Pecan nut	Carya illinoensis	Shells (endocarp)	Poly and monomeric phenols	Antifungal
Pistachio	Pistachia vera	Hulls	Phenolic compounds	Antioxidant
Legume industr	<i>y</i>			
Pea	Pisum sativum	Husks	Growth factors (nitrogen and carbon)	Carrier for rhizobial inoculants
		Pods	Fibre, polyphenols	Antioxidant, texturing additive
Faba bean	Vicia faba	Pods	Fibre, polyphenols	Antioxidant, texturing additive
		Off-quality grains	Protein	Food ingredient

Table 1.4 (Continued)

(Continued)

8 1 Potential, Uses and Future Perspectives of Agricultural Wastes

Table 1.4 (Continued)

Activity/crops	Species	Waste type	Bioactive compounds	Activity/applications
Chickpea	Cicer arietinum	Off-quality grains	Peptides	Metal chelating, antihypertensive, food ingredient
Common bean	Phaseolus vulgaris	Off-quality grains	Peptides	Antioxidant, metal chelating
Cereal industry				
Rice	Oryza sativa	Rice brand	Tocotrienols- tocopherols, γ-oryzanol, β-sitosterol	Anticholesterol
Wheat	Triticum durum	Wheat brand	Vitamin E, carotenoids, quinines	Nutrients, antioxidant
Wine industry				
•	Vitis vinifera	Stems	Betulinic acid, stilbenoid <i>trans</i> -resveratrol, <i>trans</i> -3-viniferin, sitosterol 6'-O-acylglucosides	Anticancer
		Pomace	Flavonols, flavonols glucosides, flavanols, gallate esters, anthocyanins, proanthocyanins	Antioxidant, antimicrobial
		Seeds	Epicatechin, caffeic and gallic acids	Antimicrobial
Brewing industr	ry			
Barley	Hordeum vulgare	Spent grains	Xylitol, cellulose, hemicelluloses, lignin, xylose, glucose, arabinose, protein, ferulic and <i>p</i> -coumaric acids	Growth medium, lacti acid production, diabetes treatment (xylitol)
Oil industry				
Olive	Olea europaea	Olive mill wastewaters 'alpechin'	Hydroxytyrosol, gallic acid, oleuropein, ligstroside isomers and derivatives, squalene, tocopherols, triterpenes, soluble sugars, polyphenols	Antimicrobial, antioxidant, anti-inflammatory, textile dyes
		Pomace (solid wastes)	Hydroxytyrosol, tyrosol, caffeic protocatechuic, vanillic, p-coumaric and syringic acids, vanillin, oleuropein, apigenin	Antioxidant