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Preface

Information processing has always been an important factor in
the development of human society and its role is still increasing.
The inventions of advanced information devices paved the way
for achievements in a diversity of fields like trade, navigation,
agriculture, industry, transportation and communication. The
term ‘information device’ refers here to systems for the sensing,
acquisition, processing and outputting of information from the
real world. Usually, they are measurement systems. Sensing and
acquisition provide us with signals that bear a direct relation to
some of the physical properties of the sensed object or process.
Often, the information of interest is hidden in these signals.
Signal processing is needed to reveal the information and to
transform it into an explicit form. Further, in the past 10 years
image processing (together with intelligent computer vision) has
gone through rapid developments. There are substantial new
developments on, for example, machine learning methods (such
as Adaboost and it’s varieties, Deep learning etc.) and particle
filtering like parameter estimation methods.

The three topics discussed in this book, classification, parame-
ter estimation and state estimation, share a common factor in the
sense that each topic provides the theory and methodology for
the functional design of the signal processing part of an infor-
mation device. The major distinction between the topics is the
type of information that is outputted. In classification problems
the output is discrete, that is a class, a label or a category. In
estimation problems, it is a real-valued scalar or vector. Since
these problems occur either in a static or in a dynamic setting,
actually four different topics can be distinguished. The term state

xi
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estimation refers to the dynamic setting. It covers both discrete
and real-valued cases (and sometimes even mixed cases).

The similarity between the topics allows one to use a generic
methodology, that is Bayesian decision theory. Our aim is to
present this material concisely and efficiently by an integrated
treatment of similar topics. We present an overview of the core
mathematical constructs and the many resulting techniques. By
doing so, we hope that the reader recognizes the connections
and the similarities between these constructs, but also becomes
aware of the differences. For instance, the phenomenon of over-
fitting is a threat that ambushes all four cases. In a static classifi-
cation problem it introduces large classification errors, but in the
case of a dynamic state estimation it may be the cause of instable
behaviour. Further, in this edition, we made some modifications
to accommodate engineering requests on intelligent computer
vision.

Our goal is to emphasize the engineering aspects of the mat-
ter. Instead of a purely theoretical and rigorous treatment, we
aim for the acquirement of skills to bring theoretical solutions
to practice. The models that are needed for the application of
the Bayesian framework are often not available in practice. This
brings in the paradigm of statistical inference, that is learning
from examples. MATLAB®* is used as a vehicle to implement and
to evaluate design concepts.

As alluded to above, the range of application areas is broad.
Application fields are found within computer vision, mechani-
cal engineering, electrical engineering, civil engineering, envi-
ronmental engineering, process engineering, geo-informatics,
bio-informatics, information technology, mechatronics, applied
physics, and so on. The book is of interest to a range of users,
from the first-year graduate-level student up to the experienced
professional. The reader should have some background knowl-
edge with respect to linear algebra, dynamic systems and prob-
ability theory. Most educational programmes offer courses on
these topics as part of undergraduate education. The appendices
contain reviews of the relevant material. Another target group

* MATLAB® is a registered trademark of The MathWorks, Inc. (http://www

.mathworks.com).
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Preface

is formed by the experienced engineers working in industrial
development laboratories. The numerous examples of MATLAB®
code allow these engineers to quickly prototype their designs.

The book roughly consists of three parts. The first part, Chap-
ter 2, presents an introduction to the PRTools used throughout
this book. The second part, Chapters 3, 4 and 5, covers the the-
ory with respect to classification and estimation problems in the
static case, as well as the dynamic case. This part handles prob-
lems where it is assumed that accurate models, describing the
physical processes, are available. The third part, Chapters 6 up to
8, deals with the more practical situation in which these models
are not or only partly available. Either these models must be built
using experimental data or these data must be used directly to
train methods for estimation and classification. The final chapter
presents three worked out problems. The selected bibliography
has been kept short in order not to overwhelm the reader with
an enormous list of references.

The material of the book can be covered by two semester
courses. A possibility is to use Chapters 3, 4, 6, 7 and 8 for a one-
semester course on Classification and Estimation. This course
deals with the static case. An additional one-semester course
handles the dynamic case, that is Optimal Dynamic Estimation,
and would use Chapter 5. The prerequisites for Chapter 5 are
mainly concentrated in Chapter 4. Therefore, it is recommended
to include a review of Chapter 4 in the second course. Such a
review will make the second course independent from the first
one.

Each chapter is closed with a number of exercises. The mark at
the end of each exercise indicates whether the exercise is consid-
ered easy (‘0’), moderately difficult (*') or difficult (**’). Another
possibility to acquire practical skills is offered by the projects
that accompany the text. These projects are available at the
companion website. A project is an extensive task to be under-
taken by a group of students. The task is situated within a given
theme, for instance, classification using supervised learning,
unsupervised learning, parameter estimation, dynamic labelling
and dynamic estimation. Each project consists of a set of
instructions together with data that should be used to solve the
problem.

xiii
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The use of MATLAB® tools is an integrated part of the
book. MATLAB® offers a number of standard toolboxes that are
useful for parameter estimation, state estimation and data anal-
ysis. The standard software for classification and unsupervised
learning is not complete and not well structured. This motivated
us to develop the PRTools software for all classification tasks and
related items. PRTools is a MATLAB® toolbox for pattern recog-
nition. It is freely available for non-commercial purposes. The
version used in the text is compatible with MATLAB® Version 5
and higher. It is available from http://37steps.com.

The authors keep an open mind for any suggestions and com-
ments (which should be addressed to cpese@wiley.com). A list of
errata and any other additional comments will be made available
at the companion website.

Acknowledgements
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the first version of this book and for allowing us to use PRTools
and all materials on 37steps.com throughout this book. Thanks
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Introduction

Engineering disciplines are those fields of research and devel-
opment that attempt to create products and systems operating
in, and dealing with, the real world. The number of disciplines is
large, as is the range of scales that they typically operate in: from
the very small scale of nanotechnology up to very large scales
that span whole regions, for example water management sys-
tems, electric power distribution systems or even global systems
(e.g. the global positioning system, GPS). The level of advance-
ment in the fields also varies wildly, from emerging techniques
(again, nanotechnology) to trusted techniques that have been
applied for centuries (architecture, hydraulic works). Nonethe-
less, the disciplines share one important aspect: engineering
aims at designing and manufacturing systems that interface with
the world around them.

Systems designed by engineers are often meant to influence
their environment: to manipulate it, to move it, to stabilize it, to
please it, and so on. To enable such actuation, these systems need
information, for example values of physical quantities describ-
ing their environments and possibly also describing themselves.
Two types of information sources are available: prior knowledge
and empirical knowledge. The latter is knowledge obtained
by sensorial observation. Prior knowledge is the knowledge
that was already there before a given observation became
available (this does not imply that prior knowledge is obtained
without any observation). The combination of prior knowledge
and empirical knowledge leads to posterior knowledge.

Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB,
Second Edition. Bangjun Lei, Guangzhu Xu, Ming Feng, Yaobin Zou, Ferdinand van der Heijden,

Dick de Ridder, and David M. J. Tax.
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The sensory subsystem of a system produces measurement
signals. These signals carry the empirical knowledge. Often, the
direct usage of these signals is not possible, or is inefficient. This
can have several causes:

¢ The information in the signals is not represented in an explicit
way. It is often hidden and only available in an indirect,
encoded, form.

e Measurement signals always come with noise and other
hard-to-predict disturbances.

¢ Theinformation brought forth by posterior knowledge is more
accurate and more complete than information brought forth
by empirical knowledge alone. Hence, measurement signals
should be used in combination with prior knowledge.

Measurement signals need processing in order to suppress the
noise and to disclose the information required for the task at
hand.

1.1 The Scope of the Book

In a sense, classification and estimation deal with the same
problem: given the measurement signals from the environment,
how can the information that is needed for a system to operate in
the real world be inferred? In other words, how should the mea-
surements from a sensory system be processed in order to bring
maximal information in an explicit and usable form? This is the
main topic of this book.

Good processing of the measurement signals is possible only if
some knowledge and understanding of the environment and the
sensory system is present. Modelling certain aspects of that envi-
ronment — like objects, physical processes or events — is a neces-
sary task for the engineer. However, straightforward modelling is
not always possible. Although the physical sciences provide ever
deeper insight into nature, some systems are still only partially
understood; just think of the weather. Even if systems are well
understood, modelling them exhaustively may be beyond our
current capabilities (i.e. computer power) or beyond the scope
of the application. In such cases, approximate general models,
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Figure 1.1 Licence plate recognition: a classification problem with noisy
measurements.

but adapted to the system at hand, can be applied. The develop-
ment of such models is also a topic of this book.

1.1.1 Classification

The title of the book already indicates the three main subtopics it
will cover: classification, parameter estimation and state estima-
tion. In classification, one tries to assign a class label to an object,
a physical process or an event. Figure 1.1 illustrates the concept.
In a speeding detector, the sensors are a radar speed detector
and a high-resolution camera, placed in a box beside a road.
When the radar detects a car approaching at too high a velocity
(a parameter estimation problem), the camera is signalled to
acquire an image of the car. The system should then recognize
the licence plate, so that the driver of the car can be fined for the
speeding violation. The system should be robust to differences
in car model, illumination, weather circumstances, etc., so some
pre-processing is necessary: locating the licence plate in the
image, segmenting the individual characters and converting it
into a binary image. The problem then breaks down to a number
of individual classification problems. For each of the locations
on the license plate, the input consists of a binary image of
a character, normalized for size, skew/rotation and intensity.
The desired output is the label of the true character, that is one
of A} ‘B)..., ‘Z;°0;..., 9.

3
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Detection is a special case of classification. Here, only two class
labels are available, for example ‘yes’ and ‘no’ An example is a
quality control system that approves the products of a manufac-
turer or refuses them. A second problem closely related to classi-
fication is identification: the act of proving that an object-under-
test and a second object that is previously seen are the same.
Usually, there is a large database of previously seen objects to
choose from. An example is biometric identification, for example
fingerprint recognition or face recognition. A third problem that
can be solved by classification-like techniques is retrieval from a
database, for example finding an image in an image database by
specifying image features.

1.1.2 Parameter Estimation

In parameter estimation, one tries to derive a parametric
description for an object, a physical process or an event. For
example, in a beacon-based position measurement system
(Figure 1.2), the goal is to find the position of an object, for
example a ship or a mobile robot. In the two-dimensional
case, two beacons with known reference positions suffice. The
sensory system provides two measurements: the distances from
the beacons to the object, r; and r,. Since the position of the
object involves two parameters, the estimation seems to boil
down to solving two equations with two unknowns. However,

beacon 1

prior
knowledge

O ‘_)
object

Figure 1.2 Position measurement: a parameter estimation problem
handling uncertainties.

beacon 2



1 Introduction

the situation is more complex because measurements always
come with uncertainties. Usually, the application not only
requires an estimate of the parameters but also an assessment
of the uncertainty of that estimate. The situation is even more
complicated because some prior knowledge about the position
must be used to resolve the ambiguity of the solution. The prior
knowledge can also be used to reduce the uncertainty of the final
estimate.

In order to improve the accuracy of the estimate the engi-
neer can increase the number of (independent) measurements
to obtain an overdetermined system of equations. In order to
reduce the cost of the sensory system, the engineer can also
decrease the number of measurements, leaving us with fewer
measurements than parameters. The system of equations is then
underdetermined, but estimation is still possible if enough prior
knowledge exists or if the parameters are related to each other
(possibly in a statistical sense). In either case, the engineer is
interested in the uncertainty of the estimate.

1.1.3 State Estimation

In state estimation, one tries to do either of the following — either
assigning a class label or deriving a parametric (real-valued)
description — but for processes that vary in time or space. There
is a fundamental difference between the problems of classifi-
cation and parameter estimation, on the one hand, and state
estimation, on the other hand. This is the ordering in time (or
space) in state estimation, which is absent from classification and
parameter estimation. When no ordering in the data is assumed,
the data can be processed in any order. In time series, ordering
in time is essential for the process. This results in a fundamental
difference in the treatment of the data.

In the discrete case, the states have discrete values (classes
or labels) that are usually drawn from a finite set. An example
of such a set is the alarm stages in a safety system (e.g. ‘safe,
‘pre-alarm; ‘red alert] etc.). Other examples of discrete state
estimation are speech recognition, printed or handwritten text
recognition and the recognition of the operating modes of a
machine.

5
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Figure 1.3 Assessment of water levels in a water management system: a
state estimation problem (the data are obtained from a scale model).

An example of real-valued state estimation is the water man-
agement system of a region. Using a few level sensors and an
adequate dynamical model of the water system, a state estimator
is able to assess the water levels even at locations without level
sensors. Short-term prediction of the levels is also possible.
Figure 1.3 gives a view of a simple water management system of
a single canal consisting of three linearly connected compart-
ments. The compartments are filled by the precipitation in the
surroundings of the canal. This occurs randomly but with a sea-
sonal influence. The canal drains its water into a river. The mea-
surement of the level in one compartment enables the estimation
of the levels in all three compartments. For that, a dynamic
model is used that describes the relations between flows and lev-
els. Figure 1.3 shows an estimate of the level of the third compart-
ment using measurements of the level in the first compartment.
Prediction of the level in the third compartment is possible due
to the causality of the process and the delay between the levels
in the compartments.



1 Introduction

1.1.4 Relations between the Subjects

The reader who is familiar with one or more of the three sub-
jects might wonder why they are treated in one book. The three
subjects share the following factors:

¢ In all cases, the engineer designs an instrument, that is a sys-
tem whose task is to extract information about a real-world
object, a physical process or an event.

e For that purpose, the instrument will be provided with a sen-
sory subsystem that produces measurement signals. In all
cases, these signals are represented by vectors (with fixed
dimension) or sequences of vectors.

e The measurement vectors must be processed to reveal the
information that is required for the task at hand.

e All three subjects rely on the availability of models describ-
ing the object/physical process/event and of models describ-
ing the sensory system.

e Modelling is an important part of the design stage. The
suitability of the applied model is directly related to the
performance of the resulting classifier/estimator.

Since the nature of the questions raised in the three subjects is
similar, the analysis of all three cases can be done using the same
framework. This allows an economical treatment of the subjects.
The framework that will be used is a probabilistic one. In all three
cases, the strategy will be to formulate the posterior knowledge
in terms of a conditional probability (density) function:

P(quantities of interest measurements available)

This so-called posterior probability combines the prior knowl-
edge with the empirical knowledge by using Bayes’ theorem for
conditional probabilities. As discussed above, the framework is
generic for all three cases. Of course, the elaboration of this prin-
ciple for the three cases leads to different solutions because the
nature of the ‘quantities of interest’ differs.

The second similarity between the topics is their reliance on
models. It is assumed that the constitution of the object/physical
process/event (including the sensory system) can be captured
by a mathematical model. Unfortunately, the physical structures
responsible for generating the objects/process/events are often

7
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unknown, or at least partly unknown. Consequently, the model is
also, at least partly, unknown. Sometimes, some functional form
of the model is assumed, but the free parameters still have to
be determined. In any case, empirical data are needed in order
to establish the model, to tune the classifier/estimator-under-
development and also to evaluate the design. Obviously, the
training/evaluation data should be obtained from the process we
are interested in.

In fact, all three subjects share the same key issue related to
modelling, namely the selection of the appropriate generaliza-
tion level. The empirical data are only an example of a set of
possible measurements. If too much weight is given to the data
at hand, the risk of overfitting occurs. The resulting model will
depend too much on the accidental peculiarities (or noise) of the
data. On the other hand, if too little weight is given, nothing will
be learned and the model completely relies on the prior knowl-
edge. The right balance between these opposite sides depends on
the statistical significance of the data. Obviously, the size of the
data is an important factor. However, the statistical significance
also holds a relation with dimensionality.

Many of the mathematical techniques for modelling, tuning,
training and evaluation can be shared between the three sub-
jects. Estimation procedures used in classification can also be
used in parameter estimation or state estimation, with just minor
modifications. For instance, probability density estimation can
be used for classification purposes and also for estimation. Data-
fitting techniques are applied in both classification and estima-
tion problems. Techniques for statistical inference can also be
shared. Of course, there are also differences between the three
subjects. For instance, the modelling of dynamic systems, usu-
ally called system identification, involves aspects that are typical
for dynamic systems (i.e. determination of the order of the sys-
tem, finding an appropriate functional structure of the model).
However, when it finally comes to finding the right parameters of
the dynamic model, the techniques from parameter estimation
apply again.

Figure 1.4 shows an overview of the relations between the
topics. Classification and parameter estimation share a common
foundation indicated by ‘Bayes’ In combination with models
for dynamic systems (with random inputs), the techniques for
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Figure 1.4 Relations between the subjects.

classification and parameter estimation find their application in
processes that proceed in time, that is state estimation. All this
is built on a mathematical basis with selected topics from math-
ematical analysis (dealing with abstract vector spaces, metric
spaces and operators), linear algebra and probability theory.
As such, classification and estimation are not tied to a specific
application. The engineer, who is involved in a specific applica-
tion, should add the individual characteristics of that application
by means of the models and prior knowledge. Thus, apart from
the ability to handle empirical data, the engineer must also
have some knowledge of the physical background related to the
application at hand and to the sensor technology being used.

All three subjects are mature research areas and many
overview books have been written. Naturally, by combining the
three subjects into one book, it cannot be avoided that some
details are left out. However, the discussion above shows that
the three subjects are close enough to justify one integrated book
covering these areas.

The combination of the three topics into one book also intro-
duces some additional challenges if only because of the differ-
ences in terminology used in the three fields. This is, for instance,
reflected in the difference in the term used for ‘measurements.

9
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In classification theory, the term ‘features’ is frequently used
as a replacement for ‘measurements’ The number of measure-
ments is called the ‘dimension, but in classification theory the
term ‘dimensionality’ is often used.! The same remark holds
true for notations. For instance, in classification theory the
measurements are often denoted by x. In state estimation, two
notations are in vogue: either y or z (MATLAB® uses y, but we
chose z). In all cases we tried to be as consistent as possible.

1.2 Engineering

The top-down design of an instrument always starts with some
primary need. Before starting with the design, the engineer has
only a global view of the system of interest. The actual need
is known only at a high and abstract level. The design process
then proceeds through a number of stages during which pro-
gressively more detailed knowledge becomes available and the
system parts of the instrument are described at lower and more
concrete levels. At each stage, the engineer has to make design
decisions. Such decisions must be based on explicitly defined
evaluation criteria. The procedure, the elementary design step,
is shown in Figure 1.5. It is used iteratively at the different levels
and for the different system parts.

An elementary design step typically consists of collecting and
organizing knowledge about the design issue of that stage, fol-
lowed by an explicit formulation of the involved task. The next
step is to associate the design issue with an evaluation criterion.
The criterion expresses the suitability of a design concept related
to the given task, but also other aspects can be involved, such
as cost of manufacturing, computational cost or throughput.

1 Our definition complies with the mathematical definition of ‘dimension), i.e.
the maximal number of independent vectors in a vector space. In MATLAB® the
term ‘dimension’ refers to an index of a multidimensional array as in phrases
like: ‘the first dimension of a matrix is the row index’ and ‘the number of
dimensions of a matrix is two. The number of elements along a row is the ‘row
dimension’ or ‘row length! In MATLAB® the term ‘dimensionality’ is the same as
the ‘number of dimensions.
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Figure 1.5 An elementary from preceding stage of the design process

step in the design process
(Finkelstein and Finkelstein, l
1994). task definition

l

design concept generation

l

analysis / evaluation

|

decision

|

to next stage of the design process

Usually, there are a number of possible design concepts to select
from. Each concept is subjected to an analysis and an evaluation,
possibly based on some experimentation. Next, the engineer
decides which design concept is most appropriate. If none of
the possible concepts are acceptable, the designer steps back
to an earlier stage to alter the selections that have been made
there.

One of the first tasks of the engineer is to identify the actual
need that the instrument must fulfil. The outcome of this design
step is a description of the functionality, for example a list of pre-
liminary specifications, operating characteristics, environmen-
tal conditions, wishes with respect to user interface and exterior
design. The next steps deal with the principles and methods that
are appropriate to fulfil the needs, that is the internal functional
structure of the instrument. At this level, the system under
design is broken down into a number of functional components.
Each component is considered as a subsystem whose input/
output relations are mathematically defined. Questions related
to the actual construction, realization of the functions, housing,
etc., are later concerns.

The functional structure of an instrument can be divided
roughly into sensing, processing and outputting (displaying,

n
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recording). This book focuses entirely on the design steps related
to processing. It provides:

¢ Knowledge about various methods to fulfil the processing
tasks of the instrument. This is needed in order to generate
a number of different design concepts.

¢ Knowledge about how to evaluate the various methods. This
is needed in order to select the best design concept.

¢ A tool for the experimental evaluation of the design concepts.

The book does not address the topic ‘sensor technology’ For this,
many good textbooks already exist, for instance see Regtien et al.
(2004) and Brignell and White (1996). Nevertheless, the sensory
system does have a large impact on the required processing. For
our purpose, it suffices to consider the sensory subsystem at an
abstract functional level such that it can be described by a math-
ematical model.

1.3 The Organization of the Book

Chapter 2 focuses on the introduction of PRTools designed by
Robert PW.Duin. PRTools is a pattern recognition toolbox for
MATLAB® freely available for non-commercial use. The pattern
recognition routines and support functions offered by PRTools
represent a basic set covering largely the area of statistical pat-
tern recognition. In this book, except for additional notes, all
examples are based on PRTools5.

The second part of the book, containing Chapters 3, 4 and
5, considers each of the three topics — classification, parameter
estimation and state estimation — at a theoretical level. Assum-
ing that appropriate models of the objects, physical process or
events, and of the sensory system are available, these three tasks
are well defined and can be discussed rigorously. This facilitates
the development of a mathematical theory for these topics.

The third part of the book, Chapters 6 to 9, discusses all kinds
of issues related to the deployment of the theory. As mentioned
in Section 1.1, a key issue is modelling. Empirical data should
be combined with prior knowledge about the physical process
underlying the problem at hand, and about the sensory system
used. For classification problems, the empirical data are often
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represented by labelled training and evaluation sets, that is sets
consisting of measurement vectors of objects together with the
true classes to which these objects belong. Chapters 6 and 7
discuss several methods to deal with these sets. Some of these
techniques — probability density estimation, statistical inference,
data fitting — are also applicable to modelling in parameter esti-
mation. Chapter 8 is devoted to unlabelled training sets. The pur-
pose is to find structures underlying these sets that explain the
data in a statistical sense. This is useful for both classification and
parameter estimation problems. In the last chapter all the topics
are applied in some fully worked out examples. Four appendices
are added in order to refresh the required mathematical back-
ground knowledge.

The subtitle of the book, ‘An Engineering Approach using
MaTLAB®, indicates that its focus is not just on the formal
description of classification, parameter estimation and state esti-
mation methods. It also aims to provide practical implementa-
tions of the given algorithms. These implementations are given
in MATLAB®, which is a commercial software package for matrix
manipulation. Over the past decade it has become the de facto
standard for development and research in data-processing appli-
cations. MATLAB® combines an easy-to-learn user interface
with a simple, yet powerful, language syntax and a wealth of
functions organized in toolboxes. We use MATLAB® as a vehicle
for experimentation, the purpose of which is to find out which
method is the most appropriate for a given task. The final con-
struction of the instrument can also be implemented by means
of MATLAB®, but this is not strictly necessary. In the end, when it
comes to realization, the engineer may decide to transform his or
her design of the functional structure from MATLAB® to other
platforms using, for instance, dedicated hardware, software in
embedded systems or virtual instrumentation such as LabView.

MATLAB® itself has many standard functions that are useful
for parameter estimation and state estimation problems. These
functions are scattered over a number of toolboxes. The tool-
boxes are accompanied with a clear and crisp documentation,
and for details of the functions we refer to that.

Most chapters are followed by a few exercises on the theory
provided. However, we believe that only working with the actual
algorithms will provide the reader with the necessary insight to

13
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fully understand the matter. Therefore, a large number of small
code examples are provided throughout the text. Furthermore,
a number of data sets to experiment with are made available
through the accompanying website.

1.4 Changes from First Edition

This edition attempts to put the book’s emphasis more on
image and video processing to cope with increasing interests
on intelligent computer vision. More contents of most recent
technological advancements are included. PRTools is updated
to the newest version and all relevant examples are rewritten.
Several practical systems are further implemented as showcase
examples.

Chapter 1 is slightly modified to accommodate new changes
in this Second Edition.

Chapter 2 is an expansion of Appendix E of the First Edition
to accommodate the new changes of PRTools. Besides updating
each subsection, the PRTools organization structure and imple-
mentation are also introduced.

Chapters 3 and 4 are, Chapters 2 and 3 in the First Edition,
respectively.

Chapter 5 has now explicitly established the state space model
and measurement model. A new example of motion tracking
has been added. A new section on genetic station estimation has
been written as Section 5.5. Further, an abbreviation of Chap-
ter 8 of the First Edition has been formed as a new Section 5.6.
The concept of ‘continuous state variables’ has been adjusted
to ‘infinite discrete-time state variables’ and the concept of
‘discrete state variables’ to ‘finite discrete-time state variables.
Several examples including ‘special state space models’ including
“random constants, ‘first-order autoregressive models, ‘random
walk’ and ‘second- order autoregressive models’ have been
removed.

In Chapter 6, Adaboost algorithm theory and its implemen-
tation with PRTools are added in Section 6.4 and convolutional
neural networks (CNNs) are presented in Section 6.5.

In Chapter 7, several new methods of feature selection have
been added in Section 7.2.3 to reflect the newest advancements
on feature selection.
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In Chapter 8, kernel principal component analysis is addition-
ally described with several examples in Section 8.1.3.

In Chapter 9, three image recognition (objects recognition,
shape recognition and face recognition) examples with PRTools
routines are added.

1.5 References

Brignell, . and White, N., Intelligent Sensor Systems, Revised
edition, IOP Publishing, London, UK, 1996.

Finkelstein, L. and Finkelstein A.C.W., Design Principles for
Instrument Systems in Measurement and Instrumentation (eds
L. Finkelstein and K.T.V. Grattan), Pergamon Press, Oxford, UK,
1994.

Regtien, PP.L., van der Heijden, F., Korsten, M.J. and Olthuis, W.,
Measurement Science for Engineers, Kogan Page Science,
London, UK, 2004.
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PRTools Introduction

2.1 Motivation

Scientists should build their own instruments, or at least be able
to open, investigate and understand the tools they are using. If,
however, the tools are provided as a black box there should be
a manual or literature available that fully explains the ins and
outs. In principle, scientists should be able to create their mea-
surement devices from scratch; otherwise the progress in science
has no foundations.

In statistical pattern recognition one studies techniques for the
generalization of examples to decision rules to be used for the
detection and recognition of patterns in experimental data. This
research area has a strong computational character, demanding a
flexible use of numerical programs for data analysis as well as for
the evaluation of the procedures. As still new methods are being
proposed in the literature a programming platform is needed
that enables a fast and flexible implementation.

MATLAB® is the dominant programming language for imple-
menting numerical computations and is widely used for algo-
rithm development, simulation, data reduction, and testing and
system evaluation. Pattern recognition is studied in almost all
areas of applied science. Thereby the use of a widely available
numerical toolset like MATLAB® may be profitable for both the
use of existing techniques as well as for the study of new algo-
rithms. Moreover, because of its general nature in comparison
with more specialized statistical environments, it offers an easy

Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB,
Second Edition. Bangjun Lei, Guangzhu Xu, Ming Feng, Yaobin Zou, Ferdinand van der Heijden,

Dick de Ridder, and David M. J. Tax.
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Companion Website: www.wiley.com/go/vanderheijden/classification_parameterestimation_stateestimation/
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Table 2.1 Notation differences between this book and the PRTools
documentation

Mathematical Notationin PRTools

notation pseudo-code notation Meaning

T X, z a,b data set

n n m number of objects

N,D N, D k, n number of features, dimensions
K K c number of classes

integration with the pre-processing of data of any nature. This
may certainly be facilitated by the large set of toolboxes available
in MATLAB®.

PRTools is a MATLAB® toolbox designed by Robert P-W. Duin
at first for pattern recognition research. The pattern recognition
routines and support functions offered by PRTools represent a
basic set covering largely the area of statistical pattern recogni-
tion. With the help of researchers in many areas, PRTools has
updated to version 5 and can work well with the simultaneous
use of the MATLAB® Statistical Toolbox Stats and integrates a
number of its classifiers. In this book, except for additional notes,
all examples are based on PRTools5.

PRTools has been used in many courses and PhD projects
and received hundreds of citations. It is especially useful for
researchers and engineers who need a complete package for pro-
totyping recognition systems as it includes tools for representa-
tion. It offers most traditional and state-of-the-art off-the-shelf
procedures for transformations and classification and evalua-
tion. Thereby, it is well suited for comparative studies.

The notation used in PRTools manual documentation and
code differs slightly from that used in the code throughout this
book. In this chapter we try to follow the notation in the book.
In Table 2.1 notation differences between this book and the
PRTools documentation are given.

2.2 Essential Concepts

For the automatic recognition of the classes of objects, first some
measurements have to be collected, for example using sensors,
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then they have to be represented, for example in a feature space,
and after some possible feature reduction steps they can be
finally mapped by a classifier on the set of class labels. Between
the initial representation in the feature space and this final map-
ping on the set of class labels the representation may be changed
several times: simplified feature spaces (feature selection), nor-
malization of features (e.g. by scaling), linear or non-linear map-
pings (feature extraction) and classification by a possible set of
classifiers, combining classifiers and the final labelling. In each
of these steps the data are transformed by some mapping. Based
on this observation the following two basic concepts of PRTools
are defined:

Datasets: matrices in which the rows represent the objects and
the columns the features, class memberships or other fixed
sets of properties (e.g. distances to a fixed set of other objects).
In PRTools4 and the later version an extension of the dataset
concept has been defined as Datafiles, which refer to datasets
to be created from directories of files.

Mappings: transformations operating on datasets. As pattern
recognition has two stages, training and execution, mappings
have also two types, untrained and trained.

An untrained mapping refers just to the concept of a method,
for example forward feature selection, PCA (refer to Chapter 7
of this book). It may have some parameters that are needed for
training, for example the desired number of features or some
regularization parameters. If an untrained mapping is applied to
a dataset it will be trained (training).

A trained mapping is specific for the training set used to
train the mapping. This dataset thereby determines the input
dimensionality (e.g. the number of input features) as well as the
output dimensionality (e.g. the number of output features or
the number of classes). When a trained mapping is applied to
a dataset it will transform the dataset according to its definition
(execution).

In addition fixed mappings are used. They are almost iden-
tical to trained mappings, except that they do not result from
a training step, but are directly defined by the user: for exam-
ple the transformation of distances by a sigmoid function to the
[0, 1] interval. PRTools deals with sets of labelled or unlabelled
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objects and offers routines for the generalization of such sets into
functions for mapping and classification. A classifier is thereby
a special case of a mapping as it maps objects on class labels or
on [0, 1] intervals that may be interpreted as class memberships,
soft labels or posterior probabilities. An object is a k-dimensional
vector of feature values, distances, (dis)similarities or class mem-
berships. Within PRTools they are usually just called features. It
is assumed that for all objects in a problem all values of the same
set of features are given. The space defined by the actual set of
features is called the feature space. Objects are represented as
points or vectors in this space. New objects in a feature space
are usually gradually converted to labels by a series of mappings
followed by a final classifier.

Sets of objects may be given externally or may be generated
by one of the data generation routines of PRTools. Their labels
may also be given externally or may be the result of a cluster
analysis. By these technique similar objects within a larger set
are grouped (clustered). The similarity measure is defined by the
cluster technique in combination with the object representation
in the feature space. Some clustering procedures do not just gen-
erate labels but also a classifier that classifies new objects in the
same way. A fundamental problem is to find a good distance
measure that agrees with the dissimilarity of the objects repre-
sented by the feature vectors. Throughout PRTools the Euclidean
distance is used as a default. However, scaling the features and
transforming the feature spaces by different types of mappings
effectively changes the distance measure.

The dimensionality of the feature space may be reduced by the
selection of subsets of good features. Several strategies and cri-
teria are possible for searching good subsets. Feature selection
is important because it decreases the amount of features that
have to be measured and processed. In addition to the improved
computational speed in lower dimensional feature spaces there
might also be an increase in the accuracy of the classification
algorithms. Another way to reduce the dimensionality is to map
the data on a linear or non-linear subspace. This is called linear
or non-linear feature extraction. It does not necessarily reduce
the number of features to be measured, but the advantage of
an increased accuracy may still be gained. Moreover, as lower
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dimensional representations yield less complex classifiers better
generalizations can be obtained.

Using a training set a classifier can be trained such that it
generalizes this set of examples of labelled objects into a classifi-
cation rule. Such a classifier can be linear or non-linear and can
be based on two different kinds of strategies. The first strategy
minimizes the expected classification error by using estimates
of the probability density functions. In the second strategy this
error is minimized directly by optimizing the classification
function of its performance over the learning set or a separate
evaluation set. In this approach it has to be avoided because the
classifier becomes entirely adapted to the training set, including
its noise. This decreases its generalization capability. This
‘overtraining’ can be circumvented by several types of regular-
ization(often used in neural network training). Another tech-
nique is to simplify the classification function afterwards (e.g.
the pruning of decision trees).

In PRTools4 and the later version the possibility of an
automatic optimization has been introduced for parameters
controlling the complexity or the regularization of the training
procedures of mappings and classifiers. This is based on a cross
validation (see below) over the training set and roughly increases
the time needed for training by a factor of 100. Constructed
classification functions may be evaluated by independent test
sets of labelled objects. These objects have to be excluded from
the training set, otherwise the evaluation becomes optimistically
biased. If they are added to the training set, however, better clas-
sification functions can be expected. A solution to this dilemma
is the use of cross validation and rotation methods by which a
small fraction of objects is excluded from training and used for
testing. This fraction is rotated over the available set of objects
and results are averaged. The extreme case is the leave-one-out
method for which the excluded fraction is as large as one object.

The performance of classification functions can be improved
by the following methods:

1. A reject option in which the objects close to the decision
boundary are not classified. They are rejected and might be
classified by hand or by another classifier.
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2. The selection or averaging of classifiers.
3. A multistage classifier for combining classification results of
several other classifiers.

For all these methods it is profitable or necessary that a classifier
yields some distance measure, confidence or posterior probabil-
ity in addition to the hard, unambiguous assignment of labels.

2.3 PRTools Organization Structure

and Implementation

PRTools makes use of the possibility offered by MATLAB®
to define ‘Classes’ and ‘Objects. These programming concepts
should not be confused with the classes and objects as defined in
pattern recognition. The two main ‘Classes’ defined in PRTools
are: dataset and mapping. As a child of dataset datafile has
also been defined, inheriting most properties of dataset. A large
number of operators (like * or []) and MATLAB® commands
have been overloaded and have thereby a special meaning when
applied to a dataset and/or a mapping.

The central data structure of PRTools is the dataset. It primar-
ily consists of a set of objects represented by a matrix of fea-
ture vectors. Attached to this matrix is a set of labels, one for
each object and a set of feature names, also called feature labels.
Labels can be integer numbers or character strings. Moreover,
a set of prior probabilities, one for each class, is stored. In most
help files of PRTools, a dataset is denoted by A. In almost any
routine this is one of the inputs. Almost all routines can handle
multiclass object sets. It is possible that for some objects no label
is specified (an NaN is used, or an empty string). Such objects
are, unless otherwise mentioned, skipped during training. It is
possible to define more than one set of labels in a dataset. For
instance, when the objects are pixels in an image, then they may
be labelled according to their image segment, but also according
to the image, or to the sensor used, or the place the image has
been measured.

Data structures of the ‘Classes’ mapping store data transfor-
mations (‘mappings’), classifiers, feature extracting results, data
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scaling definitions, non-linear projections, etc. They are usually
denoted by W.

The easiest way to apply a mapping W to a dataset A is by
A*W. The matrix multiplication symbol * is overloaded to this
purpose. This operation may also be written as map (A, W). Like
everywhere else in MATLAB®, concatenations of operations are
possible, for example A*W1*W2*W3, and are executed from left
to right.

In the beginning of the pattern recognition chain (see Fig-
ure 2.1), in the constitution of feature vectors, mappings can
also be used. Raw data such as images may be stored on disk,
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Figure 2.1 The workflow of PRTools.
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and by image processing and image analysis properties may be
measured that can be used as features. The definition of raw
data items is enabled in PRTools by the programming class called
datafile. Datafiles are a type of a pre-stage of datasets. By map-
pings defining the proper pre-processing a dataset may be con-
structed. By following mappings, classifiers can be trained and
applied, resulting in an overall recognition system.

Figure 2.1 is the workflow to use PRTools for pattern recogni-
tion problems. The total recognition workflow in PRTools terms
consists of the following steps:

1. Collect raw data on disk
2. Define a datafile such as A pointing to the raw data
3. Define a mapping such as W_prepproc for an appropriate
preprocessing and analyzing the datafile
4. Apply the mapping to the datafile, resulting in a dataset,
B = A*W_preproc
5. Define a suited conversion of the feature space, e.g. by PCA:
W_featred
6. Apply this mapping on B : C = B*W_featred
7. Train a classifier in this space: W_classf
8. Apply the dataset to this classifier:
labels = C*W_classf
= B*W_featred*W_classf
= A*W_preproc*W_featred*W_classf.

As the mappings W_preproc, W_featred and W_classf are
stored in variables and as the concatenations of a sequence
of mappings is defined in PRTools, the entire recognition sys-
tem can be stored in a single variable: W recsys=w preproc*w
featred*W_classf. New objects, for example images stored
on disk as a datafile A, can now be classified by labels=Ax
W_recsys.

In this example three mappings have to be specified by the
user. The first, w_preproc, is usually entirely based on the back-
ground knowledge of the user of the type of images he or she
wants to classify. The other two, the feature reduction and the
classifier, have to be derived from data based on an optimization
of a cost function or an estimation of parameters given a model
assumption. In pattern recognition terms, these mappings are
thereby the result from training. Datasets are needed for this,
based on the same pre-processing and representation of the data
to be classified later. There are many routines in PRTools avail-
able for training mappings and classifiers. It is in fact the core of
the toolbox.
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Consequently, we distinguish two sets of objects: a training set
with given labels (class memberships) to be used for designing
the system and an unlabelled set for which the class member-
ships have to be found. The first step of the program is the defi-
nition of these sets such that they can be handled by PRTools. Let
us assume that the raw data has been stored in two directories,
‘directory_1’" and ‘directory_2":

A labeled = datafile('directory 1');
A unlabeled = datafile('directory 2');

It will be described later how the labels of A labeled have to be
supplied and how they are stored. The first mapping has to define
features for objects. A simple command is the use of histograms,
which can be specified by the following mapping:

W_preproc = histm([], [1:256]);

The pre-processing of the two datafiles and their conversion
to datasets is performed by

B_labeled = dataset (A_labeled*W preproc) ;
B_unlabeled = dataset (A unlabeled*W_preproc) ;

Let us assume that a feature reduction by PCA is demanded to
five features. It has to be derived from the pre-processed data, of
course:

W_featred = pca(B_labeled,5);

Suppose that finally the Fisher classifier is used. It has to be found
in the reduced feature space:

W_classf == fisherc(B_labeled*W_preproc*W_featred) ;
The labels for B_unlabeled can now be estimated by

labels = B_unlabeled*W_preproc*W_featred*W_classf*labeld;

in which labeld is a standard PRTools mapping that maps clas-
sifier outcomes to labels. The classification system can also be
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stored in a single variable w class sys:

W_class_sys = W_preproc*W_featred*W classf*labeld;
labels = B_unlabeled*W class_sys;

2.4 Some Details about PRTools
2.4.1 Datasets

Datasets in PRTools are in the MATLAB® language defined as
objects of the class DATASET. Below, the words ‘object’ and
‘class’ are used in the pattern recognition sense. A dataset is a
set consisting of M objects, each described by K features. In
PRTools, such a dataset is represented by an M X K matrix: M
rows, each containing an object vector of K elements. Usually, a
dataset is labelled. An example of a definition is

DATA [RAND(3,2) ; RAND(3,2)+0.5];

LABS ['A';'A';'A';'B';'B';'B'];
A = DATASET (DATA, LABS) ;

which defines a [6 X 2] dataset with 2 classes. The [6 X 2] data
matrix (6 objects given by 2 features) is accompanied by labels,
assigning each of the objects to one of the two classes A and
B. Class labels can be numbers or strings and should always be
given as rows in the label list. A label may also have the value
NaN or may be an empty string, indicating an unlabelled object.
If the label list is not given, all objects are marked as unlabelled.
Various other types of information can be stored in a dataset.
The simplest way to get an overview is by typing:

STRUCT (A)

which for the above example displays the following:
DATA: [6x2 doublel

LABLIST: {2x4 cell}

NLAB: [6x1 doublel

LABTYPE: 'crisp'

TARGETS: []

FEATLAB: [2x1 double]

FEATDOM: {1x2 cell }

PRIOR: []

COST: []

OBJSIZE: 6

FEATSIZE: 2

IDENT: [6x1 struct]

VERSION: {[1x1 struct] '21-Jul-2007 15:16:57'}
NAME: []

USER: []



2 PRTools Introduction

These fields have the following meaning:

Filed name

Description

DATA

An array containing the objects (the rows)
represented by features (the columns). In the
software and help-files, the number of objects
is usually denoted by M and the number of
features is denoted by K. Therefore, DATA has
the size of [M,K]. This is also defined as the

size of the entire dataset.

LABLIST

The names of the classes, can be strings
stored in a character array. If they are
numeric they are stored in a column vector.
Mixtures of these are not supported. The
LABLIST field is a structure in which more than
a single label list and the corresponding
priors and costs are stored. PRTools

automatically keeps track of this.

NLAB

An [M x 1] vector of integers between 1 and C,

defining for each of the M objects its class.

LABTYPE

'CRISP', 'SOFT' or 'TARGETS' are the three
possible label types. In case of 'CRISP'
labels, a unique class, defined by NLAB, is
assigned to each object, pointing to the class
names given in LABLIST. For 'SOFT' labels,
each object has a corresponding vector of C
numbers between 0 and 1 indicating its
membership (or confidence or posterior
probability) of each of the C classes. These
numbers are stored in TARGETS of the size

M x C. They do not necessarily sum to one for
individual row vectors. Labels of type
'TARGETS' are in fact no labels, but merely
target vectors of length C. The values are
again stored in TARGETS and are not restricted

in value.

TARGETS

[M, C] array storing the values of the soft

labels or targets.

FEATLAB

A label list (like LABLIST) of K rows storing

the names of the features.

(continued)
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Filed name | Description

FEATDOM A cell array describing for each feature its
domain.
PRIOR Vector of length C storing the class prior

probabilities. They should sum to one. If
PRIOR is empty ([]) it is assumed that the
class prior probabilities correspond to the

class frequencies.

COST Classification cost matrix. COST(I,J) are the
costs of classifying an object from class I as
class J. Column C+1 generates an alternative
reject class and may be omitted, yielding a
size of [C,C]. An empty cost matrix, COST=[]
(default) is interpreted as COST=ONES (C) -

EYE (C) (identical costs of misclassification) .

OBJSIZE The number of objects, M. In case the objects
are related to an n-dimensional structure,
OBJSIZE is a vector of length n, storing the
size of this structure. For instance, if the
objects are pixels in a [20 x 16] image, then
OBJSIZE = [20, 16] and M = 320.

FEATSIZE The number of features, K. In case the
features are related to an n-dimensional
structure, FEATSIZE is a vector of length n,
storing the size of this structure. For

instance, if the features are pixels in a

[20 x 16] image, then FEATSIZE = [20, 16] and
K = 320.
IDENT A structure array of M elements storing user

defined fields giving additional information on

each of the objects.

VERSION Some information related to the version of

PRTools used for defining the dataset.

NAME A character string naming the dataset,

possibly used to annotate related graphics.

USER A structure with user defined fields not used by
PRTools.
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The fields can be set in the following ways:

1.

In the DATASET construction command after DATA and
LABELS using the form of {field name, value pairs}, for
example

A =DATASET (DATA, LABELS,'PRIOR;, [0.4 0.6],
'FEATLIST',['AA';'BB']);

Note that the elements in PRIOR refer to classes as they are
ordered in LABLIST.

. For a given dataset A, the fields may be changed similarly by

the SET command:
A =SET (A,'PRIOR}[0.4 0.6], FEATLIST',['AA';'BB']);

. By the commands

SETDATA, SETFEATLAB, SETFEATDOM, SETFEATSIZE,
SETIDENT, SETLABELS, SETLABLIST, SETLABTYPE,
SETNAME, SETNLAB, SETOBJSIZE, SETPRIOR,
SETTARGETS, SETUSER.

. By using the dot extension as for structures, for example

A.PRIOR = [0.4 0.6];
A FEATLIST = ['AA'BB';

Note that there is no field LABELS in the DATASET defi-
nition. Labels are converted to NLAB and LABLIST. Com-
mands like SETLABELS and A.LABELS, however, exist and
take care of the conversion.

The data and information stored in a dataset can be retrieved as
follows:

1.

By DOUBLE(A) and by +A, the content of the A.DATA is
returned.

[N,LABLIST] = CLASSSIZES(A);

It returns the numbers of objects per class and the class names
stored in LABLIST. By DISPLAY/(A), it writes the size of the
dataset, the number of classes and the label type on the termi-
nal screen. By SIZE(A), it returns the size of A.DATA: num-
bers of objects and features. By SCATTERD(A), it makes a
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scatter plot of a dataset. By SHOW/(A), it may be used to
display images that are stored as features or as objects in a
dataset.

2. By the GET command, for example

[PRIOR, FEATLIST] = GET(A,PRIOR', FEATLIST");
3. By the commands:

GETDATA, GETFEATLAB, GETFEATSIZE, GETIDENT,
GETLABELS, GETLABLIST, GETLABTYPE, GETNAME,
GETNLAB, GETOBJSIZE, GETPRIOR, GETCOST,
GETSIZE, GETTARGETS, GETTARGETS, GETUSER,
GETVERSION.

Note that GETSIZE(A) does not refer to a single field, but it
returns [M,K,C]. The following commands do not return the
dataitself, instead they return indices to objects that have spe-
cific identifiers, labels or class indices:

FINDIDENT, FINDLABELS, FINDNLAB.
4. Using the dot extension as for structures, for example

PRIOR = A.PRIOR;
FEATLIST = A.FEATLIST;

Many standard MATLAB® operations and a number of general
MaTLAB® commands have been overloaded for variables of
the DATASET type.

2.4.2 Datafiles

Datafiles are constructed to solve the memory problem con-
nected with datasets. The latter are always in the core and their
size is thereby restricted to the size of the computer memory.
As in processing datasets copies are often (temporarily) created,
it is in practice advisable to keep datasets under 10 million ele-
ments (objectsize X featuresize). A number of operations han-
dle datasets sequentially or can be written like that, for example
fixed mappings, testing and the training of some simple classi-
fiers. Thus there is no problem to have such data stored on disk



