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Series Preface

This series is a joint venture between the International Neuroendocrine

Federation and Wiley-Blackwell. The broad aim of the series is to pro-

vide established researchers, trainees, and students with authoritative

up-to-date accounts of the present state of knowledge and prospects for

the future across a range of topics in the burgeoning field of neuroen-

docrinology. The series is aimed at a wide audience as neuroendocrinology

integrates neuroscience and endocrinology. We define neuroendocrinol-

ogy as the study of the control of endocrine function by the brain and

the actions of hormones on the brain. It encompasses the study of the

normal and abnormal functions, and the developmental origins of disease.

It includes the study of the neural networks in the brain that regulate

and form neuroendocrine systems. It includes the study of behaviors and

mental status that are influenced or regulated by hormones. It necessarily

includes the understanding and study of peripheral physiological systems

that are regulated by neuroendocrine mechanisms.

Clearly, neuroendocrinology embraces many current issues of concern

to human health and well-being, but research on these issues necessitates

reductionist animal models.

Contemporary research in neuroendocrinology involves the use of a

wide range of techniques and technologies, from subcellular to systems

and the whole organism level. A particular aim of the series is to provide

expert advice and discussion about experimental or study protocols in

research in neuroendocrinology and to further advance the field by

giving information and advice about novel techniques, technologies and

interdisciplinary approaches.

To achieve our aims, each book is based on a particular theme in neu-

roendocrinology, and for each book, we have recruited an editor, or pair

of editors, experts in the field, and they have engaged an international

team of experts to contribute chapters in their individual areas of expertise.

Their mission was to give an update of knowledge and recent discoveries,

to discuss new approaches, “gold-standard” protocols, translational pos-

sibilities, and future prospects. Authors were asked to write for a wide

audience to minimize references, and to consider the use of video clips and

explanatory text boxes; each chapter is peer-reviewed and has a Glossary,

and each book has a detailed index. We have been guided by an Advisory

ix
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Preface

I started wondering about the brain when I was walking up and down

the road to school. I was amazed by vision, how we are able to sense

light with our eyes and turn it into electrical signals that are somehow

reconstructed into conscious experience and the ability to interact with

the world. Despite being a teenager, I didn’t think much about hormones.

I pursued these wonderings by becoming interested in philosophy, and

then because I was already into computers, artificial intelligence. In the

pre-internet age I gleaned as much as I could mostly from magazine arti-

cles, reading of the wonders of neural networks and robotics. The desire to

pursue these things was great enough to go and study artificial intelligence

and philosophy at university.

How do you pursue the brain? Artificial intelligence teaches you most of

all just how difficult all the things that our brains can do are. So marvelous,

and potentially powerful that they seem almost impossible, and yet we do

them all the time, and the answers to how are in here somewhere. By the

end of my first degree, it became clear that if I really wanted answers then I

should be a neuroscientist, and an opportunity came along to do modeling

in ‘neuroendocrinology’. It was a neatly packaged masters (to turn me into

a neuroscientist) and a PhD, on exactly the path I wanted to follow, and

I didn’t worry too much that I didn’t know what ‘neuroendocrinology’

was. When I eventually looked it up I was somewhat disappointed to find

out it was hormones. This seemed rather unglamorous besides topics such

as vision, motor control, and learning and memory. I had no idea how

fortunate I was.

Among neuroscientists, we are remarkably privileged in neuroen-

docrinology, because we have measurable outputs that we can directly

relate to measurable neural activity. And beyond this, we know the

purpose of these outputs, how these hormonal signals interact with the

body and the greater world. We have access to a complete system to study.

How do we pursue this? First comes the anatomy, discovering the loca-

tion and physical nature of the elements involved in the system. Then the

physiology, measuring these elements, detecting their activity, and relat-

ing this to function. The hard-won knowledge comes in many small pieces

and at many levels, higher level measurements such as hormone concen-

tration in blood plasma, and lower levels such as changes in mRNA content

in some component of a cell. Occasionally, these results are easily built into

xi



Trim Size: 170mm x 244mm Leng fpref.tex V3 - 01/19/2016 2:42 P.M. Page xii

xii Preface

a more complete understanding of how the systems work, but more often

there are large gaps and apparent contradictions. We are also not good at

combining knowledge from different levels. A common mistake in neuro-

science is the attempt to interpret any result directly in the context of high

level system behavior. Every experiment and result must be justified by

purpose, and given context, but we often struggle to build the structures

to do this, and fall back on lazy reductionism.

What we need are the tools to structure our knowledge and to ask bet-

ter questions. Many of us have a model of some sort in our heads, writ-

ten as a hypothesis, or drawn as diagram, but with the skills to formalize

these models, and turn them into testable living things, they can be much

more powerful. Building models also brings discipline, forcing us to con-

sider what we know and don’t know, and most importantly what we need

to know. In an ideal modelers’ world every piece of work would be cen-

tered on building a model. The model would be used to plan experiments,

interpret results, and ultimately, demonstrate and document the working

understanding of a system, as the final product of the research.

The basic skill required for modeling is to be able to translate physiologi-

cal mechanisms into amathematical form. There aremanywell-established

techniques for doing this. Mostly they use very simple high-school-level

mathematics. More complex analysis is often applied, but this is not neces-

sary to do useful modeling. One basic form is the Hill equation. This models

the activation of some element due to binding of a ligand to a receptor.

It has two parameters, one for threshold, and one for gradient, and gen-

erates a sigmoid curve, of the familiar form often seen in dose-response

data. Another classic and very successful technique, which features in sev-

eral chapters of this book, is the Hodgkin–Huxley model. It represents the

currents that sum together to generate a neuron’s membrane potential.

It is able to very accurately reproduce electrophysiological data, bridging

our knowledge at the level of individual ion channels and their mecha-

nisms to action potentials and all their variations in shape and patterning.

It is successful because both its low-level elements and parameters, and its

high-level output can be directly compared to experimental data.

The detail we include in a model will be determined partly by the knowl-

edge we have from which to build it, but also at what level we hope to

understand a system, and what data we will test the model against. A guid-

ing principle is that the model should be as simple as possible in order to

explain the observed behavior. The Hodgkin–Huxley model is powerful,

but it is more difficult to apply to neurons studied in vivo where we have

less direct access to detailed electrophysiological properties. The alterna-

tive is integrate-and-fire type models of action potential generation, where

more simple equations with fewer parameters reduce the complex changes



Trim Size: 170mm x 244mm Leng fpref.tex V3 - 01/19/2016 2:42 P.M. Page xiii

Preface xiii

in membrane potential to just the essential changes in neuronal excitabil-

ity. The more complex models help us to know what elements should be

in the simpler model, but we can simplify these elements so that they are

easier to work with, and easier to interpret in the context of the behavior

of the model.

When we want to study an entire system, such as the HPA axis or the

activity of GnRH neurons in the context of an ovarian cycle, we will use a

much more abstract representation. A single variable in the model might

represent the activity and secretory output of an entire population of neu-

rons. We can use such models to understand how the major elements of

the systemmust interact in order for the system to function and explain the

behavior we observe, such as pulsatile hormone output. We will only add

more complexity to the model when we determine that more elements are

necessary to its functioning. Sometimes these new elements will be based

on mechanisms we already know, and sometimes they will be entirely new

predictions, to test experimentally.

The objective of this book is to make these techniques accessible to inter-

ested experimental neuroendocrinologists and other neuroscientists, and

perhaps also to draw those already with the skills for modeling into neu-

roendocrinology, because hormones are glamorous! All the essential and

wonderful elements of life depend on hormones. And as a general way

to pursue intelligence and the brain, neuroendocrinology gives us one of

the best paths to be able to understand neurons (and glia) and how they

process information to drive function.

Our authors are some of the very best in the field of computational

neuroendocrinology. They come from diverse backgrounds: mathematics,

computing, biology, and medicine, and many of them do both theoreti-

cal and experimental work. All of the chapters present examples where

modeling has been successfully applied; however, they also tell the story

of how they got there, and will hopefully show experimentalists how they

can think like modelers, with a view to making use of models and even

developing their own.
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CHAPTER 1

Bridging Between Experiments
and Equations: A Tutorial on
Modeling Excitability
David P. McCobb1 and Mary Lou Zeeman2

1Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
2Department of Mathematics, Bowdoin College, Brunswick, ME, USA

The goal of this chapter is to empower collaboration across the disciplines.

It is aimed at mathematical scientists who want to better understand neural

excitability and experimentalists who want to better understand math-

ematical modeling and analysis. None of us need to be expert in both

disciplines, but each side needs to learn the other’s language before our

conversations can spark the exciting new collaborations that enrich both

disciplines. Learning is an active process:

Tell me and I will forget; show me and I may remember; involve me and I will understand.

– Proverb

We have, therefore, written this chapter to be highly interactive. It is

based on the classic model of excitability developed by Morris and Lecar

(1981), and built around exercises that introduce the freely available

dynamical systems software, XPP (Ermentrout, 2012), to explore and

illustrate the modeling concepts. An online graphing calculator, such as

Desmos (www.desmos.com), is also used occasionally. The modeling and

dynamical systems techniques we develop are extremely versatile, with

broad applicability throughout the sciences and social sciences. In the

chapters of this volume, they are applied to systems at scales ranging

from individual cells to entire neuroendocrine axes. We recommend that

you work on the exercises as you read, with plenty of time, and tea and

chocolate in hand. It is a great way to learn.

Outline. In Section 1.1, we introduce excitability, encompassing the

diversity of action potential waveforms and patterns, recurrent fir-

ing, and bursting. We also describe the voltage clamp, the essential

tool for dissection of excitability used by Hodgkin and Huxley (1952)

Computational Neuroendocrinology, First Edition. Edited by Duncan J. MacGregor and Gareth Leng.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/Leng/Computational
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in their foundational work. In Section 1.2, we introduce the classic,

two-dimensional Morris–Lecar model, developed originally from barnacle

muscle data to expose the minimal mathematical essence of excitability

(Morris and Lecar, 1981). In Sections 1.3 and 1.4, we introduce the soft-

ware package XPP (see Section 1.3 and Ermentrout (2012)) for download

instructions), and use it to explore the model behavior, thereby intro-

ducing the language and graphics of dynamical systems and phase-plane

analysis. This provides a platform for extending the model and including

data from naturally occurring ion channels to dissect the excitability of

diverse and more complex cells.

In Sections 1.5–1.10, we follow the seminal paper by Rinzel and Ermen-

trout (1989) to explore the surprising richness of behavior the Morris–Lecar

model can exhibit in response to sustained current injection at various lev-

els. We use three different parameter sets, differing only in the voltage

dependence and kinetics of potassium channel gating. For each parame-

ter set, we simulate a current clamp experiment in which sustained cur-

rent is applied to a cell at rest. In all the three cases, sufficiently high

levels of applied current induce tonic spiking, but the onset of spiking

occurs through different mechanisms with different properties. With the

first parameter set (“Hopf” in Table 1.1), tonic spiking is restricted to a nar-

row frequency range, as in Hodgkin’s Class II, typically resonator, neurons

(Hodgkin, 1948). The second parameter set (“SNIC” in Table 1.1) exhibits

tonic spiking with arbitrarily low frequency, depending on the applied cur-

rent, as in Hodgkin’s Class I, typically integrator, neurons. The final param-

eter set (“Homoclinic” in Table 1.1) generates tonic spiking with a high

baseline between the spikes. In Section 1.10, we exploit the high baseline

to illustrate how adding a slow variable to the model can generate bursting

behavior. Our tour of the Morris–Lecar model owes much to Rinzel and

Ermentrout (1989) and many others, including Ellner and Guckenheimer

(2006), Izhikevich (2007), Morris and Lecar (1981), and Sherman (2011).

Mathematically, a qualitative change in system behavior, such as the

onset of spiking arises through a bifurcation. Different mechanisms for

the onset of spiking correspond to different bifurcations. We work through

each of these bifurcations carefully, as they typify the mechanisms for gen-

erating oscillations in two-dimensional systems, they can underlie mecha-

nisms in higher dimensional systems, and they recur throughout the text.

Our interdisciplinary conversations have led to a route through the

mathematical material that may seem unusual. We have not begun with

local linear stability theory, because our experience suggests that, while

many experimentalists have excellent intuition about rates of change at

their fingertips, the abstraction of eigenvalues presents a road block. (This

is a natural consequence of the typical mathematics requirements for a
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biology degree.) We have chosen, instead, to harness the intuition about

rates, and the visual intuition afforded by XPP, to develop an insight into

the global nonlinear dynamics and bifurcations of the system. Only then

we conclude with a discussion of the role eigenvalues play in determining

local stability, and thereby signalling bifurcations. References are provided

for the interested reader to learn more.

1.1 Introducing excitability

Action potentials: Decisive action and “information transportation”. Cellular

excitability is defined as the ability to generate an action potential (or

spike): an explosive excursion in a cell’s membrane potential (Figure 1.1).

Its all-or-nothing aspect makes it decisive. Its propensity to propagate

in space enables signal transmission in biological “wires” that are too

small and electrically leaky to transmit a passive electrical signal over

more than a millimeter or 2. Most cells have strong ionic gradients that

are nearly, but imperfectly counterbalanced: a higher concentration of

potassium ions (K+) inside than out, versus higher sodium (Na+), calcium

(Ca++) and chloride (Cl−) concentrations outside than in. Higher “resting”

permeabilities of the cell membrane to K and Cl result in a significant

inside-negative resting potential (for largely historical reasons this is referred

to as a hyperpolarized state). Action potentials are explosive excursions

in the positive (depolarizing) direction from the resting potential, often

reversing the polarity substantially (but still referred to as depolarizing).

The explosive mechanism uses positive feedback to produce a spatially

regenerative event that propagates along a nerve axon, muscle fiber, or

secretory cell’s membrane. Positive feedback arises from the fact that the

opening of either sodium (Na) or calcium (Ca) ion channels (small selective

and gated pores in the cell membrane) is (1) promoted by depolarization

and (2) leads to further depolarization, as Na or Ca ions enter through

the opened channels. The explosive depolarization can propagate at rates

anywhere from 1 to 200 m/s (Xu and Terakawa, 1999) depending on cell

specifics. This is very slow compared to the passive spread of a voltage signal

in a metal wire (on the order of the speed of light!). It is limited by the time

required for channels to respond to voltage, together with the effects of

membrane capacitance and leak. Nevertheless, it is much faster than any

other form of chemical or biochemical signal propagation, and fast enough

to support animal life, including the transmission of information over some

2 million miles of axons in the human body.

The explosive, roughly all-or-nothing nature of the action potential

also serves as a decisively thresholded regulator of Ca entry. It thereby

regulates many precisely timed and scaled cellular events, including
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neurotransmitter and hormone secretion, muscle contraction, biochemical

reactions, and even gene regulatory processes. Membrane voltage thus
underlies rapid signal integration in the “biological computer,” including

the regulation of neuroendocrine function.

For a cell to recover from the excursion from negative resting potential

and prepare to fire another action potential, repolarization has to occur.

This is achieved by combatting the positive feedback with slightly delayed

negative feedback, or feedbacks. An essentially identical mechanism of

depolarization-triggered opening of ion channels as described for Na or

Ca, but now involving a channel type that selectively conducts K, quickly

restores the hyperpolarized state. In response, the Na- or Ca-channel gates

can now relax back to the closed state (as do the K-channel gates), a

process referred to as deactivation. In most cases, the K-channel restorative

mechanism is backed up by the closing of a separate inactivation gate

within the body of the Na or Ca channel, which would prevent prolonged

depolarization (and flooding of Na or Ca into the cell) even without the

K channel. Together these events speed repolarization, deactivation and

deinactivation (the reversal of inactivation). The separability of these gating

events provides raw material for very sophisticated and sometimes subtle

differences in firing and consequent signal integration.

Action potential shape and timing in information processing. Synaptic transmis-

sion is well known to play important roles in information processing. The

details of intrinsic excitability of neuroendocrine cells are at least as impor-

tant as in neurons, and even more so in cells like those in the anterior

pituitary that are not directly driven by synaptic inputs. Thus, the variety,

subtlety and susceptibility to modulatory changes of ion channels under-

lying excitability are critical to the nuances of neuroendocrine signalling.

See Hille (2001), Chapter 7 in Izhikevich (2007) and Figure 1.1. Details of

the rising phase control threshold and rise time, and influence frequency.

The details of repolarization, recovery, and preparation for subsequent sig-

nalling events are even more nuanced and diverse, as indicated by the enor-

mous diversity of K channels (at least an order of magnitude greater than

that of Na and Ca channels). Action potential threshold, differing between

cells, and depending on recent events and modulatory factors within a

cell, determines whether a response is transmitted or squelched. It also

contributes, as do ensuing features of the action potential, to the encod-

ing of the stimulus strength as firing frequency. Spike amplitude shapes

calcium channel activation and calcium entry, as well as K-channel activa-

tion. These in turn sculpt ensuing features, and, especially through calcium

influx, sculpt the transduction from electrical response to output, includ-

ing, for example, transmitter, modulator, hormone release, or muscle con-

traction. The latency of the rising phase is critical to encoding or integration,

and can serve as a temporal filter. So, too, can the timing of repolarization
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Figure 1.1 Variety of natural excitability. (a) Voltage responses of a mouse

adrenal chromaffin cell to 10 ms current steps, recorded with whole-cell current clamp

(McCobb Lab data). Action potential (AP) amplitudes were nearly invariant, and rise

times varied modestly with stimulus amplitude. Voltage scale as in (b). (b) AP

waveforms vary widely between cell types, ranging in duration from 180 μs for a

purkinje cell (orange; Bean (2007)) to > 80 ms for a cardiac muscle AP (black). Shown

for comparison are spikes from a barnacle muscle cell (blue; Fatt and Katz (1953)) and a

chromaffin cell (purple; McCobb Lab). (c–f) Patterns of spikes elicited with sustained

current steps vary even between mouse chromaffin cells (McCobb Lab). Cell (c) would

not fire more than one spike, (d) fired a train with declining frequency, amplitude, and

repolarization rate, (e), an irregular volley, and (f), a very regular train at high

frequency. (g, h) Pituitary corticotropes fire spontaneous bursts with features that vary

between bursts and between cells, including spike amplitudes and patterns, as well as

burst durations (McCobb Lab). Scale bars in (c) apply to (c–h).
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and recovery. These can confer a resonance on the system that makes it

selectively responsive to timing of input, and potentially, as responsive to

hyperpolarizing as depolarizing input. Timing and the interplay between

the channel mechanisms together pattern the timing of spikes. They can

also confer intrinsic firing, exemplified by the beautifully complex rhythms

of burst firing. In addition to influencing reactivity to inputs, intrinsic firing

makes a neuron a potential source of action (or maintenance or inaction).

Together the dimensions of complexity and variability that have evolved in

electrical signalling contribute enormously to the intelligence of biological

systems, including (but not exclusive to) the brain function.

Dissecting action potential mechanisms with voltage clamp. Hodgkin and Huxley

(1952) used the voltage clamp to dissect the action potential in the squid

giant axon. (The axon is a milimeter or more in diameter, roughly 100

times the diameter of the largest human fibers). This clever device measures

the opening and closing of ion channels, as follows: the voltage difference

between the inside and outside of an axon is measured, and compared

to a desired or “command” voltage. Any discrepancy between measured

and command potentials is then immediately eliminated by injecting cur-

rent into the axon through a second internal electrode. The amount of

current required to clamp the voltage depends on the membrane conduc-

tance (inverse of resistance), and thus changes as ion channels open or

close (see Figure 1.2). While useful for studying any channels, the voltage

clamp is especially important for voltage-gated channels. By varying the

voltage itself in stepwise fashion, Hodgkin and Huxley were able to prove

that the membrane had conductances that were directly gated by voltage.

Then by removing Na and K ions independently, they resolved distinct

inward and outward components, and noted their dramatically different

kinetics. The inward (Na) current responded more rapidly, but terminated

quickly, while the outward (K) current was slower but persisted. Recog-

nizing that this voltage sensitivity might provide the feedback underlying

the action potential, they carefully measured voltage- and time-dependent

features, including activation and deactivation of inward and outward com-

ponents, and inactivation and deinactivation of the inward component.

They then constructed a mathematical model and solved it numerically for

the response to a stimulus, with the similarity between the theoretical volt-

age response and a recorded action potential supporting the view that they

had explained the basic mechanism.

So why do we need to continue modeling action potentials and excitability? Hodgkin

and Huxley (1952) predated the identification of ion channel proteins,
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Figure 1.2 Voltage clamp data. (a, b, and c) Voltage-gated K, Ca, and Na currents,

respectively, elicited with voltage steps in whole-cell voltage clamp mode applied to

mouse chromaffin cells (McCobb Lab data). Outward currents are positive (upward),

and inward currents are negative (downward). The K and Ca currents shown here

exhibit little inactivation, though both types can inactivate in some chromaffin cells.

The Na currents inactivate rapidly, and the current amplitude reverses sign when the

test potential crosses the Na reversal potential. (d) K-current activation is faster at more

depolarized potentials, as shown by normalizing the K currents at 0 and +100 mV from

(a). (e) Current–voltage (I–V) plot for K currents from the cell in (a); peak current

values are plotted against the corresponding test potential. (f) Conductance–voltage

(G–V) plot; current values from (e) are divided by the driving force (Vtest − Vreversal) and

plotted against test potential. The G–V curve gives a summary of the voltage

dependence of gating without the confounding effect of driving force.

but their results implied sophisticated voltage-sensing and gating nuances,

and gave birth to structure-function analysis with unprecedented temporal

resolution. Action potentials in barnacle muscle, another early prepara-

tion, were shown to depend on Ca rather than on Na influx (Keynes et al.,

1973). This laid the foundation for the Morris–Lecar model, in which

one (excitatory) Ca current and one (repolarizing) K current interact

to generate excitability (Morris and Lecar, 1981). Moreover, with glass

electrodes enabling recordings in many more cell types, it became ever

clearer that there was enormous variation on the general theme, begging

further dissection. Every quantifiable feature of action potentials, from

threshold to rise-time, duration, ensuing dip (afterhyperpolarization) and

size, number, frequency, and pattern of additional action potentials elicited



Trim Size: 170mm x 244mm Leng c01.tex V3 - 02/12/2016 6:41 A.M. Page 8

8 Chapter 1

by various stimuli could be shown to vary from cell to cell. It is now clear

that this variety sculpts signal input–output relationships for neurons and

networks in almost limitless fashion. Meanwhile, a vast array of ion chan-

nel genes, accessory proteins, and modulatory mechanisms contributing

to excitability has been identified (Coetzee et al., 1999; Dolphin, 2009;

Hille, 2001; Jan and Jan, 2012; Jegla et al., 2009; Lipscombe et al., 2013;

Zakon, 2012). A wealth of questions arise. How do structural elements

and combinations encode functional nuances appropriate to physiological,

behavioral, and ecological contexts in diverse animals? How did they

arise through evolution? How they are coordinated in development? And

how does event-sensitive plasticity contribute to adaptive modification of

excitability-dependent computations? Relevant hypotheses clearly depend

on theoretical dissection via mathematical modeling.

Why work with a model originating in barnacle muscle? Throughout the

chapter, we will work with the Morris–Lecar model, which was originally

developed for barnacle muscle and includes only two voltage-gated chan-

nel types (Ca and K), neither of which inactivates. Moreover, based on

observations that showed the activation rate for the excitatory Ca current

to be about 10-fold faster than that for the repolarizing K current and

20-fold faster than that for charging the capacitor (Keynes et al., 1973),

Morris and Lecar (1981) simplified the model even further, reducing

dimension by treating the Ca-channel activation as instantaneous.

You may ask why a neurobiologist or endocrinologist should spend time

on such a simple system, so obviously peripheral to sophisticated neural

computation. Or how simplification and omission justify the trouble of

learning mathematical “hieroglyphics”. These questions raise the issue of

what a mathematical model is good for. A powerful use of models is to help

test hypotheses and design experiments about putative biological mecha-

nisms underlying observed behaviors. To that end, minimal models, built

from the ground up, allow for thorough dissection and attribution of mech-

anisms. For example, see Izhikevich (2007, Chapter 5) for a summary of

six minimal models of excitability. After studying the Morris–Lecar model

in this chapter, we hope that you will agree that what may at first look like

an extremely limited system turns out to be capable of a surprisingly rich

repertoire of waveforms and firing dynamics. Without studying such a min-

imal model, one might assume that more channel types or more complex

gating mechanisms were needed to generate such a variety. After develop-

ing modeling confidence, it is easy to adjust parameters, or add inactiva-

tion, other channel types or gating mechanisms, as detailed in Chapter 2.

The comparison between Morris–Lecar, Hodgkin–Huxley, and other model
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behaviors then helps to clarify the interactive mechanisms at play, and the

roles of specific terms and parameters.

The reduced dimension of the Morris–Lecar model also provides an

excellent starting point for model analysis. It allows us to explore and

dissect the model behavior in a two-dimensional phase plane (detailed

in Section 1.4), where, with the help of graphical software, we can

harness our visual intuition to understand the concepts and language

of dynamical systems. The dynamical systems approach is extremely

versatile, generalizing to more complex models and higher dimensions,

and highlighting similarities among mechanisms in a wide range of

applications. Throughout this volume, we will see how dynamical analysis

of minimal models, designed with the scale and complexity of the specific

neuroendocrine question in mind, yields new biological insights.

1.2 Introducing the Morris–Lecar model

The Morris–Lecar model is discussed in many texts in mathematical biology

and theoretical neuroscience. See, for example, Ellner and Guckenheimer

(2006), Ermentrout and Terman (2010), Fall et al. (2005), Izhikevich

(2007), and Koch (1999).

What is in the Morris–Lecar model? The model structure is represented by

the circuit diagram in Figure 1.3a (Morris and Lecar, 1981). A system of

Ca and K gradients with selective conductances provides “batteries” defin-

ing equilibrium or reversal potentials. There is also a “leak” of undefined

(probably composite) conductance, with a measurable reversal potential.

For our purposes, the chemical gradients do not change appreciably: ion

pumps and exchangers work in the background to ensure this. Currents

applied through the current electrode travel in parallel across the capacitor

and any open ion channels or other leaks. Internal and external solu-

tions offer no resistance to flow, so that the voltage across the capacitor

and resistors/conductors in the membrane is equivalent. Moreover, the

system is assumed to be spatially uniform; voltage over the entire mem-

brane changes in unison. This fits well with data from compact neuroen-

docrine cells (Bertram et al., 2014; Liang et al., 2011; Lovell et al., 2004;

Stojilkovic et al., 2010; Tian and Shipston, 2000). The approach is also

useful for membrane patches in most neuronal contexts. Spatial nonuni-

formity and spatio-temporal propagation of signals are not addressed here.

What makes this an “excitable” membrane and an interesting dynamical

system, is (1) feedback: the proportion of channels open (for both Ca and

K channels) depends on voltage and (2) reactions of the channel gates
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to changes in voltage take time. Reaction rates also vary with voltage;

but while this influences the voltage waveform, it is not essential for

excitability.

Ion channel openings and closings are stochastic events, but their num-

bers are large enough that the currents associated with each type can be

modeled as smooth functions. Thus, four variables interact dynamically:

• The voltage (transmembrane potential), V , typically in millivolts, mV.

• The proportion of open channels, M, for the voltage-gated Ca channel

that drives the rising phase of the action potential. Since M is a propor-

tion, it ranges between 0 and 1, and has no units.

• The proportion of open channels, W , for the voltage-gated K channel

that terminates the action potential. Like M, W is a proportion, so ranges

between 0 and 1.

• Time, t, the independent variable, typically in milliseconds, ms.

Again, the dependent variables are functions of one another; they inter-

act, and do so with time dependence. The rules by which they interact are

translated into differential equations, as discussed below.

What is a differential equation? The only mathematical background we

assume is that you have taken a calculus course sometime in the past

(perhaps long ago) and remember (perhaps dimly) that the derivative

represents instantaneous rate of change, or the slope of a graph. For

example, Figure 1.1 shows several graphs of voltage, V (t) versus time.

Consider the detailed action potentials shown in Figure 1.1b. During the

rising phase of each action potential, the slope of the graph is positive.

So the derivative, dV

dt
, is positive. This is just another way of saying that

V is increasing or depolarizing. During the hyperpolarizing (decreasing)

phase of each action potential, the graph is heading “downwards,” with

a negative slope, so dV

dt
< 0. At the peak of each action potential, a line

tangent to the graph would be horizontal, with zero slope. So dV

dt
= 0 as

the graph turns from increasing to decreasing. Similarly, dV

dt
= 0 as the

graph turns from decreasing to increasing.

(1.2.1) This is where the interactive part of the tutorial begins. This first

exercise is designed to help cement the concepts of slope and deriva-

tive, and does not require any software. Choose one of the graphs in

Figure 1.1 and track dV

dt
as you move along the graph. When is dV

dt
posi-

tive? When is it negative? How many times is it zero? When is dV

dt
great-

est? When is it most negative? Try sketching the graph of dV

dt
below your

graph of V (t) (it helps to have the time axes lined up).

A differential equation is just an equation with a derivative in it some-

where. Equation (1.1) is a differential equation relating the rate of change



Trim Size: 170mm x 244mm Leng c01.tex V3 - 02/12/2016 6:41 A.M. Page 11

Bridging Between Experiments and Equations 11

of voltage to the currents flowing through the cell membrane. The differ-

ential equation does not tell us about V directly, in the sense that it is not

of the form

V (t) = ′′something′′

But if we can measure the value of V at one initial moment in time,

Equation (1.1) tells us how V will change, so that we can use it to predict

all future values of V (t). Adding up all the incremental changes in V over

time is called numerical simulation. It can be hard to do by hand, but is a

job well suited to a computer. This is one of the reasons that mathematical

modeling in biology has flourished with the computer revolution of recent

decades, and why this tutorial is designed to be interactive, using the

numerical simulation software XPP (Ermentrout, 2012).

A word of warning: the derivative is a fundamental concept in math

ematics, so has earned many names; dV

dt
(“dV by dt”), V ′ (“V prime”), and

V̇ (“V dot”) are all equivalent in this context, and not to be confused with

plain V .

The differential equation for voltage change over time. According to Kirchoff’s

current law, if a current I is applied across the membrane (through an

electrode, say), it is balanced by the sum of the capitative and ionic

currents:

I = C
dV
dt

+ ICa + IK + IL

If there is no applied current, then I = 0. Here, ICa and IK denote the Ca and

K currents respectively; IL denotes a leak current (a voltage independent

current that may or may not be selective); C denotes the capacitance, and

C dV

dt
represents the capacitive current. The fact that capacitive current is

proportional to how quickly voltage changes
(

dV

dt

)
is what makes this a

differential equation. Rearranging to bring the derivative to the left-hand

side,

C
dV
dt

= I − ICa − IK − IL

Thus,

C
dV
dt

= I − gCaM(V − VCa) − gKW (V − VK) − gL(V − VL) (1.1)

where the ionic currents are modeled by

ICa = gCaM(V − VCa) (1.2)

IK = gKW (V − VK) (1.3)

IL = gL(V − VL) (1.4)
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Let us walk through these equations term by term, to understand the

notation, and how the ionic currents are represented. To fix ideas, consider
the K current. In Equation (1.3), IK is modeled as the product of:

• The maximal K conductance, gK, that can be measured at any voltage

(see Figure 1.2).

• The K-channel activation variable, W , which changes over time (so is

written W (t), or W for short). There is no K-channel inactivation in the

model, so, relative to maximal conductance, W (t) represents the pro-

portion of K channels that are open at time t, and the instantaneous

probability that an individual K channel is in its open state. In other

words, W (t) represents the normalized K conductance at time t (taking

values between 0 and 1), and gKW (t) represents the absolute K con-

ductance. Expressions for the voltage dependence and kinetics of W are

formulated in Equations (1.6), (1.9), and (1.10).

• The driving force, (V − VK), on K current through the K channels. This is

the difference between V of the moment and VK, the K reversal potential.

The larger the difference, the larger the driving force; and as V changes

over time, the driving force changes accordingly.

Thus, Equation (1.3) is simply a mathematical translation of the fact that

K current is given by K conductance multiplied by K driving force. Clear

translation between the biology and the mathematics is at the heart of

mathematical modeling.

The Ca and leak currents are treated similarly, with the Ca-channel acti-

vation variable denoted by M in Equation (1.2). Equation (1.4) for the leak

current looks slightly different, because leak conductance is assumed to be

independent of voltage, so it does not need an activation variable. Thus, the

leak has constant conductance, gL. In this tutorial, we set the conductances

at gCa = 4, gK = 8 and gL = 2 (see Table 1.1).

(1.2.2) In this exercise, let us think about the impact of the K current on

V , to help understand the signs in Equation (1.1). If V > VK, is IK positive

or negative? It helps to remember that gK and W are both positive. You

should find that IK is positive. So, when you check the signs in Equation

(1.1), you see that the K current contributes negatively to dV

dt
. That is, the

K current promotes change in the negative direction. In the absence of

other currents, what impact would this have on V? Would it increase V

or decrease V? So, is the K current driving V towards VK, or away from

VK? (Remember that we started by assuming V > VK.)

(1.2.3) What happens if V < VK? Explain how the K current drives V

towards VK in this case, too.

The reversal potential for a purely selective channel is equal to the Nernst

equilibrium potential for the ion carrying the current. For a current rep-

resenting multiple permeabilities (such as leak), the reversal potential is

calculated using the Goldman–Hodgkin–Katz equation if the relative per-

meabilities and ionic gradients are known, or measured in voltage clamp if
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the current species can be isolated (Hille 2001). In this tutorial, we set the

reversal potentials at VCa = 120 mV, VK = −84 mV, and VL = −60 mV (see

Table 1.1.)

Looking back at Equation (1.1), we can think of the three ionic currents

competing with each other and with the applied current, each trying to

drive V to its own reversal potential as in Exercises 1.2.2 and 1.2.3. Over the

course of an action potential, the different voltage dependence of Ca- and

K-channel gating changes the relative sizes of M and W , allowing different

terms in Equation (1.1) to dominate. When the Ca term dominates, V is

driven toward the high Ca reversal potential and the cell depolarizes. And

when the K term dominates, V is driven back down toward the low K

reversal potential and the cell hyperpolarizes (see Figure 1.4a).

The voltage dependence of steady-state conductance. K-channel activation, W ,

is assumed to have kinetics and voltage dependence. Both aspects are

measured using the voltage clamp, as illustrated in Figure 1.2. In these

experiments, the voltage is stepped instantaneously to each of a series

of test voltages and held there, while the current reaches a new steady

state (Figure 1.2a). Arrival at the steady state is not instantaneous, but

defines the kinetics of channel activation, which is itself voltage dependent

(Figure 1.2d). We return to the kinetics presently.

The amount of current at the steady state for a test voltage reflects

the conformational stability of open states of the K channel; the greater

the stability, the more channels open and the greater the conductance.

To characterize the voltage dependence of steady-state conductance, the

steady-state values of current are first plotted against test voltage to give

the current–voltage (I–V) plot (Figure 1.2e). Since the measured current

is assumed to be the product of driving force and conductance, the current

is divided by the driving force to give the conductance–voltage (G–V)

plot (Figure 1.2f). To estimate the maximal conductance, gK, the G–V

curve is fit with a Boltzmann function (Figure 1.2f), then gK is given

by the maximal value, or upper asymptote, of the Boltzmann curve.

The Boltzmann function is then normalized (divided) by gK to yield the

proportion, W∞(V ), of (activatable) channels that are open at the steady

state, as a function of V .

Equations (1.5) and (1.6) define the steady-state open probabili-

ties, M∞(V ) and W∞(V ), for the Ca and K channels, respectively, in our

Morris–Lecar model (see Figure 1.3b):

M∞(V ) = 1
1 + e−2(V−V1)∕V2

= 0.5

(
1 + tanh

(
V − V1

V2

))
(1.5)

W∞(V ) = 1
1 + e−2(V−V3)∕V4

= 0.5

(
1 + tanh

(
V − V3

V4

))
(1.6)
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Figure 1.3 Morris–Lecar model. (a) Equivalent electrical circuit representation of

the Morris–Lecar model cell. Membrane capacitance is in parallel with selective

conductances and batteries (representing driving forces arising from ionic gradients).

Arrows indicate variation (with voltage) for Ca and K conductance. (b) Normalized G–V

curves, W∞ and M∞, assumed for model K and Ca conductances, respectively. (c) The

kinetics of voltage-dependent activation of K channels is also voltage dependent, with

the normalized time constant, 𝜏W , assumed to peak (i.e., channel gating slowest) at the

midpoint of the G–V curve, where channel conformational preference is weakest. (d)

Simulated voltage clamped K currents at 20 mV increments up to V=100 mV. Voltage

clamp simulated in XPP by removing the equation for dV∕dt and, instead, setting V as a

fixed parameter. (e) Model I–V plots for K and Ca currents. Different reversal potentials

for the two conductances (VK = −84,VCa = 120 mV) make the current traces look very

different, despite similar activation functions in (b). (b)–(e) Use Hopf parameter set.

In the next exercises, we will graph W∞(V ) to cement intuition for the

role of V3 and V4. M∞(V ) is similar. In Exercise 1.2.7, we will confirm that

the two different forms of the equations are, indeed, equal. The exercises

are written with the online graphing calculator Desmos in mind, but any

graphing calculator will do. We choose Desmos because it is fun to work

with, and for the ease of setting up sliders to explore the way parameters
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shape the graph. See Table 1.1 for the values of V1,V2,V3, and V4 used in

later sections of this tutorial.

(1.2.4) Open Desmos in a browser (www.desmos.com). You enter func-

tions in the panel on the left, and watch them appear on the axes on the

right. For example, click on the left panel, and type in y = ex. You should

see the familiar exponential function appear. Now click on the next box

on the left, and enter y = e(x−c). Click on the “button” to accept the offer

to add a slider for c. Slide the value of c (by hand, or by clicking the “play”

arrow) and watch your graph shift to the left or right accordingly. Now,

try y = d + e(x−c). You can add a new slider for d. What is the effect of slid-

ing d? Notice how the old c slider now works for both the functions. You

can temporarily hide a graph by clicking on the colored circle next to its

equation, or permanently erase it by clicking on its gray X. There is also

an edit button to explore.

(1.2.5) As we have seen, Desmos uses x and y for variables, and single let-

ters for other parameters. So, to graph W∞(V ), you will need to re-write

Equation (1.6) with x playing the role of V , y playing the role of W∞,

a playing the role of V3 and b playing the role of V4. In other words,

working with the Boltzmann form of Equation (1.6) first, enter

y = 1
1 + e(−2(x−a)∕b) (1.7)

(being careful with your parentheses!), and accept the sliders for a and b.

You should see a typical (normalized) G–V curve ranging between 0 and

1, as shown in Figures 1.2f, 1.3b, and 1.3c. Slide a and b to see what role

they play in shaping the curve. You can change the limits of the sliders

if you like. For example, click on the lower limit of b and set it to zero,

to keep b positive.

(1.2.6) Translating back to the language of Equation (1.6), confirm that V3

is the half-activation voltage of W∞, and V4 determines the “spread” of

W∞. As V4 increases, the spread increases. In other words, as V4 increases,

the slope at half-activation decreases. In fact, differentiating Equation

(1.6) at V = V3 shows that the slope at half-activation is given by 1

2V4
.

Confirm this with Desmos, by graphing the line y = 1

2
+ 1

2b
(which has

slope 1

2b
) together with Equation (1.7), setting a = 0, and sliding b.

(1.2.7) Use Desmos to plot
y = 0.5

(
1 + tanh

(x − a
b

))
(1.8)

and confirm that this second form of Equation (1.6) is equivalent to the

first. In other words, it has exactly the same graph. This second form

is also commonly used, and you will see it in the XPP code provided. If

you are unfamiliar with the hyperbolic tangent function, tanh x, develop

your intuition by building up the graph of Equation (1.8) in parts. First
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graph y = tanh x, then y = tanh(x − a), etc. (Recall that the more familiar

sin x, cos x, and tan x are defined using a point on the unit circle x2 +
y2 = 1. The hyperbolic functions sinh x, cosh x, and tanh x have analogous

definitions using a point on the hyperbola x2 − y2 = 1.)

Voltage-dependent kinetics of voltage gating. Now we return to the kinetics of

K-channel gating, governing the rate of approach to the steady state. The

channels are trying to reach the steady state for conductance at a particular

voltage, but during the process the voltage is typically changing. As a result,

the channels are always playing catch-up. Moreover, the rate at which the

channels respond to voltage is itself a function of voltage. These kinetics

are modeled by the differential equation

dW
dt

= 𝜙

𝜏W (V )
(W∞(V ) − W ) (1.9)

Here, 𝜙 and 𝜏W (V ) are both positive, and together define the time scale (or

time constant) of K kinetics. The voltage dependence of the time scale is

captured by the equation for 𝜏W (V )

𝜏W (V ) = 1
cosh((V − V3)∕2V4)

(1.10)

See Figure 1.3c. We will develop intuition for Equations (1.9) and (1.10)

in the following exercises. See Table 1.1 for the values of 𝜙,V3, and V4 used

in later sections of this tutorial.

(1.2.8) First let us focus on the (W∞(V ) − W ) term in Equation (1.9). It is

reminiscent of the (V − VK) term in Equation (1.3), and can be analyzed

in a similar way. Recall that V and W change over time. So, at a given

time t, V and W will have values V (t) and W (t). What happens if, at time

t, W (t) > W∞(V (t))? Will W increase or decrease in the next increment of

time? Remember that 𝜙 and 𝜏W (V ) are both positive. So, if you keep track

of the signs, you should find that if W (t) > W∞(V (t)), then dW∕dt < 0, so

W is driven down, toward W∞(V (t)).
(1.2.9) What happens if W (t) < W∞(V (t))? Explain how the conductance

is driven towards steady state in this case, too. As time marches on,

V changes. So the voltage-dependent steady-state conductance, W∞(V ),
also changes. Thus, the (W∞(V ) − W ) term in Equation (1.9) ensures that

W adjusts course accordingly, in its tireless game of catch-up.

(1.2.10) Now, let us focus on 𝜏W (V ) to prepare us for understanding its role

in Equation (1.9). Use Desmos to graph 𝜏W (V ), as shown in Figure 1.3c.

Recall that you will need to rewrite the equation for 𝜏W (V ) with x playing

the role of V , y playing the role of 𝜏W , and single letters playing the role

of V3 and V4. For example, you could graph

y = 1
cosh((x − a)∕2b)

(1.11)


