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Phytochemicals hold a special, elite place in the nutritional landscape.

Joel Fuhrman, MD
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xix

The medicinal properties and health benefits of plant products (seeds, fruits, leaves, 
stems, and roots) are attributed to their non‐nutritive bioactive components, known as 
“phytochemicals,” which are classified into primary and secondary metabolites. Primary 
metabolites (carbohydrates, lipids, amino acids, and proteins) are necessary for the 
growth and basic metabolism of all plants. Secondary metabolites (phytochemicals), on 
the other hand, are not essential, but they provide vegetables, fruits, and herbs with 
their flavor and color. They not only play crucial roles in the well being of plants by 
interacting with their ecosystems, but also protect them from pathogens and absorb 
ultraviolet (UV), preventing DNA and photosynthetic apparatus damage. Consumption 
of phytochemicals by animals produces antioxidant, anti‐inflammatory, antimicrobial, 
antitumor, analgesic, neuroprotective, and antiplatelet effects. In addition, they induce 
antiaging effects and improve poor blood circulation. These effects are mediated 
through the regulation of various receptors, transcription factors, growth factors, 
inflammatory cytokines, protein kinases, protein phosphatases, and other enzymes 
(phospholipases and cyclooxygenases). In brain, receptors, transcription factors, growth 
factors, and enzymes modulate the signal‐transduction pathways critical in controlling 
synaptic plasticity and inducing neurogenesis in the hippocampus. The ability of 
many phytochemicals to activate the extracellular signal‐regulated kinase (ERK)1/2 and 
protein kinase B (PKB/Akt) signaling pathways is associated with the activation of the 
cyclic adenosine monophosphate (cAMP) response element‐binding protein (CREB), a 
transcription factor that plays an important role in memory formation. In recent years, 
the amount of research into phytochemicals has increased all over the world, and new 
terms such as “functional food” and “nutraceutical” have been introduced. There are 
several issues related to the use of phytochemicals, including concern about their 
dosage and activity and about the presence of contaminants.

Epidemiological studies have shown that incidences of neurological disorders among 
people living in Asia are lower than in the Western world. This may be due to the 
regular consumption of phytochemicals in the form of spices. Extensive research over 
the last 10 years has indicated that phytochemicals derived from various spices and oils 
(turmeric, black pepper, licorice, clove, ginger, garlic, green tea, and olive and flaxseed 
oils) target inflammatory and oxidative stress pathways and retard or delay the onset 
of neurological diseases. More than 7000 phytochemicals have been identified, which 
possess antiproliferative, anti‐inflammatory, antioxidant, antiviral, and hypocholester-
olemic properties. Unlike vitamins and minerals, phytochemicals are not necessary for 
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the maintenance of cell viability, but they play a vital role in protecting neural cells from 
the inflammation and oxidative stress associated with normal aging and brain diseases. 
Although many phytochemicals present in plant foods are poorly absorbed and undergo 
rapid excretion, they exert anti‐inflammatory, antioxidant, and anticarcinogenic effects 
at realistic doses. Consumption of phytochemicals may also mediate neurohormetic 
response through the modulation of adaptive stress‐resistance genes, which are responsi-
ble for encoding protein chaperones that favor resistance to cellular stress and modulate 
immune function. Thus, regular consumption of phytochemicals from childhood to 
adulthood may reduce the risk of age‐related neurological disorders.

The chemical structures of phytochemicals are often used as “privileged structures” 
for the creation of synthetic analogues, which have improved pharmacological activities 
due to their optimized bioavailability and pharmacokinetic profile. Note that most studies 
on phytochemicals have been performed in animal models and cell‐culture systems, 
and it is difficult to evaluate the significance of their effect in humans.

Information on the effects of phytochemicals on human health is scattered throughout 
the literature in the form of original papers and reviews, but few edited books. In this 
book, we provide the reader with a comprehensive and cutting‐edge description of the 
metabolism of the molecular mechanism associated with the beneficial effects of 
phytochemicals in age‐related neurological disorders, in a manner that is useful not 
only to students and teachers but also to researchers and physicians. The book has 
29 chapters. Chapter  1 provides an introduction to the role of phytochemicals in 
protecting against neuroinflammation, which is typically associated with neurodegen-
erative diseases. Chapter  2 deals with the protective role of flavonoids in transgenic 
Alzheimer’s disease (AD) mouse models. Chapters 3–15 describe the beneficial effects 
of phytochemicals (rich in flavonoids and polyphenols) against neurological disorders 
in model systems. Chapter 16 discusses the use of bee products (apitherapy) for the 
treatment of neurological disorders. Chapter  17 elegantly describes the mechanisms 
underlying the beneficial actions of polyunsaturated fatty acids (PUFAs) in brain diseases. 
Chapters 18–20 deal with the anti‐inflammatory effects of resveratrol. Chapter  21 
focuses on nobiletin, a flavonoid (an O‐methylated flavone) that has the ability to rescue 
cognitive impairment in animal models. Chapters 22–25 discuss the potential neuro-
protective effects of curcumin against brain diseases. Chapter 26 discusses polyphenols 
and protein misfolding. Chapter 27 describes the molecular mechanisms involved in 
the neuroprotective action of phytochemicals. Chapter 28 focuses on nutraceuticals 
(a food or a part of a food that provides health benefits, including the prevention or 
treatment of a disease) and their effect on cognitive dysfunction. Finally, Chapter 29 
provides a perspective on the importance of phytochemicals in diet and on the direc-
tion for future research in phytotherapeutics. These topics fall in a fast‐paced research 
area related to cell death in neurological disorders, which provides opportunities for 
target‐based therapeutic intervention using phytochemicals. This book can be used as 
a supplemental text for a range of phytotherapeutics courses. Clinicians and pharma-
cologists will find it useful in understanding the molecular aspects of phytochemicals in 
chronic human diseases.

We have tried to ensure uniformity of presentation, as well as a logical progression of 
subject from one topic to another, and our authors have provided extensive bibliogra-
phies. For the sake of simplicity and consistency, a large number of figures showing the 
chemical structures of phytochemicals used for the treatment of chronic diseases and 
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signal‐transduction pathways are also included. We hope that our attempt to integrate 
and consolidate the current knowledge on the molecular aspects of phytochemicals will 
provide the basis for more dramatic advances and developments in the area of the 
molecular mechanisms associated with the beneficial effects of phytochemicals in 
age‐related neurological disorders.

Tahira Farooqui
Akhlaq A. Farooqui
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Use of Phytochemicals against Neuroinflammation

1.1  Introduction

Neuroinflammation and oxidative stress are closely associated with the pathogenesis of 
neurotraumatic and neurodegenerative diseases, such as stroke and Alzheimer’s disease 
(AD). During the inflammatory reaction, secretion of proinflammatory cytokines 
and  chemokines amplifies and maintains inflammatory responses. It involves the 
enzymatic activity of cytosolic phospholipase A2 (cPLA2) and secretory phospholipase 
A2 (sPLA2), which release arachidonic acid from glycerophospholipids, and of cycloox-
ygenase (COX) and 5‐lipoxygenase (5‐LOX), which oxidize arachidonic acid to proin-
flammatory eicosanoids. This is followed by the formation of the prostaglandin D2 
(PGD2) and of docosahexaenoic acid (DHA)‐derived resolvins and protectins, which 
facilitate the resolution of inflammation. Acute neuroinflammation is a protective pro-
cess that isolates the injured brain tissue from uninjured areas, destroys injured cells, 
and rebuilds the extracellular matrix. Without it, brain tissue would rapidly be damaged 
by the effects of injury and infections, including those of microbial, viral, and prion 
origin. Acute neuroinflammation involves the recruitment of lymphocytes, monocytes, 
and macrophages of the hematopoietic system and glial cells of the central nervous 
system (CNS). Microglia are recruited to the site of injury to protect and repair the 
injured tissue via the secretion of cytokines, chemokines, and lipid mediators such as 
resolvins and neuroprotectins, while astrocytes react by forming a glial scar. Chronic 
neuroinflammation, on the other hand, lingers for years, and causes damage to brain 
tissues. It is closely associated with the activity of microglia and astrocytes and with the 
assembly and activation of the inflammasome: a multiprotein oligomer consisting of 
caspase 1, PYCARD, NALP, and sometimes caspase 5 (also known as caspase 11 or 
ICH‐3). Once activated, the inflammasome binds to and appositions together many p45 
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pro‐caspase‐1 molecules to induce their autocatalytic cleavage to p20 and p10 subunits. 
Caspase‐1 then assembles into its active form (consisting of two heterodimers with a 
p20 and p10 subunit each), in order to carry out a variety of processes, including cleav-
age of pro‐interleukin (IL)‐1β into IL‐1β, cleavage of pro‐IL‐18 into IL‐18 to induce 
interferon gamma (IFN‐γ) secretion, and activation of lipid biosynthesis [1]. 
Inflammasomes orchestrate the activation of precursors of proinflammatory caspases, 
which, in turn, cleave precursor forms of IL‐1β, IL‐18, and IL‐33 into their active forms. 
These lead to further stimulation of PLA2, COX‐2, and LOX; generation of eicosanoids, 
lysophosphatidylcholine (lyso‐PtdCho), and platelet‐activating factor (PAF); produc-
tion of reactive oxygen species (ROS), proteinases, and complement proteins; and a 
potent inflammatory response. Alterations in the expression of inflammasome media-
tors may lead to neurodegeneration in neurotraumatic, neurodegenerative, and neu-
ropsychiatric diseases. Based on this, it has been suggested that regulation of the 
inflammasome machinery may be better than suppression of all inflammation for the 
treatment of inflammatory conditions [1,2].

An emerging approach to the alleviation of neuroinflammation involves the use of 
medicinal plants and herbs. Epidemiological studies have indicated that the incidence 
of neurological disorders among people living in Asia is lower than that in the Western 
world. This may be due to the regular consumption of phytochemicals in the form of 
spices. Extensive research over the last 10 years has indicated that phytochemicals 
derived from various spices e.g., turmeric, red pepper, black pepper, licorice, clove, 
ginger, garlic, coriander, cinnamon, target inflammatory and oxidative stress pathways 
and retard or delay the onset of neurological diseases. More than 7000 phytochemi-
cals, which possess antiproliferative, anti‐inflammatory, antiviral, and hypocholester-
olemic properties, have been identified (Figure  1.1). Unlike vitamins and minerals, 
phytochemicals are not required for the maintenance of cell viability, but play a vital 
role in protecting neural cells from neuroinflammation and oxidative stress associated 
with aging and brain diseases. Roots, stems, leaves, fruits, and seeds contain phyto-
chemicals such as terpenoids, phenolic compounds, glucosinolates, betalains, and 
chlorophylls. Although many phytochemicals in plant foods are poorly absorbed and 
undergo rapid excretion, they exert anti‐inflammatory, antioxidant, and anticarcino-
genic effects at realistic doses. The effects of phytochemicals are mediated by their 
ability to counteract, reduce, and repair damage resulting from oxidative stress and 

Phytochemicals

Antioxidant effects

Anti-inflammatory
effects

Antibacterial and
antiviral effects Stimulation of

immune system

Stimulation of
adaptive responses

Modulation of
enzyme activities

Modulation of DNA
replication

Figure 1.1  Effect of phytochemicals on various cellular activities.
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neuroinflammation – processes that are modulated by the transcription factor, nuclear 
factor kappa B (NF‐κB). Phytochemicals also stimulate the synthesis of adaptive 
enzymes and proteins that favor resistance to cellular stress [3].

1.2  Mechanism of Action of Phytochemicals

Plants and phytochemicals produce their beneficial effects not only through modula-
tion of enzyme activities and regulation of gene expression, but also via the stimulation 
of adaptive cellular stress response pathways that protect cells against a variety of 
adverse conditions. Phytochemicals bind to neuronal cell‐membrane or nuclear recep-
tors as elective ligands and have signaling effects at concentrations much lower than is 
required for effective antioxidant activity [4]. They act on the NF‐κB pathway to inhibit 
inflammation. NF‐κB is predominantly localized in the cytoplasm in a complexed form 
that is inactive, but during oxidative stress it is released from the NF‐κB–IκBα complex 
and migrates to the nucleus, where it initiates the transcription of a number of proin-
flammatory enzymes, including sPLA2, COX‐2, NADPH oxidase and inducible nitric 
oxide synthase (iNOS), as well as proinflammatory cytokines (tumor necrosis factor 
alpha (TNF‐α), IL‐1β, and IL‐6). The latter stimulate the activities of PLA2 and sphingo-
myelinases through a feedback loop involving cytokine‐mediated phosphorylation. 
Other potential mechanisms through which NF‐κB induces neuronal death include the 
induction of death proteins and an aborted attempt to re‐enter the cell cycle. 
Phytochemicals such as curcumin, resveratrol, Ginkgo biloba (GB) retard inflammation 
by preventing the migration of NF‐κB into the nucleus. In addition, many phytochemi-
cals block the activation of NF‐κB by inhibiting a protein kinase. In vitro studies indicate 
that phytochemicals inhibit both serine/threonine protein kinase and protein tyrosine 
kinase, supporting the view that phytochemicals may inhibit IκB kinaseβ (IKKβ) in the 
cytoplasm and nucleus, leading to a reduction in NF‐κB activity. Phytochemicals have 
also been reported to modulate age‐related decline in memory by upregulating signal-
ing pathways that control synaptic plasticity. They activate both the extracellular signal‐
regulated kinase (ERK) 1/2 and protein kinase B (PKB)/Akt signaling pathways and 
cyclic adenosine monophosphate (cAMP) response element‐binding protein (CREB), a 
transcription factor that upregulates the expression of several neurotrophins that facili-
tate memory formation [5,6].

An important cellular antioxidant response that underlies the action of many phyto-
chemicals is induction of antioxidative and anti‐inflammatory enzymes through the 
cytoplasmic oxidative stress system (nuclear factor erythroid 2‐related factor 2 (Nrf2)–
kelch‐like erythroid Cap‘n’Collar homologue‐associated protein 1 (Keap1)) (Figure 1.2) [7]. 
Under physiological conditions, Keap1 keeps the Nrf2 transcription factor in the 
cytoplasm, allowing it to be ubiquitinated and degraded by proteasomes, thus main-
taining Nrf2 at low levels. This prevents Nrf2 from mediating the constitutive expres-
sion of its downstream genes. When cells are exposed to oxidative stress, a signal 
involving phosphorylation and/or redox modification of critical cysteine residues in 
Keap1 blocks the enzymatic activity of the Keap1–Cul3–Rbx1 E3 ubiquitin ligase com-
plex, leading to a decrease in Nrf2 ubiquitination and degradation. As a result, free Nrf2 
translocates into the nucleus, where it – along with other transcription factors (e.g., 
sMaf, ATF4, JunD, PMF‐1) – transactivates the antioxidant response elements (AREs) 
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Figure 1.2  Hypothetical diagram showing the effects of phytochemicals on signal transduction processes in the brain. AA, 
arachidonic acid; COX‐2, cyclooxygenase 2; cPLA2, cytosolic phospholipase A2; HO‐1, hemeoxygenase 1; HSP, heat‐shock 
protein; IL‐1β, interleukin 1β; IL‐6, interleukin 6; iNOS, inducible nitric oxide synthase; Keap1, kelch‐like erythroid 
Cap‘n’Collar homologue‐associated protein 1; LOX, lipoxygenase; lyso‐PtdCho, lyso‐phosphatidylcholine; NF‐κB, nuclear 
factor kappa B; Nrf2, nuclear factor erythroid 2‐related factor 2; PAF, platelet‐activating factor; PM, plasma membrane; 
PtdCho, phosphatidylcholine; QR, quinine oxidoreductase; ROS, reactive oxygen species; SOD, superoxide dismutase; sPLA2, 
secretory phospholipase A2; TNF‐α, tumor necrosis factor alpha; γ‐GCL, gamma glutamylcystein ligase. (See insert for color 
representation of the figure.)
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of many cytoprotective genes. Microarray and biochemical analyses reveal the coordi-
nated upregulation of several enzymes, such as HO‐1, catalase, SOD, epoxide hydrolase, 
UDP‐glucuronosyltransferases, and thioredoxin. In addition, Nrf2 induces the expres-
sion of enzymes related to glutathione biosynthesis and function (e.g., xCTcystine anti-
porter, gamma‐glutamylcysteine synthetase, reduced glutathione (GSH) synthase, 
glutathione S‐transferase (GST), glutathione reductase (GR)), leading to an increase in 
intracellular GSH and a decrease in oxidative stress. Upon recovery of cellular redox 
status, Keap1 travels into the nucleus and facilitates the dissociation of Nrf2 from ARE. 
Subsequently, the Nrf2–Keap1 complex is exported out of the nucleus by the nuclear 
export sequence in Keap1. Once in the cytoplasm, the Nrf2–Keap1 complex associates 
with the Cul3–Rbx1 core ubiquitin machinery, leading to degradation of Nrf2 and 
termination of the Nrf2/ARE signaling pathway [7].

Phytochemicals may also act through oxidant‐mediated neural cell survival signal-
ing pathways, together with histone deacetylases of the sirtuin family (sirtuin–FOXO 
pathway) and chaperones such as the heat‐shock proteins (HSPs), antioxidant 
enzymes (SODs and glutathione peroxidase (GPx)), and growth factors (e.g., insulin‐
like growth factor (IGF), brain‐derived neurotrophic factor (BDNF)) [8–10]. Low 
levels of phytochemicals crossing the blood–brain barrier (BBB) cause mild cellular 
inflammation and oxidative stress, involving the generation of low levels of ROS, 
which results in activation of transcription factors and synthesis of HSPs promoting 
the production of anti‐inflammatory cytokines. In this scenario, responses to HSPs 
are considered an attempt to correct the inflammatory condition. The highly inte-
grated and regulated processes are controlled by redox‐sensitive genes called “vit-
agenes,” which code for HSPs, thioredoxin, and sirtuin protein systems and modulate 
a complex network of intracellular signaling pathways for the preservation of cellular 
homeostasis.

A potential mechanism through which phytochemicals could exert their effect is via 
the inflammasome. In vitro studies have indicated that phytochemicals partially inhibit 
the release of TNF‐α, IL‐1β, and IL‐6 in cultured neural cells [3]. TNF‐α and IL‐1β 
activate isoforms of PLA2 and sphingomyelinases. It appears that phytochemicals pre-
vent the formation of inflammasome by inhibiting the activities of NLRP3, NLRC4, 
AIM2, NLRP6, caspase‐1, PLA2, and sphingomyelinases, although more work needs to 
be carried out in this area.

1.3  Bioavailability of Phytochemicals

Bioavailability represents the fraction of an orally ingested or administered compound 
in food, beverages, or supplements that reaches the systemic circulation. The bioavail-
ability of most phytochemicals in human tissues is very poor. Following oral administra-
tion, most phytochemicals are absorbed and metabolized to form glucuronide and 
sulfate conjugates, which are excreted in the urine [3,11]. The bioavailability of most 
phytochemicals in peripheral organs is higher than that in the brain as a result of the 
presence of the BBB. In order to enter the brain, a phytochemical must either be highly 
lipid‐soluble or be subjected to uptake transport processes through adenosine triphos-
phate (ATP)‐binding cassette (ABC) transporters. Many approaches have been taken in 
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an attempt to improve the bioavailability of phytochemicals, including the use of adju-
vants that interfere with glucuronidation, the preparation of phytochemical liposomes 
and nanoparticles, the use of phytochemical–phospholipid conjugates, and the use of 
structural analogs of phytochemicals. These approaches have generally allowed phyto-
chemicals to cross the BBB more effectively [12–14].

Green tea contains catechin flavonoid polyphenols. Catechin monomers can be 
easily absorbed through the gut, whereas large molecular‐weight catechins, such as 
(−)‐epigallocatechin‐3‐gallate (EGCG) (Figure  1.3), are poorly absorbed. Green‐tea 
catechins undergo three degradation processes: decomposition to smaller molecules, 
polymerization to larger molecules, and oxidation to oxidized molecules under natural 
conditions. The digestive tract plays an important role in the metabolism and bioavail-
ability of green‐tea components before they enter the liver. Green‐tea catechins and 
their metabolites formed in the small intestine are transported back into the intestinal 
lumen, where they reach the large intestine and are broken down to small phenolic 
acids and valerolactones by resident microflora. These metabolites are either reabsorbed 
or excreted in the feces [15].

The bioavailability of flavonoid polyphenols in berries is very low, and information 
on the molecular mechanisms of their action is still poorly understood. Dietary flavo-
noids enter the gastrointestinal tract in the form of esters and glycosides, which are not 
easily absorbed. Conversion of esters and glycosides into aglycones results in better 
bioavailability, because aglycones are lipophilic and more permeable across the cell 
membrane than the parent glycosides, and are more efficiently absorbed across the 
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gastrointestinal tract wall [16,17]. The conversion of glycosides into aglycones mainly 
occurs in the acidic environment of the stomach. Absorption of flavonoids by intestinal 
epithelial cells is accompanied by their extensive biotransformation, with the genera-
tion of different conjugated products (e.g., glucuronides, sulfates, O‐methylated deriva-
tives), first in the intestine and then in the liver, where conjugates are secreted into the 
bile. Favorable absorption across the gastrointestinal tract does not always result in 
improved bioavailability. One possible approach to improving the bioavailability of 
phytochemicals in the brain is the use of nanolipidic particles [18].

Resveratrol (3,5,4′‐trihydroxy‐trans‐stilbene) (Figure 1.3) is a member of the stilbe-
noid family of polyphenols. It is found in grapes, mulberries, peanuts, and other plants 
and food products, including raspberries, blueberries, Scots pine, Eastern white pine, 
and knotweed. Although transresveratrol is rapidly absorbed and distributed through 
the bloodstream in animals and humans, its bioavailability is low due to its rapid metab-
olism and elimination in the urine [19,20]; extensive metabolism in the intestine and 
liver results in an oral bioavailability of less than 1%. Resveratrol is well tolerated and 
metabolized through glucuronidation or sulfation reactions in the intestine and liver. 
The major glucuronidation derivatives of resveratrol are transresveratrol 3‐O‐glucuronide 
and transresveratrol‐O‐glucuronide, whereas the sulfated derivative is transresveratrol‐
3‐O‐sulfate. Kinetic analysis of resveratrol metabolism indicates that glucuronidation is 
favored over sulfation in the liver. In vivo studies indicate that free transresveratrol levels 
in the plasma are very low and short‐lived. Intravenous administration of 15 mg/kg in 
rats results in a wide distribution of resveratrol in various tissues after 90 minutes. 
The highest concentrations are found in the kidney and lowest in the brain [21].

Curcumin is a member of the curcuminoid family of polyphenols (Figure 1.3). It has poor 
bioavailability, due either to (i) its poor absorption, (ii) its rapid metabolism, or (iii) its rapid 
systemic elimination and short biological half‐life. In rodents, curcumin undergoes rapid 
metabolism by conjugation, reduction, and removal after oral dosing. Very little informa-
tion is available on the pharmacokinetics of curcumin in humans. Phase I and II clinical 
trials have been performed for up to 4 months at several doses (500, 1000, 2000, 4000, 8000, 
and 12 000 mg/day) in patients with advanced colorectal cancer, without any toxicity 
[22,23]. The serum concentration of curcumin reaches a maximum at 1–2 hours after oral 
intake and gradually declines within 12 hours. Currently, an upper level of toxicity has not 
been established for curcumin. Studies have reported that a daily dose of as high as 12 g is 
safe and tolerable in humans, with few, mild side effects. Hybrid compounds of curcumin 
and melatonin have been designed, synthesized, and characterized, and one of these has 
been shown to cross the BBB and deliver a sufficient amount to brain tissue following oral 
administration. Results suggest the hybridization approach is an efficient strategy for iden-
tifying novel scaffolds with the desired pharmacology for use as neuroprotectants. In order 
to increase curcumin’s bioavailability, a polymeric nanoparticle encapsulated curcumin 
(NanoCurc) has been formulated. NanoCurc injection at a dose of 25 mg/kg twice daily in 
mice results in significant curcumin levels in the brain (0. 32 μg/g) [24].

The bioavailability of flavonoids of GB extract EGb 761 is generally low due to limited 
absorption and rapid elimination [25]. Unabsorbed flavonoids that reach the colon are 
metabolized by colon microflora and absorbed. The flavonoids then reach the liver, 
where they are metabolized to conjugated derivatives. The bioavailability of EGb 761 
has been studied in rats and humans. Oral administration or injection of acute and 
subacute doses of EGb 761 in rats results in the distribution of GB components in various 
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tissues and plasma that follows linear pharmacokinetics in rats and humans. In human 
volunteers, oral intake of EGb 761 (120 mg) results in bilobalide plasma levels of 
0.05–0.15 μM [26,27]. In rats, oral administration of EGb 761 or pure bilobalide 
produces dose‐dependent increases in bilobalide plasma levels of from 0.5 to 7.5 mM. 
It is increasingly evident that components of EGb 761 can cross the BBB and reach 
low micromolar concentrations in the brain. This allows efficient interaction with 
target molecules such as neurotransmitter receptors [28,29].

Studies on the bioavailability of a component of garlic, S‐allyl cysteine (SAC), which 
belongs to the organosulfur family of glycosinolates, indicate that oral consumption 
results in rapid absorption in the gastrointestinal tract and distribution in the plasma, 
liver, and kidney of rats, mice, and dogs [30]. The bioavailability of SAC is about 100.0% 
in mice, 98.2% in rats, and 87.2% in dogs. N‐acetyltransferases transform SAC into 
N‐Acetyl‐SAC, which can be detected in the urine of dogs and humans. Other oil‐soluble 
organosulfur compounds of garlic, such as allicin, sulfides, ajoene, and vinyldithiins, 
are not found in the blood or urine even after consumption of large amounts of garlic. 
Incubation of allicin with liver homogenates results in its very rapid disappearance. No 
allicin was detected in either blood or urine 1–24 hours after ingestion of 25 g of raw 
garlic (approximately 90 mg allicin). In any case, allicin quickly disappears from the 
blood within a short period after ingestion, and its decomposition products diallyl 
sulfide and allylmercaptan are found in the blood [31].

1.4  Plants Effective against Neuroinflammation

Large number of plants around the world have been found to reduce inflammatory 
responses or stimulate antioxidant defenses, both in microglial cells and neurons in 
vitro, and in animal models of neurological diseases. On compiling literature reports of 
plants with antineuroinflammatory properties, we discovered that they are not ran-
domly distributed throughout the plant kingdom but are concentrated in a small 
number of orders, especially Fabales, Lamiales, Rosales, Apiales and Sapindales 
(Table  1.1). These same orders of plants are associated with food allergy [32]. We 
hypothesize that plants that are useful against neuroinflammation are also those that 
are mildly proinflammatory or immunogenic.

Very low levels of phytochemicals that enter the brain due to limited absorption 
through the gastrointestinal tract and very limited passage across the BBB may cause a 
mild neuroinflammation and trigger the activation of transcription factors and the 
synthesis of HSPs, leading to an anti‐inflammatory response. This may be a form of 
“inflammatory” hormesis (a process whereby a specific phytochemical induces biologically 
opposite effects at different doses).

Knowledge of the orders of plants that are most likely to be effective against neu-
roinflammation may help in the future discovery of novel phytochemicals. Low lev-
els of phytochemicals are closely associated with the adaptive stress response, which 
confers resistance to severe inflammation and stress, through the activation of the 
Nrf2 pathway and antioxidant/drug‐metabolizing enzymes, and through the genera-
tion of low levels of lipid mediators. These mediators maintain the cellular milieu 
and transfer messages between subcellular organelles, thereby inducing physiologi-
cal functions (e.g., bioenergetics, growth, proliferation, remodeling). These 
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processes are partially controlled by the redox‐sensitive vitagenes (see Section 1.2). 
At high doses, the same phytochemicals may elicit toxic effects through the activa-
tion of NF‐κB, increased expression of cytokines and chemokines, activation of 
PLA2s and COX, and generation of high levels of ROS and inflammatory eicosa-
noids. The amount of fruits and vegetables normally consumed by humans falls 
within the subtoxic stimulatory dose range of concentrations. However, some plants 
and fungi produce and concentrate toxins in amounts sufficient to cause illness or 
death in humans [33,34].

1.4.1  Order: Apiales

1.4.1.1  Family: Araliaceae, Genus: Panax, Species: ginseng
Panax ginseng is widely used as a health tonic. Ginsenoside remodulated phospho‐p38, 
iNOS, and COX‐2 signaling pathways in lipopolysaccharide (LPS)‐stimulated BV‐2 
microglial cells. Ginsenoside Rg1 (50, 100 or 150 μM) decreased IL‐1β, IL‐8, and TNF‐α 
levels in amyloid beta (Aβ)40‐treated THP‐1 monocytes [35].

1.4.1.2  Family: Araliaceae, Genus: Eleutherococcus/Acanthopanax, 
Species: senticosus
Acanthopanax senticosus (Siberian ginseng) extracts modulated nitric oxide (NO)/ROS 
production and induced translocation of Nrf2 to increase hemeoxygenase 1 (HO‐1) 
expression in LPS‐stimulated BV‐2 microglial cells. Extracts also reduced infarct volume 
after cerebral ischemia in rats [36].

1.4.1.3  Family: Apiaceae, Genus: Centella, Species: asiatica
Centella asiatica is a medicinal herb commonly used in Ayurveda and traditional 
Chinese medicine. Asiaticoside, a triterpenoid isolated from Centella asiatica, modulated 
COX‐2 expression in the brains of LPS‐stimulated animals. Phenolic acids identified in 
Centella asiatica extracts also inhibited 5‐LOX and were shown to have antioxidant and 
anti‐inflammatory effects [37].

1.4.1.4  Family: Apiaceae, Genus: Angelica, Species: dahuricae
Angelica dahuricae radix extract modulated TNF‐α, IL‐1β, IL‐6, iNOS, COX‐2, and 
ROS in LPS‐stimulated BV‐2 microglial cells. Oral administration of the extract suppressed 
caspase‐3 activation and apoptotic cell death of neurons and oligodendrocytes, and 
improved function after spinal cord injury (SCI) [38].

1.4.2  Order: Arecales

1.4.2.1  Family: Arecaceae, Genus: Euterpe, Species: oleracea
Euterpe oleracea Mart (açaí) fruit pulp has a high content of polyphenols. Açaí fractions 
modulated iNOS, COX‐2, p38 mitogen‐activated protein kinase (MAPK), TNF‐α, and 
NF‐κB expression in BV‐2 microglial cells [39].

1.4.2.2  Family: Arecaceae, Genus: Elaeis, Species: guineensis
The oil palm (Elaeis guineensis) is an abundant source of water‐soluble phenolics. 
In mice treated with oil palm phenolics, genes involved in brain development and activity 
were upregulated, while those involved in inflammation were downregulated [40].
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1.4.3  Order: Asparagales

1.4.3.1  Family: Amaryllidaceae, Genus: Allium, Species: sativum
Intraperitoneal administration of a component of “Aged Garlic Extract” (AGE), SAC, 
modulated oxidative stress and decreased infarct volume after cerebral ischemia in rats. 
SAC also inhibited cell signaling pathways involved in synaptic degeneration and 
neuroinflammation in AD [41].

1.4.3.2  Family: Xanthorrhoeaceae, Genus: Hemerocallis, Species: citrina
Hemerocallis citrina, a traditional herbal medicine, has been used for the improve-
ment of behavioral and emotional status in East Asian countries. It modulated IL‐1β, 
IL‐6, and TNF‐α expression and indoleamine‐2,3‐dioxygenase (IDO) activity in the 
frontal cortex and hippocampus of rats exposed to chronic unpredictable mild 
stress [42].

1.4.4  Order: Asterales

1.4.4.1  Family: Asteraceae, Genus: Silybum, Species: marianum
Silybum marianum (milk thistle) contains silymarin, which modulated inhibitor κB‐
alpha (IκB‐α) degradation and NF‐κB nuclear translocation and reduced infarct volume 
after cerebral ischemia in rats. Silymarin has also been proposed as a neuroprotective 
agent in AD and Parkinson’s disease (PD) [43].

1.4.4.2  Family: Asteraceae, Genus: Artemisia, Species: argyi
Artemisia argyi is a herbaceous perennial plant native to China, Japan, and Eastern 
Siberia. An extract modulated NO, prostaglandin E2 (PGE2), TNF‐α, iNOS, COX‐2, 
IL‐1β, granulocyte‐macrophage colony‐stimulating factor, and macrophage inflamma-
tory protein‐1α levels in LPS‐stimulated BV‐2 microglial cells [44].

1.4.4.3  Family: Asteraceae, Genus: Achillea, Species: fragrantissima
Achillea fragrantissima is a desert plant used in traditional medicine. An extract 
modulated NO, IL‐1β, TNF‐α, matrix metallopeptidase 9, COX‐2, and iNOS levels in 
LPS‐stimulated primary microglial cells [45].

1.4.4.4  Family: Asteraceae, Genus: Tussilago, Species: farfara
Tussilago farfara L. (Compositae) flower buds are used in traditional oriental medicine 
for the treatment of bronchitis and asthma. Extracts modulated arachidonic acid 
metabolism, neuronal injury induced by an NO generator spermine (NONOate), and 
Aβ‐induced neuronal injury [46].

1.4.5  Order: Celastrales

1.4.5.1  Family: Celastraceae, Genus: Tripterygium, Species: wilfordii
Triptolide is one of the major active components of the Chinese herb Tripterygium 
wilfordii Hook F, which has potent anti‐inflammatory and immunosuppressive 
characteristics. Extracts modulated TNF‐α and NO expression and reduced injury in 
LPS‐stimulated primary mesencephalic neurons [47].
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1.4.6  Order: Cucurbitales

1.4.6.1  Family: Cucurbitaceae, Genus: Momordica, Species: charantia
Momordica charantia, often called bitter melon or bitter gourd, is reported to have 
anti‐inflammatory properties. Extracts modulated expression of neuroinflammatory 
markers NF‐κB, IL‐16, IL‐22, and IL‐17R in the brains of high‐fat diet‐treated mice [48].

1.4.7  Order: Dipsacales

1.4.7.1  Family: Caprifoliaceae, Genus: Valeriana, Species: amurensis
Valeriana amurensis extracts modulated iNOS, COX‐2, and IκB‐α levels, reduced 
neuronal injury, and improved spatial exploratory activity in a rat model of AD [49].

1.4.8  Order: Ericales

1.4.8.1  Family: Theaceae, Genus: Camellia, Species: sinensis
The beneficial effects of green tea result from interactions between green‐tea catechins 
and cellular proteins. Teasaponin, a tea extract, has also been shown to have anti‐
inflammatory effects [50].

1.4.8.2  Family: Theaceae, Genus: Vaccinium
Fruits such as blueberries contain flavonoids, which have anti‐inflammatory and anti-
oxidant effects. Blueberry polyphenol supplementation for 8 weeks modulated IL‐1β, 
TNF‐α, and NF‐κB levels, and reduced learning impairment after kainate‐induced exci-
totoxic injury in rats [51].

1.4.9  Order: Fagales

1.4.9.1  Family: Juglandaceae, Genus: Juglans, Species: regia
Extracts of Juglans regia (English walnut) modulated NO and iNOS levels in LPS‐
stimulated microglial cells. Polyphenolic compounds in walnuts also reduced oxidant 
and inflammatory load on brain cells, and enhanced sequestration of toxic protein 
aggregates [52].

1.4.10  Order: Fabales

1.4.10.1  Family: Polygalaceae, Genus: Polygala, Species: tenuifolia
Polygala tenuifolia is a herb used in traditional Chinese medicine. Water extract of 
Polygala tenuifolia root modulated NO, PGE2, iNOS, COX‐2, IL‐1β, and TNF‐α levels 
in LPS‐stimulated BV‐2 microglial cells [53].

1.4.10.2  Family: Fabaceae, Genus: Mucuna, Species: pruriens
Mucuna pruriens, a leguminous plant, is used as an anti‐inflammatory drug in Ayurveda. 
Ethanolic extracts downregulated NO production, neuroinflammation, and microglial 
activation and modulated loss of TH‐positive cells in the 1‐methyl‐4‐phenyl‐1,2,3,6‐
tetrahydropyridine (MPTP)‐treated mouse model of PD [54].

1.4.10.3  Family: Fabaceae, Genus: Glycine, Species: max
Soybean isoflavones modulated inflammatory cytokines and Aβ42‐induced upregulation 
of toll‐like receptor 4 (TLR4) and NF‐κB p65 mRNA in rats [55].
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1.4.10.4  Family: Fabaceae, Genus: Sophora, Species: flavescens
Sophora flavescens Ait is a herb used in traditional Chinese medicine. One of its 
components, oxymatrine, modulated TLR4, NF‐κB, TNF‐α, IL‐1β, IL‐6, 12/15‐LOX, 
phospho‐p38 MAPK, and cPLA2 levels and reduced neuronal injury after intracerebral 
hemorrhage in rats [56].

1.4.10.5  Family: Fabaceae, Genus: Pueraria, Species: thomsonii
Isoflavones of Pueraria flowers (genistein, tectorigenin, and irisolidone) inhibited NO 
levels in LPS‐stimulated primary microglial cells [57].

1.4.10.6  Family: Fabaceae, Genus: Caesalpinia, Species: crista
Caesalpinia crista leaf extracts showed antioxidant effects and suppressed 5‐LOX in 
polymorphonuclear leukocytes [37].

1.4.10.7  Family: Fabaceae, Genus: Hymenaea, Species: stigonocarpa
Hymenaea stigonocarpa extracts showed protective effects following 2,4,6‐trinitroben-
zenesulfonic acid‐induced colon damage and modulated lipid peroxidation in rat brain 
membranes [58].

1.4.10.8  Family: Fabaceae, Genus: Sutherlandia, Species: frutescens
Sutherlandia frutescens is native to dry parts of southern Africa. It has been 
promoted as useful to people with HIV/AIDS, but there is no evidence of benefit, 
and it may interact adversely with antiretroviral drugs. Sutherlandia has been 
shown to have anti-neuroinflammatory properties in preliminary studies (W. Folk, 
unpublished).

1.4.11  Order: Ginkgoales

1.4.11.1  Family: Ginkgoaceae, Genus: Ginkgo, Species: biloba
GB is a unique species of tree, with no living relatives. The active compounds of the 
GB  extract EGb 761 interact with gamma‐aminobutyric acid (GABA) and glycine 
receptors on neurons that play an important role in memory formation, consolida-
tion, and  cognition. EGb 761 also enhanced cholinergic processes in the cerebral 
cortex [59,60].

1.4.12  Order: Gentianales

1.4.12.1  Family: Rubiaceae, Genus: Coffea, Species: arabica
A component of coffee, eicosanoyl‐5‐hydroxytryptamideeicosanoyl‐5‐hydroxytrypta-
mide, attenuated neuroinflammatory response to MPTP, and improved neuronal integ-
rity in the α‐synuclein transgenic mouse model of PD [61].

1.4.12.2  Family: Apocynaceae, Genus: Cryptolepis, Species: sanguinolenta
Cryptolepis sanguinolenta extracts modulated TNF‐α, IL‐6, and PGE2 levels and sup-
pressed NF‐κB p65 nuclear translocation in IL‐1β‐stimulated SK‐N‐SH neuroblastoma 
cells [62].
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1.4.13  Order: Lamiales

1.4.13.1  Family: Oleaceae, Genus: Olea, Species: europaea
Olive oil contains phenolic compounds that are well‐known antioxidants. Long‐term 
consumption of olive oil increased the proportion of monounsaturated fatty acids 
(particularly oleic acid) and reduced the level of arachidonic acid, suggesting its potential 
in modulating the production of proinflammatory eicosanoids [63].

1.4.13.2  Family: Oleaceae, Genus: Forsythia, Species: koreana
Forsythia is a genus of flowering plants in the olive family. Pinoresinol isolated from the 
fruits of Forsythia koreana Nakai modulated NO, PGE2, TNF‐α, IL‐1β, and IL‐6 levels 
in LPS‐stimulated primary microglial cells [64].

1.4.13.3  Family: Plantaginaceae, Genus: Bacopa, Species: monnieri
Bacopa monnieri (Indian pennywort or “Brahmi”) is an important medicinal herb used 
in Ayurveda. Bacosides modulated proinflammatory cytokines and iNOS levels in aged 
rat brains. Extracts also restored Nrf2 and HO‐1 expression, and improved memory 
dysfunction after okadaic acid treatment in rats [65].

1.4.13.4  Family: Pedaliaceae, Genus: Sesamum, Species: indicum
Sesamin, a constituent of sesame seeds, modulated extracellular signal, regulated 
kinase (ERK)1/2, p38 MAPK, caspase‐3, and COX‐2 expression in PC12 cells and 
BV‐2 microglial cells, and reduced damage after kainate‐induced excitotoxic injury in 
mice [66].

1.4.13.5  Family: Pedaliaceae, Genus: Harpagophytum, Species: procumbens
Harpagophytum procumbens (devil’s claw) is a plant of the sesame family that is used in 
inflammatory diseases. Ethyl acetate extracts of Harpagophytum procumbens decreased 
lipid peroxidation and cellular damage in rat brain slices [67].

1.4.13.6  Family: Lamiaceae, Genus: Scutellaria, Species: baicalens
Scutellaria baicalens Georgia and its constituents are reported to have antioxidative 
and anti‐inflammatory properties. Extracts modulated COX‐2, iNOS, PGE2, and NO 
levels in LPS‐stimulated Raw 264.7 and BV‐2 microglial cells, and improved cognition 
in mice [68].

1.4.13.7  Family: Lamiaceae, Genus: Salvia, Species: fruticosa
Salvia fruticosa (Greek sage) is a perennial shrub in the eastern Mediterranean. Extracts 
modulated acetylcholinesterase (AChE) activity and C‐reactive protein (CRP), NF‐κB, 
and monocyte chemoattractant protein 1 (MCP‐1) levels in the AlCl3‐induced rat 
model of AD [69].

1.4.13.8  Family: Acanthaceae, Genus: Clinacanthus, Species: nutans
Clinacanthus nutans Lindau (Sabah snake grass) leaves have been used in traditional 
medicine to treat snake bite. They are also used in the treatment of cancer and of kidney 
failure. Our recent studies have shown C. nutans leaves have the ability to inhibit cPLA2 
expression in SH‐SY5Y cells.
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1.4.14  Order: Laurales

1.4.14.1  Family: Lauraceae, Genus: Cinnamomum, Species: cassia
Cinnamomum cassia (cinnamon) extracts modulated NO, IL‐1β, IL‐6, and TNF‐α 
levels in LPS‐stimulated BV‐2 microglial cells. Cinnamon’s constituent, 2′‐hydroxycin-
namaldehyde (HCA), or its derivative, 2′‐benzoyloxycinnamaldehyde (BCA), also 
modulated NO and TNF‐α levels in LPS‐stimulated microglial cells [70].

1.4.15  Order: Magnoliales

1.4.15.1  Family: Magnoliaceae, Genus: Magnolia, Species: officinalis
Oral administration of 4‐O‐methylhonokiol from Magnolia bark in drinking water for 
12 weeks modulated β‐secretase activity, Aβ deposition, oxidative lipid and protein 
damage levels, activation of glial cells, and memory impairment in the Tg2576 mouse 
model of AD [71]. Magnolia officinalis ethanol extract reduced amyloidogenesis and 
memory impairment in the LPS‐induced mouse model of AD [72].

1.4.16  Order: Malpighiales

1.4.16.1  Family: Salicaceae, Genus: Salix
Willow bark contains salicin, which modulated immune activation and had a positive 
effect on the forced swim test (FST), suggesting antidepressant effects in rats [73].

1.4.16.2  Family: Violaceae, Genus: Viola, Species: patrinii
Viola patrinii extract modulated iNOS, COX‐2, TNF‐α, and IL‐1β levels and upregulated 
Nrf2‐dependent expression of HO‐1 in hippocampal HT22 cells and BV‐2 microglial 
cells [74].

1.4.17  Order: Oxalidales

1.4.17.1  Family: Connaraceae, Genus: Cnestis, Species: ferruginea
Amentoflavone isolated from Cnestis ferruginea modulated ROS, malondialdehyde 
(MDA), and TNF‐α levels in LPS‐stimulated C6 astrocytoma cells, and reduced 
nociceptive responses in the carrageenan‐injection mouse model of inflammatory 
pain [75].

1.4.18  Order: Pinales

1.4.18.1  Family: Pinaceae, Genus: Pinus, Species: pinaster
Pinus pinaster (maritime pine) is native to the western and southwestern Mediterranean. 
An extract from the bark, Pycnogenol, modulated TNF‐α and IL‐1β levels in the 
striatum, and reduced behavioral impairment in MPTP‐treated mice [76].

1.4.18.2  Family: Cupressaceae, Genus: Thuja, Species: orientalis
Thuja is a genus of coniferous trees in the cypress family. Thuja orientalis seed extracts 
modulated NO, PGE2, and IL‐1β levels and iNOS, COX‐2, and IL‐1β expression in LPS‐
stimulated BV‐2 microglial cells, and reduced infarct volume after cerebral ischemia in 
rats [77].
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1.4.19  Order: Piperales

1.4.19.1  Family: Piperaceae, Genus: Piper, Species: nigrum
Piper nigrum (black pepper) extracts modulated AChE, CRP, NF‐κB, and MCP‐1 levels 
in the AlCl3‐induced rat model of AD [69].

1.4.19.2  Family: Piperaceae, Genus: Piper, Species: methysticum
Piper methysticum roots possess sedative and anesthetic properties. A chemically 
synthesized kavalactone derivative, 2′,6′‐dichloro‐5‐methoxymethyl‐5,6‐dehydro
kawain, modulated iNOS induction and NO production in LPS‐stimulated BV‐2 
microglial cells, and reduced damage after oxidative stress‐induced neuronal 
injury [78].

1.4.20  Order: Ranunculales

1.4.20.1  Family: Ranunculaceae, Genus: Nigella, Species: sativa
Nigella sativa is an annual flowering plant in South and South West Asia. Extracts 
modulated a scopolamine‐induced increase in MDA and oxidative stress and reduced 
spatial memory impairment in scopolamine‐treated rats [79].

1.4.21  Order: Rosales

1.4.21.1  Family: Cannabaceae, Genus: Cannabis, Species: sativa
The cannabis plant contains molecules (e.g., 2‐arachidonoyl glycerol, anandamide) that 
bind to G‐protein‐coupled cannabinoid receptors, and have been reported to reduce 
the progression of neurodegeneration [80].

1.4.21.2  Family: Moraceae, Genus: Morus, Species: alba
Mulberry leaves have been reported to possess antiamyloidogenic effects. Mulberry leaf 
and silkworm excreta extracts modulated astrocyte and microglial reaction and reduced 
memory impairment in Aβ‐treated mice [81].

1.4.21.3  Family: Rosaceae, Genus: Rosa, Species: laevigata
Rosa laevigata Michx fruit flavonoids modulated DNA and mitochondrial damage, 
activation of Jun kinase (JNK), ERK, and p38 MAPK, and expression of cytokines after 
hydrogen peroxide (H2O2)‐induced oxidative stress. Oral administration of fruit extract 
reduced neuronal damage following cerebral ischemia in rats [82].

1.4.21.4  Family: Urticaceae, Genus: Urtica, Species: dioica
Urtica dioica (nettle) is reported to have anti‐inflammatory and antioxidant effects. 
It modulated ROS levels and the DNA‐binding activity of NF‐κB and reduced neuronal 
injury after N‐methyl‐d‐aspartate‐induced excitotoxic injury in rats [83].

1.4.21.5  Family: Rosaceae, Genus: Crataegus, Species: oxyacantha
Hawthorn ethanolic extract pretreatment of 100 mg/kg for 15 days modulated 
proinflammatory cytokine and intercellular adhesion molecule 1 (ICAM‐1) expression, 
and reduced the number of apoptotic cells after cerebral ischemia in rats [84].
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1.4.22  Order: Sapindales

1.4.22.1  Family: Burseraceae, Genus: Commiphora, Species: erythraea
Plants in the myrrh family are reported to have anti‐inflammatory effects. Extracts 
modulated ROS and NO levels in LPS‐stimulated BV‐2 microglial cells and NF‐α and 
IL‐1β levels in the brains of LPS‐treated mice [85].

1.4.22.2  Family: Anacardiaceae, Genus: Mangifera, Species: indica
Mangifera indica is a species of mango. An aqueous extract, Vimang, is traditionally 
used in Cuba for its anti‐inflammatory and antioxidant effects. Extracts modulated 
TNF‐α‐induced inhibitor κB (IκB) degradation, binding of NF‐κB to DNA, and 
transcription of genes involved in oxidative stress [86].

1.4.22.3  Family: Anacardiaceae, Genus: Pistacia, Species: lentiscus
Pistacia lentiscus (essential oil), a mixture of terpenes and sesquiterpenes, prevented 
bilateral common carotid artery occlusion‐induced loss of DHA. Treatment with 
Pistacia lentiscus extracts modulated an increase in COX‐2 and decrease in DHA levels 
following cerebral ischemia in rats [87].

1.4.22.4  Family: Meliaceae, Genus: Toona, Species: sinensis
Toona sinensis leaf extract suppressed NO production, TNF‐α secretion, and iNOS 
protein expression in LPS‐stimulated microglia. Extracts also modulated nitrate, 
COX‐1 and thromboxane levels, and reduced infarct volume after cerebral ischemia in 
rats [88].

1.4.23  Order: Saxifragales

1.4.23.1  Family: Crassulaceae, Genus: Graptopetalum, Species: paraguayense
Graptopetalum paraguayense E. Walther is reported to have anti‐inflammatory and 
antioxidant effects. Graptopetalum paraguayense E. Walther leaf extracts modulated 
ERK expression, and reduced neuronal injury after cerebral ischemia in rats [89].

1.4.23.2  Family: Paeoniaceae, Genus: Paeonia, Species: lactiflora
A component of Paeonia lactiflora Pall, paeoniflorin, has anti‐inflammatory effects. 
Paeoniflorin modulated IL‐1β, TNF‐α, ICAM‐1, and MPO levels, and reduced 
neurological deficits after cerebral ischemia in rats [90].

1.4.23.3  Family: Crassulaceae, Genus: Rhodiola, Species: rosea
Extracts of Rhodiola rosea modulated iNOS and cytokine levels in LPS‐stimulated BV‐2 
microglial cells and reduced iNOS, IL‐1β, and TNF‐α expression in the prefrontal 
cortex [91].

1.4.24  Order: Solanales

1.4.24.1  Family: Solanaceae, Genus: Lycium, Species: barbarum
Lycium barbarum is one of two species of boxthorn from which wolfberry is harvested. 
Extracts reduced oxidative stress and protected retinal ganglion cells from secondary 
injury after partial optic nerve transection in rats [92].
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1.4.24.2  Family: Solanaceae, Genus: Withania, Species: somnifera
Ashwagandha (Sanskrit for “horse smell”) is referred to in Ayurveda as “Indian ginseng.” 
It had potent anti‐inflammatory action against microglial cells and may have protective 
effects in a model of AD (G.Y. Sun, unpublished).

1.4.24.3  Family: Convolvulaceae, Genus: Ipomoea, Species: batatas
Purple sweet potato color (PSPC), a naturally occurring anthocyanin, modulated glial 
fibrillary acidic protein (GFAP) expression, iNOS, and COX‐2 levels and improved per-
formance in the open field and passive avoidance tests in D‐galactose‐treated mice [93].

1.4.25  Order: Vitales

1.4.25.1  Family: Vitaceae, Genus: Vitis, Species: vinifera
Red grapes contain resveratrol, which prevented nuclear translocation of NF‐κB by 
inhibiting IκB kinase via activation of an enzyme of the NAD+‐dependent histone 
deacetylase, SIRT1; this enzyme deactivates NF‐κB via deacetylation, leading to 
modulation of gene‐expression changes associated with aging in mice [94].

1.4.26  Order: Zingiberales

1.4.26.1  Family: Zingiberaceae, Genus: Curcuma, Species: longa
Curcuma longa (“yellow ginger” in Chinese or “kunyit” in Malay) is reported to have 
anti‐inflammatory and antioxidant effects. Curcumin modulated TNF‐dependent 
activation of NF‐κB through inhibition of p65 translocation to the nucleus and IκB‐α 
degradation [95]. It also modulated tau phosphorylation and Aβ formation [96].

1.4.26.2  Family: Zingiberaceae, Genus: Zingiber, Species: officinale
Gingerols and shogaols in ginger modulated NF‐κB, IL‐1β, and TNF‐α expression 
in microglial cells and human monocytic THP‐1 cells, and reduced neuronal damage 
after 1‐methyl‐4‐phenylpyridinium (MPP+) treatment [97].

1.4.27  Order: Fucales

1.4.27.1  Family: Sargassaceae, Genus: Myagropsis, Species: myagroides
Myagropsis myagroides brown algae ethanolic extract modulated iNOS and COX‐2 
mRNA and protein expression in LPS‐stimulated BV‐2 microglial cells [98].

1.4.28  Order: Agaricales

1.4.28.1  Family: Agaricaceae, Genus: Agaricus, Species: bisporus
Agaricus bisporus (button mushroom, portobello mushroom) is abundant in ergosterol, 
which can be converted to vitamin D2 under ultraviolet (UV) light. Treatment with 
vitamin D2‐enriched mushrooms resulted in improved learning and memory, in a 
mouse model of AD [99].

1.4.29  Order: Polyporales

1.4.29.1  Family: Ganodermataceae, Genus: Ganoderma, Species: lucidum
Ganoderma lucidum mushroom extracts modulated NO, TNF‐α, and IL‐1β levels in 
LPS‐stimulated microglial cells, suggesting that Ganoderma lucidum is a promising 
agent for the treatment of neuroinflammation [100].
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1.5  Use of Phytochemicals against Neuroinflammation

1.5.1  Catechin Flavonoid Polyphenols

The beneficial effects of green tea have been attributed to the interactions of green‐tea 
catechins with cellular proteins. These interactions lead to changes in enzyme activity 
and ligand/receptor function. EGCG is converted to a catechol‐quinone upon autooxi-
dation, and the resultant quinone moiety rapidly reacts with the sulfhydryl group of 
proteins to form cysteinyl–flavonoid adducts [101]. In addition, EGCG binds to serum 
proteins such as fibronectin, fibrinogen, histidine‐rich glycoproteins, 67‐kDa laminin 
receptor, Bcl‐2 proteins, and vimentin. EGCG interacts with growth factor receptors 
(e.g., epidermal growth factor, platelet‐derived growth factor (PDGF), IGF‐1, and 
vascular endothelial growth factor (VEGF) receptors) and alters signal transduction 
processes. The ability of EGCG to cross the BBB allows its use as a preventive treatment 
for neurodegenerative diseases. EGCG may work through a voltage‐gated sodium 
channel signaling pathway. It also inhibits the activity of HSP90 by directly binding to 
HSP70‐interacting protein. Green‐tea components inhibit the arachidonic acid path-
way (PLA2, COX, and LOX) and decrease the production of prostaglandins and 
leukotrienes, key mediators of the acute inflammatory cascade. Together, results sug-
gest that green‐tea components inhibit inflammation by downregulating the expression of 
proinflammatory enzymes and cytokines [102].

Catechins in green tea have similar neuroprotective effects, and their antioxidant‐ 
and free radical‐scavenging properties are well known [103,104]. Catechins function as 
metal chelators that quench copper (II) and iron (III) ions to form inactive complexes 
and prevent the generation of toxic free radicals. In addition, ultra‐rapid electron transfer 
from catechins to ROS‐induced radical sites on DNA can occur. The anti‐inflammatory 
effects of catechins may involve downregulation of NO synthase activity and scavenging 
of NO. This can occur via attenuation of signal transducer and activator of transcription 
(STAT)‐1α activation or through prevention of IκB degradation which inhibits NF‐κB 
from binding to the promoter region of the NO synthase gene [105].

1.5.2  Anthocyanin Flavonoid Polyphenols

Fruits such as blueberries contain anthocyanin flavonoid polyphenols, which offer 
beneficial effects for memory [106,107]. Anthocyanins suppress apoptosis resulting 
from mitochondrial oxidative stress, while anthocyanin and pro‐anthocyanin‐rich 
extracts prevent death of dopaminergic neurons caused by rotenone, via an improve-
ment in mitochondrial function. Blueberry extracts enhance microglial clearance of 
Aβ‐inhibited aggregation of Aβ1–42 and suppress microglial activation via an effect on 
p44/42 MAPK signaling. Extracts also modulate inflammatory cytokine IL‐1β and 
TNF‐α expression, augment expression of the neurotrophic factor IGF‐1 in the hip-
pocampus, and improve cognitive performance in rats after excitotoxic injury induced 
by kainate [51].

1.5.3  Stilbenoid Polyphenols

The beneficial effects of resveratrol result from its antiaging, anticarcinogenic, cardio-
protective, and neuroprotective activities, which are supported by its anti‐inflammatory, 
antioxidant, and gene‐modulating properties [108–110]. Due to its structural similarity 
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to diethylstilbestrol (a synthetic estrogen), resveratrol produces estrogenic effects by 
binding to estrogen receptors and evoking neurochemical effects that parallel those 
exerted endogenously. Many of these effects are associated with its ability to inhibit tran-
scription factors such as MAPK, AP‐1, and NF‐κB. Resveratrol prevents nuclear translo-
cation of NF‐κB by inhibiting IκB kinase. This mechanism is postulated to occur via 
activation of an NAD + ‐dependent histone deacetylase, SIRT1, which deactivates NF‐κB 
via deacetylation [94]. Resveratrol also induces antioxidant enzymes such as catalase, 
SOD, and GPx, as well as HO‐1. The anti‐inflammatory effects of resveratrol are medi-
ated through downregulation of TNF‐α, COX‐2, iNOS, IFN‐γ, and various interleukins. 
Resveratrol (5 mg/kg for males, 1 mg/kg for females) modulates IL‐1β and TNF‐α level, 
microglial activation, and ROS production in the ischemic cortex and reduces infarct 
volumes after ischemic stroke in mice. In addition, resveratrol (0.01% by weight in the 
diet for 1 year) reduces average Aβ plaque density and modulates the microglial activa-
tion in the transgenic amyloid beta protein protein/presenilin‐1 (AβPP/PS1) mouse 
model of AD [111]. It also prevents the proinflammatory effect of fibrillary Aβ on mac-
rophages by potently inhibiting the effect of Aβ on IκB phosphorylation, the activation 
of STAT1 and STAT3, and the secretion of TNF‐α and IL‐6 secretion [112].

1.5.4  Curcuminoid Polyphenols

The yellow curcumin pigment, bis‐(4‐hydroxy‐3‐methoxyphenyl)‐1,6‐diene‐3,5‐dione, 
in turmeric (Curcuma longa) is reported to have anti‐inflammatory and antioxidant 
properties. Curcumin inhibits TNF‐dependent activation of NF‐κB by inhibiting p65 
translocation to the nucleus and the degradation of IκB‐α [95]. This may occur via 
quenching of reactive oxygen intermediates. In addition, curcumin blocks the DNA 
binding of JNK/AP‐1 transcription factor and downregulates c‐Jun by blocking its 
transcription. It also acts as a peroxisome proliferator‐activated receptor gamma 
(PPARγ) agonist, inhibiting activation and inflammation of NF‐κB. Curcumin reduces 
the levels of cytokines (e.g., IL‐1β, TNF‐α) and other inflammatory factors (e.g., iNOS) 
and inhibits various factors of the inflammatory pathway (e.g., COX‐2 and LOX) at the 
transcriptional level. It activates Nrf2, leading to increased expression of HO‐1, an 
enzyme that plays a pivotal role in cytoprotection against noxious stimuli. Curcumin 
modulates NF‐κB activation and subsequent ICAM‐1 gene expression in cultured 
brain microvessel endothelial cells. It also reduces neutrophil adhesion to the cerebro-
vascular endothelium and TNF‐α and ICAM‐1 expression in the brain after experi-
mental stroke induced by middle cerebral artery occlusion in rats. It modulates 
Aβ‐stimulated inflammatory responses in primary astrocytes and reduces GFAP 
expression and improved spatial memory in the Aβ1–40‐induced rat model of AD. 
It  also modulates COX‐2 and GFAP in Aβ25–35‐treated astrocytes and the anti-
neuroinflammatory effects of a PPARγ antagonist, GW9662 [113].

1.5.5  Ginkgo biloba Polyphenols

The active compound of GB, EGb 761, possesses potent antioxidant, memory‐enhanc-
ing, anti‐inflammatory, and blood flow‐promoting properties, which play important 
roles in modulating brain activities such as cognition, concentration, mental alertness, 
and mental fatigue. Many of these activities are mediated by interactions between con-
stituents of EGb 761 (bilobalide) and GABA and glycine receptors located on neuronal 
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cell membranes. These receptors play an important role in memory formation, consoli-
dation, and cognition [114,115]. EGb 761 also enhances cholinergic processes in various 
cortical regions. Together, results support the view that the psychological and physio-
logical benefits of EGb 761 are partly due to modulation of neurotransmitters and neu-
rotransmitter receptors. EGb 761 also benefits the microcirculation by improving blood 
flow in small vessels. It exerts its antioxidant and anti‐inflammatory effects via activa-
tion of the HO‐1/Nrf2 pathway, VEGF regulation, and downregulation of various 
inflammatory mediators. Its antioxidative action is suggested to work in concert with its 
antiapoptotic mechanism. The anti‐inflammatory effects of the GB polysaccharide are 
shown by its suppression of NO production. Bilobalide (4, 8 mg/kg) extracted from 
GB leaves modulates TNF‐α and Aβ1–40 expression, reduces neuronal damage in the 
frontal cortex and hippocampus, and protects against learning and memory impair-
ments in a rat model of AD [116].

1.5.6  Aromatic Acid Class of Phenolic Compounds

Cinnamon (Figure 1.4) produces anti‐inflammatory, antimicrobial, antioxidant, antitu-
mor, cardiovascular, cholesterol‐lowering, and immunomodulatory effects. In vitro 
studies have demonstrated that it may act as an insulin mimetic to potentiate insulin 
activity or stimulate cellular glucose metabolism [117,118]. Cinnamon not only scav-
enges ROS and NO, but also interacts with superoxide anion and peroxynitrite. 
Cinnamaldehyde is an anti‐inflammatory constituent in cinnamon and together with 
2‐methoxycinnamaldehyde, are potent NF‐κB inhibitors. They suppresses TLR4 oli-
gomerization and attenuates LPS‐induced intracellular signaling processes in periph-
eral macrophages. Cinnamaldehyde also reduces LPS‐induced intracellular ROS 
formation, thereby attenuating oxidative stress‐triggered signal transduction pathways 
such as the NF‐κB‐inducing kinase/IκB‐α kinase, ERK, and p38 MAPK pathways. 
Cinnamic acid and its derivatives significantly (~12–63%) inhibit the formation of 
advanced glycation end products, in a concentration‐dependent manner [119].

1.5.7  Phenylethanoid Class of Phenolic Compounds

Olive oil contains phenolic compounds that are well‐known antioxidants. Extra‐virgin 
olive oil fed to transgenic mice with memory impairments improves memory. This is 
associated with a reduction in oxidative stress, and increases in brain glutathione and 
GR levels [120]. Post‐ischemic neuronal injury may be ameliorated by olive oil via the 
combination of its effects on the cholinergic system and its antioxidant effects. Long‐
term consumption of olive oil increases the proportion of monounsaturated fatty acids, 
particularly oleic acid, while reducing the level of arachidonic acid in the cell membrane, 
suggesting its potential to modulate the production of proinflammatory eicosanoids. 
Tyrosol and hydroxytyrosol isolated from olive oil decrease the nuclear translocation of 
the NF‐κB subunits following Aβ exposure in vitro, suggesting the involvement of NF‐κB 
in neuroprotective effects of olive oil [121].

1.5.8  Organosulfur Class of Glucosinolates

The beneficial effects of garlic in human health are due to its anti‐inflammatory, anti-
oxidant, anticancer, antifungal, and immune system‐enhancing properties, as well as 
its  inhibition of prostaglandin production. Organosulfur compounds in garlic target 
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multiple signal transduction pathways and regulate the expression of many genes and 
the induction of many enzymes (e.g., arylamine N‐acetyltransferase, SOD‐like activ-
ity, H2O2‐scavenging activity, GSH redox cycle enzymes, cytochrome P450 reductase, 
and lactate dehydrogenase) in the brain, liver, and other visceral tissues [122,123]. 
SAC (Figure  1.4) possesses neuroprotective properties, including antioxidant and 
radical scavenging effects [124]. SAC and AGE inhibit apoptosis by preventing cas-
pase‐3 activation. Garlic compounds modulate intracellular levels of GSH. Low levels 
of GSH are present in the Alzheimer’s brain and are elevated by AGE. The antioxidant 
action of AGE is demonstrated by the preservation of expression of GPx and GR. This 
is partly caused by inhibition of NF‐κB via interference with an intermediate of TNF‐α. 
An alternative explanation for the antioxidant activity is that SAC inhibits NF‐κB 
activation induced by TNF‐α and H2O2. A sulfur compound isolated from garlic, 
thiacremonone, modulates phosphorylation of IκBα and NF‐κB activation and reduces 
LPS‐induced amyloidogenesis in cultured astrocytes and BV‐2 cells. Results suggest 
the potential of thiacremonone for intervention in neuroinflammatory diseases, 
including AD [125].
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1.5.9  n‐3 Fatty Acids

n‐3 fatty acids such as DHA are abundant in fish such as salmon, tuna, and whitefish. 
In plant products such as walnuts and flaxseed oil, the main n‐3 fatty acid is alpha-
linolenic acid (ALA), which is converted in the body to EPA and DHA [126]. The 
presence of ALA is crucial during periods of active growth around birth. Its conver-
sion to EPA and DHA occurs in many body tissues, including the liver and brain – but 
at a restricted rate. The use of ALA labeled with radioisotopes suggests that with a 
background diet high in saturated fat, the conversion of ALA to long‐chain metabo-
lites is approximately 6% for EPA and 3.8% for DHA. This low rate of ALA to DHA 
conversion is due not only to a high percentage of ALA being directed toward β‐oxida-
tion, but also lower activities of enzymes that convert ALA to DHA in humans com-
pared to rats. n‐3 fatty acids are metabolized to lipid mediators, such as resolvins and 
neuroprotectins. These lipid mediators not only regulate inflammatory cytokines and 
chemokines (TNF‐α, IL‐1β, IL‐10) but also block apoptotic cell death caused by 
inflammation and oxidative stress. DHA inhibits arachidonic acid metabolism and 
downregulates the expression of COX‐2 via NF‐κB. Mice fed with fish oil showed 
decreased production of TNF, IL‐1β, and IL‐6 by endotoxin‐stimulated macrophages, 
and reduced serum levels of TNF, IL‐1β, and IL‐6 were found in mice injected with 
endotoxin. DHA is converted to neuroprotectin D1, which confers protection from 
apoptosis induced by oxidative stress and anti‐inflammatory pathways. DHA also 
reduces oxidative stress by decreasing ROS production by mitochondria. A 3‐month 
DHA supplementation significantly altered the n‐3 : n‐6 polyunsaturated fatty acid 
ratio in the brain, increased levels of the antiapoptotic molecule Bcl‐2 in the brain, 
modulated COX2 and IL‐1β levels and microglial activation after ischemic injury, and 
decreased infarct volume following middle cerebral artery occlusion in rats. Results 
suggest that diet‐induced accumulation of DHA in the brain may protect against 
immune response/brain damage in ischemic stroke. DHA and curcumin supplementa-
tion also improved cognitive function and modulates Aβ accumulation, oxidative 
damage, and synaptic deficits in mouse models of AD [127].

1.6  Phytochemicals and Stroke

1.6.1  Tea

Many preclinical studies have found that tea components are effective in reducing 
stroke volume following middle cerebral artery occlusion, and decrease in infarct 
volume are found with both tea extracts consumed orally and tea components intro-
duced intraperitoneally in rodent models such as rats, mice, and gerbils. 
Epidemiological studies support this finding in humans, and are consistent across 
countries and types of tea [128]. Current evidence indicates beneficial effects of tea 
and cocoa on endothelial function and total and low‐density lipoprotein (LDL) cho-
lesterol [129]. Higher green tea and coffee consumption is inversely associated with 
risk of cardiovascular disease and stroke in the general population [130]. In addition, 
daily consumption of four or more cups of black tea is inversely associated with risk 
of stroke [131]. A significant decrease in ischemic stroke risk was observed for 
drinking at least one cup of tea weekly when compared with infrequent or 
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nondrinkers, the risk reduction being largest when drinking one to two cups of green 
or oolong (black) tea daily [132,133].

1.6.2  Flavonoids

Intake of polyphenols, especially from lignans, flavanols, and hydroxybenzoic acids, is 
associated with decreased cardiovascular disease risk [134]. High intake of flavonoids 
was associated with decreased risk of ischemic stroke and possibly with reduced cardio-
vascular disease mortality in one study [135], although another found that total flavo-
noid intake was not inversely associated with risk of stroke but that increased intake of 
citrus fruits/juices (the main dietary source of flavanones) was correlated with reduced 
ischemic stroke risk [136].

1.6.3  Resveratrol

Resveratrol has shown potential for treatment of stroke in animal and in vitro human 
cell studies [137]. Resveratrol improved memory performance in association with 
improved glucose metabolism and increased hippocampal functional connectivity in 
older adults [138].

1.6.4  Ginkgo biloba

Studies on the effect of GB on functional outcome in patients with acute stroke suggest 
that extracts may have protective effects in ischemic stroke [139]. In contrast, another 
study reported no convincing evidence to support the use of GB for promotion of stroke 
recovery [140].

1.6.5  Olive Oil

Studies support an inverse association of olive oil consumption with stroke, but not 
with coronary heart disease [141]. High olive oil consumption and high plasma oleic 
acid (as an indicator of olive oil intake) were associated with lower incidence of stroke 
in older adults [142]. One study reported that among persons at high cardiovascular 
risk, a Mediterranean diet supplemented with extra‐virgin olive oil or nuts reduced the 
incidence of major cardiovascular events [143].

1.6.6  n‐3 Fatty Acids

Dietary supplementation with n‐3 fatty acids did not reduce the risk of cardiovascular 
disease in elderly participants with age‐related macular degeneration [144]. Similarly, 
there was no difference between n‐3 fatty acids and placebo in end points such as mor-
tality, nonfatal stroke, nonfatal acute myocardial infarction, systemic embolism, heart 
failure development, or recurrent atrial fibrillation [145,146]. In a large general‐practice 
cohort of patients with multiple cardiovascular risk factors, daily treatment with n‐3 
fatty acids did not reduce cardiovascular mortality or morbidity, including nonfatal 
myocardial infarction and nonfatal stroke [147]. Meta‐analyses showed no overall asso-
ciation between n‐3 fatty acid intake and stroke [148], and no effect on cardiovascular 
biomarkers or mood was found following treatment of post‐ischemic stroke patients 
with moderate‐dose fish‐oil supplements [149].
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1.7  Phytochemicals and AD

1.7.1  Flavonoids

Intake of flavonols and of combined flavonoids (all five combined) were the two param-
eters among dietary factors that were inversely correlated with dementia in studies 
among 23 developed countries. Results suggest that higher consumption of dietary fla-
vonoids (especially flavonols) is associated with lower population rates of dementia 
[150]. One study reported that regular cocoa flavonol consumption could reduce age‐
related cognitive dysfunction, possibly through an improvement in insulin sensitivity 
[151]. Flavonol consumption results in enhanced dentate gyrus (DG) function, as shown 
by functional magnetic resonance imaging (fMRI) and cognitive tests. Together, results 
suggest that dietary flavonols may be beneficial in modulating age‐related cognitive 
deficits, through an effect on the DG [152].

1.7.2  Resveratrol

Recent epidemiological evidence has revealed the protective role of dietary polyphenols 
from grape products against AD‐type cognitive deterioration, which stems in part from 
interference with the generation and assembly of Aβ peptides into neurotoxic oligo-
meric aggregated species. In vivo data have demonstrated the neuroprotective proper-
ties of resveratrol in animal models of stress and disease [11]. Resveratrol promotes 
nonamyloidogenic cleavage of amyloid precursor protein and clearance of Aβ [153], and 
recent studies have shown a role for grape‐derived preparations in reducing tau aggre-
gation, which may be useful in the prevention and treatment of AD [154].

1.7.3  Curcumin

Curcumin has antiamyloidogenic, anti‐inflammatory, antioxidative, and metal‐chelat-
ing properties that may result in potential neuroprotective effects. However, it exhibits 
very low bioavailability, mainly due to its poor aqueous solubility, poor stability in 
solution, and rapid intestinal first‐pass effect and hepatic metabolism [155]. At present, 
four clinical trials concerning the effects of curcumin on AD have been conducted. Two 
of them (performed in China and the United States) report no significant differences in 
changes in cognitive function between curcumin and placebo, while results of the other 
two are not yet available. Additional trials are necessary to determine the potential use-
fulness of curcumin for the prevention and treatment of AD [156].

1.7.4  Ginkgo biloba

GB is one of the most investigated and adopted herbal remedies for AD. A 24‐week 
randomized controlled trial was conducted to assess the efficacy of a 240 mg once‐daily 
preparation of GB extract EGb 761 in 404 outpatients aged ≥50 years, diagnosed with 
mild to moderate dementia, AD, or vascular dementia with neuropsychiatric features 
[157]. Treatment with EGb 761 at a once‐daily dose of 240 mg was safe and resulted 
in  improvement in cognition, psychopathology, functional measures, and quality of 
life  among patients and caregivers [158]. Significant changes in Mini‐Mental 
State  Examination (MMSE) score over a 12‐month follow‐up period were reported 
between patients on combined therapy and those taking only cholinesterase inhibitors, 
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suggesting that GB may provide some added cognitive benefits in AD patients already 
under cholinesterase inhibitor treatment [159]. EGb 761 240 mg once‐daily was supe-
rior to placebo in treatment of patients with dementia with neuropsychiatric symptoms 
[160], and improvement in quality of life and cognitive function were noted with GB in 
irradiated brain‐tumor patients [161]. A randomized, double‐blind exploratory trial 
was undertaken to compare the treatment effects and tolerability of EGb 761, done-
pezil, and combined treatment in patients with AD and neuropsychiatric features. This 
study suggested no difference in the efficiency of EGb 761 and donepezil, and that com-
bination therapy might be better than monotherapy due to having fewer side effects 
[162]. Another study directly compared a cholinesterase inhibitor with GB, and found 
no difference in efficacy of EGb 761 and donepezil for treatment of mild to moderate 
Alzheimer’s dementia [163]. A meta‐analysis looking at the prevention effect of ginkgo 
against AD suggests that GB may help established AD patients with cognitive symp-
toms but cannot prevent the neurodegenerative progression of the disease [164]. A trial 
of more than 2000 participants, of whom 1406 received at least one dose of GB extract 
and 1414 received at least one dose of placebo 2000 reported that long‐term use of 
standardized GB extract did not reduce the risk of progression to AD [165].

1.7.5  n‐3 Fatty Acids

Oral supplementation with n‐3 fatty acids conferred changes in the n‐3 fatty acid profile 
in the cerebrospinal fluid (CSF), suggesting transfer of these fatty acids across the BBB 
[166]. The effects of supplementation with n‐3 fatty acids alone or with n‐3 fatty acids 
plus α‐lipoic acid were compared to placebo by MMSE, Activities of Daily Living/
Instrumental Activities of Daily Living (ADL/IADL), and Alzheimer Disease Assessment 
Scale – cognitive subscale (ADAS‐cog). Results indicate that the n‐3 plus lipoic acid 
group showed fewer declines in MMSE and IADL, and that the n‐3 group had lower 
decline in IADL compared to placebo controls [167]. n‐3 fatty acid supplementation for 
6 months increased plasma levels of transthyretin in patients with AD. Transthyretin 
binds to Aβ and may influence Aβ deposition in the brain [168]. n‐3 fatty acid supple-
mentation also resulted in significant increases in DHA and EPA plasma concentrations 
and modulation of genes involved in inflammation and neurodegeneration (e.g., CD63, 
MAN2A1, CASP4, LOC399491, NAIP, and SORL1). Results suggest that dietary n‐3 
fatty acid supplementation affects the expression of inflammatory‐related genes that 
might have an impact on AD [169]. The erythrocyte membranes of subjects on a DHA‐
phospholipids‐, melatonin‐, and tryptophan‐supplemented diet showed significant 
increases in eicosapentenoic acid, docosapentenoic acid, and DHA concentrations, but 
decreases in arachidonic acid, MDA, and lipofuscin levels [170]. DHA also inhibited 
inflammatory cytokines in cells from subjects with AD [171]. One study reported the 
potential role of fish oil in improving memory function in mild cognitive impairment 
(MCI) subjects [172], while another reported that 24‐week supplementation with 
900 mg/d DHA improved learning and memory function in age‐related cognitive 
decline [173]. Other studies, however, reported that supplementation with DHA did 
not slow the rate of cognitive and functional decline [174] or that supplementation with 
n‐3 fatty acid did not result in marked effects on neuropsychiatric symptoms in patients 
with mild to moderate AD [175]. An intervention study reported that only ApoE4 non-
carriers had increased concentrations of long‐chain n‐3 fatty acids in response to 
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supplementation. The mechanisms underlying this gene‐by‐diet interaction may 
involve impaired fatty acids and cholesterol transport or altered metabolism of n‐3 fatty 
acids [176]. Studies using Souvenaid, a combination of uridine monophosphate, cho-
line, EPA, DHA, phospholipids, vitamin C, vitamin E, selenium, vitamin B6, vitamin 
B12, and folic acid showed preservation of the organization of brain networks in patients 
with mild AD within 24 weeks, suggesting that this combination may be useful for 
modulating disease progression in AD [177].

1.8  Conclusion

Plants and phytochemicals not only provide beneficial effects in normal aging, but 
also modulate or delay the onset of neurodegenerative diseases. Phytochemicals pro-
duce actions on a wide spectrum of molecular targets. Many of these inhibit oxidative 
stress by scavenging free radicals and neuroinflammation, and by stimulating anti‐
inflammatory responses. They act via downregulation of proinflammatory enzymes 
through activation of PPARγ; inhibition of PI3K, tyrosine kinases, NF‐κB, and c‐Jun; 
modulation of cell survival/cell‐cycle genes; and stimulation of ARE pathways. 
Phytochemicals disrupt the Nrf2–Keap1 association, thereby releasing Nrf2, which 
translocates to the nucleus and upregulates the expression of phase II detoxifying 
enzymes, such as HO‐1 and GSTs, which have a protective effects on cells. Clinical 
evidence suggests the use of certain phytochemicals for the prevention of stroke and/
or AD. Further work needs to be carried out to comprehensively evaluate each phyto-
chemical in terms of its dose–response, bioavailability, safety, and effectiveness with 
regard to its anti‐inflammatory and antioxidative properties, as well as its disease‐pre-
vention and therapeutic effects.
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