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Preface

There has been a strong resurgence of interest in the fractional calculus over the last two or
three decades. This expansion of the classical calculus to derivatives and integrals of fractional
order has given rise to the hope of a new understanding of the behavior of the physical world.
The hope is that problems that have resisted solution by the integer-order calculus will yield
to this greatly expanded capability. As a result of our work in the fractional calculus, and more
particularly, in functions for the solutions of fractional differential equations, an interest was
fostered in the behavior of generalized exponential functions for this application. Our work
with the fundamental fractional differential equation had developed a function we named the
F-function. This function, which had previously been mentioned in a footnote by Oldham and
Spanier, acts as the fractional exponential function. It was a natural step from there to an inter-
est in a fractional trigonometry. At that time, only a few pages of work were available in the
literature and were based on the Mittag-Leffler function. These are shown in Appendix A.

This book brings together our research in this area over the past 15 years and adds much new
unpublished material.

The classical trigonometry plays a very important role relative to the integer-order calcu-
lus; that is, it, together with the common exponential function, provides solutions for linear
differential equations. We will find that the fractional trigonometry plays an analogous role rel-
ative to the fractional calculus by providing solutions to linear fractional differential equations.
The importance of the classical trigonometry goes far beyond the solutions of triangles. Its use
in Fourier integrals, Fourier series, signal processing, harmonic analysis, and more provided
great motivation for the development of a fractional trigonometry to expand application to the
fractional calculus domain.

Because we are engineers, this book has been written in the style of the engineering math-
ematical books rather than the more rigorous and compact style of definition, theorem, and
proof, found in most mathematical texts. We, of course, have made every effort to assure the
derivations to be correct and are hopeful that the style has made the material accessible to a
larger audience. We are also hopeful that this will not detract the interest of the mathemati-
cal community in the area since their skills will be needed to develop this important new area.
Most of the materials of this book should be accessible to an undergraduate student with a
background in Laplace transforms.

After an introductory chapter, which offers a brief insight into the fractional calculus, the
book is organized in two major parts. In Chapters 2–11, the definitions and theory of the
fractional exponential and the fractional trigonometry are developed. Chapters 12–19 provide
insight into various areas of potential application.

Chapter 2 develops the F-function from consideration of the fundamental fractional differen-
tial equation. It generalizes the common exponential function for application in the fractional
calculus. The F-function, the fractional eigenfunction, together with its generalization, the
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R-function (Chapter 3), will later form the theoretical basis of the fractional trigonometry.
Properties of these functions are developed in these two chapters. Their relationship to other
functions for the fractional calculus is presented. An important characteristic of the R-function
is that it contains the F-function as a special case and also contains its derivatives and integrals.
In later chapters, it is shown that many of the newly defined fractional trigonometric functions
inherit this important property. Chapter 4 further develops properties of the R-function that
expose the character of this fractional exponential function.

In Chapter 5, the R-function, Rq,v(a, t), with real arguments for a and t, is used to define
the fractional hyperbolic functions. These functions generalize the classical hyperbolic func-
tions. Fractional exponential forms of the hyperbolic functions are derived as well as their
Laplace transforms. Furthermore, fractional differintegrals of the functions are determined. An
example demonstrates the use of the Laplace transform in the solution of fractional hyperbolic
differential equations. The fractional hyperbolic functions are found to be closely related to the
R1-trigonometric functions defined in Chapter 6.

Chapters 6–8 present three fractional trigonometries. We have tried to make each of
these chapters as stand-alone developments, at the expense of minor repetition. Chapter 6
develops the R1-trigonometry. It is based on the R-function with imaginary parameter a,
namely Rq,v(ia, t). Multiplication of the parameter by i toggles the R1-hyperbolic functions to
the R1-trigonometric functions, and so on.

A fractional trigonometry, the R2-trigonometry based on an imaginary time variable,
Rq,v(a, it), is developed in Chapter 7. It is found that these functions are characterized by their
attraction to circles when plotted in phase plane format.

The obvious extension of these two trigonometries, the R3-trigonometry of Chapter 8, sets
both the a parameter and the t variable to be imaginary, Rq,v(ia, it). It was thought at the time
that this trigonometry would behave as an hyperbolic analog to the R2-trigonometry. However,
such simple relationships between the two were not found.

Chapter 9 presents the heart of the fractional trigonometry, namely the fractional
meta-trigonometry. Here, both a and t are allowed to be fully complex, by choosing as
the basis Rq,v(i𝛼a, i𝛽t). This chapter generalizes the results of the previous four chapters.
Laplace transforms for the generalized functions are determined along with their fractional
differintegrals. Fractional exponential forms for the functions are also determined.

In Chapter 10, the ratio and reciprocal functions associated with the generalized fractional
sines and cosines of Chapter 9, that is, Sinq,v(a, 𝛼, 𝛽, k, t) and Cosq,v(a, 𝛼, 𝛽, k, t), as well as the
generalized parity functions are considered. The parity functions represent a new set of frac-
tional trigonometric functions with no counterpart in the classical trigonometry. Because of
the large number of possible ratio and reciprocal functions, the treatment in this chapter is
cursory.

Because of the newness of this material, we have tried to be generous with the graphic forms
of the functions. In spite of this attitude, we have found that because of different behavior over
various domains of the functions and the number of parameters in the functions that complete
coverage in this regard to be impossible and the reader is encouraged to program some of the
functions and to experiment for themselves.

In Chapter 3, two new functions, the G- and H-functions, are introduced. These functions
are generalizations of the R-function with multiple real and complex roots in the denominators
of their Laplace transforms. Because of the great generality of these functions, consideration of
these functions as the basis for further generalization of the fractional trigonometry is discussed
in Chapter 11. In Chapter 12, these functions are needed for the solution of linear fractional
differential equations with repeated roots.
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Part II of the book is largely dedicated to applications and potential application of the frac-
tional trigonometry.

The most important application is the use of the fractional trigonometry for the solution of
linear constant-coefficient commensurate-order fractional differential equations. In Chapter
12, specialized Laplace transforms for the meta-trigonometric functions are developed and
applied to the solution of these linear fractional differential equations. Examples showing the
solution of fractional differential equations with unrepeated roots and with repeated real and
complex roots are given.

Chapter 13 studies the time- and frequency-domain responses for linear fractional systems
based on the R-function and the meta-trigonometric functions. The stability of the basic frac-
tional elements is also considered.

Unlike the classical trigonometric functions, the fractional counterparts do not generally
share the periodicity property. As a practical result, we are limited to evaluation of the defining
infinite series for function evaluation. This presents numerical difficulties as the time and/or
order variables increase. Chapter 14 discusses this problem and establishes series convergence.

Phase plane plots of pairs of the fractional trigonometric functions define a new and unique
family of spirals, the fractional spirals. Chapter 15 studies these spirals and their relationship
to some of the classical spirals.

Linear oscillators are often used in the study of ordinary differential equations and in the mod-
eling of physical systems. Chapter 16 identifies those linear fractional trigonometric oscillators
that are neutrally stable. This chapter also explores possible application of coupled fractional
trigonometric oscillators.

Chapters 17–19 study the possible application of the fractional spirals and thus the fractional
trigonometry and fractional differential equations. The potential applications include sea shell
growth and morphology, mathematical classification of spiral galaxy morphology, and various
weather phenomena such as hurricanes and tornados.

Finally, Chapter 20 looks at some of the many remaining challenges and opportunities relative
to the fractional exponential function and the fractional trigonometry, in particular, the need
for a fractional field equation as it relates to spatial fractional spiral morphology.

For the professional with a background in the fractional calculus, a quick coverage of the
essence of the book may be had from Chapters 2, 3, 9, and 12, with selected attention to the
applications of interest contained in Chapters 15–19.

CARL F. LORENZO

TOM T. HARTLEY

Cleveland OH ,
July 2016
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Introduction

The ongoing development of the fractional calculus and the related development of fractional
differential equations have created new opportunities and new challenges. The need for a gener-
alized exponential function applicable to fractional-order differential equations has given rise
to new functions. In the traditional integer-order calculus, the role of the exponential func-
tion and the trigonometric functions is central to the solution of linear ordinary differential
equations. Such a supporting structure is also needed for the fractional calculus and fractional
differential equations.

The purpose of this book is the development of the fractional trigonometries and hyper-
boletries that generalize the traditional trigonometric and hyperbolic functions based on
generalizations of the common exponential function. The fundamental idea is that through
the development of the fractional calculus, which generalizes the integer-order calculus,
generalizations of the exponential function have been developed. The exponential function in
the integer-order calculus provides the basis for the solution of linear fractional differential
equations. Also, it may be thought of as the basis of the trigonometry.

A high-level summary of the flow of the development of the book is given in Figure 1.1. The
generalized exponential functions that we use, the F-function and the R-function, are fractional
eigenfunctions; that is, they return themselves on fractional differintegration. The F-function
is the solution to the fundamental fractional differential equation

0dq
t x(t) + ax(t) = 𝛿(t)

when driven by a unit impulse. The R-function, Rq,v(a, t), generalizes the F-function by
including its integrals and derivatives as well. First, we show that these functions provide
solutions to the fundamental fractional-order differential equation. Then, we explore the
properties of the generalized exponential functions and develop some properties of the
functions that will aid in the development and understanding of the fractional trigonometries
and hyperboletries. This development follows a few mathematical preliminaries.

The R1, R2, and R3 trigonometries along with the R1 hyperboletry are developed by replacing a
and t in the R-function with various combinations of real and purely imaginary variables. Based
on the newly defined functions, a variety of basic properties and identities are determined. Fur-
thermore, the Laplace transforms of the functions are determined and the fractional derivatives
and fractional integrals of the functions elucidated.

The following chapters develop an overarching fractional trigonometry called the fractional
meta-trigonometry that contains all of the fractional trigonometries shown in Figure 1.1 and
infinitely many more. This is accomplished by replacing a and t in the R-function with general
complex variables. We find that the fractional trigonometric functions lead to a generalization

The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science, First Edition.
Carl F. Lorenzo and Tom T. Hartley.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Lorenzo/Fractional_Trigonometry
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Fundamental fractional differential equation

F-function

R-function

R1 Trigonometric

functions

R2 Trigonometric

functions

R3 Trigonometric

functions

Fractional meta-trigonometric functions

Complexity functions Parity functions

Solutions of linear

fractional differential equations

Fractional spirals

Potential scientific applications

Fractional

oscillators

Shell

morphology

Galactic

classification

Weather

phenomenon 

R1 Hyperbolic

functions

Figure 1.1 Overview of the development of the fractional trigonometry and its applications.

of the circular functions, which we have called the fractional spiral functions. These functions
appear to model various natural phenomena, and preliminary applications of these functions to
the properties of fractional oscillators, sea shells, galaxies, and more are explored. An important
aspect of this modeling is that we can infer from the spiral functions the underlying fractional
differential equations describing the phenomena, which is demonstrated. More importantly,
the new fractional functions provide the solutions to classes of linear fractional differential
equations.

1.1 Background

Because of the close association of the fractional calculus and the fractional trigonometry to be
developed, we present here a brief introduction to the concepts of the fractional calculus for
the reader who is unfamiliar with the area.

Several important textbooks have been written that are extremely helpful to someone enter-
ing the field. Perhaps the most useful from the engineering and scientific viewpoint, are the
textbooks by Oldham and Spanier, “The Fractional Calculus” [104], and by Igor Podluby entitled
“Fractional Differential Equations” [109]. A more mathematically oriented treatment is given
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in the book by Miller and Ross [95]. An encyclopedic reference volume written by Samko et al.
[114] has also been published. Furthermore, a very good engineering book has been written by
Oustaloup [105] and is available in French and Bush [19].

There are a growing number of physical systems whose behavior can be compactly described
using fractional differential equations theory. Areas include long lines, electrochemical
processes, diffusion, dielectric polarization, noise, viscoelasticity, chaos, creep, rheology,
capacitors, batteries, heat conduction, percolation, cylindrical waves, cylindrical diffusion,
water through a weir notch, Boussinesq shallow water waves, financial systems, biological
systems, semiconductors, control systems, electrical machinery, and more.

1.2 The Fractional Integral and Derivative

The first question we need to address is “just what is a fractional derivative?” There are two
separate but equivalent definitions of the fractional differintegral (Oldham and Spanier [104]),
known as the Grünwald definition and the Riemann–Liouville definition. We present the Grün-
wald definition first, as it most recognizably generalizes the standard calculus. We then follow
with the Riemann–Liouville definition as it is most easily used in practice.

1.2.1 Grünwald Definition

The Grünwald definition of the fractional-order differintegral is essentially a generalization of
the derivative definition that most of us learned in introductory calculus, namely

dqf (t)
[d(t − a)]q

||||GRUN
≡ lim

N→∞

(
t−a
N

)−q

Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f
(

t − j
( t − a

N

))
, (1.1)

or in a slightly more familiar form

dqf (t)
[d(t − a)]q

||||GRUN
≡ lim

N→∞

N−1∑
j=0

bj(q)
f (t − jΔtN )
(ΔtN )q , (1.2)

where
ΔtN = t − a

N
, bj(q) =

Γ(j − q)
Γ(−q)Γ(j + 1)

.

In this definition, q is not limited to the integers and may be any real or complex number, and a
is the starting time of the fractional differintegration, not to be confused with a in the differential
equation in the introduction. Also, q> 0 defines differentiation, and q< 0 integration. Further-
more, Γ(∘) is the gamma function, or the generalized factorial function. It basically acts as a
calibration constant here to properly interpolate the operators for values of q between the inte-
gers. In terms of notation, Oldham and Spanier [104] provide a development of equation (1.2)
and generalize the fractional differintegral as

dq x(t)
[d(t − a)] q , (1.3)

where it should be noticed that the differential in the denominator starts at some time a, and
ends at a final time t. Thus, we see that the fractional derivative is defined on an interval and is
no longer a local operator except for integer orders. Interestingly, the gamma functions force
the series to terminate with a finite number of terms whenever q is any integer greater than or
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equal to zero, which represent the usual integer-order derivatives. When q is a negative inte-
ger, this series also contains the single and multiple integrals as well (which have always had
infinite memory). The important aspect to be recognized is that there exists an uncountable
infinity of fractional derivatives and integrals between the integers. The Grünwald definition is
also equivalent to the more often used Riemann–Liouville definition, which is discussed in the
following section.

1.2.2 Riemann–Liouville Definition

The Riemann–Liouville definition is easiest to present for fractional integrals first, and then
generalize that to the fractional derivatives. The qth-order integral is defined as (see, e.g.,
Oldham and Spanier [104], Podlubny [109])

ad−q
t x(t) ≡ d−q x(t)

[d(t − a)]−q ≡

t

∫

a

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏, t ≥ a, (1.4)

It is important to note that this is the key definition of the fractional integral and is used by
most investigators. Miller and Ross [95] provide four separate developments of this important
equation. It can be shown that whenever q is a positive integer, this equation becomes a standard
integer-order multiple integral. The Riemann–Liouville fractional derivative is defined as the
integer-order derivative of a fractional integral

adq
t x(t) ≡ dm

dtm (adq−m
t x(t)), t ≥ a, (1.5)

where m is typically chosen as the smallest integer such that q−m is negative, and the
integer-order derivatives are those as defined in the traditional calculus. These equations
define the uninitialized fractional integral and derivative.

For most engineering problems, system components, by virtue of their histories, are placed
into some initial configuration or are initialized. Using mechanical systems as an example, the
initial conditions are often mass positions and velocities at time zero. Fractional-order com-
ponents, however, require a time-varying initialization Lorenzo [77] and Hartley [85], as they
inherently have a fading infinite memory. Considering the aforementioned fractional-order
integral, we assume that the fractional-order integration was started in the past, beginning
at some time a, while the given problem begins at time c> a, where c is usually taken to be
zero. Consider two fractional integrals of the same order acting on x(t), where x(t) and all of its
derivatives are zero for all t< a. If the integral starting at c is to continue the integral starting at
a, we must add an initialization 𝜓 , thus

ad−q
t x(t) = cd

−q
t x(t) + 𝜓 ⇒

t

∫

a

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏

=

t

∫

c

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏 + 𝜓, t ≥ c, q > 0, (1.6)

therefore

𝜓 =

t

∫

a

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏 −

∫

t

c

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏 =

∫

c

a

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏, t ≥ c, q > 0,

(1.7)
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clearly a time-varying function. This term represents the historical effect (Lorenzo and Hartley
[68, 71]) or the initialization required for the fractional integral. The initialized fractional-order
integration operator then is defined as

cD
−q
t x(t) ≡ cd

−q
t x(t) + 𝜓(xi,−q, a, c, t), t ≥ c, (1.8)

where
𝜓(xi,−q, a, c, t) ≡

∫

c

a

(t − 𝜏)q−1

Γ(q)
xi(𝜏)d𝜏, t ≥ c. (1.9)

𝜓(xi,−q, a, c, t) is called the initialization function and is generally a time-varying function that
must be added to the fractional-order operator to account for the effects of the past. This is
a generalization of the constant of integration that is usually added to the normal order-one
integral. The subscript i is appended to x to indicate that xi is not necessarily the same as x.
Clearly then, cD

−q
t x(t) = ad−q

t x(t), t ≥ c. The initialization function is a time-varying function
and is required to properly bring the historical effects of the fractional-order integral into the
future. Similar considerations also apply for fractional-order derivatives [68, 71], that is, for any
real value of q. Again, for convenience, c= 0 is typically chosen.

1.2.3 The Nature of the Fractional-Order Operator

The important properties of integer-order integration and differentiation have been shown to
hold for initialized fractional-order operators (Lorenzo and Hartley [68] and [71]), including
linearity and the index law. Physical insight into the nature of the fractional operators may be
found in Hartley and Lorenzo [44, 47]. The fractional differintegral operator is a linear opera-
tor, and all the properties associated with linear operators hold for them. Also of considerable
importance is the index law; that is, adu+v

t x(t) = adu
t adv

t x(t). The index law essentially allows us
to state, for example, that the half-derivative of the half-derivative of a function is the same as
the first-derivative of that function.

Laplace transforms are standard tools for integer-order operators and can still be readily
used for fractional-order operators. In this regard, the Laplace transform of the initialized
fractional-order differintegral is shown in Lorenzo and Hartley [68, 71] to be

L
{

0Dq
t x(t)

}
= L

{
0dq

t x(t) + 𝜓(x, q, a, 0, t)
}
= sqX(s) + L {𝜓(x, q, a, 0, t)} for all real q.

(1.10)
It is important to note that L{0dq

t x(t)} = sqX(s), for all q, as this is the generalization of the
derivative rule for the integer-order situation. Also, note that L−1{s−q} = tq−1∕Γ(q), q> 0, which
leads directly to the Riemann–Liouville definition via convolution

0d−q
t x(t) ⇔ s−qX(s) ⇔

t

∫

0

(t)q−1

Γ(q)
x(t − 𝜏)d𝜏 =

t

∫

0

(t − 𝜏)q−1

Γ(q)
x(𝜏)d𝜏 . (1.11)

The Laplace transform for the fractional integral is given [78] as

L
{

0D−q
t h(t)

}
= L

{
0d−q

t f (t)
}
+ L

{
𝜓 (fi,−q,−a, 0, t)

}
= 1

sq L{f (t)} + 1
sqΓ(q)

0

∫

−a

e−𝜏 sΓ(q + 1,−𝜏 s) fi(𝜏)d𝜏. q ≥ 0, (1.12)

where q ≥ 0 and

h(t) =

{
fi(t) − a < t ≤ 0,
f (t) 0 < t ,
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and where fi may differ from f during the initialization period. More detailed forms are pre-
sented in Ref. [78].

The transform for the fractional derivative of order u, where u = n − q, is given by

L
{

0Du
t f (t)

}
= sn−qL

{
f (t)

}
−

n−1∑
j=0

sn−1−j𝜓 (j)(fi,−q,−a, 0, t)|t=0+ + snL
{
𝜓(fi,−q,−a, 0, t)

}
,

(1.13)
where u = n − q ≥ 0, n = 1, 2, 3,…, q ≥ 0, fi(t) = 0,∀t < −a, and

snL{𝜓 (fi,−q,−a, 0, t)} = sn−q−1

Γ(q + 1)
[
easΓ(q + 1, as) fi(−a) − Γ(q + 1)fi(0)

+

0

∫

−a

e−𝜏 s Γ(q + 1,−𝜏 s)f ′i (𝜏)d𝜏
]

. (1.14)

In this relationship, 𝜓 (fi,−q,−a, 0, t) is the initialization function for the fractional integral
part of the operator. An alternative form of equation (1.14) where the integration is based on
fi(t) rather than fi

′(t) is given by

L
{

0Du
t f (t)

}
= sn−qL{f (t)} −

n−1∑
j=0

sn−1−j𝜓 (j)(fi,−q,−a, 0, t)|t=0+ + sn−q

Γ(q)

0

∫

−a

e−𝜏 sΓ(q,−𝜏 s) fi(𝜏)d𝜏 ,

(1.15)
where u = n − q ≥ 0, n = 1, 2, 3,… , q ≥ 0, fi(t) = 0, ∀t < −a.

These forms simplify for constant initialization [78], that is, when fi = constant = b,

L{0Du
t f (t)} = sn−qL{f (t)} + b sn−q−1

[
easΓ(q − n + 1, as)

Γ(q − n + 1)
− 1

]
,

q not integer, 0 ≤ u = (n − q) ≤ n , n = 1, 2, 3,… . (1.16)

1.3 The Traditional Trigonometry

The application of the traditional integer-order trigonometry to analysis as well as engineering
and science goes well beyond the calculation of triangles and triangulation. The applications
include Fourier analysis, spectral analysis, solutions to ordinary and partial differential
equations, and more. The trigonometric functions are found in nearly every branch of
mathematics. The traditional trigonometry was originated for the solution of plane triangles.
However, an additional way of interpreting the integer-order trigonometry is based on its
relationship to the exponential function. The connections between the trigonometric functions
and the exponential functions are very close. These relationships center on the Euler equation;
that is, for z = x + iy

ez = exei y = ex(cos y + i sin y), (1.17)

as well as the definitions

cos(t) ≡ eit + e−it

2
=

∞∑
n=0

(−1)nt2n

(2n) !
(1.18)

and

sin(t) ≡ eit − e−it

2i
=

∞∑
n=0

(−1)nt2n+1

(2n + 1) !
(1.19)
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for the sine and cosine functions. In fact, the exponential and trigonometric functions are
fundamental to complex numbers and complex computation.

The hyperbolic functions are also based on the exponential function; these are given in the
following relationships:

cosh(t) ≡ et + e−t

2
=

∞∑
n=0

t2n

(2n) !
, (1.20)

and

sinh(t) ≡ et − e−t

2
=

∞∑
n=0

t2n+1

(2n + 1) !
. (1.21)

The development of the fractional calculus has involved new functions that generalized the
common exponential function. These functions allow the opportunity to generalize both the
hyperbolic functions and the trigonometric functions to “fractional” or “generalized” versions.
Two of these functions, to be detailed later in the book, are the F-function (Hartley and Lorenzo
[45]), which is the solution of the fundamental fractional differential equation

cD
q
t x(t) = −ax(t) + bu(t) (1.22)

and its generalization, the R-function (Lorenzo and Hartley [69, 70]). They are defined as

Fq(a, t) ≡
∞∑

n=0

ant(n+1)q−1

Γ((n + 1)q)
, t > 0 (1.23)

and its vth differintegral

Rq,v(a, t) ≡
∞∑

n=0

ant(n+1)q−1−v

Γ((n + 1)q − v)
, t > 0. (1.24)

The Laplace transforms of these functions are determined in Ref. [69] as

L
{

Fq(a, t)
}
= 1

sq − a
and L

{
Rq,v(a, t)

}
= sv

sq − a
, Re(q − v) ≥ 0. (1.25)

It can be seen from the series definitions of these functions that they contain the exponential
function

eat = 1 + at + (at)2

2 !
+ (at)3

3 !
+ · · · =

∞∑
0

(at)n

Γ(n + 1)
(1.26)

as the q = 1, v = 0 special case. This result and the fact that the F- and R-functions are
eigenfunctions for the qth-order derivative are powerful drivers toward a new generalized
trigonometry based on the fractional (or generalized) exponential function, that is, the F- or
the R-function. The expectation and hope is that such a trigonometry will lead also to new
generalizations of all the products of the integer-order trigonometry, a situation that will
be broadly useful. These expectations and more derive from the usefulness of the ordinary
trigonometry.

It is well known, and follows from equation (1.26), that

eit = 1 + it + (it)2

2 !
+ (it)3

3 !
+ (it)4

4 !
+ · · · (1.27)

eit =
{

1 − t2

2 !
+ t4

4 !
− t6

6 !
+ · · ·

}
+ i

{
t − t3

3 !
+ t5

5 !
− · · ·

}
. (1.28)

These series are, of course, recognized as representing the circular functions giving the
well-known Euler equation

eit = cos(t) + i sin(t). (1.29)



�

� �

�

8 1 Introduction

It is important to note that cos(t) is a summation of terms that are simultaneously both the
real part of eit and are even powers of t. Also, that sin(t) is a summation of terms that are simul-
taneously both the imaginary part of eit and are odd powers of t. This observation will prove
important in the development to follow. Not all of the new fractional trigonometric functions
will share this property.

The R-function, since it includes within it the fractional differintegrals of the F-function, and
is a representation of the fractional eigenfunction, is used as the generalizing basis of the expo-
nential function. Based on the R-function, parallels with the integer-order trigonometry are
used to generate related fractional trigonometries. The properties of these new trigonometries
and identities flowing from the definitions are then developed.

The trigonometries derived from these generalizations will be jointly termed “The Fractional
Trigonometry.” The definitions for the fractional trigonometries can be based on several differ-
ent parallels between various properties of the integer-order trigonometry and the proposed
fractional-order trigonometries. For example, parallels based on equations (1.17)–(1.19) each
provide a basis for definitions. Laplace transforms of the new functions are determined. Frac-
tional differential equations for which the functions are solutions and various intra- and inter-
relationships of the new trigonometric functions are studied.

1.4 Previous Efforts

There have been previous definitions offered for fractional trigonometric functions. These
efforts, each amounting to a page or so of definitions, have been based on the Mittag-Leffler
function and are discussed in Appendix A. In all cases, the definitions are subsets of those to
be presented here.

1.5 Expectations of a Generalized Trigonometry and Hyperboletry

There are some characteristics that a generalized trigonometry should have and additional char-
acteristics that may be desirable. We require that any fractional trigonometry should

contain the traditional, integer-order, plane trigonometry as a special case,
have an eigenfunction basis,
exhibit series compatibility between defined functions and generalized exponentials, and
form a basis for the solution of fractional-order linear differential equations.

These requirements are essentially self-explanatory. The first requires backward compatibility
to the ordinary trigonometry. The second and fourth requirements are a way of saying that the
new generalized trigonometry should be closely coupled to the solution of fractional differential
equations and that the solutions should be expressible as linear combinations of the functions.
The expectation flowing from this is that we expect insight into the solutions of fractional dif-
ferential equations from the fractional trigonometry to be similar to that obtained from the
trigonometric solutions associated with the solutions of ordinary differential equations.

In general, our requirements and expectations for the generalized hyperbolic functions paral-
lel those listed for the fractional trigonometry. For example, we require backward compatibility
with the traditional hyperbolic functions, and so on. In addition, we expect to maintain or gen-
eralize the relationships between the traditional integer-order trigonometric functions and the
traditional integer-order hyperbolic functions when the fractional versions are defined.
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2

The Fractional Exponential Function via the Fundamental Fractional
Differential Equation

2.1 The Fundamental Fractional Differential Equation

This chapter develops the F-function as the solution of the fundamental fractional differen-
tial equation equation (2.1). A similar function was first used by Robotnov [112, 113]. The
F-function was given in a footnote by Oldham and Spanier [104], p. 122, and later indepen-
dently found by Hartley and Lorenzo [45, 48] as the solution to equation (2.1). This function
is the foundation to the development of the fractional trigonometries. Following our study of
the F-function, we introduce the R-function, which generalizes the F-function by including its
fractional derivatives and integrals. The derivations of this chapter are abstracted from Hartley
and Lorenzo, NASA [45]:

The problem to be addressed is the solution of the uninitialized fractional-order differ-
ential equation

cD
q
t x(t) = cd

q
t x(t) = −ax(t) + bu(t), q > 0 (2.1)

where cD
q
t x(t) is the initialized qth-order derivative and cd

q
t x(t) represents the unini-

tialized qth-order derivative. Here, it is assumed for simplicity that the problem starts
at t= 0, which sets c= 0. It is also assumed that all initial conditions, or initialization
functions, are zero; thus, cD

q
t x(t) = cd

q
t x(t). We are primarily concerned with the forced

response. Rewriting equation (2.1) with these assumptions gives

0dq
t x(t) = −ax(t) + bu(t). (2.2)

We use Laplace transform techniques to obtain the solution of this differential equation.
In order to do so for this problem, the Laplace transform of the fractional differential is
required. Using equation (1.11) and ignoring initialization terms, equation (2.2) can be
Laplace transformed as

sq = X(s) = −aX(s) + bU(s). (2.3)

This equation is rearranged to obtain the transfer function
X(s)
U(s)

= G(s) = b
sq + a

. (2.4)

The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science, First Edition.
Carl F. Lorenzo and Tom T. Hartley.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Lorenzo/Fractional_Trigonometry
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This transfer function of the fundamental linear fractional-order differential equation
contains the fundamental “fractional” pole (discussed later) and is a basis element for
fractional differential equations of higher order. Specifically, transfer functions can
be inverse transformed to obtain the impulse response of a differential equation. The
impulse response can then be used with the convolution approach to obtain the solution
of fractional differential equations with arbitrary forcing functions. In general, if U(s)
is given, the product G(s)U(s) can be expanded using partial fractions, and the forced
response obtained by inverse transforming each term separately. To accomplish these
tasks, it is necessary to obtain the inverse transform of equation (2.4), which is the
impulse response of the fundamental fractional-order differential equation.

To obtain the solution for arbitrary q, it is necessary to derive the generalized fundamen-
tal impulse response for the fractional-order differential equation equation (2.4), as this is not
available in the standard tables of transforms, such as Oberhettinger and Badii [103] or Erdelyi
et al. [34]. This is derived in the following section.

2.2 The Generalized Impulse Response Function

Continuing from Ref. [45]:

To obtain the generalized impulse response, we expand the right-hand side of
equation (2.4) in descending powers of s, and then inverse transform the series
term-by-term. It is assumed that q > 0. As the constant b in equation (2.4) is a constant
multiplier, it can be assumed, with no loss of generality, to be unity. Then, expanding the
right-hand side of equation (2.4) about s = ∞ using long division gives

F(s) = 1
sq + a

= 1
sq − a

s2q + a2

s3q − · · · = 1
sq

∞∑
n=0

(−a)n

snq . (2.5)

This power series, in s−q, can now be inverse transformed term-by-term using the trans-
form pair L{tk−1} = Γ(k)∕sk for k > 0. The result is

L−1{F(s)} = L−1
{

1
sq − a

s2q + a2

s3q − · · ·
}

= tq−1

Γ(q)
− at2q−1

Γ(2q)
+ a2t3q−1

Γ(3q)
− · · · , q > 0. (2.6)

The right-hand side can now be collected into a summation and used as the definition of
the generalized impulse response function

Fq[a, t] ≡ tq−1
∞∑

n=0

(a)ntnq

Γ((n + 1)q)
, q > 0. (2.7)

This function is the generalization of the common exponential function that is needed
for the fractional calculus. Furthermore, the important Laplace transform identity

L{Fq[a, t]} = 1
sq − a

, q > 0 (2.8)

has been established. When u(t) in equation (2.2) is a unit impulse, x(t) = bFq[−a, t] is
seen to be the forced response of the fundamental fractional differential equation.
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Figure 2.1 The Fq[−1, t]-function versus time as q varies from 0.25 to 2.0 in 0.25 increments.

This section has established the F-function as the impulse response of the fundamental
linear fractional-order differential equation. The F-function generalizes the usual exponential
function and is the fractional eigenfunction. The solution of equation (2.2), with b= 1, the
F-function, is shown for various values of q in Figure 2.1.

We note that Fq[a, t] is a generalization of the exponential function, since for q = 1,

F1[a, t] =
∞∑

n=0

(at)n

Γ(n + 1)
≡ eat, t > 0. (2.9)

This generalization, Fq[a, t], is the basis for the solution of linear fractional-order differential
equations composed of combinations of fractional poles of the type of equation (2.8).

2.3 Relationship of the F-function to the Mittag-Leffler Function

The F-function is closely related to the Mittag-Leffler function, Eq[atq] [96–98], which, at this
time is commonly used in the fractional calculus. For this reason, we discuss the Mittag-Leffler
function briefly; from Ref. [45], we have the following:

This function is defined as

Eq[x] ≡
∞∑

n=0

xn

Γ(nq + 1)
, q > 0, (2.10)

(Erdelyi et al. [34, 35]). Letting x = −atq, this becomes

Eq
[
−atq]

≡

∞∑
n=0

(−a)ntnq

Γ(nq + 1)
, q > 0, (2.11)

which is similar to, but not the same as equation (2.7). The Laplace transform of this
equation (2.11) can also be obtained via term-by-term transformation, that is

L
{

Eq
[
−atq]} = L

{
1

Γ(1)
− atq

Γ(1 + q)
+ a2t2q

Γ(1 + 2q)
+ · · ·

}
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= 1
s
− a

sq+1 + a2

s2q+1 + · · · , (2.12)

or equivalently

L
{

Eq
[
−atq]} = 1

s

[
1 − a

sq + a2

s2q − · · ·
]
= 1

s

∞∑
n=0

(−a
sq

)n

. (2.13)

Using equation (2.5), equation (2.13) may be written as

L
{

Eq
[
−atq]} = 1

s

[ sq

sq + a

]
= 1

s
[sqL{Fq[−a, t]}]. (2.14)

Thus, the Laplace transform of the Mittag-Leffler function can be written as

L
{

Eq
[
atq]} = sq−1

sq − a
, q > 0. (2.15)

More importantly, from equation (2.14), the E-function and the F-function are related
as follows:

0dq−1
t Fq[a, t] = Eq[atq]. (2.16)

Functions similar to the F-function are mentioned by other authors as well. Oldham and
Spanier [104], p. 122 mention it in passing in a footnote discussing eigenfunctions. Also,
Robotnov [112, 113] studied a closely related function extensively with respect to heredi-
tary integrals; he calls it the ϶-function. Also, other authors have used less direct methods
to solve equation (2.2). Bagley and Calico [11] obtain a solution in terms of Mittag-Leffler
functions. Miller and Ross’s [95] solution is in terms of the fractional derivative of the
exponential function. They use the function

Et(𝜐, a) ≡ 0d−𝜐
t eat , (2.17)

whose Laplace transform is

L
{

Et(𝜐, a)
}
= s−𝜐

s − a
. (2.18)

Also, Glockle and Nonnenmacher [38] obtain a solution in terms of the more compli-
cated Fox Functions.

2.4 Properties of the F-Function

In this section, the eigenfunction property of the F-function is derived. This essentially means
that the qth-derivative of the function Fq[a, tq], returns the same function Fq[a, tq] for t > 0 (see
equation 2.21). Then, from Ref. [45]:

Taking the uninitialized qth-derivative (0dq
t ) in the Laplace domain by multiplying by sq

gives
L−1

{ sq

sq + a

}
= 0dq

t Fq[−a, t]. (2.19)

This equation can also be rewritten as

L−1
{ sq

sq + a

}
= L−1

{
1 − a

sq + a

}
= 𝛿(t) − aFq[−a, t], (2.20)
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where the delta function is recognized as the unit impulse function. Now comparing
equations (2.19) and (2.20), it can be seen that

0dq
t Fq[−a, t] = 𝛿(t) − aFq[−a, t]. (2.21)

This equation demonstrates the eigenfunction property of returning the same function
upon qth-order differentiation for t> 0. This is a generalization of the exponential func-
tion in integer-order calculus.
It is now easy to show that the F-function is the impulse response of the differential
equation (2.2). Referring back to equation (2.2), and setting u(t) = 𝛿(t) and b = 1, yields

0dq
t x(t) = −ax(t) + 𝛿(t). (2.22)

For the F-function to be the impulse response, it must be the solution to equation (2.22),
that is x(t) = Fq[−a, t]. Substituting this into equation (2.22) gives

0dq
t Fq[−a, t] = −aFq[−a, t] + 𝛿(t). (2.23)

This equation has been obtained by direct substitution into the differential equation.
Referring back to equation (2.21), however, shows that the qth-derivative of the
F-function on the left-hand side is in fact equal to the right-hand side of equation (2.23).
Thus, it is shown by direct substitution that the F-function is indeed the impulse
response of the differential equation (2.22).

These sections have developed the F-function and the properties that are key to the develop-
ment of the fractional trigonometry. The following section develops further important prop-
erties of the F-function and illustrates its application to the solution of fractional differential
equations.

2.5 Behavior of the F-Function as the Parameter a Varies

This section studies the F-function with complex values for the parameter a. A linear system
theory approach provides further understanding of the properties of the F-function, when its
Laplace transform is considered as a transfer function of a physical system. From Ref. [45]:

Thus, we consider the Laplace transform of equation (2.22) as the transfer function of a
related linear system

L{Fq[a, t]} = 1
sq − a

, q > 0. (2.24)

In general, to understand the dynamics of any particular system, we often consider the
nature of the s-domain singularities. We define s = rei𝜃 in what follows. For a< 0, the par-
ticular function of equation (2.24) does not have any poles on the primary Riemann sheet
of the s-plane (|𝜃| < 𝜋), as it is impossible to force the denominator of the right-hand side
of equation (2.24) to zero. Note, however, that it is possible to force the denominator to
zero if secondary Riemann sheets are considered. For example, the denominator of the
Laplace transform

L{F1∕2[−1, t]} = 1
s1∕2 + 1

, (2.25)

does not go to zero anywhere on the primary sheet of the s-plane (|𝜃| < 𝜋). It does go
to zero on the secondary sheet, however. With s = e±i2𝜋 , the denominator is indeed zero.
Thus, this Laplace transform has a pole at s = e±i2𝜋 , which is at s = 1 + i 0 on the second
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Figure 2.2 Both sheets of the Laplace transform of the F-function in the s-plane. Source: Hartley and Lorenzo
1998 [45]. Public domain. Please see www.wiley.com/go/Lorenzo/Fractional_Trigonometry for a color version
of this figure.

Riemann sheet. This is shown in Figure 2.2, where |1∕s1∕2 + 1| is plotted as a function of
Real(s) and Imaginary(s).
As it is difficult to visualize multiple Riemann sheets, following LePage [65], it is useful
to perform a conformal transformation into a new plane. Let

w = sq. (2.26)

The transform in equation (2.24) then becomes

L{Fq[−a, t]} = 1
sq + a

⇔
1

w + a
. (2.27)

With this transformation, we study the w-plane poles. Once we understand the
time-domain responses that correspond to the w-plane pole locations, we will be able
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and Lorenzo 1998 [45]. Public domain.

www.wiley.com/go/Lorenzo/Fractional_Trigonometry
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to clearly understand the implications of this new complex plane. To accomplish this,
it is necessary to map the s-plane, along with the time-domain function properties
associated with each point, into the new complex w-plane. To simplify the discussion,
we limit the order of the fractional operator to 0 < q ≤ 1. Let

w = 𝜌ei𝜑 = 𝛼 + i𝛽. (2.28)

Then, referring to equation (2.26)

w = sq = (rei𝜃)q = rqeiq𝜃 = 𝜌ei𝜑. (2.29)

Thus, 𝜌 = rq and 𝜑 = q𝜃. With this equation, it is possible to map either lines of constant
radius or lines of constant angle from the s-plane into the w-plane. Of particular interest
is the image of the line of s-plane stability (the imaginary axis), that is, s = re±iq𝜋∕2. The
image of this line in the w-plane is

w = r qe±iq𝜋∕2, (2.30)

which is the pair of lines at 𝜑 = ±q𝜋∕2. Thus, the right half of the s-plane maps into a
wedge in the w-plane of angle less than ±90q degrees, that is, the right half s-plane maps
into |𝜑| < q𝜋∕2. (2.31)

For example, with q = 1∕2, the right half of the s-plane maps into the wedge bounded by
−𝜋∕4 < 𝜑 < 𝜋∕4; see Figure 2.3.
It is also important to consider the mapping of the negative real s-plane axis, s = re±i𝜋 .
The image is

w = r qe±iq𝜋 . (2.32)

Thus, the entire primary sheet of the s-plane maps into a w-plane wedge of angle less
than ±180q degrees. For example, if q = 1∕2, then the negative real s-plane axis maps
into the w-plane lines at ±90 degrees; see Figure 2.3.
Continuing with the q = 1∕2 example, and referring to Figure 2.3, it should now be clear
that the right half of the w-plane corresponds to the primary sheet of the Laplace s-plane.
The time responses we are familiar with from integer-order systems have poles that are
in the right half of the w-plane. The left half of the w-plane, however, corresponds to the
secondary Riemann sheet of the s-plane. A pole at w = −1 + i0 lies at s = +1 + i0, on
the secondary Riemann sheet of the s-plane. This point in the s-plane is really not in the
right half s-plane, corresponding to instability, but rather is “underneath” the primary
s-plane Riemann sheet. As the corresponding time responses must then be even more
than overdamped, we call any time response whose pole is on a secondary Riemann sheet,
“hyperdamped.” It should now be easy for the reader to extend this analysis to other
values of q.
To summarize this, the shape of the F-function time response, Fq[−a, t], depends upon
both q and the parameter −a, which is the pole of equation (2.27). This is shown in
Figure 2.4. For a fixed value of q, the angle 𝜑 of the parameter −a, as measured from
the positive real w-axis, determines the type of response to expect. For small angles,|𝜑| < q𝜋∕2, the time response will be unstable and oscillatory, corresponding to poles in
the right half s-plane. For larger angles, q𝜋∕2 < |𝜑| < q𝜋, the time response will be sta-
ble and oscillatory, corresponding to poles in the left half s-plane. For even larger angles,|𝜙| > q𝜋, the time response will be hyperdamped, corresponding to poles on secondary
Riemann sheets.
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Figure 2.4 Step responses corresponding to various pole locations in the w-plane, for q = 1∕2. Source: Hartley
and Lorenzo 1998 [45]. Public domain.

It is now possible to do fractional system analysis and design, for commensurate-order
fractional systems, directly in the w-plane. To do this, it is necessary to first choose the
greatest common fraction (q) of a particular system (clearly nonrationally related powers
are an important problem although a close approximation of the irrational number will
be sufficient for practical application). Once this is done, all powers of sq are replaced
by powers of w. Then the standard pole-zero analysis procedures can be done with the
w-variable, being careful to recognize the different areas of the particular w-plane. This
analysis includes root finding, partial fractions (note that complex conjugate w-plane
poles still occur in pairs), root locus, compensation, and so on. We have now character-
ized the possible behaviors for fractional commensurate-order systems in a new complex
w-plane; that is, given a set of w-plane poles, the corresponding time-domain functions
are known both quantitatively and qualitatively. Although most of the discussion has
actually been for 0 < q ≤ 1∕2, it is reasonably applicable to larger values of q with the
appropriate modifications for many-to-many mappings.

2.6 Example

In this example, we consider the impulse response of the inductor–supercapacitor pair
shown in Figure 2.5. In the study of Hartley et al. [49], it was shown that a particular
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Figure 2.5 Supercapacitor circuit example.

commercial supercapacitor is accurately modeled with the impedance transfer function
Z(s) = R + 𝛼√

s
+ 1

sC
. The voltage across this device is chosen as the output voltage for this

example. Then, in Figure 2.5, the voltage transfer function from the input terminals to the
supercapacitor terminals is found to be

Vo(s)
Vi(s)

=
R + 𝛼√

s
+ 1

sC

sL + R + 𝛼√
s
+ 1

sC

=
RCs + 𝛼C

√
s + 1

LCs2 + RCs + 𝛼C
√

s + 1
. (2.33)

For this example, we let RC = 1, 𝛼C = 1, and LC = 1. Then,

Vo(s)
Vi(s)

=
s +

√
s + 1

s2 + s +
√

s + 1
. (2.34)

The poles and zeros of this transfer function are plotted on the w-plane in Figure 2.6, which
also shows the 45∘ stability lines for q= 0.5. Clearly, there are two poles in the right half of the
w-plane, but to the left of the stability boundary. These pole locations correspond to complex
stable poles in the s-plane and imply a damped oscillatory impulse response. We obtain the
impulse response of equation (2.34) using F-functions. First, it is necessary to define the new
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Figure 2.6 The w-plane stability diagram for
supercapacitor.
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complex variable w =
√

s. Then, assuming an impulse input, the output of the transfer function
becomes

Vo(s) =
w2 + w + 1

w4 + w2 + w + 1
= −0.0570 − 0.4334i

w − 0.5474 − 1.1209i
+ −0.0570 + 0.4334i

w − 0.5474 + 1.1209i
+ 0.0570 − 0.1308i

w + 0.5474 − 1.1209i
+ 0.0570 + 0.1308i

w + 0.5474 + 1.1209i
. (2.35)

Inverse transforming the partial fractions with w =
√

s yields

vo(t) = (−0.0570 − 0.4334i)F0.5[0.5474 + 1.1209i, t]
+ (−0.0570 + 0.4334i)F0.5[0.5474 − 1.1209i, t]
+ (0.0570 − 0.4334i)F0.5[−0.5474 + 1.1209i, t]
+ (0.0570 + 0.4334i)F0.5[−0.5474 − 1.1209i, t]. (2.36)

This impulse response is plotted in Figure 2.7. Some damped oscillations are observed as
expected from the pole-zero plot.
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Figure 2.7 Supercapacitor impulse response.

This simple example is presented to demonstrate the use of the F-function to obtain the solu-
tion of a physical fractional-order system.

In this chapter, the fundamental linear fractional-order differential equation has been consid-
ered and its impulse response has been obtained as the F-function. This function most directly
generalizes the exponential function for application to fractional differential equations. It is at
the heart of our development of the fractional trigonometry. Also, several properties of this
function have been presented and discussed. In particular, the Laplace transform properties of
the F-function have been discussed using multiple Riemann sheets and a conformal mapping
into a more readily useful complex w-plane.

It is felt that this generalization of the exponential function, the F-function, is the most easily
understood and most readily implemented of the several other generalizations presented in the
literature.
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3

The Generalized Fractional Exponential Function: The R-Function and
Other Functions for the Fractional Calculus

3.1 Introduction

This chapter generalizes the F-function, that is, the eigenfunction solution of the fundamen-
tal fractional differential equation, to the R-function, which carries in it the derivatives and
integrals of the F-function. The R-function then becomes the basis for the development of the
fractional trigonometric and fractional hyperbolic functions. This chapter also compares the
properties of these functions with other important functions that have been associated with
the fractional calculus.

The previous chapter developed the F-function, Fq[a, t], for the solution of fractional dif-
ferential equations. This function provided direct solution and important understanding for
the fundamental linear fractional-order differential equation and for the related initial value
problem (Hartley and Lorenzo [46]).

This chapter presents functions commonly used in the fractional calculus, and their Laplace
transforms. A new function called the R-function and two related generalized functions,
the G-function and the H-function, are presented for consideration. In the sequel, we will
see that these functions are important in the development and application of the fractional
trigonometries and are, therefore, useful in the solution of fractional differential equations.
The R-function, Rq,v(a, t), contains the vth-order derivatives and integrals of the F-function.
With v= 0, the R-function becomes the F-function and thus the Rq,0-function also returns
itself on qth-order differintegration. The G- and H-functions are needed for the analysis of
repeated and partially repeated fractional poles. An example application of the R-function
is provided. Sections 3.10–3.16 present some preliminaries to the development of the frac-
tional trigonometries. The derivations of Sections 3.2–3.9 are adapted from Lorenzo and
Hartley [69].

3.2 Functions for the Fractional Calculus

This section summarizes a number of functions that have been found useful in the solution of
problems of the fractional calculus and more particularly in the solution of fractional differential
equations.

The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science, First Edition.
Carl F. Lorenzo and Tom T. Hartley.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Lorenzo/Fractional_Trigonometry
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3.2.1 Mittag-Leffler’s Function

The Mittag-Leffler function [96, 97, 98] is given by the following equation:

Eq[t] =
∞∑

n=0

tn

Γ(nq + 1)
, q > 0 . (3.1)

This function often appears with the argument −atq, and its Laplace transform then is given
as

L{Eq[−atq]} = L

{ ∞∑
n=0

(−a)ntnq

Γ(nq + 1)

}
= sq

s(sq + a)
, q > 0. (3.2)

3.2.2 Agarwal’s Function

The Mittag-Leffler function is generalized by Agarwal [5, 6] as follows:

E𝛼,𝛽(t) =
∞∑

m=0

t
(

m+ 𝛽−1
𝛼

)
Γ(𝛼m + 𝛽)

. (3.3)

This function is particularly interesting to the fractional-order system theory due to its
Laplace transform, given by Agarwal as

L{E𝛼,𝛽[t𝛼]} = s𝛼−𝛽
s𝛼 − 1

. (3.4)

This function is the (𝛼 − 𝛽)-order fractional derivative of the F-function with argument a = 1.

3.2.3 Erdelyi’s Function

Erdelyi et al. [34] has studied the following related generalization of the Mittag-Leffler function:

E𝛼,𝛽(t) =
∞∑

m=0

tm

Γ(𝛼m + 𝛽)
, 𝛼, 𝛽 > 0, (3.5)

where the powers of t are integer. The Laplace transform of this function is given by

L{E𝛼,𝛽(t)} =
∞∑

m=0

Γ(m + 1)
Γ(𝛼m + 𝛽)sm+1 , 𝛼 > 1, 𝛽 > 0 . (3.6)

As this function cannot be easily generalized, it is not considered further.

3.2.4 Oldham and Spanier’s, Hartley’s, and Matignon’s Function

To effect the direct solution of the fundamental linear fractional-order differential equation
(Chapter 2), the following function was used (Hartley and Lorenzo [45]):

Fq[−a, t] = tq−1
∞∑

n=0

(−a)ntnq

Γ(nq + q)
, q > 0. (3.7)

This function had been mentioned earlier in a footnote by Oldham and Spanier [104], p. 122.
The important feature of this function is the power and simplicity of its Laplace transform,
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namely
L{Fq[a, t]} = 1

sq − a
, q > 0. (3.8)

This function, with a= 1, is the fractional eigenfunction in that it returns itself on qth-order
differintegration. We note that Matignon [92] has also recognized this function as the fractional
eigenfunction.

3.2.5 Robotnov’s Function

Robotnov [112, 113] used the function

𝜉q(a, t) =
∞∑

n=0

ant(n+1)(q+1)−1

Γ((n + 1)(q + 1))
(3.9)

in his study of hereditary integrals. The Laplace transform of this function is

L{𝜉q(a, t)} = 1
sq+1 − a

. (3.10)

Using Robotnov’s function, 𝜉q−1(1, t) is the eigenfunction. Continuing from [69]:

3.2.6 Miller and Ross’s Function

Miller and Ross [95], pp. 80 and 309–351 introduce another function as the basis of the solution
of the fractional-order initial value problem. It is defined as the vth integral of the exponential
function, that is,

Et(v, a) =
d−v

dt−v eat = tveat𝛾∗(v, at) = tv
∞∑

k=0

(at)k

Γ(v + k + 1)
, (3.11)

where 𝛾∗(v, at) is the incomplete gamma function. The Laplace transform of equation (3.11)
follows directly as

L{Et(v, a)} = s−v

s − a
, Re (v) > 1 . (3.12)

Miller and Ross then show that

L

{ q∑
j=1

aj−1Et(jv − 1, aq)

}
= 1

sv − a
, q = 1, 2, 3,… , v = 1

q
= 1, 1

2
,

1
3
,… , (3.13)

which is a special case of the F-function.

3.2.7 Gorenflo and Mainardi’s, and Podlubny’s Function

Gorenflo and Mainardi [40] and Podlubny [109] use the function

𝜉q(t, a, q, v) =
∞∑

n=0

antqn+v−1

Γ(nq + v)
. (3.14)

This convenient function has the Laplace transform

L{𝜉q(t, a, q, v)} = sq−v

sq − a
. (3.15)

Table 3.1 presents a summary of the defining series and respective Laplace transforms for
these important functions discussed here and shows the relation of their Laplace transforms to
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Table 3.1 Special fractional calculus functions.

Function Time expression Laplace transform Remarks

Mittag-Leffler (1903) [96, 97] Eq[atq] =
∞∑

n=0

antnq

Γ(nq + 1)
sq

s(sq − a)
(q − 1) differintegral
of eigenfunction

Agarwal (1953) [5, 6] Eq,𝛽 [tq] =
∞∑

n=0

t(n+(𝛽−1)∕q)q

Γ(nq + 𝛽)
sq−𝛽

(sq − 1)

Erdelyi et al. (1954) [34] Eq,𝛽 [tq] =
∞∑

n=0

tn

Γ(nq + 𝛽)

∞∑
n=0

Γ(n + 1)
Γ(qn + 𝛽)sn+1

Oldham and Spanier (1974) [104],
Hartley and Lorenzo (1998) [44],
Matignon (1998) [92]

Fq[a, t] =
∞∑

n=0

ant(n+1)q−1

Γ((n + 1)q)
1

sq − a
eigenfunction

Miller and Ross (1993)[95] Et[v, a] =
∞∑

n=0

antn+v

Γ(v + n + 1)
s−v

(s − a)

Lorenzo and Hartley (1999) [69] Rq,v[a, t] =
∞∑

n=0

ant(n+1)q−1−v

Γ((n + 1)q − v)
sv

(sq − a)
vth differintegral of
eigenfunction

Robotnov (1969) [112] 𝜉q(a, t) =
∞∑

n=0

ant(n+1)(1+q)−1

Γ((n + 1)(1 + q))
1

sq+1 − a
𝜉q−1(a, t) is
eigenfunction

Gorenflo and Mainardi (1997)
[40], Podlubny (1999) [109, 110]

𝜉(t, a, q, v) =
∞∑

n=0

antqn+v−1

Γ(nq + v)
sq−v

(sq − a)
(q − v) differintegral
of eigenfunction

The G- and H-functions may be found in Sections 3.9.1 and 3.9.2.
Source: Adapted from Lorenzo and Hartley 1999 [69].

that of the F-function. Clearly, many of these functions are useful for the solution of various
fractional differential equations, but the F-function presented in the previous chapter appears
to most properly generalize the exponential function.

3.3 The R-Function: A Generalized Function

It is of great interest to develop a generalized function which, when fractionally differintegrated
by any order, returns itself (with a new parameter). A function of this type would be useful for
the solution of fractional-order differential equations. The following form is proposed [69, 80,
81]. Consider the function

Rq,v[a, t] =
∞∑

n=0

(a)nt(n+1)q−1−v

Γ((n + 1)q − v)
. (3.16)

For t < 0, R will be complex except for the cases when the exponent ((n + 1)q − 1 − v) is integer.
Clearly, when v= 0 in equation (3.16), the R-function becomes the F-function (equation (2.7));
that is, Rq,0[a, t] = Fq[a, t]. The Laplace transform of such a function will facilitate the solution
of fractional-order differential equations.

The Laplace transform of the R-function is determined as follows:

L{Rq,v[a, t]} = L
∞∑

n=0

{
(a)nt(n+1)q−1−v

Γ((n + 1)q − v)

}
, t > 0. (3.17)


