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Preface

The process of deriving real-world application from scientific knowledge is usually a
very, very long process. However, with the advancement in complementary metal oxide
semiconductor (CMOS) image sensor, and its application in handheld device, image
interpolation has rapidly migrated from complex mathematics and academic publica-
tions to everyday applications in smartphones, laptops and tablets. Image interpolation
has become a red-hot research topic in both academia and industry. One of the highly
cited academic works in image interpolation is authored by Dr. Tam, which is an excerpt
from her master thesis. Her work is also the origin of this book. However, this book is
not intended to be a memoir of the work done by Dr. Tam and her research group; it
is intended to be the course materials for senior- and graduate-level courses, training
materials for engineers, and also a reference text for readers who are working in the
field of digital imaging.

All the image interpolation algorithms discussed in this book will include both theo-
ries, where detailed analytic analysis are derived, and implementations through MAT-
LAB into useful tools. Numerous algorithms are reviewed in this book together with
detailed discussions on their origins, performances, and limitations. We are particu-
larly happy with the numerical simulations presented for all the algorithms described in
this book to clarify the observable but difficult to explain image interpolation artifacts,
as the author shares the well-known Chinese saying that a picture is worth a thousand
words. Furthermore, many of our unpublished works are included in this book, where
new algorithms are developed to overcome various limitations.

This book is authored as much as it is collected. We have tried our best to cite refer-
ences whenever we are aware of related works on the topics. However, we suspect that
some topics may have been independently studied by many individuals, and thus we
might have missed their citation. Over 30 years of research works are collected in one
place, and we presented each selected topics in a self-contained format. If you are inter-
ested in further reading on any of these topics, you should look into the cited references
and the Summary sections at the end of each chapter in this book. On a subject such
as this one, which has been continuously investigated for over half a century, inevitably
a number of valuable research results are not included in this book. It is nonetheless
expected that the contents of this book will enable the careful readers to independently
explore the more advanced image interpolation/processing technique.
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Although much of the materials covered by this book are new to most students,
our goal is to provide a working knowledge of various image interpolation algorithms
without the need for additional course work besides freshman-level engineering math-
ematics and a junior-level matrix lab programming. To perform numerical simulation
using computer, we must use a language that a computer can understand. This is why
we choose to use MATLAB in this book, because MATLAB is not only a computer
language. MATLAB, which is built with matrix data structure, is also a language of
arithmetic. Once the MATLAB implementation of the algorithms have been learned,
it will be fairly straightforward to implement them in other computer languages and
VHDL for hardware synthesis. While almost all the MATLAB example codes presented
in this book are co-developed from the basic and do not require any toolbox to run
with, in Chapter 6, the author just cannot resist to make use of the wavelet toolbox
developed by Prof. T.Q. Nguyen of UCSD who is also the PhD adviser of Dr. Kok
back in the University of Wisconsin–Madison. The toolbox has made everything easy,
which definitely helped the readers to understand the topics and ease their practical
implementation tremendously.

The book is divided into nine chapters. Chapter 1 provides an account of basic
signal processing and mathematical tools used in subsequent chapters. It also serves
the purpose of getting the readers to be familiar with the mathematical notations
adopted in the book. Chapter 2 introduces the important concepts of digital imaging
and the operations that are useful to image interpolation algorithms. The quality
and performance measures between the processed image and the original image are
presented in Chapter 3. The human visual system that is first discussed in Chapter 2
will be extended here for the discussion of the structural similarity quality index. The
nonparametric image interpolation algorithm developed around algebraic functions
are presented in Chapter 4. This chapter ends with a discussion on the deficiency of
nonadaptive interpolation methods. Chapter 5 discusses the interpolation by Fourier
and other orthogonal series. We are particularly interested in interpolating image in the
discrete cosine transform domain, which is motivated by current trends in international
image compression and storage standards. The blocking noise resulted from transform
domain zero padding interpolation with small block size is alleviated by variations
of overlap and add interpolation techniques. An iterative algorithm is presented to
improve the least squares solution of the conventional transform coefficients zero
padding image interpolation algorithm. Note that iterative image interpolation algo-
rithms are considered to be offline image interpolation algorithms. More about iterative
interpolation algorithm that helps to maintain the original pixel values while improving
the performance of the non-iterative image interpolation algorithms will be presented
in subsequent chapters. Chapter 6 extends the block-based transform domain image
interpolation to the wavelet domain. A number of the techniques presented in previous
chapters are applicable to the wavelet domain image interpolation too, and various
researchers have been given them different names in the literature. The performance
of wavelet image interpolation can be improved by exploiting the scale-space rela-
tionships obtained by multi-resolution analysis through wavelet transform (a version
of the human visual system). The explicit edge detection-based image interpolation
methods discussed in Chapter 7 interpolate the image according to the edge-directed
image perception property of human visual system. Various edge-directed interpolation
methods will be discussed where edges are explicitly obtained by various edge detection
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methods discussed in Chapter 2, and implicit edge detection methods that the nature of
the pixels to be interpolated is determined in the course of the estimation. The chapter
concludes with discussions on the pros and cons of edge-directed image interpolation
algorithm using explicit edge detection. Another type of edge-detected image interpo-
lation method will be presented in Chapter 8, which is based on the edge geometric
duality where a covariance-based implicit edge location and estimation method will
interpolate the image along the edge to achieve good visual quality. Digital signal
processing theory tells us that there is always room to improve the solutions of any
estimation problem. Various improvements to the edge-directed interpolation problem
will be discussed in this chapter to improve the preservation of edge geometric duality
between the original image and the interpolated image, to reduce the interpolation
error propagation by removing inter-processing dependence, and finally to improve the
estimation solution through an iterative re-estimation algorithm. The book changes its
course from linear statistical-based interpolation technique to fractal interpolation in
Chapter 9.

It should be noticed that fractal is usually not considered to be a statistical-based
interpolation algorithm. On the other hand, the generation of fractal map is based on
similarity between image features, where the similarity is computed or classified via the
statistics of the image or image blocks. Finally, an iterative algorithm is presented to
improve the fractal image interpolation algorithm with the constraint that the original
low-resolution image is the pivot of the interpolated image, i.e. the location and inten-
sity invariance of the low-resolution image in the interpolation image is guaranteed. The
advantage of such algorithmic constraint not only allows the preservation of the original
low-resolution image pixel values in the interpolated image but also ensures the high-
est preservation of the structure property of the interpolated image. As a result, fractal
image interpolation has been embedded in a number of successful image processing
softwares. The book concludes with an appendix that lists all the MATLAB source codes
discussed in the book.

Many people have contributed, directly or indirectly, over a long period of time, to the
subjects presented in this book. Their contributions are cited appropriately in this book,
and also in the Summary section at the end of each chapter. The Summary sections also
aimed to detail the state-of-the-art development with respect to the topics discussed
in each chapter. The exercises presented in the Exercise sections are essential parts of
this text and often provide a discovery-like experience regarding the associated top-
ics. It is our hope that the exercises will provide general guidelines to assist the readers
to design new image interpolation algorithms for their own applications. The readers’
effort spent on tackling the exercises will help them to develop a thorough considera-
tion on the design of image processing algorithms for their future career in research and
development in the field.

The book is definitely not meant to represent a comprehensive history about the devel-
opment of image interpolation algorithms. On the other hand, it does provide a not so
short review, which chronologically follows the evolution of some of the image interpo-
lation algorithms that have direct implications on commercially available image process-
ing softwares. In particular, we avoided with our best effort to provide a comprehensive
survey of every image interpolation algorithms in literature and market. Instead, our
selection of topics is on the importance of the algorithms with respect to their appli-
cations in image processing softwares in today’s or near-future market. Our hope is



xviii Preface

that the book offers the readers a range of interesting topics and the current state-of-
the-art image interpolation methods. In simple terms, image interpolation is an open
problem that has no definite winner. Analyzing the design and performance trade-offs
and proposing a range of attractive solutions to various image interpolation problems
are the basic aims of this book. The book will underline the range of design considera-
tions in an unbiased fashion, and the readers will be able to glean information from it in
order to solve their own particular image interpolation problems. Most of all, we hope
that the readers will find it an enjoyable and relatively effortless reading, providing them
with intellectual stimulation.

Hong Kong, August 2018 Chi-Wah Kok
Wing-Shan Tam
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Nomenclature

⌈x⌉: ceiling operator that returns the smallest integer larger than or equal to x
ℤ: the set of integers
ℤ+: the set of positive integers (great than 0)
ℝ: the set of real numbers
ℂ: the set of complex numbers
AM,N : arbitrary matrix of size M × N constructed by matrix entrance a(m, n)

with AM,N = [a(m, n)]m,n where 0 ≤ m ≤ M − 1, and 0 ≤ n ≤ N − 1
IN : identity matrix of size N × N
�2: the space of all squares summable discrete functions/sequences
2: the space of all Lesbesgue squares integrable functions
: real part of a number, matrix, or a function
: imaginary part of a number, matrix, or a function
sinc(x): Sinc function

(
sin(x)

x

)
𝛿: Kronecker delta, or Dirac-delta function, or unit impulse with infinite

size
j: root of −1 and is equal to

√
−1

WN : Nth root of unity and equals to e
−j2𝜋

N

 : discrete Fourier transform operator
−1: inverse discrete Fourier transform operator
WN : discrete Fourier transform matrix of size N × N ; WN = [W k,�

N ]k,� with
0 ≤ k, � ≤ N − 1. The Fourier matrix is of arbitrary size when N is
missing

CM×N : discrete cosine transform matrix of size M × N ; the cosine matrix is of
arbitrary size when M × N is missing

⊗: convolution operator
Δx: interval in domain x; the interval domain is arbitrary when x is missing
𝜔: angular frequency
𝜔x: spatial angular frequency in domain x
𝜔Δx

: sampling angular frequency with sampling interval Δx in domain x (= 2𝜋
Δx

)
hc(x,Δx): comb filter impulse response function in domain x with Δx being the

separation between adjacent impulses in the comb filter;
hc(x,Δx) =

∑∞
k=−∞ Δx𝛿(x − kΔx)
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Hc(𝜔,Δx): frequency response of the comb filter hc(x,Δx), i.e.
Hc(𝜔,Δx) =  (hc(x,Δx)

f (x,Δ): impulse train in analog domain x with Δ being the separation between
adjacent indices = Δ

∑∞
m=−∞ 𝛿(x − mΔ), with

𝛿(k) =
{

1∕Δ for k = 0,
0 otherwise.

f [k,N]: discrete impulse sequence = N
∑∞

m=−∞ 𝛿[k − mN], with

𝛿[k] =
{

1∕N for k = 0,
0 otherwise.

A word on notations
1. (Indices) We denote continuous variable (m) and discrete variable [n] induced signals

as x(m) and x[n], respectively.
2. (Vector-matrix) The blackboard bold (A) is used to represent matrix-valued signal

and function, and (x) is used to represent the vector-valued signal and function. The
normal characters (x) are used to represent signal in scalar form.

3. (Rows versus columns) For vector-matrix multiplication written as xA, we may take
vector x as a row vector.
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Abbreviations

1D: one-dimensional
2D: two-dimensional
ADC: analogue-to-digital converter
CFA: color filter array
dB: decibel
DCT: discrete cosine transform
DFT: discrete Fourier transform
DoG: difference of Gaussian
DTFT: discrete time Fourier transform
DWT: discrete wavelet transform
FFT: fast Fourier transform
FIR: finite impulse response
FOH: first-order hold
FRIQ: full-reference image quality index
HR: high-resolution
HVS: human visual system
IDCT: inverse discrete cosine transform
IDFT: inverse discrete Fourier transform
IFS: iterated function system
IIR: infinite impulse response
JPEG: joint photographic experts group
LoG: Laplacian of Gaussian
LPF: low-pass filter
LR: low-resolution
MATLAB: high-level technical computing language by MathWorks Inc.
MEDI: modified edge-directed interpolation [59]
MOS: mean opinion score
MRF: Markov random field
MSE: mean squares error
MSSIM: mean structural similarity [63]
NEDI: new edge-directed interpolation [40]
NRIQ: no reference image quality index
PDF: probability density function
PIFS: partitioned iterated function system
PSNR: peak signal-to-noise ratio



xxiv Abbreviations

QMF: quadrature mirror filter
RGB: red, green, and blue color space
RMSE: root mean squares error
RRIQ: reduced reference image quality index
SNR: signal-to-noise ratio
SSIM: structural similarity [63]
YCbCr: luminance, blue chrominance, red chrominance color space
ZOH: zero-order hold
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About the Companion Website

The companion website for this book is at:
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Signal Sampling

We are living in an analog world that makes it fairly easy to overwhelm our compu-
tation system to process the vast information carried by the analog signal. To process
the analog signal, it will have to be sampled in a way that the sampled signal can be
handled by our computation system. The sampled signal should be able to faithfully
represent the analog signal. With this, it is natural to ask: “Is it possible to reconstruct
the analog signal from the samples?” Such an important question has been answered
by the sampling theorem [56]. The sampling theorem considers the signal sequence f [k]
obtained by uniformly sampling an analog function f (x) with a sampling interval Δx,
such that

f [k] = f (x)𝛿(x − kΔx) = f (kΔx), ∀k ∈ ℤ, (1.1)
where 𝛿(⋅) is a Dirac delta function and ℤ is the set of integers. The sampling theorem
tells us when and how to reconstruct the analog signal f (x) from the sampled signal
sequence f [k]. At the same time, the signal sequence f [k] to be handled by the compu-
tation system is not only a sampled version of f (x) along x; the amplitude of the signal is
also “sampled” by a process known as quantization. We shall discuss the x domain (also
known as the time domain) sampling process in the next section and the quantization
process in Section 1.3. Following the presentation of the sampling theorem, the signal
reconstruction problem is alleviated by means of interpolation and/or approximation.
Other problems that affect the signal reconstruction accuracy, including quantization,
will be discussed in Section 1.3. The quantization problem is an important problem
because the quantization process is lossy, which poses tremendous difficulties in the
recovery of the analog signal. A number of reconstruction methods for imperfect signal
will be discussed subsequently.

1.1 Sampling and Bandlimited Signal

The readers should have studied Engineering Mathematics in their freshman year;
therefore, we shall not discuss the Fourier theorem in detail. Nevertheless, the discrete
Fourier transform (DFT) of sampled signal sequence will be introduced in Section 1.2.1
to familiarize the readers with the mathematical notations used in this book. This book
also assumes the readers have already acquired the basic knowledge about spectral
domain signal processing, and, therefore, this section starts with a formal definition
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Figure 1.1 (a) Spectrum of a bandlimited signal f (x) with bandwidth B; (b) sampled with rate Δx = 2π
𝜔s

with B ≤ 𝜔x can be recovered with a sinc filter with bandwidth 𝜔s.

of bandlimited signal. A signal f (x) is said to be bandlimited with bandwidth B if and
only if it does not contain any frequency components outside the spectral range of
−B∕2 ⩽ 𝜔 ⩽ B∕2, where 𝜔 is the angular frequency. An example of bandlimited signal
is shown in Figure 1.1, where the B bandlimited signal f (x) has its Fourier transform
F(𝜔) equal 0 with |𝜔| > B∕2.

The sampling theorem tells us the sufficient conditions for the reconstructed signal
g(x) obtained from

g(x) = f [k]⊗ h(x) =
∞∑

k=−∞
f (kΔx)h(x − kΔx), (1.2)

where h(x) is the reconstruction function and the sample sequence f [k] = f (kΔx) with
k ∈ ℤ and Δx > 0 (as discussed in Eq. (1.1)) is lossless, such that g(x) = f (x), with f (x)
being bandlimited by B with sampling frequency 𝜔x =

2π
Δx

⩾ B. A formal and also one of
the oldest definition of the sampling theorem is given by the following

Theorem 1.1 Sampling theorem: Consider a sampled signal f [k] with samples
taken at a B-bandlimited function f (x) at sampling period Δx. The reconstructed
signal,

g(x) =
∞∑

k=−∞
f [k]sinc

(π(x − kΔx)
Δx

)
=

∞∑
k=−∞

f [k]sinc
(𝜔x

2
(x − kΔx)

)
, (1.3)

with 𝜔x =
2π
Δx

being the sampling frequency and sinc(a) = sin(a)∕a being a sinc func-
tion, is an exact reconstruction of f (x) when 𝜔s ⩾ B. It should be noted that both 𝜔x
and B are in radian and 𝜔x = B is known as the Nyquist frequency or Nyquist rate.
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To understand Eq. (1.3) of the sampling theorem, we can make use of the discrete time
Fourier transform (DTFT) to examine the reconstructed signal g(x).

G(𝜔) =
∑

k
f [k]e−2j𝜔k × 

(
sinc

(𝜔s

2
(x − kΔx)

))
,

=
Hsinc,Δx(𝜔)

Δx

∞∑
k=−∞

F(𝜔 − k𝜔s), (1.4)

where Hsinc,Δx(𝜔) is the DTFT of sinc(⋅) that is a box function of height Δx in the spectral
domain from [−𝜔x∕2, 𝜔x∕2], and zero everywhere else, and  is the Fourier transform
operator. It is vivid from Eq. (1.4) that the spectrum of the sampled signal is a series of
duplications of the original analog signal spectrum of F(𝜔) located at spectral locations
k𝜔x with k ∈ ℤ as shown in Figure 1.1b. Therefore, when the bandwidth of f [k] is smaller
than 𝜔s, the contributions of the duplicated spectral components F(𝜔 − k𝜔x) at differ-
ent k will not overlap (also known as aliasing-free). Otherwise, as shown in Figure 1.2b,
when the signal spectrum of f (x) has a bandwidth wider than 𝜔s as shown in Figure 1.2a,
the spectral contributions of the sampled signal spectra at different k will overlap. As a
result, the reconstructed signal obtained by filtering with Hsinc(𝜔) will be a distorted
signal F̂(𝜔) (not the same as F(𝜔)). Such kind of distortion is known as the aliasing
distortion. This helps to illustrate the Nyquist frequency (𝜔x = B) as a sufficient condi-
tion to perfectly reconstruct the analog function f (x) from its sample sequence f [k] at a
sampling rate Δx =

2π
B

.
The sampling theorem (Theorem 1.1) stated that a bandlimited signal f (x) can be sam-

pled at a rate equal to or higher than the Nyquist rate and then reconstructed from its
sample sequence without loss by passing the sample sequence f [k] through a noncausal

(b)
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–B/2

F(ω)

ω

B/2

Hsinc(ω) FΔx(ω)

B/2
–ωx ωs/2–ωs/2 ωx 2ωx

ω

–B/2

Figure 1.2 (a) Spectrum of a bandlimited signal f (x) with bandwidth B; (b) sampled with rate Δx = 2π
𝜔x

with B > 𝜔s will suffer from spectrum overlap error, also known as aliasing noise, which makes it
difficult to be recovered by a sinc filter with bandwidth 𝜔s.
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filter with the impulse response equal to a sinc function. In reality, Eq. (1.3) is of theoret-
ical interest only because the equation is numerically ill conditioned (the range of f [k]
includes both causal and noncausal components). However, it is intuitively clear that the
analog function could be closely reconstructed from the sampled sequence using prac-
tical reconstruction function (provided that the signal does not change too rapidly and
hence bandlimited), and the sampling frequency is relatively high when compared with
that of the signal (in that case the sampling frequency is higher than that of the signal
bandwidth).

1.2 Unitary Transform

The DTFT can be applied to signal sequence with infinite length to represent the signal
in frequency domain. For finite length signals, the concept of spectral (Fourier) domain
representation is generalized to transform domain representation with unitary trans-
forms. Let us consider a length N finite duration sequence

f = [ f [0] f [1] · · · f [N − 1] ]T , (1.5)

where f can be a vector in either ℝN×1 or ℂN×1. Similarly, consider an invertible matrix
U that is in either ℝN×N or ℂN×N , which is known as the basis matrix or kernel matrix.
A linear transform and the associated inverse transform of f by U are defined to be

F = U ⋅ f, (1.6)

f = U−1 ⋅ F, (1.7)

with F ∈ ℝN×1 or ℂN×1 being the transform coefficient vector of f . In other words, the
signal vector f is represented by F in a domain described by the basis matrix U. The
transform defined by the set of Eqs. (1.6) and (1.7) is said to be a unitary transform pair
when U ∈ ℝN×N and

U−1 = UT ⇌ UUT = I. (1.8)

In the case of U ∈ ℂN×N , the basis matrix U is a unitary transform when it satisfies

U−1 = U† ⇌ UU† = I, (1.9)

where the superscript † denotes the complex conjugate transpose operation and the
resulting matrix is known as the Hermitian matrix. The following will present an
example of the complex unitary transform, the DFT.

1.2.1 Discrete Fourier Transform

The DFT is derived from the DTFT by assuming f [n] is periodic, which implicitly
defines a mapping from ℂN to ℂN between f [n] and F[k] as

f [n]


−−−−→ F[k] =
N−1∑
n=0

e
−j2πkn

N f [n], ∀k = 0,… ,N − 1, (1.10)
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with j =
√
−1. The inverse discrete Fourier transform (IDFT) of the sequence F[k] is

given by

F[k]
−1

−−−−→ f [n] =
N−1∑
k=0

e
j2πkn

N F[k], ∀n = 0,… ,N − 1. (1.11)

In the form of unitary transform, the transform kernel of the DFT is given by the N × N
DFT (Fourier) matrix WN , where the subscript N indicates the kernel size.

WN =
[
e

−j2πkn
N

]
0⩽k,n<N

. (1.12)

If we denote W k
N = e

−j2πk
N , the Nth root of unity, then the Fourier matrix can be expressed

as a Vandermonde matrix in W . As an example, the 3 × 3 Fourier matrix is given by

W3 =
⎡⎢⎢⎢⎣

W 0
3 W 0

3 W 0
3

W 0
3 W 1

3 W 2
3

W 0
3 W 2

3 W 4
3

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

1 1 1
1 W 1

3 W 2
3

1 W 2
3 W 1

3

⎤⎥⎥⎥⎦
. (1.13)

Therefore, one can view the computation of F[k] from f [n] as a matrix vector product of

 (f ) = WN f = F. (1.14)

The IDFT can be easily obtained by multiplication of W−1
N to Eq. (1.14). Since the matrix

WN is an orthogonal matrix, therefore, W−1
N = W†

N as given by Eq. (1.9). In image inter-
polation, N is usually very large, and an efficient method to compute the DFT is required.
In MATLAB, an efficient computation of the DFT is available by means of the fast
Fourier transform (FFT) command fft.

It is vivid that the kernel of the Fourier matrix WN is a function of j =
√
−1, which

makes this kernel complex. As a result the power of the signal in frequency domain
(Fourier domain) given by the power spectrum P[u] is obtained as the sum of squares
of the real and imaginary part of the DFT

P[u] = |F[u]|2 = (R2( [u]) + 
2(F[u])), (1.15)

which measures the power of individual sinusoidal components contained in the signal.

1.3 Quantization

The time domain (x domain) sampled signal has a continuum of values, as can be
observed from the solid line in Figure 1.3. However, the sampled analog signal must
be representable in digital form for storage or transmission. Since the number of bits
(binary digits) for representing each signal sample is limited, the analog samples must
be quantized to a finite number of levels before it can be coded in the form of binary
numbers. As a result, the quantization process compresses the continuum of analog
values to a finite number of discrete values. It is vivid that the quantization process
will introduce distortion into the quantized signal when compared with the original
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Figure 1.3 Sampling and quantization of a
one-dimensional continuous signal.

analog signal. This kind of distortion is known as quantization noise. In simple terms, a
scalar quantizer for real signal is a mapping from ℝ to a finite set of discrete values on
the real number line. The quantized value is chosen to be the closest approximation to
the amplitude of the input signal within the finite set. Formally, a scalar quantizer Q(⋅)
defines the mapping of the input decision intervals (dk ∶ k = 0, 1,… , L) to output or
reconstruction levels (rk ∶ k = 0,… , L − 1). The quantized signal is given by

fQ(x) = Q(f (x)) = rk with dk ⩽ f (x) < dk+1 for k = 0,… , L − 1. (1.16)

Without loss of generality, the decision levels are chosen such that

d0 < d1 < · · · < dL. (1.17)

Furthermore, d0 and dL are selected to be the minimum and maximum possible input
signals. It should be noted that d0 = −∞ and dL = ∞ are valid and are being chosen for
most of the quantizers applied in practice. As a result, the number of bits required to
address any one of the output levels is ⌈log2L⌉ bits with ⌈⋅⌉ being the ceiling operator that
returns the smallest integer equal to or larger than log2L. There exist a lot of quantizers
(a particular choice of dk and rk) that are optimal for different applications. Without
loss of generality and limitation in our discussions, we shall focus on uniform quantizer
in this book, where the difference between decision levels of the quantizer equals to a
constant step size ΔQ.

ΔQ = dk − dk−1, ∀k ∈ ℤ+. (1.18)

An example of an analog signal being sampled and quantized is shown in Figure 1.3,
where the analog signal plotted in the figure is a damped cosine function.

f (x) = 10e−x∕10 cos
( x

10
𝜔 − 𝜃

)
− 𝛾, (1.19)

with 𝜔 = 2π, 𝜃 = 3, and 𝛾 = −9.9. The sampled and quantized signal samples are plot-
ted in Figure 1.3 by black dots together with the analog signal f (x) by solid line. It can be
observed that the sampled signal can faithfully represent the analog signal with quanti-
zation error 𝜖(x) (also known as quantization noise as marked in Figure 1.3 for the case
of x = 6). The quantization error is highly correlated with the number of bits applied to
quantize the signal. Shown in Figure 1.4 is the same signal being sampled with the same


