Microbiology in Dairy Processing Challenges and Opportunities

Edited by Palmiro Poltronieri

Microbiology in Dairy Processing

The *IFT Press* series reflects the mission of the Institute of Food Technologists—to advance the science of food contributing to healthier people everywhere. Developed in partnership with Wiley, *IFT Press* books serve as leading - edge handbooks for industrial application and reference and as essential texts for academic programs. Crafted through rigorous peer review and meticulous research, *IFT Press* publications represent the latest, most significant resources available to food scientists and related agriculture professionals worldwide. Founded in 1939, the Institute of Food Technologists is a nonprofit scientific society with 18,000 individual members working in food science, food technology, and related professions in industry, academia, and government. IFT serves as a conduit for multidisciplinary science thought leadership, championing the use of sound science across the food value chain through knowledge sharing, education, and advocacy.

IFT Press Advisory Group

Baris Ates Nicolas Bordenave Ravi Chermala YiFang Chu Deepti Dabas Chris Doona Chris Findlay Maria Jose Frutos-Fernandez Elsina Hagan Jung Hoon Han Shane McDonald Gordon Robertson Shahin Roohinejad Sam Saguy Fereidoon Shahidi Herbert Stone Yael Vodovotz Jared Willbergh

Bob Swientek (IFT) Melanie Bartelme (IFT) David McDade (Wiley)

WILEY Blackwell

Titles in the IFT Press series

- Accelerating New Food Product Design and Development, second edition (Jacqueline H. Beckley, Leslie J. Herzog and M. Michele Foley)
- Advances in Dairy Ingredients (Geoffrey W. Smithers and Mary Ann Augustin)
- Anti-Ageing Nutrients: Evidence-based Prevention of Age-Associated Diseases (Deliminda Neves)
- Bioactive Compounds from Marine Foods: Plant and Animal Sources (Blanca Hernández-Ledesma and Miguel Herrero)
- *Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals* (Yoshinori Mine, Eunice Li Chan, and Bo Jiang)
- *Biofilms in the Food Environment, second Edition* (Anthony L. Pometti III and Ali Demicri)
- *Bitterness: Perception, Chemistry and Food Processing* (Michel Aliani and Michael N.A. Eskin)
- Calorimetry in Food Processing: Analysis and Design of Food Systems (Gönü l Kaletunç)
- Coffee: Emerging Health Effects and Disease Prevention (YiFang Chu)
- *Flavor, Satiety and Food Intake* (Beverly Tepper, Martin Yeomans)
- Food Carbohydrate Chemistry (Ronald E. Wrolstad)
- Food Carotenoids: Chemistry, Biology and Technology (Delia B. Rodriguez-Amaya)
- *Food Industry Design, Technology & Innovation* (Helmut Traitler, Birgit Coleman and Karen Hofmann)
- Food Ingredients for the Global Market (Yao Wen Huang and Claire L. Kruger)
- Food Irradiation Research and Technology, second edition (Christoper H. Sommers and Xuetong Fan)Foodborne Pathogens in the Food Processing Environment: Sources, Detection and Control (Sadhana Ravishankar, Vijay K. Juneja, and Divya Jaroni)
- Food Oligosaccharides: Production, Analysis and Bioactivity (F. Javier Moreno and Maria Luz Sanz
- Food Texture Design and Optimization (Yadunandan Dar and Joseph Light)
- High Pressure Processing of Foods (Christopher J. Doona and Florence E. Feeherry)
- *Hydrocolloids in Food Processing* (Thomas R. Laaman)
- Improving Import Food Safety (Wayne C. Ellefson, Lorna Zach, and Darryl Sullivan)
- Innovative Food Processing Technologies: Advances in Multiphysics Simulation (Kai Knoerzer, Pablo Juliano, Peter Roupas, and Cornelis Versteeg)
- *Mathematical and Statistical Methods in Food Science and Technology* (Daniel Granato and Gastón Ares)
- Membrane Processes for Dairy Ingredient Separation(Kang Hu and James Dickson)
- *Microbial Safety of Fresh Produce* (Xuetong Fan, Brendan A. Niemira, Christopher J. Doona, Florence E. Feeherry, and Robert B. Gravani)
- Microbiology and Technology of Fermented Foods (Robert W. Hutkins)
- *Microbiology in Dairy Processing: Challenges and Opportunities* (Palmiro Poltronieri)
- *Multiphysics Simulation of Emerging Food Processing Technologies* (Kai Knoerzer, Pablo Juliano, Peter Roupas and Cornelis Versteeg)

- *Multivariate and Probabilistic Analyses of Sensory Science Problems* (Jean Fran ç ois Meullenet, Rui Xiong, and Christopher J. Findlay
- Nanoscience and Nanotechnology in Food Systems (Hongda Chen)
- Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients (Cristina Sabliov, Hongda Chen and Rickey Yada)
- Natural Food Flavors and Colorants, second edition (Mathew Attokaran)
- Nondestructive Testing of Food Quality (Joseph Irudayaraj and Christoph Reh)
- *Nondigestible Carbohydrates and Digestive Health* (Teresa M. Paeschke and William R. Aimutis)
- *Nonthermal Processing Technologies for Food* (Howard Q. Zhang, Gustavo V. Barbosa C á novas, V.M. Balasubramaniam, C. Patrick Dunne, Daniel F. Farkas, and James T.C. Yuan)
- *Nutraceuticals, Glycemic Health and Type 2 Diabetes* (Vijai K. Pasupuleti and James W. Anderson)
- Organic Meat Production and Processing (Steven C. Ricke, Ellen J. Van Loo, Michael G. Johnson, and Corliss A. O' Bryan)
- Packaging for Nonthermal Processing of Food (Jung H. Han)
- *Practical Ethics for the Food Professional: Ethics in Research, Education and the Workplace* (J. Peter Clark and Christopher Ritson)
- Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Ross C. Beier, Suresh D. Pillai, and Timothy D. Phillips, Editors; Richard L. Ziprin, Associate Editor)
- *Processing and Nutrition of Fats and Oils* (Ernesto M. Hernandez and Afaf Kamal Eldin)
- *Processing Organic Foods for the Global Market* (Gwendolyn V. Wyard, Anne Plotto, Jessica Walden, and Kathryn Schuett)
- *Regulation of Functional Foods and Nutraceuticals: A Global Perspective* (Clare M. Hasler)
- *Resistant Starch: Sources, Applications and Health Benefits* (Yong Cheng Shi and Clodualdo Maningat)
- Sensory and Consumer Research in Food Product Design and Development (Howard R. Moskowitz, Jacqueline H. Beckley, and Anna V.A. Resurreccion)
- *Spray Drying Techniques for Food Ingredient Encapsulation* (C. Anandharamakrishnan and Padma Ishwarya S.)
- Sustainability in the Food Industry (Cheryl J. Baldwin)
- Thermal Processing of Foods: Control and Automation (K.P. Sandeep)
- Trait Modified Oils in Foods (Frank T. Orthoefer and Gary R. List)
- *Water Activity in Foods: Fundamentals and Applications* (Gustavo V. Barbosa Cánovas, Anthony J. Fontana Jr., Shelly J. Schmidt, and Theodore P. Labuza)
- *Whey Processing, Functionality and Health Benefits* (Charles I. Onwulata and Peter J. Huth)

WILEY Blackwell

Microbiology in Dairy Processing Challenges and Opportunities

Edited by Palmiro Poltronieri Institute of Sciences of Food Productions (CNR-ISPA)

WILEY Blackwell

This edition first published 2018 © 2018 John Wiley & Sons Ltd and the Institute of Food Technologists

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Palmiro Poltronieri to be identified as the author of the editorial material in this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

The publisher and the authors make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or website is referred to in this work as a citation and/or potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this works was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising here from.

Library of Congress Cataloging-in-Publication Data

Names: Poltronieri, Palmiro, editor.

Title: Microbiology in dairy processing : challenges and opportunities / edited by Palmiro Poltronieri. Description: Hoboken, NJ : John Wiley & Sons, 2017. | Series: IFT Press series | Includes index. | Identifiers: LCCN 2017016747 (print) | LCCN 2017035565 (ebook) | ISBN 9781119114970 (pdf) |

ISBN 9781119114987 (epub) | ISBN 9781119114802 (cloth) Subjects: LCSH: Dairy microbiology. | Dairy processing. Classification: LCC QR121 (ebook) | LCC QR121 .M54 2017 (print) | DDC 579.3/7–dc23 LC record available at https://lccn.loc.gov/2017016747

Cover Design: Wiley

Cover Images: (Background Image) © karandaev/Gettyimages; (Inset Images: from top to bottom) © nicolas_/Gettyimages; © WitthayaP/Shutterstock; © Maurizio Milanesio/Shutterstock

Set in 10.5/12.5pt Times by SPi Global, Pondicherry, India

 $10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$

Contents

Lis Fo Pr Ac	st of c rewo eface know	contribi rd	utors		xv xix xxi xxi						
л.	<i>кно</i> w	reugem	ienis		ллш						
1	Mil	Milk fat components and milk quality									
	Iola	nda Ali	tomonte, .	Federica Salari and Mina Martini							
	1.1	Introdu	uction		1						
		1.1.1	Milk fat	globules	2						
	1.0	1.1.2	Milk fat	and fatty acid composition	4						
	1.2 D.f	Conclu	usions		7						
	Refe	erences			/						
2	Spo	re-forr	ning bac	teria in dairy products	11						
	Son	ia Garc	le Lopez-	Brea, Natalia Gómez-Torres and Marta Ávila Arribas							
	2.1	Introdu	uction	, <u>-</u>	11						
	2.2	The ba	acterial sp	ore	13						
		2.2.1	Structure	e and chemical composition of bacterial spores	14						
			2.2.1.1	Exosporium	14						
			2.2.1.2	Spore coat	14						
			2.2.1.3	Outer spore membrane	15						
			2.2.1.4	Cortex and germ cell wall	15						
			2.2.1.5	Inner spore membrane	15						
			2.2.1.6	The core spore	15						
		2.2.2	Spore re	sistance	16						
		2.2.3	Life cycl	le of spore-forming bacteria	17						
	2.3	Spore-	forming b	pacteria important for the dairy industry	18						
		2.3.1	Class Ba	ucilli	18						
			2.3.1.1	Bacillus genus	19						
				2.3.1.1.1 Bacillus cereus	19						
				2.3.1.1.2 Other <i>Bacillus</i> species	20						
				2.3.1.1.3 Importance of <i>Bacillus</i> spp. in the dairy industry	21						
			2.3.1.2	Geobacillus and Anoxybacillus genera	24						
			2.3.1.3	Paenibacillus genus	25						
		2.3.2	Class Cl	ostridia	25						
			2.3.2.1	Clostridium botulinum	26						
			2.3.2.2	Clostridium perfringens	28						
	2.4	G	2.3.2.3	<i>Clostridium tyrobutyricum</i> and related species	28						
	2.4	Contro	of strategie	es to prevent poisoning and spoilage of milk	20						
	25	and da C_{arral}	ary produ	cts by spore-torming bacteria	30 21						
	2.3 D-£	Concli	USIONS		51						
	References										

3	Psychrotrophic bacteria Milena Brasca, Marilù Decimo, Stefano Morandi, Solimar Gonçalves Markada, Francia Barlicića, en d'Maria Cristian Danta Vanstii								
	2 1	Liter Lister	27						
	3.1	Introduction	3/						
	3.Z	Sources of psychrotrophic bacteria contamination of milk	38						
	3.3	Important spollage psychrotrophic bacteria in milk	42						
	3.4	Molecular tools to characterize psychrotrophic bacteria	43						
	3.5	Influence of psychrotrophic contamination of raw milk on dairy product quality	45						
		3.5.1 Bacterial proteases and proteolytic changes in milk	46						
		3.5.2 Bacterial lipases and phospholipases and their significance in milk	49						
	3.6	Regulation of extracellular enzymes	52						
	3.7	Control of psychrotrophic bacteria and related enzymes	53						
	3.8	Conclusions	54						
	Refe	erences	54						
4	Sta	bilization of milk quality by heat treatments	63						
	Pali	niro Poltronieri and Franca Rossi							
	4.1	Introduction	63						
	4.2	Thermal treatments of milk	63						
		4.2.1 Thermization	63						
		4.2.2 Pasteurization	64						
		4.2.3 Grade A pasteurized milk	66						
	4.3	Milk sterilization	67						
		4.3.1 Control of proper time/temperature setting for safety							
		of milk and milk products	67						
	4.4	Diseases associated with unpasteurized milk, or post-pasteurization							
		dairy-processing contamination	68						
	4.5	4.5 Conclusions							
	Refe	erences	68						
5	Cor	nomics of LAB and dairy associated species	71						
5	Dala	mire Poltronieri, France Possi, Casare Cammà, Francesco Pomilio	/1						
	run	nilo Fouroment, Franca Rossi, Cesare Camma, Francesco Fomilio							
	<i>ana</i> 5 1	Unzia Kanaazzo	71						
	5.1	Comparing of lab and doing associated appeales	71						
	5.2	5.2.1 Next generation sequencing of strains, deiry starter generation	/1						
		5.2.1 Next-generation sequencing of strains, dairy starter genomics	72						
		5.2.2 Desific Disseignes single melocule real time seguencing technology	12						
		5.2.2 Pacific bioscience single-molecule real-time sequencing technology	13 72						
		5.2.5 Infumitia Myseq and Hiseq 2000	13 72						
	5 2	S.2.4 ION FORTHER platform	15						
	5.5	5.2.1 Dependencies	74						
		5.3.1 Paligenolitics	/4						
		systems biology	75						
	5.4	Metabolomics and proteomics	76						
		5.4.1 Subcellular localisation (SLC): secretion systems for secreted proteins	77						
		5.4.2 Interactome for cell adhesion and pathogen exclusion	78						
		5.4.3 Lab peptidome	79						

viii

Contents

	5.5	Comp	arative genomics of dairy-associated bacteria: the Lactobacillus	
		genus	complex, Streptococci/Lactococci, Enterococci, Propionibacteria	
		and B	ifidobacteria	79
		5.5.1	Comparative genomics of Lb. rhamnosus and Lb. casei	83
	5.6	5.5.2 Cluste	<i>Lb. casei</i> core genome and ecotype differences in dairy adapted strains red Regularly Interspaced Short Palindromic Repeats (CRISPR)	84
		in ada	ptive immunity	84
	5.7	Regul	ation in carbon metabolism	85
		5.7.1	Transcriptional and posttranscriptional regulation in	
			carbon metabolism	85
		5.7.2	Two-component systems and phosphorylation in sugar substrate	
			regulation	86
		5.7.3	Regulatory RNAs and alternative sigma factors in gene expression	87
	58	Concl	usions	88
	Ref	erences		88
	Ren	crenees		00
6	Me	tabolis	m and biochemistry of LAB and dairy-associated species	97
	Pali	miro Po	oltronieri, Giovanna Battelli and Nicoletta Pasqualina Mangia	
	6.1	Introd	uction	97
	6.2	Carbo	hydrate substrates, glycolysis and energy production	98
		6.2.1	Pentose phosphate pathway	99
		6.2.2	Citrate fermentation	99
	6.3	Protec	plysis, protein substrates and amino acid availability influencing	
		gene e	expression	100
		6.3.1	Cell-envelope proteinases: the Prt system	101
		6.3.2	Oligopeptide permeases and other transporters for peptides	101
		0.0.1	and amino acids	101
		633	Pentidolysis and free amino acids	102
		634	Pentidolysis and catabolite repression	105
		635	Amino acid biosynthesis and auxotrophy	105
	64	Lipoly	vsis linases esterases	105
	6.5	Arom	a and flavour products of metabolism	107
	0.5	651	Aldehydes, alcohols and carboxylic acids	110
		652	Amino acide as precursor flavour compounds	112
	66	Noner	Admino actus as precursor navour compounds	112
	67	Metho	ade of analysis of flavours in dairy products: HPL C gas chromatography/	115
	0.7	mass	analysis of mayours in daily products. In LC, gas chromatography	114
	68	Motur	al biodiversity of strains in dairy productions	114
	6.0	Concl	a biodiversity of strains in daily productions	115
	0.9 Dof	conce	usions	117
	Kel	erences		11/
7	Gro	owth n	eeds and culture media for LAB and dairv-associated species	123
	Giu	seppe 1	Blaiotta, Maria Aponte and Palmiro Poltronieri	-
	7.1	Introd	uction	123
	7.2	Establ	ished culture media for lactobacilli	123
		7.2.1	Rogosa agar	124
		7.2.2	MRS medium	125

		7.2.3	Skim milk and whey agar	125		
	7.3	M17 m	edium for selection and enumeration of lactococci and streptococci	126		
		7.3.1	St. thermophilus <i>agar</i>	126		
	7.4	Selectiv	ve media for lactobacilli	127		
		7.4.1	MRS vancomycin	127		
		7.4.2	Additional selective agents	128		
		7.4.3	MRSV plus selective agents for Lb. casei group enumeration	129		
		7.4.4	MRS-salicin, MRS-sorbitol, MRS-ribose, MRS gluconate agar	129		
		7.4.5	MRS-clindamycin-ciprofloxacin agar	129		
		7.4.6	MMV medium for Lb. casei group enumeration	130		
		7.4.7	MRS containing fructose (MRSF)	130		
		7.4.8	mMRS-BPB	131		
		7.4.9	MRS-NNLP agar and chromogenic agars for complex communities	131		
		7.4.10	Homofermentative-heterofermentative differential medium	131		
	7.5	Media	for the isolation of bifidobacteria	132		
		7.5.1	MRS-NNLP agar	133		
		7.5.2	BSM, WSP, TOS-MUP	133		
		7.5.3	MRS-ABC	134		
	7.6	Phenot	yping	134		
	7.7 Conclusions					
	Refe	erences		135		
8	LA	B specie	es and strain identification	139		
	Cin	zia Ranc	lazzo, Alessandra Pino, Koenraad Van Hoorde and Cinzia Caggia			
	8.1	Introdu	iction	139		
	8.2	Genoty	pic fingerprinting methods	140		
	8.3	Culture	e-dependent approaches	142		
		8.3.1	Random amplification of polymorphic DNA	142		
		8.3.2	ARDRA and RFLP	143		
		8.3.3	Ribotyping	143		
		8.3.4	Repetitive element sequence-based PCR	144		
		8.3.5	Amplified fragment length polymorphism	145		
		8.3.6	Pulsed field gel electrophoresis	145		
	8.4	Non-ge	enotypic fingerprinting methods	146		
	8.5	Culture	e-independent approaches	147		
		8.5.1	Culture-independent methods for qualitative analysis of dairy			
			foods microbiota	147		
		8.5.2	Culture-independent methods for quantitative analysis of dairy			
			foods microbiota	150		
	8.6	Novel 1	nigh-throughput techniques: sequencing and metagenomics	151		
	8.7	Conclu	sions	152		
	Refe	erences		152		
9	LA	B strain	s with bacteriocin synthesis genes and their applications	161		
	Lor	ena Sac	chini, Giacomo Migliorati, Elisabetta Di Giannatale,			
	Era	neascol	Pomilio and Franca Rossi			
	riu	ncesco I				
	9.1	Introdu	action	161		

	9.3	Potent	ial for use of lab bacteriocins as food preservatives	164					
	9.4	Bacteriocins produced by dairy lab 1							
	9.5	Identif	ication of lab-producing bacteriocins	168					
	9.6	A nove	el approach for screening lab bacteriocins	170					
	9.7	Biotec	hnological interventions for bacteriocin engineering	171					
	9.8	Conclu	usions	172					
	Refe	rences		172					
10	Star	ter stra	ins and adjunct non-starter lactic acid bacteria (NSLAB)						
	in da	airy pro	oducts	177					
	Paol	a Dolci	and Luca Cocolin						
	10.1	Introdu	uction	177					
	10.2	Contro	olled fermentation	177					
		10.2.1	Natural versus selected lactic acid bacteria starters	178					
		10.2.2	Starter strains: selection parameter approaches and strain concept	179					
		10.2.3	Starter culture formulation	180					
	10.3	Adjun	ct non-starter lactic acid bacteria	181					
		10.3.1	Biodiversity and adaptation to cheese environment	181					
		10.3.2	Prospective in industrial application	182					
		10.3.3	Biopreservation and health benefits	183					
	10.4	Conclu	isions	185					
	Refe	rences		185					
11	Milk	Fat: st	tability, separation and technological transformation	191					
	Gian	luigi Sc	colari						
	11.1	Introdu	uction	191					
		11.1.1	Composition and physical state of milk fat	192					
		11.1.2	Melting point of milk fat	194					
	11.2	Physic	al instability of milk fat	194					
	11.3	Milk fa	at separation	195					
		11.3.1	Flocculation or natural creaming	195					
		11.3.2	Milk fat separation by centrifugation	197					
	11.4	Partial	coalescence	199					
		11.4.1	General aspects	199					
		11.4.2	Barrier against coalescence	201					
			11.4.2.1 Low molecular mass surfactants	201					
			11.4.2.2 Large sized surfactants (casein micelle)	202					
			11.4.2.3 Polymeric surfactants (proteins and polysaccharides)	203					
			11.4.2.4 Mixed films	203					
	11.5	Foam i	in milk and cream	204					
		11.5.1	General aspects	204					
			11.5.1.1 Foam formation without surfactants	204					
			11.5.1.2 Foam formation with surfactants	205					
			11.5.1.3 Drainage of dispersion liquid in foam	206					
		11.5.2	Foam from cream containing more than 30% milk fat	207					
	11.6	Whipp	bed cream and butter	209					
		11.6.1	Technological factors affecting whipped cream and butter						
			production	209					

	11.7	Churning process	210
		11.7.1 Type of cream	210
		11.7.2 Physical (crystallization) and biological maturation of cream	
		before churning	212
		11.7.3 Churning technology	215
		11.7.4 Continuous churning	216
		11.7.5 Moulding and packaging	217
	11.8	Conclusions	217
	Refe	rences	218
12	Biol	ogical traits of lactic acid bacteria: industrial relevance and new	
	pers	pectives in dairy applications	219
	Dieg	o Mora, Fabio Dal Bello and Stefania Arioli	
	12.1	Introduction	219
	12.2	Selecting fermenting bacteria for their ability to have a respiratory	
		metabolism	220
	12.3	Selecting galactose-positive yogurt cultures: working "against the natural	
		evolution of the species"	221
	12.4	Accelerating the milk acidification process by selecting	
		proteinase-positive strains	222
	12.5	Accelerating the milk acidification process by selecting urease-negative	
		S. thermophilus strains	224
	12.6	Protective cultures for dairy applications: "work but please do not	
		grow and do not modify the sensory profile of the product"	225
	12.7	Selection of starter culture free of transferable antibiotic-resistance	
		mechanisms	227
	12.8	Conclusions	228
	Refe	rences	229
13	Lact	tic acid bacteria bacteriophages in dairy products: problems	
	and	solutions	233
	Gior	gio Giraffa, Miriam Zago and Domenico Carminati	
	13.1	Introduction	233
	13.2	Phage classification	234
	13.3	Phage-host interactions	236
	13.4	Sources of contamination	238
		13.4.1 Milk and cheese whey	238
		13.4.2 Dairy cultures	239
		13.4.2.1 The lysogenic state	239
	13.5	Phage detection and quantification	240
	13.6	Methods to control phage contamination	242
		13.6.1 Phage inactivation by physical treatments	242
		13.6.2 Phage inactivation by chemical treatments	244
		13.6.3 Phage control by biological approaches	245
	13.7	Conclusions	246
	Refe	rences	246

14	Lact	c acid bacteria	a: a cell factory for delivering functional				
	bion	olecules in dai	ry products	251			
	Tizia	ıa Silvetti, Stefe	ano Morandi and Milena Brasca				
	14.1	Introduction		251			
	14.2	Vitamins		253			
		14.2.1 Vitamin	n B2 or Riboflavin	254			
		14.2.2 Vitamin	n B9 or Folate	255			
		14.2.3 Vitamin	n B12 or cobalamin	256			
		14.2.4 Vitamin	n K: menaquinone	257			
		14.2.5 Other E	B-group vitamins	258			
	14.3	Minerals		258			
	14.4	Bioactive compounds					
		14.4.1 Anti-hy	pertensive peptides	262			
		14.4.2 Antioxi	dative peptides	263			
		14.4.3 Bioacti	ve amines	265			
		14.4.4 Immun	e system affecting peptides	267			
		14.4.5 Opioid	peptides	267			
		14.4.6 Metal-b	binding peptides	268			
		14.4.7 Conjug	ated linoleic acid and conjugated				
		linoleni	c acid	268			
	14.5 Low-calorie sweeteners						
	14.6 Exopolysaccharides (EPS)						
	14.7	Conclusions		273			
	References						
15	Dair	technologies	in yogurt production	279			
	Pana	giotis Sfakianal	tis and Constantina Tzia				
	15.1	Introduction		279			
	15.2	Yogurt types		280			
	15.3	Yogurt manufac	cturing process	281			
		15.3.1 Initial t	reatment of milk	281			
		15.3.2 Standar	dization of milk components – fat and				
		SNF co	ntent	283			
		15.3.3 Homog	enization	284			
		15.3.4 Heat tre	eatment	286			
		15.3.5 Fermen	tation process	288			
		15.3.5.1	Monitoring of fermentation process – prediction				
			of fermentation evolution	290			
		15.3.6 Post-fer	rmentation processing	292			
		15.3.6.1	Cooling – addition of additives	292			
		15.3.6.2	2 Addition of fruit	292			
		15.3.63	B Packaging	294			
		15.3.7 Quality	control of vogurt production	294			
	15.4	Conclusions		295			
	Refe	ences		295			

Milk protein composition and sequence differences in milk							
and	fermented dairy products affecting digestion and tolerance						
to dairy products							
Mari	a Gabriella Giuffrida, Marzia Giribaldi, Laura Cavallarin						
and I	Palmiro Poltronieri						
16.1	Introduction	299					
16.2	Caseins	301					
	16.2.1 Gene polymorphisms in <i>κ-casein</i> genes	302					
	16.2.2 Gene polymorphisms in β -casein gene	303					
16.3	Proteolytic release of bioactive peptides in fermented milk and cheese	304					
16.4	Minor milk proteins	305					
	16.4.1 Lactoferrin	305					
	16.4.2 β-Lactoglobulin (β-LG)	306					
	16.4.3 α -Lactalbumin (α -LA)	306					
16.5	Proteins with bioactive roles	307					
16.6	MFGM-associated proteins	308					
16.7	Cow's milk protein allergy (CMPA)	308					
16.8	Conclusions	309					
Refe	rences	309					

Index

315

List of contributors

Iolanda Altomonte

Department of Veterinary Sciences, University of Pisa, Pisa, Italy

Maria Aponte

Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy

Stefania Arioli

Department of Food Environmental Nutritional Sciences (DeFENS), University of Milan, Milan, Italy

Marta Ávila Arribas

Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain

François Baglinière Department of Microbiology, Federal University of Viçosa, Minas Gerais, Brazil

Giovanna Battelli

ISPA-CNR, Institute of Sciences of Food Productions, Milano, Italy

Giuseppe Blaiotta

Department of Agricultural Sciences, Division of Grape and Wine Sciences, University of Naples Federico II, Avellino, Italy

Milena Brasca

ISPA-CNR, Institute of Sciences of Food Productions, Milano, Italy

Cinzia Caggia

Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy

Cesare Cammà Istituto Zooprofilattico Sperimentale 'G. Caporale', Teramo, Italy

Domenico Carminati

CREA-ZA, Centro di ricerca Zootecnia e Acquacoltura, sede di Lodi, Italy

Laura Cavallarin

CNR-ISPA, Institute of Sciences of Food Productions, Dipartimento di Scienze Veterinarie dell'Università di Torino, Grugliasco, TO, Italy

Luca Simone Cocolin

Settore di Microbiologia agraria e Tecnologie alimentari, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Grugliasco, Italy

Fabio Dal Bello

Sacco System, Sacco srl, Cadonago (CO), Italy

Maria Cristina Dantas Vanetti

Department of Microbiology, Federal University of Viçosa, Minas Gerais, Brazil

Marilù Decimo

ISPA-CNR, Institute of Sciences of Food Productions, Milano, Italy

Elisabetta Di Giannatale

Istituto Zooprofilattico Sperimentale, "G. Caporale", Teramo, Italy

Paola Dolci

Settore di Microbiologia agraria e Tecnologie alimentari, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Grugliasco, Italy

Sonia Garde Lopez-Brea

Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain

Giorgio Giraffa

CREA-ZA, Centro di ricerca Zootecnia e Acquacoltura, sede di Lodi, Italy

Marzia Giribaldi

CREA-IT, Research Centre for Engineering and Agro-Food Processing, Turin, Italy

Maria Gabriella Giuffrida

CNR-ISPA, Institute of Sciences of Food Productions, Dipartimento di Scienze Veterinarie dell'Università di Torino, Grugliasco, TO, Italy

Natalia Gómez-Torres

Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain

Solimar Gonçalves Machado

Federal Institute of Education, Science and Technology of North of Minas Gerais, Campus Salinas, Minas Gerais, Brazil

Nicoletta Pasqualina Mangia

Department of Agriculture, University of Sassari, Italy

Mina Martini Department of Veterinary Sciences, University of Pisa, Pisa, Italy

Giacomo Migliorati Istituto Zooprofilattico Sperimentale, "G. Caporale", Teramo, Italy

Diego Mora

Department of Food Environmental Nutritional Sciences (DeFENS), University of Milan, Milano, Italy

Stefano Morandi

ISPA-CNR, Institute of Sciences of Food Productions, Milano, Italy

Alessandra Pino

Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy

Palmiro Poltronieri

Institute of Sciences of food Productions (CNR-ISPA), CNR, National Research Council of Italy, Lecce, Italy

Francesco Pomilio

Istituto Zooprofilattico Sperimentale, "G. Caporale", Teramo, Italy

Cinzia Randazzo

Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy

Franca Rossi

Istituto Zooprofilattico Sperimentale, "G. Caporale", Teramo, Italy

Lorena Sacchini Istituto Zooprofilattico Sperimentale, "G. Caporale", Teramo, Italy

Tiziana Silvetti ISPA-CNR, Institute of Sciences of Food Productions, Milano, Italy

Gianluigi Scolari

Istituto di Microbiologia degli alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy

Panagiotis Sfakianakis

Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Greece

Federica Salari

Department of Veterinary Sciences, University of Pisa, Pisa, Italy

Constantina Tzia

Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Greece

Koenraad van Hoorde

Laboratory of Brewing and Biochemistry, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium

Miriam Zago

CREA-ZA, Centro di ricerca Zootecnia e Acquacoltura, sede di Lodi, Italy

Foreword

Microbiology in Dairy Processing: Challenges and Opportunities is directed to the following: dairy scientists; dairy professionals in industry and academia; those in food science, dairy science and microbiology; intermediate course and post-graduate students; trained laboratory personnel; and R&D and production personnel in dairy industry companies of all sizes. The idea to write this book came from the section "Questions" in the Researchgate community. I realised that there is a need to introduce lactic acid bacteria (LAB) growth media at various levels of expertise, from young researchers starting their laboratory work to food technologists devoted to microbiological analyses. Therefore, from this starting point, I searched the recent literature and produced a list of exceptionally interesting publications on how far the genomics field has advanced in its knowledge of LAB species in recent years. The chapters in this book reflect these advancements and offer a panoramic view of the research fields in which to apply these advancements in knowledge, either for LAB and dairy-associated species and their applications in dairy productions and for the technologies to maintain the milk products safe and devoid of undesired pathogens and milk spoilage bacteria. The challenges of dairy microbiology are either to maintain the product safety devoid of undesired bacteria that may spoil the quality and change the taste or to the further advancement in the microbiota and the interaction among bacteria at community level. The opportunities remain in the exploration of the biodiversity of LAB and dairy-associated species, either at genome rearrangements and horizontal gene transfer or at the biochemistry level, to produce novel dairy products that are low fat, low salt, or with beneficial properties for human health.

Preface

Microbiology in Dairy Processing: Challenges and Opportunities introduces and reviews the knowledge regarding dairy technologies and lactic acid bacteria (LAB) and dairy-associated species in the fermentation of dairy products for laboratory technicians and researchers and students learning the protocols for LAB isolation and characterisation. It provides application notes useful in laboratories of food technology departments and for students and researchers studying all aspects of the milk-processing industry, from microbiology to food productions.

The chapters deal with the industrial processing of milk – the problems solved and those still affecting the processes, from microfiltration to deterioration of stored milk in cold by psychrotrophic bacteria (such as *Pseudomonas fragi*) and by spore-forming bacteria – and cheese-manufacturing technologies. The book introduces culture methods and species-selective growth media to grow, separate and characterise LAB and dairy-associated species, molecular methods for species identification and strain characterization, Next Generation Sequencing for genome characterization, comparative genomics, phenotyping, and current applications in dairy and non-dairy productions, as well as the potential future exploitation of the culture of novel strains with useful traits (probiotics, fermentation of sugars, metabolites produced, bacteriocins).

Chapter 1 introduces the quality and properties of milk fats and differences in milks of various origin. Chapter 2 overviews the spore-forming bacteria associated with milk. Chapter 3 discusses the problem of psychrotrophic bacteria in milk deterioration. Chapter 4 presents the various types of industrial milk according to the freshness and quality. Chapter 5 presents the advancements in LAB and dairy-associated species genomics and strain differences, related to gene content and their applications. Chapter 6 presents very broadly the biochemistry of LAB and dairy-associated species. Chapter 7 reviews selective growth media for different species of LAB and non-LAB dairyassociated bacteria. Chapter 8 introduces the molecular tools for strain identification and characterization. Chapter 9 discusses the bacteriocin-producing LAB species and their potential applications in food products. Chapter 10 analyses in detail the complex interactions among starter and non-starter strains. Chapter 11 reviews the physicalchemical properties of milk cream products and technological processes involving milk fats and cream-derived products. Chapter 12 analyses technological traits of lactic acid bacteria, their industrial relevance and new perspectives. Chapter 13 overviews LAB bacteriophages in dairy products, their problems and solutions. Chapter 14 details the application of LAB as a cell factory for delivering functional biomolecules in dairy products. Chapter 15 reviews the dairy technologies applied to yogurt production. Finally, Chapter 16 introduces properties of milk proteins, the differences in amino acids of protein variants, and the potential to originate bioactive peptides and the proteolysis by co-fermenting LAB species, a process that may ensure the safety and healthiness of the fermented products, as assessed by EFSA authority. Last, the potential for milks of different origin to be administered to individuals suffering of milk allergies or intolerance is discussed.

> Palmiro Poltronieri Institute of Sciences of Foods Productions (CNR-ISPA)

Acknowledgements

The contributions of all members of staff at Wiley-IFT who were involved with writing and reviewing the draft of this book are thankfully acknowledged. This book was made possible thanks to the support of colleagues and professors from Italy, Spain, Belgium, Greece, and Brazil. Among others, I would like to thank Dr. Bruno Battistotti, whose course in dairy technologies opened my mind and my working perspectives during my first years of research; Dr. Pier Sandro Cocconcelli, who introduced me to LAB molecular methods; Drs. Giuseppe Zacheo, Franco Dellaglio and Marco Gobbetti, for supervising microbial technologies and project proposals of my Institute; and Dr. Maria Morea for including me in her projects on "Microbiology for food quality and safety". A special appreciation goes to the contributors of the book chapters and to AITeL, the Italian Association of Milk Technologists, providing the opportunity to meet and include some of the last-minute contributors. Finally, I would like to thank the scientific community, the European Research Council (previously ESF), for the opportunity to work and collaborate with high-level scientists in several international projects, such as Ferbev, Riboreg, TransBio, and COST 853 "Agricultural biomarkers for array technology". This book was made possible thanks to the scientific vision of many other colleagues who, because of their schedule, could not be directly involved at this time, but whose work has enlightened the process of writing the chapters and the organization of the book.

1 Milk fat components and milk quality

Iolanda Altomonte, Federica Salari and Mina Martini

Department of Veterinary Sciences, University of Pisa, Pisa, Italy

1.1 INTRODUCTION

From a physico-chemical point of view, milk is an emulsion of lipid globules and a colloidal suspension of protein and mineral aggregates in a solution of carbohydrates (mainly lactose). In Western countries, milk and dairy products, and in general food of animal origin, are often accused of causing adverse health effects, especially with regard their food lipid intake, since lipids have been implicated in several diseases such as obesity, insulin resistance and atherosclerosis (Olofsson et al., 2009). For these reasons, the number of studies on the physical and chemical structure of fat in several edible products of animal origin have increased. Although milk and dairy products contain saturated fatty acids, they also provide specific beneficial components for human health and also lipid components (phospholipids, some individual fatty acids (FAs) and fat-soluble vitamins) that have a role in health maintenance. In addition, milk is a major source of dietary energy, especially in developing countries, where there is shortage of animal-source food (FAO, 2013), and in childhood.

Milks of different origins have long been used, and they have been processed to dairy products for their longer shelf life. Due to the wide natural variability from species to species in the proportion of milk macronutrients and to variations along lactation, milk represents a flexible source of nutrients that may be exploited to produce a variety of dairy products.

Ruminant milk is the main source available for humans to use to manufacture dairy products and fermented milk. Besides cow's milk and milk from other ruminants (such as buffalo, goat and sheep), research on milk from other species is still poorly exploited (FAO, 2013). More recently, equine milks have been suggested for use in children with severe IgE-mediated cow milk protein allergy (CMPA) (Monti et al., 2007, 2012; Sarti et al., 2016), and local producers have established a niche for the application of donkey products with well-characterised profile of its constituents (Martini et al., 2014a).

Microbiology in Dairy Processing: Challenges and Opportunities, First Edition. Edited by Palmiro Poltronieri.

© 2018 John Wiley & Sons Ltd and the Institute of Food Technologists.

Published 2018 by John Wiley & Sons Ltd and the Institute of Food Technologists.

1.1.1 Milk fat globules

Milk lipids are composed of milk fat globules (MFGs) made up of triglycerides enveloped by a biological membrane. MFGs are responsible and/or contribute to some properties and phenomena in milk and dairy products and may affect milk fatty acid composition and the way in which fat is digested (Baars et al., 2016; Huppertz and Kelly, 2006; Martini et al., 2017). For the dairy industry it is of interest that changes in the morphometry of the MFGs lead to changes in milk quality, yields, and ripening and the nutritional quality of cheeses (Martini et al., 2004).

In milk of different species there are MFGs of various sizes, ranging from a diameter smaller than 0.2 μ m to a maximum of about 15 μ m, with an average diameter that varies as a function of endogenous (species, breed), physiological (parity, stage of lactation), and exogenous factors (feeding) (Martini et al., 2010a).

Different average diameters have been reported in the literature for ruminant species $(3.5-5.5 \ \mu\text{m}$ for cows; 2.79–4.95 $\ \mu\text{m}$ for sheep; 2.2 and 2.5–2.8 $\ \mu\text{m}$ for goats and 2.96–5.0 $\ \mu\text{m}$ for buffalos) (Table 1.1) (Martini et al., 2016b). However average diameter of globules in equids is considerably lower than other dairy species (about 2 $\ \mu\text{m}$ in donkey) (Martini et al., 2014b), while regarding human MFGs, larger dimensions have also been found (4 $\ \mu\text{m}$) (Lopez and Ménard, 2011).

The MFG membrane (MFGM) is a triple membrane resulting from the mammary secretory cell that surrounds a core of triglycerides distributed in a lamellar way (Heid and Keenan, 2005).

The MFGM consists of different classes of lipids (phospholipids, triglycerides and cholesterol) and of several proteins and enzymes. Phospholipids, in the form of mixtures of fatty acid esters of glycerol and sphingosine, possibly containing phosphoric acid, and a nitrogen-based compound (choline, ethanolamine or serine). These are natural emulsifiers able to maintain the milk lipids as discrete globules, ensuring high stability. MFGM contains about 1% of the total milk proteins. Most of them are present in very low amounts and are enzymes and proteins involved in milk synthesis. The principal proteins in the MFGM include mucins (MUC) 1 and 5, adipophilin (ADPH), butyrophilin (BTN), periodic acid-Schiff glycoproteins (PAS) 6 and 7, fatty acid binding protein (FABP), and xanthine oxidoreductase (XOR), a metal (Mo, Fe) binding protein (Spertino et al., 2012). In the last few years, research on the composition and structure of the milk membranes have been increased and have improved the knowledge of the MFGM from species other than the bovine (Saadaoui et al., 2013; Pisanu et al., 2012; Lu et al., 2016; Martini et al., 2013).

These studies have increased also due to the fact that MFGM is a dietary source of functional substances and is considered a nutraceutical (Rosqvist et al., 2014; Timby et al., 2015; Hernell et al., 2016). The functionality of the MFGM seems to be provided by its content of phospholipids, sphingolipids, fatty acids and proteins with an antibacterial effect (such as xanthine oxidoreductase and mucins) and/or health benefits.

MFGM conveys fat in an aqueous environment and is damaged by some treatment, such as homogenization, whipping and freezing, affecting milk physicochemical properties, for example producing hydrolytic activity, rancidity, and oiling off, and low wettability of milk powders. MFGM composition also affects the creaming rate on the milk surface (Martini et al., 2017); in bovine milk this phenomenon is due to the effect

Table 1.1 Average values in literature for fat content, milk fat globules characteristics and fatty acid composition of milk from different species.

		Cow	Buffalo	Goat	Sheep	Donkey	Horse	Human
Fat	%	3.70	8.14	3.90	6.50	0.36	1.48	3.34
Average diameter of the fat alobules	μm	3.5–5.5	2.96–5.0	2.2–2.8	2.79-4.95	2	2–3	3.3
SFA	a/100a fat	71.24	65.9	70.42	71.85	55.55	45.18	41.77
MUFA	a/100a fat	25.56	31.4	25.67	26.04	22.21	31.88	38.73
PUFA	a/100a fat	3.20	2.70	4.08	2.10	21.08	22.93	16.96
UFA	a/100a fat	28.76	34.1	29.75	28.14	43.29	54.81	55.29
UFA:SFA ratio	5, 115	0.40	0.52	0.42	0.39	0.78	1.20	1.32
SCFA	g/100g fat	10.52	9.72	17.51	17.13	12.29	10.79	1.87
MCFA	g/100g fat	52.81	53.70	48.28	45.87	40.08	42.47	37.94
LCFA	g/100g fat	34.38	32.73	32.64	35.87	47.64	46.75	57.72
CLA c9, t11	g/100g fat	0.65	0.45	0.70	1.00	-	0.09	0.19
C18:2 n6 (LA)	g/100g fat	2.42	1.71	2.72	1.20	9.5	16.17	12.96
C18:3 n3 (ALA)	g/100g fat	0.25	0.51	0.53	0.77	7.25	5.96	1.15
C18:2 n6: C18:3		9.68	3.35	5.13	1.56	1.31	2.71	11.26
n3 ratio								
C20:4 (AA)	g/100g fat	0.13	0.10	0.16	0.10	0.09	0.10	0.4
C20:5 (EPA)	g/100g fat	0.05	0.03	nd	nd	0.26	-	0.11
C22:6 (DHA)	g/100g fat	nd	-	0.05	0.04	0.28	-	0.51

SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; UFA: unsaturated fatty acids; SCFA: short chain fatty acids (<10C); MCFA: medium chain fatty acids (<11C, <17C); LCFA: long chain fatty acids (<18C); nd: no data.

of cryoglobulins, an M-type immunoglobulin that aggregates globules during cold storage. Other types of milk are lacking these cryoglobulins and do not agglutinate. Homogenization reduces globule diameter, making globules insensitive to the action of cryoglobulins and prevents agglutination. During butter production, extensive agitation and kneading causes the MFGM to form the water-in-oil emulsion. The partitioning in the aqueous phase produces the loss of MFGM in the buttermilk.

1.1.2 Milk fat and fatty acid composition

Milk lipid content and fatty acid composition vary by virtue of various endogenous and exogenous factors. Among endogenous factors, the species, breed and stage of lactation are the main factors.

Regarding the species, buffalo and sheep milk contains higher fat percentages and are particularly suitable for processing, such as cheese making. Fat percentages vary in a range between 7 and 9% for buffalo, but can reach 15% under favourable conditions (Altomonte et al., 2013; Varricchio et al., 2007), whereas in sheep the range is between 6.5 and 9% depending on the breed (Haenlein, 2007; Martini et al., 2012). Regarding cow and goat milk, fat content are comparable; in fact cow total lipid ranges from 3.4% in Holstein to about 6% in Jersey breeds (Nantapo et al., 2014; Pegolo et al., 2016; Sanz Ceballos et al., 2009), and goat range from a minimum of 3.5% to a maximum of 5.6% in some native goats (Haenlein, 2007; Martini et al., 2010b). Equid milk has lower fat percentages compared to ruminant milk; the average values reported in literature are 0.30–0.53% in donkey and 1.5% in horse milk (Pikul and Wójtowski, 2008; Martemucci and D'Alessandro, 2012; Martini et al., 2014b; Salimei et al., 2004). Furthermore, some authors stated lower contents (1.04%, 0.92%, 0.8%) in the milk of Halfinger, Hucul and Wielkopolski mares, respectively (Salamon et al., 2009; Pieszka Huszczyński and Szeptalin, 2011). The low fat content in equid milk could be a limiting factor in its use in infant nutrition in a diet exclusively based on milk, thus an appropriate lipid integration should be introduced. On the other hand it is encouraging for studies on the possible use of donkey milk in dietotherapy.

Regarding human milk, fat content is more similar to cow milk, varying between 2.8 and 3.8% (Antonakou et al., 2013).

From a nutritional point of view, donkey milk leads to lower saturated fatty acid (SFA) intake, about 2.00 g/l (Table 1.2), than the other milks commonly used for human feeding. Despite being rich in unsaturated fatty acids (UFAs) and having a UFA:SFA ratio intermediate between ruminant and human milk, donkey provides a limited amount of fat; thus, the total intake of UFA per 1 l of milk is lower (1.56 g) than milk of other species (Martini et al., 2016a).

In milk from ruminants, especially sheep and goats, triglycerides contain short chain fatty acids (SCFAs) such as butyric acid and hexanoic, octanoic and decanoic acid. On the contrary, human (Yuhas, Pramuk and Lien, 2006) and donkey milk (Martini et al., 2014b) are characterized by low amounts of SCFA—especially the chains shorter than C8—and high quantities of long chain fatty acids (LCFAs).

SCFAs are synthesized by the fermentation of dietary fibre, are water soluble and volatile, and contribute to the typical flavour of ovine and caprine milk. When freed by endogenous lipase or bacterial enzymes, SCFA can also give rancidity and quality

Table 1.2 Calculated average values for fat content and some fatty acids (g/l) in milk from different species and Dietary Reference Values.

		Dietary Reference Values	Cow	Buffalo	Goat	Sheep	Donkey	Horse	Human
Fat	g/l	Adults: 20-30% of the energy of the diet (E); Infants (6-12 months): % 40 E%; Children (2-3 years): 35-40 E%.	37.0	81.4	39.0	65.0	3.60	14.8	33.4
SFA	g/l	as low as possible	26.36	53.64	27.46	46.70	2.00	6.68	13.95
MUFA	g/l	Not set	9.45	25.56	10.01	16.93	0.80	4.71	12.94
PUFA	g/l	Not set	1.18	2.20	1.59	1.36	0.76	3.39	5.66
UFA	g/l	Not set	10.63	27.76	11.60	18.29	1.56	8.1	18.60
C18:2 n6 (LA)	g/l	Adequate Intake (AI): 4 E%	0.89	1.39	1.06	0.78	0.34	2.39	4.33
C18:3 n3 (ALA)	g/l	AI: 0.5% E	0.09	0.41	0.21	0.50	0.26	0.88	0.38
C20:4 (AA)	g/l	Not set	0.05	0.08	0.06	0.06	0.006	0.01	0.03
C20:5 (EPA)	g/l	Not set	0.02	0.02	-	nd	0.009	-	0.04
C22:6 (DHA)	g/l	Infants and young children (between 6 and 24 months) Al: 0.10 g DHA	-	-	0.02 (20% of Al)	0.03 (30% of Al)	0.010 (9% of Al)	-	0.17 (170.34% of Al)
C20:5+C22:6 (EPA+DHA)	g/l	Adults. AI: 0.25 g	-	-	- /	- /	0.017 (6.80% Al)	-	0.21 (84% of Al)

SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; UFA: unsaturated fatty acids; nd: no data. Source: Data from EFSA (2010). deterioration. SCFAs and MCFAs, which are a source of rapidly available energy, are particularly relevant for people suffering from malnutrition or fat absorption syndromes and for elderly people (Raynal-Ljutovac et al., 2008).

Recent studies have highlighted effects of SCFA at cellular and molecular levels in the organism; their presence or their deficiency may affect pathogenesis of some diseases (autoimmune, inflammatory diseases). In addition, SCFAs have antimicrobial activity and anti-inflammatory effects in the gut (Tan et al., 2014).

Ruminant milk, in particular milk from sheep that feed in pastures, is the richest natural source of conjugated linoleic acids (CLA) and of C18:1 trans-11 (vaccenic acid) (Bauman and Lock, 2005; Lim et al., 2014). The CLA content in milk varies depending on species, breed and individual, farming system, feeding and season. In sheep milk CLA varies from 1.2 to 2.9 g/100 g of fat; in goat between 0.5 and 1 g/100 g of fat (Parodi, 2003). Cow milk is generally reported to vary from 0.1 to 2.2 g/100 g total FA (Elgersma, Tamminga and Ellen, 2006), whereas human and equid milk are poor sources of CLA (Table 1.1).

Ninety percent of CLA isomers in milk is made up of *cis*-9, *trans*-11C18:2 (rumenic acid) produced mainly by stearoyl Co-A desaturase (SCD) o- Δ 9–desaturase enzyme in the mammary gland using vaccenic acid as precursor, but also by the rumen bacterium *Butyrivibrio fibrisolvens* as intermediate of biohydrogenation of linoleic and linolenic acids ingested with feed (Bauman and Lock, 2005). Rumenic acid vary between 0.29 and 0.71% of total human milk fatty acids, while in the horse it is between 0.07 and 0.10%. Moreover, in equids, cecum seems to contribute little to CLA synthesis (Markiewicz-Keszycka et al., 2014).

Anticarcinogenic properties and modulation of immunological functions have been demonstrated for rumenic acid in animal models and cell cultures (Field and Schley, 2004; O'Shea et al., 2004). However, the most documented effects of CLA in humans are the gain of muscle mass at the expense of body fat, whereas in vivo studies on the effects on atherosclerosis and cholesterol have shown conflicting results in humans (Crumb, 2011).

Vaccenic acid has shown anticancer properties in human mammary adenocarcinoma cells (Lim et al., 2014).

Regarding the omega-3 FAs, milk is not a good source of this family of FAs. However, among the mammalian species reared for milk production, horse, sheep and donkey are richest sources of C18:3 n3 (α -linolenic acid (ALA))(g/l) (Table 1.2), in particular donkey and horse milk provide a good ALA intake (0.22–0.88 g/l) although they have low fat content. In adults minimum intake levels for ALA are recommended to prevent deficiency symptoms (0.5% of energy) (FAO-WHO, 2010).

Linoleic acid (LA) and ALA are precursors of omega 6 and omega-3 families, respectively, and their ratio is generally considered as indicative of their balanced intake in the diet. The interest in the LA:ALA ratio derives from the antagonistic effects between the two families of FAs observed in human body. In fact, the higher intake of *n*-6 fatty acids may reduce the formation of anti-inflammatory mediators from omega-3 fatty acids. Observations on animal models suggest that raising the *n*-6 to *n*-3 fatty acids ratio (*n*6:*n*3) acts on adipogenesis and the risk of obesity in the offspring later in life (Rudolph et al., 2015). However, research is yet not supported by studies in humans, and an optimal ratio of these fatty acids in the diet has not yet been established (EFSA, 2010). Furthermore, the prevalence of n-6 in human diets has increased over the decades while n-3 fatty acids remain unchanged, thus increasing the n-6/n-3 milk fatty acid ratio (Rudolph et al., 2015). Thus, a reduction of omega-6 in the diet is desirable, and donkey's milk appears to have a balanced rapport of these two families (about 1) compared to other milks (Martini et al., 2014b).

Arachidonic acid (AA) C20:4 is essential component of cellular membranes and also of MFGM, where it may have an essential role (Fong et al., 2007; Martini et al., 2013).

AA is present in almost similar amounts in the milk of ruminants (Table 1.2), while it shows lower values in equids.

Despite the importance of AA for membrane integrity (Fong, Norris and MacGibbon, et al., 2007), it has been described as an adipogenetic-, pro-inflammatory- and hypertension-promoting factor (Vannice and Rasmussen, 2014), and recommended intake levels have not been established.

C20:5 (EPA) and C22:6 (DHA) have showed evidence of both independent and shared effects in neuroprotection and in the treatment for a variety of neurodegenerative and neurological disorders. In particular, DHA is an important constituent of the retina and the nervous system, and it has unique and indispensable roles in neuronal membranes (Dyall, 2015).

There is still insufficient evidence to support beneficial effects of EPA and DHA in foetal life or early childhood on obesity, blood pressure, or blood lipids (Voortman et al., 2015).

Overall levels of DHA and EPA in milk are quite low, and in human milk DHA content is highly variable; values from 0.17 to 0.99 % have been reported, depending on the diets and on different countries (Yuhas, Pramuk and Lien, 2006). The recommended daily intake of EPA plus DHA is 0.25 g in adults (EFSA, 2010).

1.2 CONCLUSIONS

The transformation of milks of different origin may be the source of dairy products with different and peculiar characteristics. Since a role in health maintenance has been reported for several lipid components of milk, a deep knowledge of milk lipid constituents from different dairy species is of utmost relevance for both the nutritional uptake and effects on human health.

References

- Altomonte I, Mannari I, Martini M, Salari F. 2013. Il latte di bufala: studio di alcuni parametri produttivi. *Large Anim Rev* 1:17–20.
- Antonakou A, Skenderi KP, Chiou A, Anastasiou CA, Bakoula C, Matalas AL. 2013. Breast milk fat concentration and fatty acid pattern during the first six months in exclusively breastfeeding Greek women. *Eur J Nutr* 52:963–73.
- Baars A, Oosting A, Engels E, Kegler D, Kodde A, Schipper L, Verkade HJ, van der Beek EM. 2016. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. *Br J Nutr* 115, 1930–37.
- Bauman DE, Lock AL. 2005. Conjugated linoleic acid. In: Pond WG, Bell AW. editors. *Encyclopedia of animal science*. New York: Marcel Dekker, Inc., pp 235–38.

Crumb DJ. 2011. Conjugated linoleic acid (CLA)-An overview. Int J Applied Res Nat Prod 4:12-18.

- Dyall SC. 2015. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. *Front Aging Neurosci* 7:52.
- EFSA [European Food Safety Authority] Panel on Dietetic Products, Nutrition, and Allergies (NDA). 2010. Scientific opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 8:1461.
- Elgersma A, Tamminga S, Ellen G. 2006. Modifying milk composition through forage. Anim Feed Sci Tech 131:207–25.
- FAO. 2013. Milk and dairy products in human nutrition. Muchlhoff E, Bennett A, McMahon D. Rome. Food and Agriculture Organization. Retrieved from www.fao.org/docrep/018/i3396e/i3396e.pdf.
- FAO-WHO. 2010. *Fats and fatty acids in human nutrition*. Report of an expert consultation.10–14 November 2008. Geneva: Food and Agriculture Organization of the United Nations Rome.
- Field CJ, Schley PD. 2004. Evidence for potential mechanisms for the effect of conjugated linoleic acid on tumor metabolism and immune function: lessons from n-3 fatty acids. *Am J Clin Nutr* 79:1190–98.
- Fong, BY, Norris, CS, MacGibbon, AKH. 2007. Protein and lipid composition of bovine milk-fat globule membrane. Int Dairy J 17:275–88.
- Haenlein GFW. 2007. About the evolution of goat and sheep milk production. Small Rumin Res 68:3-6.
- Heid HW, Keenan TW. 2005. Intracellular origin and secretion of milk fat globules. *Eur J Cell Biol* 84:245–58.
- Hernell O, Timby N, Domellöf M, Lönnerdal B. 2016. Clinical benefits of milk fat globule membranes for infants and children. J Pediatr 173:S60–65.
- Hupperz T, Kelly AL. 2006. Physical chemistry of milk fat globules. In: Fox PF, McSweeney PLH. editors. Advanced dairy chemistry, vol 2. Lipids, 3rd ed. New York: Springer, pp. 173–204.
- Lim J-N, Oh J-J, Wang T, Lee J-S, Kim S-H, Kim Y-J, Lee H-G. 2014. Trans-11 18:1 vaccenic Acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. *Nutrients* 6:627–36.
- Lopez C, Ménard O. 2011. Human milk fat globules: polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. *Colloids Surf B Biointerfaces* 83:29–41.
- Lu J, Liu L, Pang X, Zhang S, Jia Z, Ma C, Zhao L, Lv J. 2016. Comparative proteomics of milk fat globule membrane in goat colostrum and mature milk. *Food Chem* 209:10–16.
- Markiewicz-Kszycka M, Wójtowski J, Czyzak-Runowska G, Kuczynska B, Puppel K, Krzyzewski J, Strzakowska N, Józwik A, Bagnicka E. 2014. Concentration of selected fatty acids, fat-soluble vitamins and b-carotene in late lactation mares' milk. *Int Dairy J* 38:31–16.
- Martemucci G, D'Alessandro AG. 2012. Fat content, energy value and fatty acid profile of donkey milk during lactation and implications on human nutrition. *Lipids Health Dis* 11:113–26.
- Martini M, Altomonte I, Salari F. 2012. Relationship between the nutritional value of fatty acid profile and the morphometric characteristics of milk fat globules in ewe's milk. *Small Rumin Res* 105:33–37.
- Martini M, Altomonte I, Salari F. 2013. Evaluation of the fatty acid profile from the core and membrane of fat globules in ewe's milk during lactation. *LWT-Food Sci Technol* 50:253–58.
- Martini M, Altomonte I, Salari F. 2014b. Amiata donkeys: fat globule characteristics, milk gross composition and fatty acids. *Ital J Anim Sci* 13:123–26.
- Martini M, Altomonte I, Salari F, Caroli AM. 2014a. Monitoring nutritional quality of Amiata donkey milk: Effects of lactation and productive season. J Dairy Sci 97:6819–22.
- Martini M, Altomonte I, Sant'Ana da Silva AM, Salari F. 2017. Fatty acid composition of the bovine milk fat globules obtained by gravity separation. *Int Food Res J* (in press).
- Martini M, Liponi GB, Salari F. 2010a. Effect of forage:concentrate ratio on the quality of ewe's milk, especially on milk fat globules characteristics and fatty acids composition. J Dairy Res 77:239–44.
- Martini M, Salari F, Altomonte I, Rignanese D, Chessa S, Gigliotti C, Caroli A., 2010b. The Garfagnina goat: a zootechnical overview of a local dairy population. *J Dairy Sci* 93:4659–67.
- Martini M, Salari F, Altomonte I. 2016b. The macrostructure of milk lipids: the fat globules. Crit Rev Food Sci Nutr 56:1209–21.
- Martini M, Salari F, Altomonte I, Ragona G, Casati D, Brajon G. 2016a. Conservazione del latte d'asina: aspetti nutrizionali e sanitari. AITEL 5th workshop, Bari, 9 September 2016.
- Monti G, Bertino E, Muratore MC, Coscia A, Cresi F, Silvestro L, Fabris C, Fortunato D, Giuffrida MG, Conti A. 2007. Efficacy of donkey's milk in treating highly problematic cow's milk allergic children: an in vivo and in vitro study. *Pediatr Allergy Immunol* 18:258–64.

- Monti G, Viola S, Baro C, Cresi F, Tovo PA, Moro G, Ferrero MP, Conti A, Bertino E. 2012. Tolerability of donkey's milk in 92 highly-problematic cow's milk allergic children. *J Biol Regul Homeost Agents* 26:75–82.
- Nantapo CTW, Muchenje V, Hugo A. 2014. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian×Jersey cross cow milk under a pasture-based dairy system. *Food Chem* 146:127–33.
- Olofsson SO, Boström P, Andersson L, Rutberg M, Perman J, Borén J., 2009. Lipid droplets as dynamic organelles connecting storage and efflux of lipids. *Biochim Biophys Acta* 1791:448.
- O'Shea M, Bassaganya-Riera J, Mohede ICM. 2004. Immunomodulatory properties of conjugated linoleic acid. Am J Clin Nutr 79:1199–206.
- Parodi, PW. 2003. Conjugated linoleic acid in food. In: Sébédio J-L, Christie WW, Adlof R. editors. Advances in conjugated linoleic acid research, vol 2. Champaign, IL: The American Oil Chemists Society. pp 101–122.
- Pegolo S, Cecchinato A, Mele M, Conte G, Schiavon S, Bittante G. 2016. Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. *J Dairy Sci* 99:4558–73.
- Pieszka M, Huszczyński J, Szeptalin A. 2011. Comparison of mare's milk composition of different breeds. *Nauka Przyroda Technologie* 5:112.
- Pikul J, Wójtowski J. 2008. Fat and cholesterol content and fatty acid composition of mares' colostrum and milk during five lactation months. *Livest Sci* 113:285–90.
- Pisanu S, Ghisaura S, Pagnozzi D, Falchi G, Biosa G, Tanca A, Roggio T, Uzzau S, Addis MF. 2012. Characterization of sheep milk fat globule proteins by two-dimensional polyacrylamide gel electrophoresis/ mass spectrometry and generation of a reference map. *Int Dairy J* 24:78–86.
- Ragona G, Corrias F, Benedetti M, Paladini I, Salari F, Altomonte I, Martini M. 2016. Amiata donkey milk chain: animal health evaluation and milk quality. *IJFS* 5:173–78.
- Raynal-Ljutovac K, Lagriffoul G, Paccard P, Guillet I, Chilliard Y. 2008. Composition of goat and sheep milk products: an update. Small Ruminant Res 79:57–72.
- Rosqvist F, Paulsson, M, Lindmark-Månsson, H, Smedman, A, Risérus U. 2014. Role of milk fat globule membrane in the regulation of blood lipids in humans: a randomized trial (642.3). FASEB J 28:642–43.
- Rudolph MC, Houck JA, Aikens RM, Erickson CB, Lewis AS, Friedman JE, MacLean PS. 2015. Neonates consuming milk with a high n-6 to n-3 fatty acid ratio have larger adipocytes but smaller subcutaneous adipose depot by 14 days of life. Endocrine Society's 97th Annual Meeting and Expo, San Diego, March 5–8, 2015.
- Saadaoui B, Henry C, Khorchani T, Mars M, Martin P, Cebo C. 2013. Proteomics of the milk fat globule membrane from Camelus dromedarius. *Proteomics* 13:1180–84.
- Salamon R, Csapo J, Salamon S, Csapo-Kiss Z. 2009. Composition of mare's colostrum and milk. I. Fat content, fatty acid composition and vitamin contents. *Acta Univ Sapientiae Alimentaria* 2:119–31.
- Salimei E, Fantuz F, Coppola R, Chiofalo B, Polidori P, Varisco G. 2004. Composition and characteristics of ass's milk. Anim Res 53:67–78.
- Sanz Ceballos L, Ramos Morales E, de la Torre Adarve G, Díaz Castro J, Pérez Martínez L, Sanz Sampelayo MR. 2009. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J Food Compos Anal 22:322–29.
- Sarti L, Martini M, Ragona G, Casati D, Belli F, Salari F, Altomonte I, Barni S, Mori F, Pucci N, Novembre E., 2016. Il latte d'asina di razza Amiatina nella gestione del bambino con allergia alle proteine del latte vaccine. Acta of Xth Forum of Pratical Nutrition, NutriMi, Milano. April 21, 2016–April 22, 2016.
- Spertino S, Cipriani V, De Angelis C, Giuffrida MG, Marsano F, Cavaletto M. 2012. Proteome profile and biological activity of caprine, bovine and human milk fat globules. *Mol BioSyst* 8:967–74.
- Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. 2014. The role of short-chain fatty acids in health and disease. *Advances Immunol* 121:91–119.
- Timby N, Hernell O, Vaarala O, Melin M, Lönnerdal B, Domellöf M., 2015. Infections in infants fed formula supplemented with bovine milk fat globule membranes. *J Pediatr Gastroenterol Nutr* 60:384–89.
- Vannice G, Rasmussen H. 2014. Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet 114:136–53.
- Varricchio ML, Di Francia A, Masucci F, Romano R, Proto V. 2007. Fatty acid composition of Mediterranean buffalo milk fat. *Ital J Anim Sci* 6:509–11.