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Preface

Welcome to the world of GeoGebra! GeoGebra is a mathematical environment 
that will allow you to work with graphing, dynamic 2D and 3D geometry, dynamic 
and symbolic algebra, spreadsheets, probability, complex numbers, differential 
equations, dynamic text, fitting functions of any kind to data, and so forth. All rep-
resentations of mathematical objects are linked and allow you to view, experiment 
with, and analyze problems and situations in a laboratory‐like setting. You can build 
a geometrical model in one window, animate it, and collect data to a spreadsheet 
or directly to a graph. GeoGebra works on computers, tablets, and iPhones, under 
multiple operating systems and is free to use for noncommercial purposes. It can 
be used in over 65 different languages delivered from a menu option.

Welcome also to the world of mathematical modeling in high school (grades 
10–12). With computer tools such as GeoGebra and Wolfram Alpha you can now 
expand the relatively modest modeling normally done in class to include more real‐
life situations and solve more interesting and difficult problems. While the computer 
does the necessary calculations and graphing, with GeoGebra your students will 
learn the process of translating problem situations to the mathematical language that 
the computer needs to be able to work efficiently. They will also learn to interpret the 
results that the computer gives them and draw sensible conclusions from them.

These competencies—translating problem situations to mathematical language 
suitable for computer processing and analyzing, reasoning about and presenting 
results—are more important in a modern world than performing specific algorithmic 
calculations. After all, no one today complains about the fact that we no longer teach 
the manual algorithm for calculating square roots.

This book came about because the authors strongly believe that modeling lies at 
the heart of mathematics. And in order to model interesting problems, you need 
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powerful tools. The strong user community and fast development of GeoGebra 
made it the tool of choice. With it, we were able to explore a multitude of modeling 
situations, some quite simple and some involving systems of differential equations, 
something not normally taught in high school but rendered possible with the use 
of computers.

In Sweden, modeling is one of seven competencies the students are to develop in 
mathematics education. On the cover of this book, we have symbolically placed the 
modeling competence at the center of the other competencies, indicating our belief 
that modeling is absolutely central in mathematics.

In this English translation of the book, we have restructured our material so that it 
now comes in order of mathematical content. Thus we explore linear models, non-
linear models, models requiring calculus and differential equations, and discrete and 
geometrical models. It is then up to you to decide what problems in this book might 
be suitable for what courses and what students you teach in your school.

This book should be useful for both experienced teachers and for those students 
who are in teacher education programs. In addition, students of mathematical mod-
eling at starting level university courses may find this book useful, as may anyone 
wishing to learn GeoGebra really well. Indeed, the book is intended to be a handy 
reference on both modeling and GeoGebra, for the reader to keep and return to look 
up the details of problem solving, modeling, and GeoGebra techniques. If you are 
new to GeoGebra, we suggest that you read Appendix A, An Introduction to GeoGebra, 
first before continuing with the rest of the book.

Several digital resources are available with this book. On the book’s website you 
will find a collection of all the GeoGebra files used in the book’s problems, a list of 
clickable links, and some screencasts showing basic techniques.

Last we wish to acknowledge the continued support we have received from the 
GeoGebra community, which has encouraged us to write this book, and we wish to 
thank our families for being, above all else, patient.

Sweden, May 2016� Jonas Hall and  
� Thomas Lingefjärd



INTRODUCTION

ABOUT THIS BOOK

This book is written primarily for teachers of mathematical modeling in upper 
secondary schools or in high schools. Students in a teacher training program at a uni-
versity or studying mathematical modeling in an introductory course at the university 
may also want to explore the possibilities that GeoGebra can afford. The book was 
conceived from the standpoint of the Swedish curriculum, which regards mathematical 
modeling competence to be one of seven competencies that should be taught and 
assessed in upper secondary school.

As a school subject, mathematics is no longer only about calculation. Some parts 
of mathematics, of course, relate strongly to procedures and counting, but altogether 
this part of the curriculum has less emphasis today than it used to have. Today, math-
ematics is treated as a tool, as an aid, as a language, and as logic. The curriculum in 
many countries is nowadays expressed in terms of competency objectives. The com-
petencies are general and not related to a specific mathematical content. Yet, the 
competencies are developed in levels by students’ processing specific content. The 
modeling competency is one of these competencies that draw heavily on functions 
and differential equations.

Mathematical models and other mathematical representations such as diagrams, 
histograms, functions, graphs, tables, and symbols normally make it easier for 
abstract mathematical concepts to be understood and for other phenomena to be 
described in mathematical terms. Educators today are facing a world that is shaped 
by increasingly complex, dynamic, and powerful systems of information that are 
meet through various media. Being able to interpret, understand, and work with 
mathematical models and other complex systems involves important mathematical 
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processes that become discernible and obvious when teaching mathematical 
modeling.

In mathematics education, as seen from the K–12 perspective, teachers work with 
different representations in order to help students understand mathematical objects 
and concepts. Models such as geometrical constructions, graphs of functions, and a 
variety of diagrams are used to introduce new concepts and to show relationships, 
dependency, and change. Mathematical models, structures, and constructions are 
also used in different scientific fields, such as in physics and the social sciences. To 
be able to construct, interpret, and understand mathematical models is becoming 
increasingly important for students all over the world.

Our main academic position is that once modeling competency is acquired in the 
classroom, all other competencies will be addressed automatically. With training in 
mathematical modeling, instead of always asking “Why are we doing this?” students 
will find classroom work to be interesting and related to reality, and then concepts, 
procedures, problem solving, reasoning, communication, and relevance will follow 
without much effort. If you, the teacher, try to do it the other way around, you may 
soon discover that in sticking with too many routine calculations you will end up 
without time to address the modeling and reasoning competencies.

There were some basic considerations that we needed to address in writing this 
text on mathematical modeling. We could have chosen to only focus on the process 
of constructing and developing models or instead on the evaluation of already pro-
duced mathematical models. We decided to try and address both situations in this 
book. However, for those of you teaching mathematical modeling in upper secondary 
school, it may be a good idea to start with existing and well‐developed models. Then, 
as students become familiar with the mathematical modeling concept, they could be 
started on constructing their own mathematical models.

To place mathematical modeling into a particular branch of mathematics, one 
could consider it as applied problem solving using data that have already been gath-
ered in some way. We try to address the many different data that can be used in our 
selection of modeling examples in order to show how mathematical models are 
applied everywhere in our society. In some instances, however, we investigate purely 
geometrical models.

In today’s schools, teachers have the possibility to allow every student to use pow-
erful mathematical instruments that help them learn and do mathematics in a way 
that humans once only could dream about. Students can tackle difficult problems a 
lot earlier with these tools, so they can connect concepts and procedures to more real-
istic situations and open up their minds to a more nuanced communications.

In this book we decided to mainly work with GeoGebra, but other tools, primarily 
Wolfram Alpha, can be used as well. GeoGebra was created in 2001 by Marcus 
Hohenwarter, and as a tool, it could be considered a mathematical laboratory, or even 
an environment. GeoGebra is free and platform independent, and it handles algebra, 
plane geometry, 3D geometry, functions, statistics, spreadsheet calculations, and 
symbolic algebra. GeoGebra has been translated to over 50 languages and is used all 
over the world. In this book we show how to use GeoGebra for mathematical mod-
eling as well as how to apply it to teaching mathematics in general.
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We have organized the mathematical modeling examples in the following order:

Chapter 1: Some Introductory Problems

Chapter 2: Linear Models

Chapter 3: Nonlinear Empirical Models I

Chapter 4: Nonlinear Empirical Models II

Chapter 5: Modeling with Calculus

Chapter 6: Using Differential Equations

Chapter 7: Geometrical Models

Chapter 8: Discrete Models

Then we have added four more chapters on the teaching and assessing of 
mathematical modeling, in accord with the methodology of the teaching profession:

Chapter 9: Modeling in the Classroom

Chapter 10: Assessing Modeling

Chapter 11: Assessing Models

Chapter 12: Interpreting Models

For those of you who are new to GeoGebra, we have added an introduction to this 
interactive, dynamic platform. We have further added a function library that can be 
browsed for different functions to fit data.

Appendix A: Introduction to GeoGebra

Appendix B: Function Library

In trying to model different phenomena, you will soon discover that you need dif-
ferent prerequisites in mathematics. We address this issue with different mathematical 
modeling examples at different levels of learning. In this regard the mathematical 
hierarchy we present is probably much the same in your school system as it is around 
the world. If you have previous experience with GeoGebra, we recommend that you 
study the chapters in sequence. If you have no previous experience at all, we suggest 
that you study Appendix A first, and thereafter the chapters in order.

Chapter  1–8 contain the modeling tasks. In each of these chapters there are a 
number of solved modeling tasks with at least one, sometimes several, thorough 
solution suggestions. The solutions are very detailed, both mathematically and techni-
cally. By reading—and doing—these solutions, your students will learn mathematics, 
mathematical modeling, and GeoGebra techniques, and so become good modelers and 
problem solvers. Each chapter also has a number of unsolved tasks at the end.

Each task may be varied in a number of ways. Sometimes it may be that only a 
value should be calculated, sometimes several different models could be created, 
sometimes an error estimate could be included, and sometimes it may be better to 
write a report. These different ways to work out a solution can be applied to all tasks. 
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We have varied the tasks somewhat randomly and encourage you to adapt them to 
your students’ needs and current levels.

The modeling tasks, both those we have solved and those left to be solved are 
often quite comprehensive and cannot be fitted in just one lesson. We think of them 
as requiring students to have at least a few lessons before starting the assignment or 
a week to work on the assignment. You, the teacher, may choose to do nothing else 
for a week or so, but we prefer to think about the tasks as parallel assignments that 
allow the student to work on them for long time periods while learning new concepts, 
asking questions, discussing the tasks with classmates, and so forth. This way they 
will learn and progress in reasoning, communication, conceptual growth, and more.

We also believe that students need to see many examples of written mathematical 
reasoning in order for them to be able to start producing written mathematical reports. 
The typical syllabus mentions detailed and nuanced reasoning, and this competency 
needs to be discussed so that students know what is expected of them. It is our hope that 
the many solved examples in this book will be one such source of wisdom for students 
and serve as an inspiration for teachers to help students develop their competencies.

Chapter  9 addresses how to organize everyday work in the classroom, and it 
gives some examples of different approaches to that task. Teachers can easily turn 
into coaches when introducing and maintaining modeling processes, so they do need 
to assume that students have certain inner motivation and experience together with a 
desire to learn. The learning that takes place is built on the assumption that the stu-
dents get continual opportunities to test, validate, and rebuild their previous 
knowledge. Moreover in the classroom students will learn from each other, so their 
social interactions are important. Lecturing should be seen as a compliment, and not 
as the main core of teaching in the classroom.

Chapters 10 and 11 are about assessing and evaluation. Chapter 10 is on evalu-
ating students’ work, and Chapter 11 is more technical and discusses how to evaluate 
models and do basic mathematical error analysis.

It is obviously a challenging task to evaluate mathematical models as well as 
mathematical modeling. In play here is not only the pure mathematical ability to 
analyze and select the “best” model. Anyone who does mathematical modeling also 
needs to attain a certain level of technical knowledge in order to do the modeling. 
Students who have gone through the modeling process must be given time and space 
to explain and discuss their work. As they fulfill the discussion and presentation 
requirements, their competencies will become quite apparent.

In Chapter 10 we also describe what forms the students’ mathematical modeling 
presentations might take.

In Chapter 11 we look at different ways to evaluate models. Even a model that 
follows Newton’s cooling law describing the cooling of coffee in a cup or a linear 
model for pole vault results can be expected to have some pervasive errors. That means 
that mathematical models seldom are correct in the same sense as 2 + 2 = 4 is correct.

When you compare a model’s conditions with reality, you might find good con-
formity. The populations of many animals and plant species, both globally and in 
different countries, are decreasing exponentially. These species will, if nothing is 
done, go extinct. But reality is always more complex than the model. Many species 
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can be saved. One such example is the Swedish peregrine, which decreased in number 
from the 1950s to the 1970s when large rescue efforts were made. That work changed 
the decreasing trend of the population, and now the previous model no longer works.

You may find some populations that are growing exponentially, however. Bacteria 
may, under certain conditions, grow exponentially. This could also hold true for larger 
spices such as birds. The cormorant has increased exponentially since the mid‐1950s. 
In other situations species numbers may oscillate, often due to deep and complex 
feedback loops. In Chapter 11 we describe and illustrate some basic techniques for 
the evaluation and estimation of the errors inherent in all models.

Chapter  12 is about the different ways a student may interpret a modeling 
situation. You will see that there is a difference between interpreting the situation as 
an event or as a process.

In the Appendixes are technical descriptions of GeoGebra and math functions. 
Appendix A provides a basic introduction to GeoGebra for teachers not yet familiar 
with this excellent mathematical laboratory. Appendix B provides a function library 
showing how different, in upper secondary school more or less common, functions 
can be parameterized in order to be used in the mathematical modeling process.

This is not a textbook in mathematics. Our intention in writing this book was to 
provide an introduction to the subject of mathematical modeling, and not a compre-
hensive text on mathematical modeling. The book does present the many different 
ways that mathematics can be used and applied in mathematical modeling. We are 
convinced that anyone who learns mathematical modeling can also learn to use math-
ematics in a new way and therefore learn more mathematics. Through mathematical 
modeling we humans also learn to see the importance of mathematics in the world 
around us.

When should students be taught mathematical modeling during their school 
years? In certain countries mathematical modeling is already compulsory in primary 
schools, while in other countries students are taught modeling in upper secondary 
schools. Today, it appears that with the increasing availability of computers, teachers 
in many countries are becoming more and more interested in teaching mathematical 
modeling early in the educational system. Whatever the case is in your country, many 
students already think in terms of informal models when they compare different cell-
phone plans. Even though the modeling exercises in this book relate to the upper 
secondary school level, it is up to the teacher using this book to introduce mathematical 
modeling when it suits the course’s content.

As already mentioned, the main purpose of this book is to teach mathematical 
modeling but there are also other purposes:

•• To serve as a guidebook for mathematical modeling with GeoGebra and thereby 
also as training material for mathematics teachers

•• Together with additional material on the Internet (GeoGebra constructions and 
screencasts), to serve as a problem sets repository for teachers to use in working 
with mathematical modeling

•• To provide solutions in such full detail as to assist students and teachers in 
preparing qualitative short mathematical reports
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For the many teachers who have not yet worked either with mathematical models 
or with GeoGebra in this way before, the book may prove to be appropriate as 
course literature in teacher training programs or for theme‐based teacher in‐service 
training.

ABOUT MATHEMATICAL MODELING

The main strength of mathematical modeling is learning to make decisions. With the 
help of mathematical modeling, sometimes predict future trends can be predicted, 
decisions made on global environmental issues, and even the kind of resistor to select 
when building a hobby radio. Mathematical modeling can be used in artwork, in cre-
ating perspectives and in compositions. Mathematical modeling is used in packaging 
industry, in economics, in biological systems, in medical trials, and in computational 
physics. It is in fact difficult to find any area where humans work that has no use at 
all of mathematical models.

In today’s competition‐driven markets, the modern engineer needs to reduce start‐
up times and costly trial series productions and other construction costs. Thus, virtually 
all product development is now dependent on successful modeling and simulation, 
whether we are talking about cars, cellphones, computer parts, medical equipment, or 
more “invisible” things such as efficient queueing strategies for airports and trains 
or software development.

Obviously, the computer has given mathematical modeling a huge boost. 
Everybody with a modern mobile telephone and access to the Internet also has 
access to tools like Wolfram Alpha. Science is even changing with technology. Once 
we talked about theoretical and experimental physics. Today, we also talk about 
computational physics built on powerful computational models that we could not 
construct before the computer arrived. Once we talked about the dividing of the 
world in matter and energy. Today, we also talk about the importance of information 
for the structuring of matter and energy. Today, we also talk about artificial intelli-
gence and the singularity date when computers become more intelligent than 
humankind. Mathematical modeling is an important part of all the information we 
need to handle.

Here are some further arguments as to why it is important to construct models:

•• The real system is impossible to experiment with. It could be a living human 
being or a distant stellar cluster.

•• The real system is too expensive to toy around with. It could be a space exploring 
satellite or the regulating system of a chemical production plant.

•• The real system is too dangerous to experiment with. It could be a new aircraft 
model or finding the correct dose of medicine.

•• Modeling gets you a better understanding of the original problem.

•• Modeling makes visible a system that is not yet built or constructed.

•• Modeling can help you foresee the future and make prognoses.
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Students who enter upper secondary schools around the world have, of course, 
already met some simple mathematical models. One such example is Ohm’s law 
from compulsory school, as shown in Figure 0.1.

Ohm’s law states that the current through a conductor between two points is 
directly proportional to the potential difference across the two points. This introduces 
the constant of proportionality, the resistance, and the usual mathematical equation 
that describes this relationship U = R · I is a proportionality between the variables 
I = current (Ampere), U = voltage (volt) and the parameter R = resistance (ohm).

When describing the mathematical modeling process in theoretical terms, 
researchers often talk about a cycle that humans go through when they are involved in 
the process of mathematical modeling. It could be understood in the following way:

The first step in a mathematical modeling process is to translate the situation or 
the phenomenon at hand into a mathematical problem using mathematical terms. 
This means that you sometimes need to define variables or know something about the 
relations that exist between the variables in the example above. The original problem 
will go through a mathematical process, an analysis, and then, perhaps it is solved. 
The results should be validated against theories or common knowledge and then per-
haps tested in order to see if the solution works. Figure 0.2 shows one interpretation 
of this process.

An example that we think makes this mathematical modeling process more 
understandable is the bear problem, a generic problem that could be used in many 
mathematics courses around the world.

FIGURE 0.1  Example of a model presenting Ohms law as a (near) proportionality.

The number of bears is increasing (in some region). In 2000 there were 2,500 
bears and in 2010 there were 2,700 bears.

a)  How many bears will there be in 2025?

b)  When will there be 3,500 bears?
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In our view, this is a good task to start with, but it has to be very detailed when 
presented in the classroom. It contains mathematical modeling, linear functions, and 
exponential functions; students will learn how to find the model’s or the function’s 
parameters and how to solve different types of equations. We will illustrate step by 
step how the bear problem can be solved by hand or with GeoGebra.

Step 1—Select and Organize a Model

To begin, you need to explain what kind of mathematical model you want the class 
to work with. If the text says: “The number of bears is increasing …

•• … equally much/the same amount/by 20 bears/by the same number/linearly … 
every year (month, second, hour, …), then you should use a linear model:

The number of bears B(t) = a · t + b.

•• … by the same rate/percentage/by 1.5 %/exponentially … every year (month, 
second, hour, …), then you should use an exponential model:

The number of bears B(t) = C · rt.

Step 2—Define Your Variables

Clearly explain to the class what the variables stands for:

•• t is the time in years starting at year 2000 (give the unit and what t = 0 
corresponds to).

•• B is the number of bears (or perhaps the number of thousand bears).

Step 3—Define the Parameters

If you decided to put the time as t = 0 equal to year 2000, then the intersection between 
the graph and the y‐axis (b or C) will correspond to the first measurement. In this case 
you can directly write that: “I see that …

Use the model to explain,
predict, design or decide
7

Specify the
problem
1

Validate the model
6

Define a 
mathematical model
2

Formulate the
mathematical
problem  3

Interpret the solution
5

Solve the original
problem  4

FIGURE 0.2  Main stages in modeling (from Mason, 1988, p. 209).
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•• b = 2,500 (linear model), or

•• C = 2,500 (exponential model).

The second parameter requires a calculation:

•• In the linear model you must calculate a (the slope), which you do like this:

a
bears

years
bears year

B

t

2700 2500

10
20 /

or you could solve the equation B = a · t + b and plug in 2,700 = a · 10 + 2,500. 
Note that this equation is about finding the second measurement. You used the 
first equation to find the value of m. The annual increase is 20 bears per year.

•• Working with the exponential model in a similar way, you can solve an equation 
for the second measurement: B = C · rt, yielding 2,700 = 2,500 · r10. Dividing 
both sides of the equation with 2,500, you get 1.08 = r10; leading to 
r = 1.081/10 = 1.0077258, which means an annual increase of about 0.77%.

In GeoGebra the points can be defined as A = (0, 2500) and B = (10, 2700). 
You get a linear model with the command FitPoly[A, B, 1] or an exponential 
model with FitGrowth[A, B]. You can find the value of the parameters from the 
algebra window.

Step 4—Write up Your Conclusions by Formulating Your Model

Write: “I have found that the number of bears can be predicted by …

•• B(t) = 20 · t + 2500 (linear model),” or

•• B(t) = 2500 · 1.,0077258t (exponential model).”

Step 5—Find the Number of Bears after a Certain Time

Since you now have the model, all you have to do is to enter the value of the time into 
your model. Be careful when you explain how you use the t‐value. The year 2025 
corresponds to t = 25 and so:

•• B(t) = 20 · 25 + 2500 = 3000 bears (linear model), or

•• B(t) = 2500 · 1.007725825 = 3030 bears (exponential model).

In GeoGebra you type

x = 25

and can then decide where this line intersects with the graph by asking GeoGebra to 
construct an intersection with the Intersect tool .
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Step 6—Find When the Bears Come to a Certain Number

In a similar way you can solve equations:

•• B(t) = 20 · t + 2500 with B = 3500, yielding the equation 3500 = 20 · t + 2500, 
which gives t = 1000/20 = 50 years corresponding to the year 2050 (linear 
model), or

•• B(t) = 2500 · 1.0077258t with B = 3500, yielding the equation 3500 = 
2500 · 1.0077258t, where 1.4 = 1.0077258t and t = (lg 1.4)/(lg 1.0077258) = 
43.7 years, corresponding to the year 2043 (exponential model).

In GeoGebra you type

y = 3500

and find the intersection point as before.
As you notice, all of the steps in the modeling cycle are not always present in all 

mathematical modeling tasks and all the practical steps do not always correlate one‐
to‐one with the theoretical steps. However, as we will show further on in the book, 
when we get to more complex modeling exercises, we will often walk around the 
modeling cycle a few times

We will round up this excursion into practicality by looking at another phenomenon 
that actually affects our life regardless of where we live or of what we do. This 
phenomenon is usually called price elasticity. The basic question is the following:

How much will the demand for a product decrease if the price is increased?

We begin by making a basic assumption that there is a proportionality between 
the relative changes in price and demand. This is a reasonable assumption, at least 
when we are talking about small changes. Using algebra this situation can be 
defined as

	

q pq

q

p

p
0

0

0

0 	

where p is the price, q is the quantity of the product, and ε is the price elasticity. We 
can write q as a function of p and get q = q(p), where p is the price q is the quantity of 
the product. If we only have two observations of price and quantity for a product, (p

1
, 

q
1
) and (p

2
, q

2
), then the average price elasticity can be defined as

	

q q

p p

p p

q q
1 2

1 2

1 2

1 2 	

So, in order to understand a model of price elasticity—the price that consumer are 
willing to pay for a product—you have to learn and understand quite a lot of mathe-
matics such as rational expressions, linear approximation, proportionality, and nega-
tive numbers. In fact you will almost always end up in fairly complicated models by 
just asking apparently easy questions. Here are some examples:



INTRODUCTION� xxiii

•• What happens in a lake when the temperature changes? How long a time does 
it take for the lake to turn into ice? How long will it take for the iced lake to turn 
into water again?

•• Think of two or more intersecting roads. Should we have a traffic light system 
or a rotary? What would a model look like?

•• How fast will a forest fire spread?

•• How fast will a contaminated lake clean up?

•• In games on computers—how will objects move? In what way do we want 
three‐dimensional objects to appear in a two‐dimensional monitor?

•• In heating a house, it is well known that countries in the upper Northern 
Hemisphere have houses constructed with a short north wall containing few 
windows. But how short is the wall and how many windows are usually present?

•• In our connected world, the placement of telecommunication masts is important. 
The economic principle is to cover as large area as possible with every mast. The 
result, when analyzing this phenomenon, will be a geometrical model. We will 
also have a choice of geometrical objects, such as regular hexagons or circles.

The types of questions asked are often categorized in four groups: understanding 
the system, predicting the system, regulating the system, and constructing the system. 
Understanding is the most basic category. Prediction is not possible without under-
standing, regulation is not possible without predictive power, and constructing 
something requires you to be able to control and regulate its behavior.

In teaching mathematical modeling, it is crucial that you get the students used to 
the different models and techniques. They should in fact go several times through the 
steps or stages in the modeling cycle.

Within different academic fields there is a need to study the relationships between 
measured variables. When you are constructing a mathematical model that describes 
the relationships between the variables mathematically, you are giving yourself the 
opportunity to predict and explain what will happen in the future. Therefore you, the 
teacher, should ensure that your students accomplish the following by working with 
mathematical modeling:

•• Learn to problematize realistic situations

•• Learn to fulfill assignments

•• Learn about a variety of subject areas where people work with mathematics

•• Learn to write mathematical reports with correct mathematical language

•• Learn to use powerful tools and methods

•• Learn to use powerful digital tools as GeoGebra and Wolfram Alpha

•• Achieve different mathematical competencies from practicing mathematical 
modeling

All the different mathematical modeling tasks that we discuss in this book are 
solved for you, but the solutions are merely suggestions. Several of the problems can 
be solved in other ways.
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ABOUT MATHEMATICAL MODELING TECHNIQUES

Among the different basic techniques within mathematical modeling, perhaps the 
most basic is to just fit a functional dependency to a given data set. That technique is 
sometimes called empirical mathematical modeling, and it is useful for interpolation 
(i.e., used to predict values within the range) but less useful for extrapolating (i.e. 
used to predict result outside the range). If there is an underlying theory, that can help 
make extrapolations work better.

Theoretical considerations make it possible to create mathematical models 
independent of measured data. Such a model often contains a few parameters that can 
be adjusted to get the best fit for the measurements you have done. One such common 
example is that coffee cools of exponentially down to room temperature, which gives 
you a model of the form T = T

0
 · at + T

R
, where T

0
 is the temperature difference against 

the room temperature at the time t = 0, T
R
 is the room temperature, which you prob-

ably know, and a is a constant that directs the speed of the cooling. The parameters 
T

0
, a, and eventually T

R
 can be varied to get the model to adjust as well as possible to 

the measured values. The process is often called “regression analysis” and GeoGebra 
have very strong tools for doing this.

If you do not have access to your own data, you may get data in the graph window 
by building representations of physical models that you can investigate and measure. 
These measurements give data that you can analyze in another window, as in Problem 
8.6 Inner Areas in a Triangle. This is what is known as doing simulations. A specific 
sort of simulation is when you are working with pure mathematical objects, such as 
triangles and squares. In our case, we don’t normally say that we are doing a simula-
tion, but the technique is the same.

Another sort of simulations is called stochastic, or Monte Carlo simulations. These 
simulations are built on the concept of randomizing the control of certain variables. 
By doing the simulation many times, we can investigate a model in another way than 
a theoretical model would be able to do. It is possible to find quite many simulations 
on the Internet. Two useful websites with such collections are http://www.shodor.org/
interactivate/activities/ and http://dmentrard.free.fr/geeogebra/index.htm.

Another sort of modeling, sometimes called deterministic in contrast to stochastic, 
is based on the creation of differential equations that you can solve and adapt to start 
values. In chapter 6 we will learn the powerful ways to solve complex problems. 
Without today’s technology you would probably only be able to solve the simplest 
different equations, but with the aid of GeoGebra and Wolfram Alpha you have the 
capability to solve very advanced models and with solutions that you can find 
symbolically or numerically.

In some types of problems you will have systems of differential equations, as 
when studying how the numbers of predators and prey affect each other’s living con-
ditions. You can then do more analyzing with the help of phase diagram, where the 
number of predators set on one axis and the number of prey on the other axis.

There are, of course, other ways to do mathematical modeling, but in this book we 
have chosen the techniques described above because we believe these to be quite 
suitable for upper secondary schools.

http://www.shodor.org/interactivate/activities/
http://www.shodor.org/interactivate/activities/
http://dmentrard.free.fr/geeogebra/index.htm
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ABOUT BEING A GOOD MODELER

What does it take to become a good mathematical modeler and how do you orches-
trate your teaching so that your students become good at mathematical modeling? 
The students need to develop certain skills:

•• Competence enough to reason about the real‐life situation and thereby to connect 
to it and build a mathematical model that relates to reality. Students could, for 
instance, understand the relationship between the price of an ice‐cream cone and 
the number of ice cream scoops you get, or for the higher level student, that the 
upper bridge span on Sydney Harbour bridge can be modeled by y = 1/(x2 + 1).

•• Experience using different basic functions and how these functions are applied 
and behave. In particular, what straight lines look like, odd or even polynomials, 
rational functions, exponential functions, trigonometric functions, logistical 
and hyperbolic functions, the normal distribution function, and then again, the 
products of functions.

•• Understanding as to how to move and stretch functions algebraically, for example 
by change x to x – x

1
 when a function has to be moved x

1
 steps to the right.

•• Knowledge of suitable parametric transformations of functions, such as when 
cooling against the room temperature T

0
 can be modeled by the function y = C · ek·t + T

0
.

•• Digital competency using tools, for example, how to get GeoGebra to create 
points from your measured data and then fit a suitable function with the regres-
sions tools. Or how to enter a differential equation with initial conditions into 
Wolfram Alpha.

•• Competence to critically evaluate the mathematical modeling process, be open 
to changing the model, and have an understanding for the errors that can be car-
ried by the model and transferred over to the responses from the model to the 
questions they were given at the start, for example, the way a water parabola is 
affected by an air stream and the fact that this could not be modeled sufficiently 
by a parabola.

•• Competence to organize, follow, and document the mathematical modeling pro-
cess from start to finish.

•• Competence to select the most essential parts and ignore the rest. As Albert 
Einstein said: “Make it as simple as possible, but not simpler.”

Clearly, this is not something that is easily developed over the course of a few 
weeks. Rather you have to embrace a modeling mind set where modeling is the 
natural starting point of many, if not all, modules, lessons and assignments. 
To develop all these modeling sub competencies requires that this mind set is be 
transferred to the students over time. As the student’s experiences accumulate, it is 
your job as a teacher to forge these experiences together to a meaningful whole. 
If you hold this modeling mind set central you will find that competencies such as 
the ability to reason, communicate, and calculate will come naturally as consequences 
of working with modeling problems.
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ABOUT THE MODELING PROBLEMS

Many of the problems we have selected might be experienced as difficult. Some of 
the problems are suitable for different mathematics courses, depending on your 
student’s experiences and at the level of the mathematics that is taught. Remember, 
the aim of each problem is that it be solved over a long time so that the students will 
be able to understand the problem completely. The discussions the teacher will have 
with the students and the discussions the students have with each other as they tackle 
solutions to problems are generally very rewarding in that they help develop a 
student’s language and conceptual understanding.

We have supplied most of the problems with extended solutions that might be 
seen as a way to write up a mathematical solution. Some of the problems can be used 
to show students how to write up the solution for the next problem.

The problems were selected to impart a certain breadth to the mathematical con-
tents as well as to the problem solving techniques using GeoGebra. It means that it 
could be a good idea for you to first work through the solutions to several problems 
so that you will know how to help your students most effectively.

As authors, we like to share good mathematical modeling activities with our 
readers. If you have a suggestion for a good activity, preferably also with a solution, 
or a new way to solve one of our problems, please send it to us. You will receive a 
link to an Internet address where all contributed material will be published. It is our 
hope that in this way we will get a large inventory of suitable mathematical modeling 
activities that we all can use.

ABOUT GeoGebra

GeoGebra is a dynamical mathematical laboratory suitable for teaching or learning 
all kind of mathematics including mathematical modeling. GeoGebra runs on all 
platforms and can be downloaded from www.geogebra.org.

GeoGebra is specifically built to show many different representations of dynamic 
objects at once. It handles everything you are likely to meet in secondary mathe-
matics, and then more. While it may stop short of professional programs like MS 
Excel, Mathematica, and MATLAB that do pure number crunching, GeoGebra 
combines every feature you could wish for in a package free for educational use.

Some procedures are done more often than others. You will often need to enter mea-
sured values into GeoGebra’s spreadsheet and create points from these values. You can 
zoom in and change labels on axes and change the background color. You can even 
change the font sizes and the number of decimals. We have chosen to describe these 
procedures in the running text as well as in Appendix A, Introduction to GeoGebra. In 
this way we hope that it not only will be possible to read the book from beginning to end 
but also to access a collection of modeling activities that you can dip into at any point.

We have used the Windows version of GeoGebra 5.0, which was released in 2014 
but constantly updates with new functions, as described in the change log found at 
http://wiki.geogebra.org/en/Reference:Changelog_5.0.

http://www.geogebra.org
http://wiki.geogebra.org/en/Reference:Changelog_5.0


INTRODUCTION� xxvii

ABOUT WOLFRAM ALPHA

Wolfram Alpha is a powerful mathematical Internet based tool that combines a 
search engine and a computer algebra system. It can solve equations, differential 
equations, and sketch graphs, and further find all sorts of mathematical facts as well 
as information on physics, chemistry, biology, and more. It complements GeoGebra 
very well, and it is seldom that a mathematics teacher would need any other tools 
than these two except for personal preferences. The best way to get familiar with 
Wolfram Alpha is to have a look at some of the many examples at http://www. 
wolframalpha.com/examples/.

ABOUT TYPOGRAPHY

We have used the following conventions:

•• Variables are written in italic:

	 x y p x t, , , 	

•• Parameters are written in normal text. We do this so that you can separate 
independent and dependent variables from the parameters we can control, 
change, and fit to data:

	 y x m x x f x x xk m a / a b c· · ·, ,1 2

	

•• Input commands in GeoGebra’s input bar, spread sheet, or Wolfram Alpha are 
written in Courier bold:

=A2/B2, Fit[list1,m], Max = Extremum[f]…

•• Keyboard shortcuts, menu alternatives, and commands that are discussed rather 
than typed are written in bold:

Ctrl‐Shift‐2, View – Spreadsheet…, the Locus command

•• Tool names are written in normal text, but often followed by a tool image: Use 
the Point tool  to create a point.

ABOUT THE DIGITAL MATERIAL FOR THE BOOK

If you have the paper version of this book, it is in black and white. Any color references 
in the book refer to the GeoGebra file that we have created for the solutions to the 
problems. Download the GeoGebra solutions to all problems from the book’s website. 
There is a GeoGebra file for just about every figure in the book, numbered accordingly.

http://www.wolframalpha.com/examples/
http://www.wolframalpha.com/examples/
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You are also welcome to send similar problems with solutions directly to the 
authors so that you can access the materials other teachers have submitted. In this 
way we hope to enrich the book by creating new useful modeling teaching materials 
in an online resource bank.

ABOUT THE AUTHORS

Jonas Hall is head of mathematics at Rodengymnasiet in Norrtälje, north of 
Stockholm, in Sweden, where he teaches mathematics and physics. He is a hobby 
mathematician with a special interest in problem solving, the aesthetics of mathe-
matics, and teaching with technology. He is a multiple finalist in Kappa, a 
mathematical competition for mathematics teachers in Sweden held by the University 
of Stockholm, and he has dabbled in creating mathematical art, which can be found 
at http://www.geogebrainstitut.se/art/art.asp.

Thomas Lingefjärd is a professor of mathematics education at the University of 
Gothenburg. He started his teaching, however, as an upper secondary teacher in 
mathematics, physics, and ICT. Lingefjärd has for many years been interested in how 
the presence of modern technology can help students to learn and understand math-
ematics better. His main activities at the University of Gothenburg are to supervise 
PhD students, to teach courses in the mathematics teacher program, and to do 
research on the learning of mathematics.

Together, the authors are responsible for the Swedish GeoGebra institute, http://
www.geogebrainstitut.se, one of over 100 regional and national GeoGebra institute 
over the world: http://www.geogebra.org/institutes. The aim of the institute is to 
spread the use of GeoGebra in Sweden. The authors have translated GeoGebra 
to  Swedish and also written articles for teacher journals about GeoGebra. They 
also contribute to the international research around GeoGebra and its influence on 
mathematical teaching and learning in the Nordic–Baltic GeoGebra Network, http://
nordic.geogebra.no/and run the Swedish Facebook support group.
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1
SOME INTRODUCTORY PROBLEMS

The introductory problems in this chapter focus on developing students’ abilities to reason 
and produce a reasonable model from a real‐world situation. Photographs are used in 
several examples and the student may easily expand the problem assignments by providing 
their own photographs and related questions. The problems are not necessarily “begin­
ners” problems; they are selected because they are “nonstandard,” and offer a glimpse into 
some of the different possibilities of modeling with GeoGebra. The problems presented in 
the next chapter are more standard and may for some beginners be a better choice.

Students should first try to solve some part of a problem “by head and hand,” 
using a calculator and paper and pencil and then expand to the other parts using 
GeoGebra. To learn mathematics in the present digital age, we need to recognize that 
old school content and methods have been overtaken by a digital technology that has 
moved us into a mathematical golden age. To be effective in teaching mathematics 
with technology‐assisted instruction, we suggest that you study the TPACK frame­
work and work toward an integrated approach where technology, mathematical 
content, and pedagogy are all integrated seamlessly in every lesson.

We begin with a couple of different introductory problems. As students enter their upper 
secondary mathematical studies, the core content suddenly needs to be mastered in greater 
depth than previously. Some examples include, but are not limited, to the following:

•• Understanding numbers, arithmetic, and algebra.

•• Properties of a range of whole numbers, different number bases, and the concepts 
of prime numbers and divisibility.
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•• Calculations in everyday life and with real numbers, written in different forms, 
including powers with real exponents, together with strategies for calculations 
when using digital tools.

•• Generalization of the rules of arithmetic to handle algebraic expressions. The 
concept of linear inequality.

•• Algebraic and graphical methods for solving linear equations and inequalities, 
and exponential equations.

•• Concepts of sine, cosine, and tangent, and methods of calculating angles and 
lengths of right‐angled triangles. The concept of a vector and its representa­
tions, such as direction, length, and points in a coordinate system.

•• Addition and subtraction with vectors and scalar multiplication to produce a vector.

•• Mathematical reasoning using basic logic, including implication and equiv­
alence, and comparisons with how to argue in everyday contexts and in science 
subjects.

•• Illustration of the concepts of definition, theorem, and proof, such as the 
Pythagorean Theorem and the sum of the angles of a triangle.

•• Advanced percentage concepts: ppm and percentage points.

•• Concepts of rate of change and indexes, as well as methods for calculating 
interest and mortgage payments for different types of loans.

•• Concept of a function, its domain and range of a definition, and also properties 
of linear functions, exponential, and polynomial functions.

•• Representations of functions in the form of words, functional expressions, ta­
bles, and graphs.

•• Differences in the concepts of equation, inequality, algebraic expression, and 
function.

•• Appreciation of how statistical methods and results are used in society and in 
science.

•• Concepts of dependent and independent events, as well as methods for calcu­
lating probabilities in multi‐stage random trials, using examples from games 
and from risk and safety assessments.

•• Strategies for mathematical problem solving including the use of digital tools.

•• Mathematical problems relevant to personal finances, social life, and applica­
tions in other subjects.

•• Mathematical problems related to the cultural history of mathematics.

As the teacher you need to be clear about what your goals are and how your 
methods will reach those goals. Your students need to know where you are going 
with your teaching and how you aim to get there. You also need to structure your time 
but leave ample room for flexibility. The modeling tasks you plan to use should be 
simple to begin with, so that they may be solved in one or two lessons. Use detailed 
instructions for your students, preferably together with screencasts to explain 
technical details in GeoGebra and other digital tools that your students can watch 
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over and over again if necessary. You will also need detailed and clear summaries of 
your lessons to help the students who just want to keep on working without much 
reflection. It is beneficial to start with several short easy tasks in the beginning so that 
your students learn how to model, and when they have learned that, you can expand 
the mathematics in further modeling tasks.

1.1  TICKET PRICES

A travel agency is advertising a favorably priced sports holiday to the 2017 FIFA 
Confederation Cup in Russia. The transport to Russia from the United States will be 
by chartered flight with seating for 200 passengers. If a group intends to travel to the 
Confederation Cup fills the airplane, then the price for each person will be 400 USD. 
Understandably, the price for each sold ticket will rise for every empty seat on the 
airplane. The flight company owning the plane demands a minimum of 20,000 USD 
in rent for the plane taking this trip.

Make a model of the travel agency’s total income possibilities for travel to this 
international football event. If the travel agency wants the same income for 199 
tickets as they want for 200 passengers, what seat pricing would be reasonable then?

Instead of doing this calculation for every number of possible passengers and 
therefore presenting a table of possible prices for each customer, the travel agency 
chooses to simplify and add a standard fee for each empty seat. How will the 
model then describe the travel agency’s total income for different numbers of 
passengers?

Also calculate the maximal price that a single passenger may need to pay. What is 
the least number of passengers that the travel agency must attract to avoid losing 
money on this trip?

Your model should clearly show the relation between the price of an air seat and 
the number of sold air seats as well as the relation between the total revenues and the 
number of sold seats.

Proposed Solution 1 

With 200 air seats at 400 USD the total income is 80,000 USD. If the travel agency 
still wants the 80,000 USD even with just 199 sold air seats, the price needs to be 
80,000 USD/199 air seats = 402 USD. It therefore seems reasonable to ask for 2 USD 
more from every passenger for every empty air seat.

The number of sold air seats x, and the price in USD y, should exhibit a linear 
relationship y = a · x + b. If the number of unsold seats increases, the price will increase, 
and the price will be reduced if more seats are sold, which in turn means that the 
slope is negative. If the number of sold air seats increase with 1, the price will 
decrease with 2 USD, so a = –2. You also know that when the number of sold 
seats = 200, so the price is 400 USD. This gives 400 = – 2 · 400 + b, and hence b = 1200. 
The equation becomes y = 1200 – 2x. This is represented in Table 1.1.
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The maximal price, with just one passenger in the plane, will be 798 USD.
If you label the total revenues with R, you can write

R number of sold seats price per seat·

The most convenient way to handle this is to put the values into a spreadsheet, for 
example, in Excel or GeoGebra. To show the spreadsheet in GeoGebra, you would 
press Ctrl‐Shift‐S or select View > Spreadsheet in the menu. When you have entered 
the values in the first column you may type

=1200 – 2 A2

In cell B2 and press Enter. Observe that the space works as multiplication sign in 
GeoGebra. Then enter

=A2 B2

in cell C2 and press Enter.
Now you may select cells B2 and C2 and then grab the small square in the lower 

right corner, the fill handle, dragging it downward, as indicated in Figure 1.1. This 
will copy the formulas downward. This is the standard procedure for copying 
formulas in spreadsheets.

It is very convenient to represent the relations graphically in GeoGebra. Select all 
the values in columns A and B (but not the titles) and right‐click on the selection. 
Then select Create… > List with points, which will create both the data points and 
a list containing these points. You will not see them in the Graphic window yet, since 
the values are too large. Drag the background to pan the window. Hold down Ctrl 
and drag one axis at the time to zoom in or out until you see something similar to 
what you see in Figure 1.2.

TABLE 1.1  Linear Relationship between the Number 
of Sold Air Seats and the Price for a Seat

Number of sold air seats Price for one air seat (USD)

200 400
199 402
198 404
197 406
196 408
195 410
190 420
180 440
170 460
160 480
150 500
100 600
50 700
0 800
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In the Figure 1.2 the point’s labels (name) are not shown. This is because of the 
setting Settings > Name on object > No new object. If you want to change this after­
ward, just right‐click on the word Point in the Algebra window and select Show 
label to toggle the visibility of labels.

We would also like to create a diagram that shows how the revenues will vary with 
the number of air seats. Do this by choosing Show > Graphic 2 from the menu. It 
might be shown as a free‐floating window without axes or a grid, but if you want to, 
you can dock this window to the main window by clicking on the dock button in the 
upper right corner of the window shown in Figure 1.3. Note that the axes and the grid 
have their own buttons in the upper left corner in the Style Bar.

FIGURE 1.1  How to copy a formula using the fill handle.

FIGURE 1.2  Table with values and corresponding points of a graphical representation.
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When you have docked and arranged Graphic Window 2 the way you want it, you 
can create the points directly in the spreadsheet. Make sure that Graphic Area 2 is 
active and then type

=(A2,C2)

in cell D2 and copy this formula downward by dragging the fill handle. Your result 
should be similar to Figure 1.4. This is a good way to create new points directly from 
values in the spreadsheet. The GeoGebra spreadsheet can handle all kinds of objects 
in its cells, while most other spreadsheets only handle real numbers, text, and 
formulas.

In order to find the number of passengers it takes to not lose money for the travel 
agency, you can do some investigations directly in the spreadsheet. Enter new values 
in columns A and B and look for the income that goes under USD. It takes at least 18 
passengers to break even. They will then have to pay 1164 USD for their tickets.

Proposed Solution 2 

There is, of course, nothing that can stop you from going directly to graphical solu­
tions. When you have reached the relation y = 1200 – 2x, you can graph this directly 
in GeoGebra by entering y = 1200  –  2x in the command line, and then pressing 
Enter. If you have already created the points, you could also create a line by using 
the Create New Line tool. Click once on the symbol  and then click on two of 

FIGURE 1.3  The dock button that allows you to dock a free window.

FIGURE 1.4  Graphic Window 2 showing another graph with a different scale.
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the points. A line is created and you find the symbolic representation of it in the 
Algebra window.

By using substitution, you can write the relationship between income and sold air 
seats as R(x) = x · y = x(1200 – 2x) = 1200x – 2x2. This model can also be represented 
graphically. In order to find the number of sold air seats that will give 20,000 USD as 
income you could draw a line y = 20,000 and observe where the line intersects the 
graph. The intersection point is found by clicking on the Intersect tool  and then 
clicking on the graph and the line. You could also have written Intersect[a,b], if 
a and b are names for the line and the graph. The coordinates for the intersection can be 
found in the Algebra window or if you right‐click the point and select Object Properties 
and then on the Basic tab, Show Label: Value, as in Figure 1.5.

1.2  HOW LONG WILL THE PASTURE LAST IN A FIELD?

The pasture in a field like the one shown in Figure 1.6 has been known to last for 3 
days for 6 cows and for 7 days for 3 cows.

Based on this experience, how long will the pasture likely last for a single cow?

Proposed Solution 1 

Allow the students to think about a situation for a while, but in the end you will 
probably need to encourage the students to formulate the situation in a mathematical 

FIGURE 1.5  Income as it decreases dramatically after the first 50 empty seats.
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language in some way. In all events where you translate a situation into a mathematical 
language, you are in some sense always using a mathematical model. A very simple 
model would be a straight line between the two points that are given by (6 cows, 3 
days) and (3 cows, 7 days), shown in Figure 1.7. It gives you the possibility to follow 
the line to the point where 1 cow is and see that it points at …

FIGURE 1.6  Cow in a dandelion field. Photo: Keith Weller/USDA (www.ars.usda.gov: Image 
Number K5176‐3) [Public domain], via Wikimedia Commons. https://upload.wikimedia.org/
wikipedia/commons/0/0c/Cow_female_black_white.jpg.

FIGURE 1.7  Linear model.

http://www.ars.usda.gov
https://upload.wikimedia.org/wikipedia/commons/0/0c/Cow_female_black_white.jpg
https://upload.wikimedia.org/wikipedia/commons/0/0c/Cow_female_black_white.jpg
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Proposed Solution 2 

Another model could be found by reasoning around the concept of “cow days,” 
where one cow days is equal to a certain amount of food. The two solutions will then 
deliver two different answers. That helps when thinking about the validity of the 
model, errors, how the model could become better, and so on.

We find that the first bit of information in the problem indicates that you have 
enough food for 18 cow days. The next bit of information indicates that you have 
food for 21 cow days. So you can assume that there is food for about 20 cow days 
(the differences may have something to do with rounding errors). In Figure 1.8 you 
can see a mathematical model where

Number of cows Number of days Number of days Number/20 20 oof cows

We see that the prognosis in this case is remarkable higher. The food should be 
enough for approximately 20 days for a single cow, and possibly a lot longer if you 
factor in that grass is growing all the time.

Comments

This is a good example of a task that can be used even in lower secondary school to get 
students to think mathematically and see how the strength in using different representa­
tions might get a solution to reveal itself. The authors of this book, who teach 
mathematical modeling at an upper secondary school and at a university, usually start 
with a simple task, before they introduce more complex modeling activities. In this way 
students at all levels get a good introduction to the modeling process before they have to 
think through a complex, complicated, and mathematically more demanding situation.

FIGURE 1.8  Nonlinear model based on the concept of cow days.



10� SOME INTRODUCTORY PROBLEMS

1.3  A BIT OF CHEMISTRY

A laboratory assistant has a large container with a 20% hydrochloric acid solution 
and a small container with 300 grams of 43% hydrochloric acid solution as shown in 
Figure 1.9. The assistant would like to dilute the strong solution until it is 28% acid. 
How much of the 20% hydrochloric acid should the laboratory assistant use?

Try to solve the problem in different ways and try to construct or derive a general 
solution model that shows how much of a solution you need to add to m grams of b% 
solution in order to get c% solution.

Proposed Solution 1 

We start with an algebraic solution. In problems with a lot of information it is gen­
erally a good idea to organize the data. First, introduce a variable. Let x be the 
amount of added 20% hydrochloric acid solution, measured in grams. Always be 
clear about what your variables stand for and what units they are measured in.

Once you have done that, you can now represent the data as a bullet list. You have 
to determine how much acid and solution you have in the small container, before and 
after the dilution:

•• Amount of hydrochloric acid before: 43% of 300 grams = 129 grams

•• Amount hydrochloric acid after: 129 grams + 20% of x grams

•• Total amount of solution before: 300 grams

•• Total amount of solution after: 300 grams + x grams

These values are well prepared to be presented in a table, such as that shown in 
Table  1.2. The table setup will help you organize your data and your modeling 

FIGURE 1.9  Solutions. Photo: Flikr, user usehung (CC BY 2.0) https://www.flickr.com/
photos/13639809@N03/2295905317/sizes/o/.

https://www.flickr.com/photos/13639809@N03/2295905317/sizes/o/
https://www.flickr.com/photos/13639809@N03/2295905317/sizes/o/
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strategies. The solution process becomes easier if you focus on one part of the 
problem at a time, and using a table to organize problems like these helps you in 
doing this.

Finally use the only bit of information that you haven’t yet used to set up your 
equation. The new solution should be 28%; in other words, 28% of your new total 
acid should be hydrochloric acid. The equation that we use to solve the problem takes 
the form

0 28 300 129 0 2 562 5. . , .x x xwhich yields  grams

Equations of this type are often viewed as difficult to set up as well as difficult to 
solve, but letting students practice on problems like these often gives a well‐needed 
boost to their general problem‐solving skills.

So 562.5 grams of the 20% solution need to be added to the small container in 
order to get 28% strength for the final solution.

To derive a general model, you need to substitute the parameters a, b, c, and m into 
suitable places in the equation above to get

c m b m a  which yields the solutionx x,

x m
b c

c a

Proposed Solution 2 

Now you will make a dynamic model in GeoGebra where you will vary a slider until 
you get the right concentration for the solution. In order to make a general model, 
begin by creating five sliders: a, b, c, m, and x

0
. If you wish, you can simply create 

these as numbers first, and then show them as sliders by clicking on the white bullet 
to the left of their algebraic representations in the Algebra window. Define a, b, and 
c to vary between 0 and 1 with a step of 0.01, while m and x

0
 will vary between 0 

and 600 with a step of 1. Then adjust the sliders to see the values of the current 
problem. All of these settings can be found in the properties of the numbers, on the 
Slider tab.

Next adjust the window settings so that the graphic area shows 0–1000 along the 
x‐axis and 0–1 along the y‐axis. Since every calculation of the amount of hydro­
chloric acid is a multiplication of a percentage and a total mass, you could represent 
the amount of hydrochloric acid as the area of a rectangle, with the percentage as the 

TABLE 1.2  Organizing Your Data in a Table

Grams Before After

Pure hydrochloric acid 129 129 + 0.2x
Total amount of solution 300 300 + x
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height along the y‐axis and the total mass as the width on the x‐axis. Use the following 
commands:

O = (0,0) Origin

A = (0,a)

B = (0,b) A, B, and C represent percentages

C = (0,c)

M = (m,0)

X = (x_0,0) M, T, and X represent

T = (m + x_0,0) masses, in grams

H_1 = (x_0,a)

H_2 = (m,b) H1, H2, and H3 are

H_3 = (m + x_0,c) vertices of the rectangle

After that, create the rectangles with the following command:

Added = Polygon[O,A,H_1,X]
Existing = Polygon[O,B,H_2,M]
Total = Polygon[O,C,H_3,T]

The result can be seen in Figure 1.10. By changing the value of x
0,
 you can 

search for the value when the sum of the Existing and the Added rectangles’ area 

FIGURE 1.10  Dynamic graphic model of the chemical mixture.
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is equal to the Total rectangles’ area. The best way to do this is to first calculate 
the value

Tot = Existing + Added

Here, Tot is the actual total amount of hydrochloric acid while Total is 28% 
of the total amount of liquid. You could drag these values from the Algebra 
window to the graphics area so that you more easily can see and compare the 
values.

In order to achieve better precision when you adjust x
0
, select x

0
 and use the arrow 

keys to change the value one step at the time. For even better precision, hold down 
Shift while using the arrow keys. By adjusting the values for the other sliders, you 
could, in principle, even solve all similar problems.

After playing with this for a while, you may quickly realize that it is a bit cumber­
some to adjust the value of x

0
 manually. By typing

x_0 = m (b‐c)/(c‐a)

you can get the value of x
0
 to automatically adjust to the right value for every value 

for a, b, c, and m. The slider for x
0
 will then disappear because it is no longer possible 

to adjust x
0
 manually. Therefore drag instead the value from the Algebra window into 

the Graphic window as a text box as shown in Figure 1.11.
It may be an interesting challenge for your students to ask them what will happen 

to the model if you increase or decrease any of the four parameters.

FIGURE 1.11  Solving a problem automatically.
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Proposed Solution 3 

The previous solution suggestion was visual and pedagogical but could just as easily 
be obtained on a calculator. Therefore you will now build a calculator in GeoGebra 
where you may enter values and receive answers.

Start a new session of GeoGebra by pressing Ctrl‐N. Type

x_0 = m (b‐c)/(c‐a)

in the command field, and let GeoGebra create sliders for a, b, c, and m. Since it is 
hard to reach exact values with a slider, you will now represent the other parameters 
with input boxes instead. First you need to adjust some properties for a, b, c, and m. 
Right click on any of them in the Algebra window and select Properties, on the 
Sliders tab. In the left‐hand pane you will find the properties dialogue with all objects 
represented in an object list. You should Ctrl‐Click and select a number of different 
objects all at the same time. Enter Min = 0 and Max = 1000 for m and Max = 1 for a, 
b, and c. The standard values Min = –5 and Max = 5 that GeoGebra uses for sliders 
are normally not ideal. So hide the sliders by clicking the blue buttons to the left of 
the numbers in the Algebra view.

You should create an input box for each of your four parameters by clicking on the 
Input Box tool  and then in the Graphics area to show where you want them placed, 
often far to the left, one above the other. In the dialogue shown in Figure 1.12, you 
can enter a text label (normally the variable name) and the variable to be connected 
to the input field.

Adjust the boxes according to the grid after all boxes have been created. You can 
also chose to set the input field length to 5 in the Input Box Length, Fix Objects in 
the Basic tab and set text size to Medium in the Text tab in the properties dialogue. 
Last, drag x

0
 from the Algebra window to the graphics area to create a text box. Select 

the text size to be Medium. This can be done in the style bar. Then hide the grid and 
the axis, and also, if you want to, close the Algebra window. Figure 1.13 shows a 
typical result.

This calculator calculates x
0
 for any parametric value. But if you know how much 

you should add and want to calculate the concentration it will get, how do you do that?
Start by taking away the text box showing the value for x

0
 and create an input field 

for x
0
 instead, just like you did for the other parameters. Make sure that you change 

FIGURE 1.12  Input box dialogue.



A BIT OF CHEMISTRY� 15

text size, length for the field, and also lock this field. Enter an arbitrary value for x
0
 

so that the formula will disappear.
You can then create a command button by clicking on the Button tool  and then 

somewhere in the graphics field. Fill in the dialogue box as in Figure 1.14.
The command SetValue[x_0, m (b‐c)/(c‐a)] calculates the value of the 

formula and updates x
0
 to this value. It then creates four more buttons, one for each 

parameter. The formula that you should use may be found in different ways. You could 
use manual algebraic manipulations on paper, or you could open up a new window in 
GeoGebra with Ctrl‐N, next open up the CAS windows with Ctrl‐Shift‐K, and last, 
write x_0 = m (b‐c)/(c‐a) in line 1. In line 2 you write Solve[$1, m]. In this 
command $1 is a reference for the equation in line 1. Figure 1.15 shows this process.

FIGURE 1.13  A simple calculator.

FIGURE 1.14  Button dialogue.

FIGURE 1.15  CAS window used to help you solve for variables in a formula.
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When you have entered your formulas using the command buttons, you could—if 
you like—disable the visibility of the tool field and the input field by clicking on the 
property gear wheel in the top right corner and selecting Layout as shown in 
Figure 1.16.

In Figure 1.17 you can see the finished “Solver.” Similar solvers can be created for 
other problems, and if you upload your solver to GeoGebraTube, it may be run as an 
app on a phone or a tablet.

1.4  SYDNEY HARBOR BRIDGE

Figure 1.18 and Figure 1.19 show the famous Sydney Harbor Bridge. If the bridge 
heads are 89 meters high, how long is the bridge between the bridge heads?

Proposed Solution

This is a common situation. You have photograph where you know one distance and 
you want to find another distance. As long as these distances are at the same distance 
from and close to perpendicular to the viewer, a linear proportional model can be 

FIGURE 1.16  Where to find the layout settings.

FIGURE 1.17  A “Solver” tool in GeoGebra.
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FIGURE  1.18  Sydney Harbor Bridge. By Yun Huang Yong via Flickr, CC BY-SA 2.0. 
https://www.flickr.com/photos/goosmurf/3001997390/sizes/o/.

FIGURE 1.19  One of the bridge heads stands prominent in the mist behind a ferry. Photo: 
Hpeterswald/Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Sydney_Ferry_ 
Queenscliff_1.jpg.

https://www.flickr.com/photos/goosmurf/3001997390/sizes/o/
https://commons.wikimedia.org/wiki/File:Sydney_Ferry_Queenscliff_1.jpg
https://commons.wikimedia.org/wiki/File:Sydney_Ferry_Queenscliff_1.jpg
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used. By measuring the distances in the photo, you will get the remaining information 
you need. Assuming proportionality yields

Unknown distance real

Unknown distance image

Known distaance real

Known distance image

In this simple model you can ignore that perception issues might cause the propor­
tionality to break. Proportionality can also be visualized through a simple 2 × 2 table 
or box. If the unknown distance is x and you measure the known distances in the 
photo through some computer program to 175 pixels and to 1,403 pixels, you can 
then set up your data in Table 1.3.

One interesting property of Table 1.3 is that it can be rotated and mirrored and still 
be valid. You may, for example, turn it 90 degrees counterclockwise to get Table 1.4.

It is useful to show this with the table written on a bit of cardboard that can be 
physically flipped and rotated. Any of these configurations may be set up as an 
equation. In the example above you will get the equation:

89 175

1403x
, which may be written without denominators as tthe crosswise product

175 89 1403 715 5x x. , . . and so  meters

However, there are several ways to measure the distances in the photo. One way 
is to measure directly the distance in the photo using a ruler. The photo can be 
imported into GeoGebra with the Image tool , and then you can place points on 
the photo to measure the distances. If you want more precision, there is a small free 
program called Digitize It that gives much better precision for measuring distances 
using an image or photo.

In Figure 1.20 is an example of how several points’ positions are captured by the 
software and put in the table to the left. Note the small magnifying glass window 
floating between the table and the image. You can download this program for free at 
http://download.cnet.com/Digitize‐It/3000‐20415_4‐10489008.html.

TABLE 1.3  Two by Two Table for Organizing Proportional Data

Unknown Known

Reality (m) x   89
Photo (px) 1403 175

TABLE 1.4  Proportionality Is Invariant under Rotation and 
Mirroring Operations

Reality (m) Photo (px)

Known 89   175
Unknown x 1403

http://download.cnet.com/Digitize-It/3000-20415_4-10489008.html
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Many students today can use cameras in smart phones, tablets, and the like, 
to capture interesting situations or the objects themselves. It is best to zoom in 
and take a photo from far away to minimize nonlinear effects. One student could 
hold a meter stick and another jump as high as possible. How high was the 
jump? How tall is the student who holds the stick? Proportionality will give the 
answer.

1.5  PERSPECTIVE

In Figure  1.21 you can see the same girl photographed five different times. The 
perspective makes her look bigger when she is closer to you and smaller when 
she is far away.

If an object is far away enough, so that you experience it under a viewing angle 
that is less than about 30°, the product of the subject’s size and distance will be 
approximately constant. Another way to express the same relation is to say that 
the size is inversely proportional to the distance.

If the distance to the girl at her closest instance is 3 meters, how far away was she 
at the most distant instance?

Proposed Solution

Start a new window in GeoGebra with Ctrl‐N. Import your image by using the Image 
tool  and next click on, for example, the origin. Then right‐click on the photo and 
select Properties, the Position tab, and lock the image’s both lower corners in the 
coordinate system as shown in Figure 1.22.

FIGURE 1.20  Digitize It, a program for digitalization of photos.
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FIGURE  1.21  Perspective run. Photo: Nevit Dilmen (original work) CC‐BY‐SA‐3.0 via 
Wikimedia Commons. http://commons.wikiwithia.org/wiki/File:08913‐Perspective_Run.jpg.

FIGURE 1.22  Lock the image in the coordinate system.

http://commons.wikiwithia.org/wiki/File:08913-Perspective_Run.jpg
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In the Basics tab you select Background image, and under the Color tab you 
adjust the opacity to 25% in order to more easily be able to see the coordinate system.

Measure the girl’s height by using the Segment tool . Click on the girl’s head 
and heel both when she is at her closest and when she is at her farthest. The lengths 
of the segments will be shown in the Algebra window in Figure 1.23.

If you would like to fine‐tune the position of the points, first press Escape to 
activate the Select and Move tool ; then right‐click on the word Point in the 
Algebra window and select Properties, the Algebra tab, and set the step length 
0.001 for all points at the same time. Next you select a point and use the arrow keys 
to move it.

You may also zoom in on the image as you place the points on the girl farthest 
away. If you want to stick with the proportions 1:1 between the x‐ and y‐axes, it is 
best to zoom by right‐clicking on an empty part of the graphic area and then select­
ing Zoom > 400%. That done, drag the graphic area to pan in order to find the girl 
again.

If the product of the distance d and the size s is constant, then d
1
 · s

1
 = d

2
 · s

2
. In this 

case d
1
 = 3 m, s

1
 = 8.56, and s

2
 = 1.49; the result is d

2
 = 17.2 m. Let the students practice 

this by photographing each other in groups of three and checking the distances with 
long tape measures.

1.6  LAKE ERIE’S AREA

Try to estimate the size or the area of Lake Erie from Figure 1.24 or a similar map 
from Google Earth in several different ways. Also try to estimate the error in the 
method you choose and show your work clearly.

FIGURE 1.23  Measuring the girl’s height in GeoGebra.
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Proposed Solution 1 

The classical solution to cut out the image and estimate the weight only works if you 
have a very accurate scale available. Enlarge the image so that it almost fills an 8 × 
11 inch sheet of paper. Cut out the lake. The surface will be something like 20 × 
10 cm. Ordinary printer paper weights about 80 grams/m2, so a square 10 cm across 
has a weight of 0.8 grams. Lake Erie should then have a weight of about 1.6 grams. 
With a weighing scale that can handle a resolution of 0.1 grams or maybe even 0.01 
grams, the accuracy of the paper weight will be crucial. It may therefore be necessary 
to calibrate the weight of a sheet of paper in this particular batch and by a particular 
brand.

Assuming that an A4 sheet paper weighs in at 4.83 grams and the cutout of 
Lake Erie weights 0.94 grams, this will yield a surface weight of 4.83 grams/
(21.0 cm × 29.7 cm) = 0.007744 grams/cm2, from which the cutout’s area is found 
to be 0.94 grams/0.007744 grams/cm2 = 121.4 cm2. You can wait until later to do 
any rounding.

Once you have an estimate of how large Lake Erie is, you can transform this 
to square kilometers. Assuming the 50 km tick mark to be 3.55 cm in the image, 
the distance scale can be estimated to 1 cm in the image = 50/3.55 = 14.08 km in 
reality, which give an area scale where 1 cm2 on the image is 33.712 = 198.4 km2 
in reality.

With an area of 121.4 cm2 you can get a value for the area of Lake Erie: 
A = 121.4 cm2 · 198.4 km2/cm2 ≈ 24,000 km2. How accurate is this estimate? Which of 
your measurements has limited the accuracy most? How can you improve the accu­
racy? How well does your cutout conform to the actual shape of the lake?

Note also how units are handled together with the scales. This is an important skill 
for students to learn.

FIGURE 1.24  Lake Erie, Google Earth. Image Data from Landsat and NOAA.
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Proposed Solution 2 

You can take the image or a screen dump of it and import it into GeoGebra in order to 
measure the area there. Import an image by selecting the Image tool  and clicking 
somewhere down to the left in the graphics area. You then get a pop‐up dialogue where 
you can select an image. You may also drop an image in the graphics area.

Two points are provided to control the image, and you can set the coordinates of 
B to be (10, 0). Then right‐click on the image and select Object Properties; check 
the Background image on the Basic tab and the image will be placed behind the axis 
and the grid.

Now you can start placing points along the coast line. It might be a good idea to 
select Options > Labeling > No new objects from the menu before you start. When 
you have placed your points, you should select the Create list tool  and then drag a 
rectangle around all points to create a list with these points. Last, create a polygon 
from all the points using the command Polygon[list1]. The area of the polygon is 
approximately 16.08 area units as shown in Figure 1.25. You could also have used the 
Polygon tool  directly.

Now deal with the scale: zoom in on the scale as shown in Figure 1.26 and mea­
sure the 80 km tick to 2.04 length units by placing segment  over the mark. One 
length unit = 80/2.04 = 39.216 km and one area unit is 39.2162 = 1537.9 km2. The area 
of the lake is A = 16.08 a.u. · 1537.9 km2/a.u. ≈ 24 730 km2.

FIGURE 1.25  Estimating the area of the lake by a polygon.

FIGURE 1.26  A segment used to measure a distance.
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The error can be estimated by fine‐tuning a few of the point’s positions, noting the 
effect of this on scale and area. To fine‐tune a point’s position, open the properties 
dialogue box and then click on the Algebra tab and change the value of step length 
to 0.001. Thereafter you may fine‐tune the position of the point by using the arrow 
keys. If you hold down Shift at the same time as you use the arrow keys, you will 
increase the accuracy 10 times and if you hold down Ctrl, you will lose accuracy by 
a factor 10, jumping faster.

FIGURE 1.27  Wolfram Alpha can provide you with geographical data.

FIGURE 1.28  Lorain Lighthouse. Photo: Rona Proudfoot (CC BY‐SA 2.0). https://www.
flickr.com/photos/ronnie44052/2420422668/in/photostream/.

https://www.flickr.com/photos/ronnie44052/2420422668/in/photostream/
https://www.flickr.com/photos/ronnie44052/2420422668/in/photostream/
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Proposed Solution 3 

Wikipedia, referring to the US Environmental Protection Agency, claims that Lake 
Erie has a surface area of 25,667 km2. NOAA claims it to be 25,655 km2, and Wolfram 
Alpha, using several sources, says in Figure 1.27 that the area is 25,800 km2. Most 
likely these sources define the lake area differently, so let’s say we are satisfied with 
25,700 km2. The Lorain lighthouse on the south coast of Lake Erie is depicted in 
Figure 1.28.

1.7  ZEBRA CROSSING

In Figure  1.29 you see people traversing a huge zebra crossing. You can assume 
that the white lines and the distances between them are the same everywhere and that 
the ground is flat. The camera that took the photo is located some distance behind the 
closest line and placed some distance above the ground.

Try to determine where the camera is placed, both in terms of height and in terms 
of depth, in relation to the first visible white line. Also try to determine how tall the 
single man with necktie and briefcase is, if the man with blue scarf and briefcase is 
170 cm tall.

FIGURE 1.29  Zebra crossing. Photo: Flikr, user MrHayata (CC BY‐SA 2.0). https://www.
flickr.com/photos/mrhayata/6789615983/sizes/o/.

https://www.flickr.com/photos/mrhayata/6789615983/sizes/o/
https://www.flickr.com/photos/mrhayata/6789615983/sizes/o/

