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Preface

Advance level vibration topics are presented here, including lumped mass and dis-
tributed mass systems in the context of the appropriate mathematics along with
topics from control that are useful in vibration analysis, testing and design. This
text is intended for use in a second course in vibration, or a combined course
in vibration and control. It is also intended as a reference for the field of struc-
tural control and could be used as a text in structural control. The control topics
are introduced at the beginners’ level with no prerequisite knowledge in controls
needed to read the book.

The text is an attempt to place vibration and control on a firm mathematical
basis and connect the disciplines of vibration, linear algebra, matrix computations,
control and applied functional analysis. Each chapter ends with notes on further
references and suggests where more detailed accounts can be found. In this way
I hope to capture a “bigger picture” approach without producing an overly large
book. The first chapter presents a quick introduction using single degree of free-
dom systems (second-order ordinary differential equations) to the following chap-
ters, which extend these concepts to multiple degree of freedom systems (matrix
theory and systems of ordinary differential equations) and distributed parame-
ter systems (partial differential equations and boundary value problems). Numer-
ical simulations and matrix computations are also presented through the use of
MatlabTM.

New In This Edition – The book chapters have been reorganized (there are now
12 instead of 13 chapters) with the former chapter on design removed and com-
bined with the former chapter on control to form a new chapter titled Vibration
Suppression. Some older, no longer used material, has been deleted in an attempt
to keep the book limited in size as new material has been added.

The new material consists of adding several modeling sections to the text,
including corresponding problems and examples. Many figures have been redrawn
throughout to add clarity with more descriptive captions. In addition, a number of
new figures have been added. New problems and examples have been added and
some old ones removed. In total, seven new sections have been added to introduce
modeling, coupled systems, the use of piezoelectric materials, metastructures, and
validation and verification.

Instructor Support – Power Point slides are available for presentation of the
material, along with a complete solutions manual. These materials are available
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from the publisher for those who have adapted the book. The author is pleased to
answer questions via the email listed below.

Student Support – The best place to get help is your instructor and others in your
peer group through discussion of the material. There are also many excellent texts
as referenced throughout the book and of course Internet searches can provide
lots of help. In addition, feel free to email the author at the address below (but
don’t ask me to do your homework!).

Acknowledgements – I would like to thank two of my current PhD students, Katie
Reichl and Brittany Essink, for checking some of the homework and providing
some plots. I would like to thank all of my former and current PhD students for
36 years of wonderful research and discussions. Thanks are owed to the instructors
and students of the previous edition who have sent suggestions and comments.
Last, thanks to my lovely wife Catherine Ann Little for putting up with me.

Leland, Michigan Daniel J. Inman
daninman@umich.edu

mailto:daninman@umich.edu
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About the Companion Website

Vibration with Control, Second Edition is accompanied by a companion website:

www.wiley.com/go/inmanvibrationcontrol2e

The website includes:
� Powerpoint slides
� Solutions manual

http://www.wiley.com/go/inmanvibrationcontrol2e








Single Degree of Freedom Systems

. Introduction

In this chapter, the vibration of a single degree of freedom system (SDOF) will
be analyzed and reviewed. Analysis, measurement, design and control of SDOF
systems are discussed. The concepts developed in this chapter constitute a review
of introductory vibrations and serve as an introduction for extending these con-
cepts to more complex systems in later chapters. In addition, basic ideas relating to
measurement and control of vibrations are introduced that will later be extended
to multiple degree of freedom systems and distributed parameter systems. This
chapter is intended to be a review of vibration basics and an introduction to a
more formal and general analysis for more complicated models in the following
chapters.

Vibration technology has grown and taken on a more interdisciplinary nature.
This has been caused by more demanding performance criteria and design speci-
fications of all types of machines and structures. Hence, in addition to the stan-
dard material usually found in introductory chapters of vibration and structural
dynamics texts, several topics from control theory are presented. This material is
included not to train the reader in control methods (the interested student should
study control and system theory texts), but rather to point out some useful connec-
tions between vibration and control as related disciplines. In addition, structural
control has become an important discipline requiring the coalescence of vibration
and control topics. A brief introduction to nonlinear SDOF systems and numerical
simulation is also presented.

. Spring-Mass System

Simple harmonic motion, or oscillation, is exhibited by structures that have elastic
restoring forces. Such systems can be modeled, in some situations, by a spring-
mass schematic (Figure 1.1). This constitutes the most basic vibration model of a
structure and can be used successfully to describe a surprising number of devices,
machines and structures. The methods presented here for solving such a sim-
ple mathematical model may seem to be more sophisticated than the problem

Vibration with Control, Second Edition. Daniel John Inman.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/inmanvibrationcontrol2e

http://www.wiley.com/go/inmanvibrationcontrol2e
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Figure . (a) A spring-mass schematic, (b) a free body diagram, and (c) a free body diagram of
the static spring mass system.

requires. However, the purpose of this analysis is to lay the groundwork for solv-
ing more complex systems discussed in the following chapters.

If x = x(t) denotes the displacement (in meters) of the mass m (in kg) from its
equilibrium position as a function of time, t (in sec), the equation of motion for
this system becomes (upon summing the forces in Figure 1.1b)

mẍ + k(x + xs) − mg = 0

where k is the stiffness of the spring (N/m), xs is the static deflection (m) of
the spring under gravity load, g is the acceleration due to gravity (m/s2) and the
over dots denote differentiation with respect to time. A discussion of dimensions
appears in Appendix A and it is assumed here that the reader understands the
importance of using consistent units. From summing forces in the free body dia-
gram for the static deflection of the spring (Figure 1.1c), mg = kxs and the above
equation of motion becomes

mẍ(t) + kx(t) = 0 (1.1)

This last expression is the equation of motion of an SDOF system and is a linear,
second-order, ordinary differential equation with constant coefficients.

Figure 1.2 indicates a simple experiment for determining the spring stiffness
by adding known amounts of mass to a spring and measuring the resulting static
deflection, xs. The results of this static experiment can be plotted as force (mass
times acceleration) versus xs, the slope yielding the value of k for the linear portion
of the plot. This is illustrated in Figure 1.3.

x2

x1

x0

g

x3

Figure . Measurement of spring constant using static deflection caused by added mass.
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Figure . Determination of the spring constant. The dashed box indicates the linear range of
the spring.

Once m and k are determined from static experiments, Equation (1.1) can be
solved to yield the time history of the position of the mass m, given the initial
position and velocity of the mass. The form of the solution of Equation (1.1) is
found from substitution of an assumed periodic motion (from experience watch-
ing vibrating systems) of the form

x(t) = A sin(𝜔nt + 𝜙) (1.2)

where 𝜔n =
√

k∕m is called the natural frequency in radians per second (rad/s).
Here A, the amplitude, and 𝜙, the phase shift, are constants of integration deter-
mined by the initial conditions.

The existence of a unique solution for Equation (1.1) with two specific initial
conditions is well known and is given in Boyce and DiPrima (2012). Hence, if a
solution of the form of Equation (1.2) is guessed and it works, then it is the solution.
Fortunately, in this case, the mathematics, physics and observation all agree.

To proceed, if x0 is the specified initial displacement from equilibrium of mass
m, and v0 is its specified initial velocity, simple substitution allows the constants
of integration A and 𝜙 to be evaluated. The unique solution is

x(t) =

√√√√𝜔2
nx2

0 + v2
0

𝜔2
n

sin
[
𝜔nt + tan−1

(
𝜔nx0

v0

)]
(1.3)
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Alternately, x(t) can be written as

x(t) =
v0
𝜔n

sin𝜔nt + x0 cos𝜔nt (1.4)

by using a simple trigonometric identity or by direct substitution of the initial con-
ditions (Example 1.2.1).

A purely mathematical approach to the solution of Equation (1.1) is to assume
a solution of the form x(t) = Ae𝜆t and solve for 𝜆, i.e.

m𝜆2e𝜆t + ke𝜆t = 0

This implies that (because e𝜆t ≠ 0 and A ≠ 0)

𝜆2 +
(

k
m

)
= 0

or that

𝜆 = ±j
(

k
m

)1∕2
= ±𝜔nj

where j = (–1)1/2. Then the general solution becomes

x(t) = A1e−𝜔njt + A2e𝜔njt (1.5)

where A1 and A2 are arbitrary complex conjugate constants of integration to be
determined by the initial conditions. Use of Euler’s formulas then yields Equa-
tions (1.2) and (1.4) (Inman, 2014). For more complicated systems, the exponen-
tial approach is often more appropriate than first guessing the form (sinusoid) of
the solution from watching the motion.

Another mathematical comment is in order. Equation (1.1) and its solution are
valid only as long as the spring is linear. If the spring is stretched too far or too
much force is applied to it, the curve in Figure 1.3 will no longer be linear. Then
Equation (1.1) will be nonlinear (Section 1.10). For now, it suffices to point out that
initial conditions and springs should always be checked to make sure that they fall
into the linear region, if linear analysis methods are going to be used.

Example 1.2.1
Assume a solution of Equation (1.1) of the form

x(t) = A1 sin𝜔nt + A2 cos𝜔nt

and calculate the values of the constants of integration A1 and A2 given arbitrary
initial conditions x0 and v0, thus verifying Equation (1.4).

Solution: The displacement at time t = 0 is

x(0) = x0 = A1 sin(0) + A2 cos(0)

or A2 = x0. The velocity at time t = 0 is

ẋ(0) = v0 = 𝜔nA1 cos(0) − 𝜔nx0 sin(0)
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Solving this last expression for A1 yields A1 = v0/x0, so that Equation (1.4)
results in

x(t) =
v0
x0

sin𝜔nt + x0 cos𝜔nt

Example 1.2.2
Compute and plot the time response of a linear spring-mass system to initial
conditions of x0 = 0.5 mm and v0 = 2

√
2 mm∕s, if the mass is 100 kg and the

stiffness is 400 N/m.

Solution: The frequency is

𝜔n =
√

k∕m =
√

400∕100 = 2 rad∕s

Next compute the amplitude from Equation (1.3):

A =

√√√√𝜔2
nx2

0 + v2
0

𝜔2
n

=

√
22(0.5)2 + (2

√
2)2

22 = 1.5 mm

From Equation (1.3) the phase is

𝜙 = tan−1
(
𝜔nx0

v0

)
= tan−1

(
2(0.5)

2
√

2

)
≈ 10 rad

Thus the response has the form

x(t) = 1.5 sin(2t + 10)

and this is plotted in Figure 1.4.

Time (s)

–A –1.5

 –1

–0.5

0
2 4 6 8 10 12

0.5

1

A 1.5

x(t) (mm)

T = 2πωn

Figure . The response of
a simple spring-mass
system to an initial
displacement of x0 =
0.5 mm and an initial
velocity of v0 = 2

√
2

mm∕s. The period, defined
as the time it takes to
complete one cycle off
oscillation, T = 2𝜋∕𝜔n,
becomes T = 2𝜋∕2 = 𝜋s.
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. Spring-Mass-Damper System

Most systems will not oscillate indefinitely when disturbed, as indicated by the
solution in Equation (1.3). Typically, the periodic motion dies down after some
time. The easiest way to treat this mathematically is to introduce a velocity term,
cẋ, into Equation (1.1) and examine the equation

mẍ + cẋ + kx = 0 (1.6)

This also happens physically with the addition of a dashpot or damper to dissipate
energy, as illustrated in Figure 1.5.

Equation (1.6) agrees with summing forces in Figure 1.5 if the dashpot exerts a
dissipative force proportional to velocity on the mass m. Unfortunately, the con-
stant of proportionality, c, cannot be measured by static methods as m and k are.
In addition, many structures dissipate energy in forms not proportional to veloc-
ity. The constant of proportionality c is given in Newton-second per meter (Ns/m)
or kilograms per second (kg/s) in terms of fundamental units.

Again, the unique solution of Equation (1.6) can be found for specified initial
conditions by assuming that x(t) is of the form

x(t) = Ae𝜆t

and substituting this into Equation (1.6) to yield

A
(
𝜆2 + c

m
𝜆 + k

m

)
e𝜆t = 0 (1.7)

Since a trivial solution is not desired, A ≠ 0, and since e𝜆t is never zero, Equation
(1.7) yields

𝜆2 + c
m
𝜆 + k

m
= 0 (1.8)

Equation (1.8) is called the characteristic equation of Equation (1.6). Using simple
algebra, the two solutions for 𝜆 are

𝜆1,2 = − c
2m

± 1
2

√
c2

m2 − 4 k
m

(1.9)

x

fk

fc

N

Friction-free

Surface

(a) (b)

y

k

c

x(t)

mgm

Figure . (a) Schematic of spring-mass-damper system. (b) A free-body diagram of the system
in part (a).
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The quantity under the radical is called the discriminant and together with the
sign of m, c and k determines whether or not the roots are complex or real. Physi-
cally, m, c and k are all positive in this case, so the value of the discriminant deter-
mines the nature of the roots of Equation (1.8).

It is convenient to define the dimensionless damping ratio, 𝜁 , as

𝜁 = c
2
√

km

In addition, let the damped natural frequency, 𝜔d, be defined by (for 0 < 𝜁 < 1)

𝜔d = 𝜔n
√

1 − 𝜁2 (1.10)

Then Equation (1.6) becomes

ẍ + 2𝜁𝜔nẋ + 𝜔2
nx = 0 (1.11)

and Equation (1.9) becomes

𝜆1,2 = −𝜁𝜔n ± 𝜔n
√
𝜁2 − 1 = −𝜁𝜔n ± 𝜔dj, 0 < 𝜁 < 1 (1.12)

Clearly the value of the damping ratio, 𝜁 , determines the nature of the solution
of Equation (1.6). There are three cases of interest. The derivation of each case is
left as an exercise and can be found in almost any introductory text on vibrations
(Inman, 2014; Meirovitch, 1986).

Underdamping occurs if the system’s parameters are such that

0 < 𝜁 < 1

so that the discriminant in Equation (1.12) is negative and the roots form a com-
plex conjugate pair of values. The solution of Equation (1.11) then becomes

x(t) = e−𝜁𝜔nt(A cos𝜔dt + B sin𝜔dt) (1.13)

or

x(t) = Ce−𝜁𝜔nt sin(𝜔dt + 𝜙)

where A, B, C and 𝜙 are constants determined by the specified initial velocity, v0
and position, x0

A = x0 C =
√

(v0 + 𝜁𝜔nx0)2 + (x0𝜔d)2

𝜔d

B =
(v0 + 𝜁𝜔nx0)

𝜔d
𝜙 = tan−1

[ x0𝜔d
(v0 + 𝜁𝜔nx0)

] (1.14)

The underdamped response has the form given in Figure 1.6 and consists of a
decaying oscillation of frequency 𝜔d.

Overdamping occurs if the system’s parameters are such that

𝜁 > 1
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so that the discriminant in Equation (1.12) is positive and the roots are a pair of
negative real numbers. The solution of Equation (1.11) then becomes

x(t) = Ae
(
−𝜁+

√
𝜁2−1

)
𝜔nt + Be

(
−𝜁−

√
𝜁2−1

)
𝜔nt (1.15)

where A and B are again constants determined by v0 and x0. They are

A =
v0 +

(
𝜁 +

√
𝜁2 − 1

)
𝜔nx0

2𝜔n
√
𝜁2 − 1

and B = −
v0 +

(
𝜁 −

√
𝜁2 − 1

)
𝜔nx0

2𝜔n
√
𝜁2 − 1

(1.16)

The overdamped response has the form given in Figure 1.7. An overdamped sys-
tem does not oscillate, but rather returns to its rest position exponentially.

Critical Damping occurs if the system’s parameters are such that 𝜁 = 1, so that
the discriminant in Equation (1.12) is zero and the roots are a pair of negative real
repeated numbers. The solution of Equation (1.11) then becomes

x(t) = e−𝜔nt[(v0 + 𝜔nx0)t + x0] (1.17)

The critically damped response is plotted in Figure 1.8 for values of the initial
velocity v0 of different signs and x0 = 0.25 mm.
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Figure . Response of an overdamped system illustrating exponential decay without
oscillation.
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It should be noted that critically damped systems can be thought of in several
ways. First, they represent systems with the minimum value of damping rate that
yields a non-oscillating system (Exercise 1.5). Critical damping can also be thought
of as the case that separates non-oscillation from oscillation.

Example 1.3.1
Derive the constants A and B of integration for the overdamped case of Equa-
tion (1.15).

Solution: Substitution of x(0) = x0 into Equation (1.15) yields
x(0) = Ae0 + Be0 or x0 = A + B (1.18)

Differentiating Equation (1.15) and setting t = 0 in the result yields
ẋ(0) = A𝜆1e0 + B𝜆2e0 or v0 = 𝜆1A + 𝜆1B (1.19)

where 𝜆1 and 𝜆2 are defined in Equation (1.12). These two initial conditions
result in two independent equations in two unknowns, A and B, which can be
solved in many ways. Writing Equations (1.17) and (1.18) as a single matrix
equation yields[ x0

v0

]
=
[ 1 1
𝜆1 𝜆2

] [A
B

]
or

[A
B

]
=
[ 1 1
𝜆1 𝜆2

]−1 [ x0
v0

]
Solving by computing matrix inverse (see Appendix B for details on computing
a matrix inverse) yields[A

B

]
= 1
𝜆2 − 𝜆1

[
𝜆2 −1
−𝜆1 1

] [ x0
v0

]
Expanding, substituting in the values for 𝜆1 and 𝜆2, recalling that they are real
numbers (i.e. 𝜁2 > 1) and writing as two separate equations results in

A =
−v0 + (−𝜁 −

√
𝜁2 − 1)𝜔n

−2𝜔n
√
𝜁2 − 1

and B =
v0 + (𝜁 −

√
𝜁2 − 1)𝜔n

−2𝜔n
√
𝜁2 − 1

Factoring out the minus sign in the denominator results in Equations (1.16).
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. Forced Response

The preceding analysis considers the vibration of a device or structure due to
some initial disturbance (nonzero v0 and x0). In this section, the vibration of a
spring-mass-damper system subjected to an external force is considered. In partic-
ular, the response to harmonic excitations, impulses and step forcing functions is
examined.

In many environments, rotating machinery, motors, etc., cause periodic
motions of structures to induce vibrations into other mechanical devices and
structures nearby. It is common to approximate the driving forces, F(t), as peri-
odic of the form

F(t) = F0 sin𝜔t (1.20)

where F0 represents the amplitude of the applied force and 𝜔 denotes the fre-
quency of the applied force, or the driving frequency, in rad/s. On summing forces,
the equation for the forced vibration of the system in Figure 1.9 becomes

mẍ + cẋ + kx = F0 sin𝜔t (1.21)

Recall from the discipline of differential equations (Boyce and DiPrima, 2012),
that the solution of Equation (1.21) consists of the sum of the homogeneous solu-
tion Equation (1.5) and a particular solution. These are usually referred to as the
transient response and the steady-state response, respectively. Physically, there is
motivation to assume that the steady state response will follow the forcing func-
tion. Hence, it is tempting to assume that the particular solution has the form

xp(t) = X sin(𝜔t − 𝜃) (1.22)

where X is the steady-state amplitude and 𝜃 is the phase shift at steady state. Math-
ematically, the method is referred to as the method of undetermined coefficients.
Substitution of Equation (1.22) into Equation (1.21) yields

X =
F0∕k√

(1 − m𝜔2∕k)2 + (c𝜔∕k)2

x

fk

fc

N

y

k

c

x(t)

F(t)

(a) (b)

F(t)mgm

Figure . (a) The schematic of the forced spring-mass-damper system, assuming no friction
on the surface. (b) The free-body diagram of the system of part (a).
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or
Xk
F0

= 1√[
1 − (𝜔∕𝜔n)2

]2 + [2𝜁 (𝜔∕𝜔n)]2
(1.23)

and

tan 𝜃 =
(c𝜔∕k)

1 − m𝜔2∕k
=

2𝜁 (𝜔∕𝜔n)
1 − (𝜔∕𝜔n)2 (1.24)

where 𝜔n =
√

k∕m as before. Since the system is linear, the sum of two solutions
is a solution, and the total time response for the system in Figure 1.9 for the case
0 < 𝜁 < 1 becomes

x(t) = e−𝜁𝜔nt(A sin𝜔dt + B cos𝜔dt) + X sin(𝜔t − 𝜃) (1.25)

Here A and B are constants of integration determined by the initial conditions and
the forcing function (and in general will be different than the values of A and B
determined for the free response). See Examples 1.4.2 and 1.5.1 for the case where
the driving force is a cosine function.

Examining Equation (1.25), two features are important and immediately obvi-
ous. First, as t gets larger, the transient response (the first term) becomes very
small – hence the term steady-state response is assigned to the particular solution
(the second term). The second observation is that the coefficient of the steady state
response, or particular solution, becomes large when the excitation frequency is
close to the undamped natural frequency, i.e.𝜔 ≈ 𝜔n. This phenomenon is known
as resonance and is extremely important in design, vibration analysis and testing.

Example 1.4.1
Compute the response of the following system (assuming consistent units)

ẍ(t) + 0.4ẋ(t) + 4x(t) = 1√
2
sin 3t, x(0) = −3√

2
, ẋ(0) = 0

Solution: First solve for the particular solution by using the more convenient
form of

xp(t) = X1 sin 3t + X2 cos 3t

rather than the magnitude and phase form, where X1 and X2 are the constants
to be determined. Differentiating xp yields

ẋp(t) = 3X1 cos 3t − 3X2 sin 3t
ẍp(t) = −9X1 sin 3t − 9X2 cos 3t

Substitution of xp and its derivatives into the equation of motion and collecting
like terms yields(

−9X1 − 1.2X2 + 4X1 −
1√
2

)
sin 3t + (−9X2 + 1.2X1 + 4X2) cos 3t = 0
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Since the sine and cosine are independent, the two coefficients in parenthesis
must vanish, resulting in two equations in the two unknowns, X1 and X2. This
solution yields

xp(t) = −0.134 sin 3t − 0.032 cos 3t

Next consider adding the free response to this. From the problem statement

𝜔n = 2 rad∕s, 𝜁 = 0.4
2𝜔n

= 0.1 < 1, 𝜔d = 𝜔n
√

1 − 𝜁2 = 1.99 rad∕s

Thus, the system is underdamped, and the total solution is of the form

x(t) = e−𝜁𝜔nt(A sin𝜔dt + B cos𝜔dt) + X1 sin𝜔t + X2 cos𝜔t

Applying the initial conditions requires the derivative

ẋ(t) = e−𝜁𝜔nt(𝜔dA cos𝜔dt − 𝜔dB sin𝜔dt) + 𝜔X1 cos𝜔t
−𝜔X2 sin𝜔t − 𝜁𝜔ne−𝜁𝜔nt(A sin𝜔dt + B cos𝜔dt)

The initial conditions yield the constants A and B

x(0) = B + X2 = −3√
2
⇒ B = −X2 −

3√
2
= −2.089

ẋ(0) = 𝜔dA + 𝜔X1 − 𝜁𝜔nB = 0 ⇒ A = 1
𝜔d

(𝜁𝜔nB − 𝜔X1) = −0.008

Thus the total solution is

x(t) = −e−0.2t(0.008 sin 1.99t + 2.089 cos 1.99t)− 0.134 sin 3t − 0.032 cos 3t

Example 1.4.2
Calculate the form of the forced response if, instead of a sinusoidal driving force,
the applied force is given by

F(t) = F0 cos𝜔t.

Solution: In this case, assume that the response is also a cosine function out of
phase or

xp(t) = X cos(𝜔t − 𝜃)

To make the computations easy to follow, this is written in the equivalent form
using a basic trig identity

xp(t) = As cos𝜔t + Bs sin𝜔t

where the constants As = X cos 𝜃 and Bs = X sin 𝜃 satisfying

X =
√

A2
s + B2

s and 𝜃 = tan−1 Bs
As
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are undetermined constant coefficients. Taking derivatives of the assumed form
of the solution and substitution of these into the equation of motion yields(

− 𝜔2As + 2𝜁𝜔n𝜔Bs + 𝜔2
nAs − f0

)
cos𝜔t

+
(
− 𝜔2Bs − 2𝜁𝜔n𝜔As + 𝜔2

nBs
)
sin𝜔t = 0

This equation must hold for all time, in particular for t = 𝜋/2𝜔, so that the coef-
ficient of sin 𝜔t must vanish. Similarly, for t = 0, the coefficient of cos 𝜔t must
vanish. This yields the two equations(

𝜔2
n − 𝜔2)As +

(
2𝜁𝜔n𝜔

)
Bs = f0

and

(−2𝜁𝜔n𝜔)As +
(
𝜔2

n − 𝜔2) + Bs = 0

in the two undetermined coefficients As and Bs. Solving yields

As =
(
𝜔2

n − 𝜔2)f0(
𝜔2

n − 𝜔2
)2 + (2𝜁𝜔n𝜔)2

Bs =
2𝜁𝜔n𝜔f0(

𝜔2
n − 𝜔2

)2 + (2𝜁𝜔n𝜔)2

Substitution of these expressions into the equations for X and 𝜃 yields the par-
ticular solution

xp(t) =

X
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

f0√(
𝜔2

n − 𝜔2
)2 + (2𝜁𝜔n𝜔)2

cos

⎛⎜⎜⎜⎜⎜⎝
𝜔t −

𝜽

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

tan−1 2𝜁𝜔n𝜔

𝜔2
n − 𝜔2

⎞⎟⎟⎟⎟⎟⎠
Resonance is generally to be avoided in designing structures, since it means large

amplitude vibrations, which can cause fatigue failure, discomfort, loud noises, etc.
Occasionally, the effects of resonance are catastrophic. However, the concept of
resonance is also very useful in testing structures and in certain applications such
as energy harvesting (Section 7.10). In fact, the process of modal testing (Chap-
ter 12) is based on resonance. Figure 1.10 illustrates how𝜔n and 𝜁 affect the ampli-
tude at resonance. The dimensionless quantity Xk/F0 is called the magnification
factor and Figure 1.10 is called a magnification curve or magnitude plot. The max-
imum value at resonance, called the peak resonance, and denoted by Mp, can be
shown (Inman, 2014) to be related to the damping ratio by

Mp = 1
2𝜁
√

1 − 𝜁2
(1.26)

Also, Figure 1.10 can be used to define the bandwidth of the structure, denoted
by BW, as the value of the driving frequency at which the magnitude drops below
70.7% of its zero frequency value (also said to be the 3-dB down point from the zero
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Figure . Magnification curves (dimensionless) for an SDOF system showing the normalized
amplitude of vibration versus the ratio of driving frequency to natural frequency (r = 𝜔∕𝜔n).

frequency point). The bandwidth can be calculated (Kuo and Golnaraghi, 2009:
p. 359) in terms of the damping ratio by

BW = 𝜔n

√
(1 − 2𝜁2) +

√
4𝜁4 − 4𝜁2 + 2 (1.27)

Two other quantities are used in discussing the vibration of underdamped struc-
tures. They are the loss factor defined at resonance (only) to be

𝜂 = 2𝜁 (1.28)

and the Q value, or resonance sharpness factor, given by

Q = 1
2𝜁

= 1
𝜂

(1.29)

Another common situation focuses on the transient nature of the response,
namely, the response of Equation (1.6) to an impulse, to a step function, or to
initial conditions. Many mechanical systems are excited by loads, which act for
a very brief time. Such situations are usually modeled by introducing a fictitious
function called the unit impulse function, or the Dirac delta function. This delta
function, denoted 𝛿, is defined by the two properties

𝛿(t − a) = 0 t ≠ a

∫
∞

−∞
𝛿(t − a) dt = 1

(1.30)

where a is the instant of time at which the impulse is applied. Strictly speaking, the
quantity 𝛿(t) is not a function; however, it is very useful in quantifying important
physical phenomena of an impulse.
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The response of the system of Figure 1.9 for the underdamped case (with
a = x0 = v0 = 0) can be given by

x(t) =
⎧⎪⎨⎪⎩

0 t < a
1

m𝜔d
e−𝜁𝜔nt sin𝜔dt t ≥ a

⎫⎪⎬⎪⎭ (1.31)

Note from Equation (1.13) that this corresponds to the transient response of
the system to the initial conditions x0 = 0 and v0 = 1/m. Hence, the impulse
response is equivalent to giving a system at rest an initial velocity of (1/m). This
makes the impulse response, x(t), important in discussing the transient response
of more complicated systems. The impulse is also very useful in making vibration
measurements, as described in Chapter 12.

A physical impact applied to a structure can be modeled by using the Dirac delta
function with a magnitude representing the size of the impact. In this case, the
impulse applied to the structure is modeled as having a magnitude F applied over
a short time period Δt so that the effective change in momentum is mv0 – 0 =
F Δt, assuming the structure is initially at rest. This is equivalent to imparting an
initial velocity of v0 = F Δt/m. Thus, for an impulse of magnitude F applied over
time Δt, the response becomes

x(t) =
⎧⎪⎨⎪⎩

0 t < a
FΔt
m𝜔d

e−𝜁𝜔nt sin𝜔dt t ≥ a

⎫⎪⎬⎪⎭ (1.32)

Often design problems are stated in terms of certain specifications based on
the response of the system to step function excitation. The response of the system
in Figure 1.9 to a step function (of magnitude m𝜔2

n for convenience), with initial
conditions both set to zero, is calculated for underdamped systems from

mẍ + cẋ + kx = m𝜔2
n𝜇(t), 𝜇(t) =

{0 t < 0
1 t ≥ 0

(1.33)

to be

x(t) = 1 −
e−𝜁𝜔nt sin(𝜔dt + 𝜙)√

1 − 𝜁2
(1.34)

where

𝜙 = arctan

[√
1 − 𝜁2

𝜁

]
(1.35)

A sketch of the response is given in Figure 1.11, along with the labeling of several
significant specifications for the case m = 1, 𝜔n = 2 and 𝜁 = 0.2.

In some situations, the steady-state response of a structure may be at an accept-
able level, but the transient response may exceed acceptable limits. Hence, one
important measure is the overshoot, labeled O.S. in Figure 1.11 and defined to be
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x(t) Figure . Step response of
an SDOF system.

the maximum value of the response minus the steady-state value of the response.
From Equation (1.34) it can be shown that

overshoot = O.S. = xmax(t) − 1 = e−𝜁𝜋∕
√

1−𝜁2 (1.36)

This occurs at the peak time, tp, which can be shown to be

tp = 𝜋

𝜔n
√

1 − 𝜁2
(1.37)

In addition, the period of oscillation, Td, is given by

Td = 2𝜋
𝜔n
√

1 − 𝜁2
= 2tp (1.38)

Another useful quantity, which indicates the behavior of the transient response, is
the settling time, ts. This is the time it takes the response to get within ±5% of the
steady-state response and remain within ±5%. One approximation of ts is given by
Kuo and Golnaraghi (2009: p. 263)

ts =
3.2
𝜔n𝜁

(1.39)

The preceding definitions allow designers and vibration analysts to specify and
classify precisely the nature of the transient response of an underdamped system.
These definitions also give some indication of how to adjust the physical parame-
ters of the system so that the response has a desired shape.

The response of a system to an impulse may be used to determine the response
of an underdamped system to any input F(t) by defining the impulse response
function by

h(t) = 1
m𝜔d

e−𝜁𝜔nt sin𝜔dt (1.40)

Then the solution of

mẍ(t) + cẋ(t) + kx(t) = F(t)
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can be shown to be

x(t) =
t

∫
0

F(𝜏)h(t − 𝜏)d𝜏 = 1
m𝜔d

e−𝜁𝜔nt

t

∫
0

F(𝜏)e𝜁𝜔n𝜏 sin𝜔d(t − 𝜏)d𝜏 (1.41)

for the case of zero initial conditions. This last expression gives an analytical rep-
resentation for the response to any driving force that has an integral.

Example 1.4.3
Consider a spring-mass-damper system with m = 1 kg, c = 2 kg/s and k =
2000 N/m, with an impulsive force applied to it of 10,000 N for 0.01 s. Com-
pute the resulting response.

Solution: A 10,000 N force acting over 0.01 s provides (area under the curve)
a value of FΔt = 10000 × 0.01 = 100 N ⋅ s Using the values given, the equation
of motion is

ẍ(t) + 2ẋ(t) + 2000x(t) = 100𝛿(t)

Thus the natural frequency, damping ratio and damped natural frequency are

𝜔n =
√

2000
1

= 44.721 rad∕s, 𝜁 = 2
2
√

1 × 2000
= 0.022,

𝜔d = 44.721
√

1 − 0.0222 = 44.71 rad∕s

Using Equation (1.32), the response becomes

x(t) = F̂e−𝜁𝜔nt

m𝜔d
sin𝜔dt = 2.237e−0.1t sin(44.71t)

. Transfer Functions and Frequency Methods

The preceding analysis of the response was carried out in the time domain. Current
vibration measurement methodology (Ewins, 2000), as well as much control analy-
sis (Kuo and Golnaraghi, 2009), often takes place in the frequency domain. Hence,
it is worth the effort to reexamine these calculations using frequency domain
methods (a phrase usually associated with linear control theory). The frequency
domain approach arises naturally from mathematics (ordinary differential equa-
tions) via an alternative method of solving differential equations, such as Equa-
tions (1.21) and (1.33), using the Laplace transform (Boyce and DiPrima, 2012;
Chapter 6).

Taking the Laplace transform of Equation (1.33), assuming both initial condi-
tions to be zero, yields

X(s) =
[

1
ms2 + cs + k

]
𝜇(s) (1.42)
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where X(s) denotes the Laplace transform of x(t), and 𝜇(s) is the Laplace trans-
form on the right-hand side of Equation (1.33). If the same procedure is applied to
Equation (1.21), the result is

X(s) =
[

1
ms2 + cs + k

]
F0(s) (1.43)

where F0(s) denotes the Laplace transform of F0 sin𝜔t. Note that

G(s) = X(s)
𝜇(s)

= X(s)
F0(s)

= 1
ms2 + cs + k

(1.44)

Thus, it appears that the quantity G(s) = [1/(ms2 + cs + k)], the ratio of the Laplace
transform of the output (response) to the Laplace transform of the input (applied
force) to the system characterizes the system (structure) under consideration. This
characterization is independent of the input or driving function. This ratio, G(s), is
defined as the transfer function of this system in control analysis (or of this struc-
ture in vibration analysis). The transfer function can be used to provide analysis of
the vibrational properties of the structure, as well as to provide a means of mea-
suring the structure’s dynamic response.

In control theory, the transfer function of a system is defined in terms of an out-
put to input ratio, but the use of a transfer function in structural dynamics and
vibration testing implies certain physical properties, depending on whether posi-
tion, velocity or acceleration is considered as the response (output). It is common,
for instance, to measure the response of a structure by using an accelerometer. The
transfer function resulting is then s2X(s)/U(s), where U(s) is the Laplace transform
of the input and s2X(s) is the Laplace transform of the acceleration. This transfer
function is called the inertance and its reciprocal is referred to as the apparent
mass. Table 1.1 lists the nomenclature of various transfer functions. The physical
basis for these names can be seen from their graphical representation.

The transfer function representation of a structure is very useful in control the-
ory as well as in vibration testing. It also forms the basis of impedance methods
discussed in the next section. The variable s in the Laplace transform is a complex
variable, which can be further denoted by

s = 𝜎 + j𝜔d

where the real numbers 𝜎 and 𝜔d denote the real and imaginary parts of s, respec-
tively (j =

√
−1). Thus, the various transfer functions are also complex-valued.

Table . Various transfer functions.

Response
Measurement

Transfer
Function

Inverse Transfer
Function

Acceleration Inertance Apparent mass
Velocity Mobility Impedance
Displacement Compliance Dynamic stiffness
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Figure . Complex s-plane of the poles (roots of the
characteristics of Equation (1.39).

In control theory, the values of s where the denominator of the transfer func-
tion G(s) vanishes are called the poles of the transfer function. A plot of the poles
of the compliance (also called receptance) transfer function for Equation (1.44)
in the complex s-plane is given in Figure 1.12. The points on the semi-circle
occur where the denominator of the transfer function is zero. These values of s
(s = −𝜁𝜔n ± 𝜔dj) are exactly the roots of the characteristic equation for the struc-
ture. The values of the physical parameters m, c and k determine the two quantities
𝜁 and 𝜔n , which in turn determine the position of the poles in Figure 1.12.

Another graphical representation of a transfer function useful in control is the
block diagram illustrated in Figure 1.13a. This diagram is an icon for the definition
of a transfer function. The control terminology for the physical device represented
by the transfer function is the plant, whereas in vibration analysis the plant is usu-
ally referred to as the structure. The block diagram of Figure 1.13b is meant to
imply the formula

X(s)
U(s)

= 1
(ms2 + cs + k)

(1.45)

exactly.
The response of Equation (1.21) to a sinusoidal input (forcing function) moti-

vates a second description of a structure’s transfer function called the frequency
response function (often denoted by FRF). The FRF is defined as the transfer func-
tion evaluated at s = j𝜔, i.e. G(j𝜔). The significance of the FRF follows from Equa-
tion (1.22), namely, that the steady-state response of a system driven sinusoidally
is a sinusoid of the same frequency with different amplitude and phase. In fact,

Input Output U(s) X(s)

(a) (b)

Plant or

Structure ms2 + cs + k
1

Figure . Block diagram representation of an SDOF system.
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substitution of j𝜔 into Equation (1.45) yields exactly Equations (1.23) and (1.24)
from

X
F0

= |G(j𝜔)| =√
x2(𝜔) + y2(𝜔) (1.46)

where |G(j𝜔)| indicates the magnitude of the complex FRF

𝜙 = tan−1 G(j𝜔) = tan−1
[

y(𝜔)
x(𝜔)

]
(1.47)

indicates the phase of the FRF, and

G(j𝜔) = x(𝜔) + y(𝜔)j (1.48)

This mathematically expresses two ways to represent a complex function, as the
sum of its real part (Re G(j𝜔) = x(𝜔)) and its imaginary part (Im (G(j𝜔)) = y(𝜔)),
or by its magnitude (|G(j𝜔)|) and phase (𝜙). In more physical terms, the FRF of
a structure represents the magnitude and phase shift of its steady-state response
under sinusoidal excitation. While Equations (1.23), (1.24), (1.46) and (1.47) verify
this for an SDOF viscously damped structure, it can be shown in general for any
linear time invariant plant (Melsa and Schultz, 1969: p. 187)).

It should also be noted that the FRF of a linear system can be obtained from the
transfer function of the system and vice versa. Hence, the FRF uniquely determines
the time response of the structure to any known input.

Graphical representations of the FRF form an extensive part of control analysis
and also form the backbone of vibration measurement analysis. Next, three sets
of FRF plots that are useful in testing vibrating structures are examined. The first
set of plots consists simply of plotting the imaginary part of the FRF versus the
driving frequency and the real part of the FRF versus the driving frequency. These
are shown for the damped SDOF system in Figure 1.14 (the compliance FRF for
𝜁 = 0.01 and 𝜔n = 20 rad/s).

The second representation consists of a single plot of the imaginary part of the
FRF versus the real part of the FRF. This type of plot is called a Nyquist plot (also
called an Argand plane plot) and is used for measuring the natural frequency and
damping in testing methods and for stability analysis in control system design. The

Im G( jω)

ω

ω

Re G( jω)

20 Hz 20 Hz

Figure . Plots of the real part and the imaginary part of the FRF.
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Im G( jω)

Re G( jω)1/2c 1/c

Figure . Nyquist plot for Equation 1.44.

Nyquist plot of the mobility FRF of a structure modeled by Equation (1.44) is given
in Figure 1.15.

The last plots considered for representing the FRF are called Bode plots and con-
sist of a plot of the magnitude of the FRF versus the driving frequency and the
phase of the FRF versus the driving frequency (a complex number requires two
real numbers to describe it completely). Bode plots have long been used in control
system design and analysis as well as for determining the plant transfer function
of a system. More recently, Bode plots have been used in analyzing vibration test
results and in determining the physical parameters of the structure.

In order to represent the complete Bode plots in a reasonable space, log10 scales
are often used to plot |G(j𝜔)|. This has given rise to the use of the decibel and
decades in discussing the magnitude response in the frequency domain. The mag-
nitude and phase plots (for the compliance transfer function) for the system in
Equation (1.21) are shown in Figures 1.16 and 1.17 for different values of 𝜁 . Note
the phase change at resonance (90◦), as this is important in interpreting measure-
ment data.

Note that Figures 1.10 and 1.17 show the same physical phenomenon and are
both plots of the compliance transfer function. However, the magnitude in Fig-
ure 1.10 is dimensionless versus dimensionless frequency, while Figure 1.17 is usu-
ally the magnitude in decibels versus frequency on a semi-log scale.

Example 1.5.1
Solve the following system using the Laplace Transform method and using a
Table of Laplace Transform pairs (from the Internet)

mẍ(t) + kx(t) = F0 cos𝜔(t), x(0) = x0, ẋ(0) = v0

0°

–90°

Semilog scale

–180°

ϕ

1 10

ζ = 1.0

ζ = 0.05
ω

0.4

0.2

100 1000

Figure . Bode phase plot for Equation (1.39) showing resonance at –90◦.
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10010

(1/k)

.1 1000

ζ = 0.707

ζ = 0.05

|G(jω)|

ω

1.0

0.2

0.1

Slope = –2/m

Figure . Bode magnitude plot for Equation (1.39) showing resonance and values of mass and
stiffness.

Solution: First divide through by the mass to get

ẍ(t) + 𝜔2
nx(t) = f0 cos𝜔t, x(0) = x0, ẋ(0) = v0

Here f0 = F0/m. Taking the Laplace Transform (see the Table of Laplace Trans-
forms: from the Internet) of the equation of motion considering the initial con-
ditions yields

s2X(s) − sx0 − v0 + 𝜔2
nX(s) =

sf0
s2 + 𝜔2

⇒
(
s2 + 𝜔2

n
)
X(s) = sx0 + v0 +

sf0
s2 + 𝜔2

Solving this for X(s) yields

X(s) =
sx0 + v0
s2 + 𝜔2

n
+

sf0(
s2 + 𝜔2

n
)

(s2 + 𝜔2)

= (x0) s
s2 + 𝜔2

n
+
( v0
𝜔n

)
𝜔n

s2 + 𝜔2
n
+

sf0(
s2 + 𝜔2

n
)

(s2 + 𝜔2)

Taking the Inverse Laplace Transform using an online table of each term yields

x(t) = x0 cos𝜔nt +
v0
𝜔n

sin𝜔nt +
f0

𝜔2
n − 𝜔2 (cos𝜔t − cos𝜔nt)

=
v0
𝜔n

sin𝜔nt +
(

x0 −
f0

𝜔2
n − 𝜔2

)
cos𝜔nt +

f0
𝜔2

n − 𝜔2 cos𝜔t
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In comparing this with the solution given in Equation (1.25) for zero damping,
note that Equation (1.25) is the solution for the case where the driving force is
a sine function instead of a cosine as solved here.

. Complex Representation and Impedance

Table 1.1 formally defines impedance as the ratio of a sinusoidal driving force, F,
acting on the system to the resulting velocity, v, of the system. Impedance is usually
denoted by the symbol Z and is a measure of a structure’s resistance to motion. In
working with impedance methods it is common to use the complex exponential
notation to represent harmonic quantities. Using the exponential notation, the
sinusoidal force in Equation (1.21) can be written as

F(t) = F0ej𝜔t (1.49)

Here,𝜔 is the driving frequency as before. The impedance approach offers an alter-
native way to examine systems vibrating harmonically based on using complex
functions to represent the response.

A useful way to visualize harmonic motion is to think of the response x(t) as a
vector rotating in the complex plane, as illustrated in Figure 1.18. Here the vec-
tor has magnitude A and rotates an angle 𝜔t in the complex plane. From Euler’s
formula for the complex exponential function

x(t) = Aej𝜔t = A cos𝜔t + Aj sin𝜔t (1.50)

which agrees with representation in Figure 1.18. Differentiation of the complex
exponential yields simply

d
dt

(Aej𝜔t) = j𝜔Aej𝜔t = j𝜔x(t)

d2

dt2 (Aej𝜔t) = j2𝜔2Aej𝜔t = −𝜔2x(t)
(1.51)

Re

Im

ω t

x(t) = Re(Ae

A

jω t )
= Acosωt

Im(Aejωt)

= Asinωt

x(t)

Figure . Graphic illustration of Euler’s
formula of the complex exponential.
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Thus, each differentiation of the complex exponential results in simply multiplying
by j𝜔, similar to multiplying by s in the Laplace domain.

From the Figure 1.18, the physical displacement is interpreted from the complex
exponential as just the real part of Equation (1.50). Thus the velocity becomes the
real part of the derivative of the complex exponential and the acceleration is the
real part of the derivative of that or

x(t) = Re(Aej𝜔t) = A cos(𝜔t)
ẋ(t) = Re(j𝜔Aej𝜔t) = −𝜔A sin(𝜔t)
ẍ(t) = Re(j2𝜔2Aej𝜔t) = −𝜔2A cos(𝜔t)

(1.52)

If the displacement is thought to be a sine function, then the physical motion vari-
ables become the imaginary parts of the complex exponential. Using the complex
notation equation for the forced response of an SDOF system becomes

mẍ(t) + cẋ(t) + kx(t) = F0ejwt (1.53)

Assuming the resulting displacement is of the form

x(t) = A sin(𝜔t − 𝜃)

its complex form is the corresponding velocity as

v(t) = Aj𝜔ej(𝜔t+𝜃) (1.54)

Here 𝜔 and 𝜃 are the driving frequency and phase shift between the applied force
and the resulting response respectively. Substituting the complex form of x(t) into
Equation (1.48) yields

[−𝜔2m + j𝜔c + k]Aej𝜔−j𝜃 = F(t) (1.55)

Solving for the complex value A yields

A =
F0ej𝜃

[−𝜔2m + j𝜔c + k]
(1.56)

which has magnitude and phase given by

|A| = F√
(k − 𝜔2m)2 + (𝜔c)2

and 𝜃 = tan 𝜔c
k − 𝜔2m

(1.57)

These values are of course the same as those derived in the previous section in
Equations (1.23 and 1.24).

Examination of the force/velocity expressions for each element reveals the
impedance of each, and these are given in Table 1.2.

Table . Impedance values for mass, damping and stiffness.

Mass Z = j𝜔m
Damping Z = c
Stiffness Z = −jk∕𝜔
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Example 1.6.1
Compute the mechanical impedance of the spring-mass-damper system of
Figure 1.9.

Solution: Dividing Equation (1.55) by (1.54) and simplifying yields that directly
the mechanical impedance of the spring-mass-damper system becomes

Z = F
v
=

[k − 𝜔2m + j𝜔c]Aej𝜔t−j𝜃

Aj𝜔ej𝜔t−j𝜃 = 1
j𝜔

(k − 𝜔2m + j𝜔c)

= 𝜔jm + c − k
j𝜔

(1.58)

Comparing this expression to the terms in Table 1.2 reveals that the mechan-
ical impedance of the system is just the sum of the impedance expressions for
each element. The use of the impedance method is essentially the existence of
following rules developed in electrical engineering for combining deferent cir-
cuit elements by adding their impedances (e.g. series and parallel combinations)
and making the analogy to electrical components of capacitance (reciprocal of
stiffness), inductance (mass) and resistance (damping). The units of mechanical
impedance are kg/s, the same as the viscous damping coefficient.

. Measurement and Testing

One can also use the quantities defined in the previous sections to measure the
physical properties of a structure. As mentioned before, resonance can be used to
determine a system’s natural frequency. Methods based on resonance are referred
to as resonance testing (or modal analysis techniques) (Bishop and Gladwell, 1963)
and are briefly introduced here and discussed in more detail in Chapter 8.

As mentioned earlier, the mass and stiffness of a structure can often be deter-
mined by making simple static measurements. However, damping rates require
a dynamic measurement and hence are more difficult to determine. For under-
damped systems one approach is to realize, from Figure 1.6, that the decay enve-
lope is the function e−𝜁𝜔nt . The points on the envelope illustrated in Figure 1.19

t

e–at

x(t)Figure . Free decay measurement
method.
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can be used to curve-fit the function e−at, where a is the constant determined by
the curve fit. The relation a = 𝜁𝜔n can next be used to calculate 𝜁 and hence the
damping rate c (assuming that m and k or 𝜔n are known).

A second approach is to use the concept of logarithmic decrement, denoted by
𝛿 (delta) and defined by

𝛿 = ln x(t)
x(t + Td)

(1.59)

where Td is the period of oscillation. Using Equation (1.13) in the form

x(t) = Ae−𝜁𝜔nt sin(𝜔dt + 𝜙) (1.60)

the value for 𝛿 becomes

𝛿 = ln
[ e−𝜁𝜔nt sin(𝜔dt + 𝜙)

e−𝜁𝜔n(t+Td) sin(𝜔dt + 𝜔dTd + 𝜙)

]
= ln e𝜁𝜔nTd = 𝜁𝜔nTd (1.61)

where the sine functions cancel because 𝜔dTd is a one period shift by definition.
Further evaluating 𝛿 yields

𝛿 = 𝜁𝜔nTd = 2𝜋𝜁√
1 − 𝜁2

(1.62)

Equation (1.62) can be manipulated to yield the damping ratio in terms of the
decrement, i.e.

𝜁 = 𝛿√
4𝜋 + 𝛿2

(1.63)

Hence, if the decrement is measured, Equation (1.63) yields the damping ratio.
The various plots of the previous section can also be used to measure 𝜔n, 𝜁 , m, c

and k. For instance, the Bode diagram of Figure 1.17 can be used to determine the
natural frequency, stiffness and damping ratio. The stiffness is determined from
the intercept of the FRF and the magnitude axis, since the value of the magnitude
of the FRF for small 𝜔 is log(1/k). This can be seen by examining the function
log10|G(j𝜔)| for small 𝜔. Note that

log |G(j𝜔)| = log 1
k
− 1

2
log

[(
1 − 𝜔2

𝜔2
n

)2
+
(

2𝜁𝜔
𝜔n

)2
]
= log

(1
k

)
(1.64)

for very small values of 𝜔. Also note that |G(j𝜔)| evaluated at 𝜔n yields

k|G(j𝜔n)| = 1
2𝜁

(1.65)

which provides a measure of the damping ratio from the magnitude plot of
the FRF.

Note that Equations (1.65) and (1.26) appear to contradict each other, since
1

2𝜁
√

1 − 𝜁2
= k max |G(j𝜔)| = Mp ≠ k|G(j𝜔n)| = 1

2𝜁

except in the case of very small 𝜁 (i.e. the difference between Mp and |G(j𝜔n)|
goes to zero as 𝜁 goes to zero). This indicates a subtle difference between using the
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damping ratio obtained by using resonance as the value of 𝜔, where |G(j𝜔n)| is a
maximum, and using the point, where 𝜔 = 𝜔n, the undamped natural frequency.
This point is also illustrated by noting that the damped natural frequency, Equa-
tion (1.8), is 𝜔d = 𝜔n

√
1 − 𝜁2 and 𝜔p, the frequency at which |G(j𝜔n)| is maxi-

mum, is

𝜔p = 𝜔n
√

1 − 2𝜁2 (1.66)

Also note that Equation (1.66) is valid only if 0 < 𝜁 < 0.707.
Finally, the mass can be related to the slope of the magnitude plot for the iner-

tance transfer function, denoted by GI(s), by noting that

GI(s) = s2

(ms2 + cs + k)
(1.67)

and for large 𝜔 (i.e. 𝜔n ≪𝜔), the value of |GI(j𝜔)| is|GI(j𝜔)| ≈ (1∕m) (1.68)

Plots of these values are referred to as straight-line approximations to the actual
magnitude plot (Bode, 1945).

The preceding formulas relating the physical properties of the structure to the
magnitude Bode diagrams suggest an experimental way to determine a structure’s
parameters: namely, if the structure can be driven by a sinusoid of varying fre-
quency and if the magnitude and phase (needed to locate resonance) of the result-
ing response are measured, then the Bode plots and the preceding formulas can be
used to obtain the desired physical parameters. This process is referred to as plant
identification in the controls literature and can be extended to systems with more
degrees of freedom (see Melsa and Schultz (1969), for a more complete account).

There are several other formulas for measuring the damping ratio and natu-
ral frequency from the results of such experiments, sine sweeps. For instance, if
the Nyquist plot of the mobility transfer function is used, a circle of diameter 1/c
results (Figure 1.15). Another approach is to plot the magnitude of the FRF on
a linear scale near the region of resonance (Figure 1.20). If the damping is small
enough so that the peak at resonance is sharp, the damping ratio can be deter-
mined by measuring the frequencies at 0.707 at the maximum value (also called

x

.707x

x(ω)

ω1 ω2
ω

Figure . Quadrature peak
picking method.
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the 3-dB down point or half-power points), denoted by 𝜔1 and 𝜔2, respectively.
Then, using the formula (Ewins, 2000)

𝜁 = 1
2

[
𝜔2 − 𝜔1
𝜔d

]
(1.69)

to compute the damping ratio. This method is referred to as quadrature peak pick-
ing and is illustrated in Figure 1.20.

. Stability

In all the preceding analysis, the physical parameters m, c and k are, of course, pos-
itive quantities. There are physical situations, however, in which equations of the
form of Equations (1.1) and (1.6) result but have one or more negative coefficients.
Such systems are not well behaved and require some additional analysis.

Recalling that the solution to Equation (1.1) is of the form A sin(𝜔t + 𝜙), where
A is a constant, it is easy to see that the response, in this case x(t), is bounded. That
is to say that|x(t)| ≤ A (1.70)

for all t where A is some finite constant and |x(t)| denotes the absolute value of
x(t). In this case, the system is well behaved or stable (called marginally stable in
the control’s literature). In addition, note that the roots (also called characteristic
values or eigenvalues) of

𝜆2m + k = 0

are purely complex numbers±j𝜔n as long as m and k are positive (or have the same
sign). If k happens to be negative and m is positive, the solution becomes

x(t) = A sinh𝜔nt + B cosh𝜔nt (1.71)

which increases without bound as t does. Such solutions are called divergent or
unstable.

If the solution of the damped system of Equation (1.6) with positive coefficients
is examined, it is clear that x(t) approaches zero as t becomes large, because of the
exponential term. Such systems are considered to be asymptotically stable (called
stable in the controls literature). Again, if one or two of the coefficients are neg-
ative, the motion grows without bound and becomes unstable as before. In this
case, however, the motion may become unstable in one of two ways. Similar to
overdamping and underdamping, the motion may grow without bound and not
oscillate, or it may grow without bound and oscillate. The first case is referred to
as divergent instability and the second case as flutter instability; together they fall
under the topic of self-excited vibrations.

Apparently, the sign of the coefficient determines the stability behavior of the
system. This concept is pursued in Chapter 4, where these stability concepts are
formally defined. Figures 1.21 to 1.24 illustrate each of these concepts.

These stability definitions can also be stated in terms of the roots of the char-
acteristic Equation (1.8) or in terms of the poles of the transfer function of the


