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Preface

This monograph is devoted to the analysis of some inverse problems concerning
the spectrum of the Laplace operator in a bounded domain Ω ⊂ R

n, n ≥ 2, and
of the scattering length spectrum (SLS) (the set of sojourn times of reflecting rays) of
the scattering kernel associated with scattering in the exterior Ω of a bounded obsta-
cle K ⊂ R

n, n ≥ 2. In both cases our aim is to obtain some geometric information
about Ω (resp. K) from spectral (resp. scattering) data. We treat both inverse prob-
lems by using similar techniques based on properties of the generalized geodesic flow
in Ω and on microlocal analysis of the corresponding mixed problems.

Let Ω ⊂ R
n, n ≥ 2, be a closed bounded domain with C∞ smooth boundary ∂Ω,

and let A be the self-adjoint operator in L2(Ω) related to the Laplacian

−Δ = −
n∑

j=1

∂2
xj

in Ω with Dirichlet boundary condition on ∂Ω. The spectrum of A is given by a
sequence

0 ≤ λ2
1 ≤ λ2

2 ≤ · · · ≤ λ2
m ≤ · · · (0.1)

of eigenvalues λ2
j for which the problem{

−Δϕj = λ2
jϕj in Ω,

ϕj = 0 on ∂Ω

has a non-trivial solution ϕj ∈ C∞(Ω). The counting function

N(λ) = #{j : λ2
j ≤ λ2},

where every eigenvalue is counted with its multiplicity, admits a polynomial bound

N(λ) ≤ Cλn, λ → +∞. (0.2)

Moreover, it is known (see [Se], [H4], [SaV]) that N(λ) has a Weyl type asymptotic

N(λ) =
(4π)−n/2

Γ(n/2 + 1)
Voln(Ω)λn + O(λn−1) (0.3)
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as λ → ∞. Thus, from the spectrum (0.1) we can recover the volume of Ω. In
1911, Weyl [W] conjectured that for every bounded domain Ω in R

n with smooth
boundary ∂Ω we have

N(λ) =
(4π)−n/2

Γ(n/2 + 1)
Voln(Ω)λn − (4π)−(n−1)/2

4Γ(n − 1/2 + 1)
Voln−1(∂Ω) + o(λn−1)

(0.4)
as λ → ∞. Ivrii [Ivl] proved that if the points (x, v) ∈ ∂Ω × S

n−1 for which there
exists a periodic billiard trajectory in Ω issued from x in direction v form a subset
of Lebesgue measure zero in the space ∂Ω × S

n−1, then the asymptotic (0.4) holds.
Therefore, for such domain Voln−1(∂Ω) becomes another spectral invariant. It is not
known so far if the assumption in Ivrii’s result is always satisfied.

To obtain more information from the knowledge of the spectrum {λ2
j}, it is

convenient to examine some distributions determined by the sequence (0.1). The
distribution

τ(t) =
∑

j

e−λ2
jt ∈ D′(R̄+)

has the asymptotic

τ(t) ∼
∞∑

j=1

cjt
−(n/2)+j/2 as t ↘ 0, (0.5)

and the constants cj are spectral invariants. Moreover, one can recover Voln(Ω) and
Voln−1(∂Ω) from c0 and c1.

In his classical work Kac [Kac] posed the problem of recovering the shape of
a strictly convex domain Ω ⊂ R

2 from the spectrum (0.1). This article has had a
big influence on the investigations of various inverse spectral problems for manifolds
with and without boundary as well as on the analysis of the so-called isospectral man-
ifolds, that is manifolds for which the spectra of the corresponding Laplace–Beltrami
operators coincide.

To determine a strictly convex planar domain Ω, modulo Euclidean transforma-
tions, it suffices to know the curvature K(x) of ∂Ω at each point x ∈ ∂Ω. In general,
the spectral data {cj}

∞
j=0, given by (0.5), is not sufficient to determine the function

K(x). Let us mention that the distribution τ(t) is singular only at t = 0. A distribution
related to {λ2

j} having a larger singular set is

σ(t) =
∞∑

j=1

cos(λjt) ∈ S′(R). (0.6)

This distribution is singular at 0 and

σ(t) ∼
∞∑

j=0

djt
−n+j

(see [Me3], [Iv2]). The constants dj provide other spectral invariants, and the first
two determine again Voln(Ω) and Voln−1(∂Ω).
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It turns out that the set of singularities of σ(t) is related to the so-called length
spectrum LΩ of Ω. By definition, LΩ is the set of periods (lengths) of all periodic
generalized geodesics in Ω. Let us mention that the generalized geodesics are the
projections in Ω of the generalized bicharacteristics of the wave operator � = ∂2

t −
Δx in T ∗(R × Ω) defined by Melrose and Sjöstrand ([MS1], [MS2]). We refer to
Chapter 1 for the precise definitions. The so-called Poisson relation for manifolds
with boundary has the form

sing supp σ(t) ⊂ {0} ∪ {T ∈ R : |T | ∈ LΩ}. (0.7)

For strictly convex (concave) domains this relation has been established by Anderson
and Melrose [AM]. Its proof for general domains is based on the results in [MS2]
on the propagation of C∞ singularities. A relation similar to (0.6) was first estab-
lished for Riemannian manifolds without boundary. This was achieved independently
by Chazarain [Ch2] and Duistermaat and Guillemin [DG]. Moreover, under certain
assumptions on the periodic geodesics with period T , the leading singularity at T was
examined in [DG].

It is natural to investigate the inverse inclusion in (0.7), however in the general
case, very little is known so far. For certain strictly convex planar domains Ω
Marvizi and Melrose [MM] found a sequence of closed billiard trajec-
tories in Ω whose lengths belong to sing supp σ(t). It was expected
([Cl], [GM3]) that for generic strictly convex domains in R

2 the inclusion
(0.7) could become an equality. Such a result was established in [PS2]
(see also [PSl]) for all generic domains (not necessarily convex). Its ana-
logue in the case n > 2 is proved only for strictly convex domains [S3].
The results, just mentioned, form one of the main topics in this book.

If the equality

sing supp σ(t) = {0} ∪ {T : |T | ∈ LΩ} (0.8)

holds for some domain Ω, then the lengths of the periodic geodesics in Ω can be con-
sidered as spectral invariants. From them one can determine various spectral invari-
ants. The reader may consult [MM], [Cl], [Pol], [Po2], [Po3], [PoT], [HeZ] and [Z]
for more information and further results in this direction.

Let LΩ be the set of all periodic geodesics in Ω. For γ ∈ LΩ we denote by Tγ the
period (length) of γ. There are three types of elements of LΩ: periodic reflecting rays
(i.e. closed billiard trajectories in Ω), closed geodesics on ∂Ω and periodic geodesics
of mixed type, containing both linear segments in Ω and geodesic segments on ∂Ω.
Amongst the periodic reflecting rays we will distinguish those without segments tan-
gent to the boundary ∂Ω; such rays will be called ordinary. Similarly to the case of
closed geodesics on ∂Ω, for each ordinary periodic reflecting ray γ one can naturally
define a Poincaré map Pγ such that the spectrum spec (Pγ) of the linearization Pγ

of Pγ contains certain information about the behaviour of billiard flow along γ. Such
a ray γ will be called non-degenerate if 1 /∈ spec Pγ . Poincaré maps for periodic
reflecting rays are defined in Chapter 2.
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Given a smooth submanifold X of R
n, we denote by C∞(X, Rn) the space

of all smooth maps f : X → R
n, endowed with the Whitney C∞ topology

(see Chapter 1). Let C(X) = C∞
emb(X, Rn) be its subspace consisting of all smooth

embedding of X into R
n. Being open in C∞(X, Rn), C(X) is a Baire space, so

every residual (countable intersection of open dense subsets) subset of C(X) is
dense in it.

Throughout the book we will consider very often the situation when Ω is a com-
pact domain with smooth boundary ∂Ω and X = ∂Ω. Then for every f ∈ C(X) there
exists a unique compact domain Ωf in R

n with boundary ∂Ωf = f(X) = f(∂Ω).
Let us note that if Ω is strictly convex, the set O(Ω) of those f ∈ C(X) such that
Ωf is strictly convex, is open in C(X), and so it is a Baire topological space, too.
If Ω is a domain in R

n with bounded complement, for f ∈ C(X) we denote by Ωf

the unbounded domain in R
n with ∂Ωf = f(X). In the following we sometimes say

that a property is generically satisfied (briefly a generic property) in some classes of
objects, say for the compact domains in R

n with smooth boundaries. By this we mean
a property S such that for every bounded domain with smooth boundary X = ∂Ω
there exists a residual subset R of C(X) such that Ωf has the property S for every
f ∈ R. In the same way considering residual subsets of O(Ω), one can talk about
generic properties of the strictly convex domains, etc.

Let us note that in the whole book ‘smooth’ means C∞ (although many separate
arguments work replacing C∞ by Ck for some k ≥ 1). By a domain we always mean
a domain with smooth boundary.

Exploiting the Multijet Transversality Theorem (see Section 1.1), we establish
that the following properties of the compact domains in R

n are generic:
(I) Tγ/Tδ /∈ Q for all periodic ordinary reflecting rays γ and δ such that neither

of them is a multiple of the other.
(II) Every periodic reflecting ray in Ω is ordinary and non-generate.
As a consequence of this, it is established that the asymptotic (0.4) holds for

generic domains Ω ⊂ R
n. Using (i) and (ii), we prove (0.8) for generic strictly con-

vex domains in the plane. In fact, if Ω has the properties (i) and (ii), then each periodic
reflecting ray in Ω has a period Tγ which is an isolated point in LΩ. The kernel
E(t, x, y) of the operator cos(t

√
A) satisfies the equality

σ(t) =
∫

Ω
E(t, x, x)dx.

One can compute the leading singularity of σ(t) for t close to Tγ by the Poisson
summation formula discussed in Chapter 4. This leads to (0.8), since by (i) the sin-
gularities, related to different periodic rays, cannot be cancelled.

In general, a domain Ω ⊂ R
2 might admit periodic geodesics of mixed type. The

analysis of the singularities of σ(t), related to the periods of such geodesics, leads
to some rather difficult problems. We overcome this difficulty by showing that the
following property is generic for domains Ω ⊂ R

2:
(III) There are no periodic geodesics of mixed type in Ω.
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The analysis of the generic properties, such as (i)–(iii), is the second main
topic of this book. To establish (0.8) for generic convex domains in R

n, n ≥ 3,
in Chapter 7 we prove an analogue of the classical bumpy metric theorem of
Abraham–Klingenberg–Takens–Anosov, considering Riemannian metrics on
X ⊂ R

n, induced by smooth embeddings of X into R
n.

Our third topic concerns the kernel s(t − t′, θ, ω) of the operator

S − Id : L2(R × S
n−1) → L2(R × S

n−1).

Here θ, ω ∈ S
n−1, t, t′ ∈ R, and S is the scattering operator related to the Dirichlet

problem for the wave operator � = ∂2
t − Δx in the exterior of a bounded obstacle

K with smooth boundary ∂Ω = ∂K (see [LP1]). For fixed θ, ω ∈ S
n−1 the scat-

tering kernel s(t, θ, ω) is a tempered distribution in S′(R). The Fourier transform
Ft→λs(t, θ, ω) with respect to t yields the scattering amplitude

a(λ, θ, ω) =
(

2π

iλ

)(n−1)/2

Ft→λs(t, θ, ω).

It is well known that the scattering amplitude a(λ, θ, ω) determines uniquely the
obstacle K (see for instance [LP1]). On the other hand, in the applications for given
directions ω, θ is difficult to measure a(λ, θ, ω) for all λ ∈ R and we can measure
only the singularities of s(t, θ, ω). It turns out that these singularities are related to
sojourn times of generalized (ω, θ)-rays in Ω. These rays are generalized geodesics
in Ω, incoming with direction ω and outgoing with direction θ. For such a ray γ the
sojourn time was defined by Guillemin [G1] as an analogue of the notion of a period
of a periodic geodesic; this notion appears also in the physical literature.

The sojourn time measures the time which a point, moving along γ with a unit
speed, spends near the obstacle K. For strictly convex obstacles K and fixed θ �= ω
one has

sing supp t s(t, θ, ω) = { − Tγ},

γ being the unique (ω, θ)-ordinary reflecting ray in Ω (see [Ma2]). In general, the set
L(ω,θ)(Ω) of all (ω, θ)-generalized rays in Ω could contain more than one element.
Assuming that for (ω, θ) ∈ S

n−1 × S
n−1 every (ω, θ) ray γ in Ω is the projection of

a uniquely extendible generalized bicharacteristic γ̃ of �, we prove the inclusion

sing supp t s(t, θ, ω) ⊂ { − Tγ : γ ∈ L(ω,θ)(Ω)}, (0.9)

which is called the Poisson relation for the scattering kernel. The above assumption
for the (ω, θ) rays is fulfilled for generic obstacles as well as for generic directions,
that is for (ω, θ) in a subset R of S

n−1 × S
n−1 whose complement has Lebesgue

measure zero. We prove that the relation (0.9) becomes an equality for (θ, ω) ∈ R
and also for generic obstacles in R

3 and all directions θ �= ω. For this purpose we
study generic properties of (ω, θ)-rays, similar to (i)–(iii). Here the analogue of a
periodic reflecting ray is an ordinary reflecting (ω, θ)-ray and that of Poincaré map
is the so-called differential cross section dJγ of an ordinary reflecting (ω, θ)-ray.
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The non-degeneracy of such a ray γ means that det dJγ �= 0. The analogue of (iii)
says that, given (θ, ω) ∈ R ⊂ S

n−1 × S
n−1, there are no (ω, θ)-rays of mixed type

in Ω. For an ordinary reflecting non-degenerate (ω, θ)-ray γ whose sojourn time Tγ

is an isolated point in L(ω,θ)(Ω), we find the leading singularity of s(t, θ, ω) for t
sufficiently close to −Tγ . To do this, as in the analysis of the singularities of σ(t)
for t close to a period Tγ , we construct a global parametrix for the mixed problem
by a global Fourier integral operator and we obtain a precise information about the
principal symbol of this operator after multiple reflections. In this way the calculation
of the singularity is reduced to the asymptotic of an oscillatory integral for which
we apply the stationary phase argument. It turns out that the leading singularity of
σ(t), as well as that of s(t, θ, ω), is given by some global geometric characteristics.
This is the third main topic of this book.

Similar to the length spectrum for bounded domains, the right-hand side of (0.9)
contains certain information about the geometry of the obstacle K; we call it the scat-
tering length spectrum (SLS) with respect to ω, θ. The sojourn times of the (ω, θ)-rays
are easy to be observed and they form scattering data for the inverse scattering prob-
lems. The fourth main topic in this book concerns inverse scattering results. First,
in Chapter 10 we study inverse scattering problems for obstacles K that are finite
disjoint unions of several strictly convex domains. Under a geometric condition (H),
introduced by M. Ikawa, a hyperbolic property of the billiard trajectories in the exte-
rior Ω of the obstacles is established. This allows us to show that all periodic reflecting
rays in Ω can be approximated by (ω, θ)-rays for appropriately fixed directions ω
and θ and that their periods can be determined from the sojourn times of these rays.
Also we find the asymptotic of the coefficients in front of the leading singularities
of the scattering kernel, corresponding to the sojourn times of the approximating
(ω, θ)-rays.

A more general approach to the inverse problem of recovering information about
an obstacle from the SLS is discussed in Chapter 13. It turns out that if two obsta-
cles K and L have (almost) the same scattering length spectra, then the generalized
geodesic flows in their exteriors are naturally conjugated on the non-trapping parts
of their phase spaces via a time-preserving conjugacy. We use this result to show
that certain properties of obstacles are recoverable from the SLS and also that some
classes of obstacles can be uniquely recovered from their SLS.

In this book we assume some knowledge of differential geometry, including basic
facts in symplectic geometry, as well as some knowledge of differential topology. The
analysis of the generalized bicharacteristics is based on several deep and important
results from microlocal analysis and the calculus of global Fourier integral operators.
We present a summary of known results in this area proving for convenience some
of them in Chapter 1. On the other hand, in Chapter 11 we present detailed proofs
of some new properties of the generalized bicharacteristics that are essentially used
in Chapters 12 and 13. The main references for these results are the monographs of
Hörmander [Hl]–[H4]. The reader might read these results informally, omitting their
proofs, and then proceed to Chapters 2, 7–10.

The first edition of this monograph was published in 1992 (see [PS7]). The present
(second) edition is an improved version of the first. Various misprints and arguments
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have been corrected and several details added to the exposition. Apart from that, in
the present edition Chapters 11–13 are entirely new. These chapters contain several
results established after 1992 which could be also of independent interest.

Most of the publications cited in the References concern inverse spectral results
for manifolds with boundary and inverse scattering results related to the singulari-
ties of the scattering kernel. It was not possible and we have not even attempted, to
cover the immense range of works devoted to inverse spectral and inverse scattering
results.
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1

Preliminaries from differential
topology and microlocal
analysis

Here we collect some facts concerning manifolds of jets, spaces of smooth maps and
transversality, as well as some material from microlocal analysis. A special emphasis
is given to the definition and main properties of the generalized bicharacteristics of
the wave operator and the corresponding generalized geodesics.

1.1 Spaces of jets and transversality theorems

We begin with the notion of transversality, manifolds of jets and spaces of smooth
maps. The reader is referred to Golubitsky and Guillemin [GG] or Hirsch [Hir] for a
detailed presentation of this material.

In this book smooth means C∞.
Let X and Y be smooth manifolds and let f : X −→ Y be a smooth map. Given

x ∈ X , we will denote by Txf the tangent map of f at x. Sometimes we will use
the notation dxf = Txf . If rank(Txf) = dim(X) ≤ dim(Y ) (resp. rank(Txf) =
dim(Y ) ≤ dim(X)), then f is called an immersion (resp. a submersion) at x. Let
W be a smooth submanifold of Y . We will say that f is transversal to W at x ∈ X ,
and will denote this by f ��xW , if either f(x) /∈ W or f(x) ∈ W and Im(Txf) +
Tf(x)W = Tf(x)Y . Here for every y ∈ W we identify TyW with its image under
the map Tyi : TyW −→ TyW , where i : W −→ Y is the inclusion. Clearly, if f is a
submersion at x, then f ��W for every submanifold W of Y . If Z ⊂ X and f ��W

Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems, Second Edition.
Vesselin M. Petkov and Luchezar N. Stoyanov.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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for every x ∈ Z, we will say that f is transversal to W on Z. Finally, if f is transversal
to W on the whole X , we will say that f is transversal to W and write f ��W .

The next proposition contains a basic property of transversality that will be used
several times throughout.

Proposition 1.1.1: Let f : X −→ Y be a smooth map, and let W be a smooth
submanifold of Y such that f ��W . Then f−1(W ) is a smooth submanifold of X
with

codim (f−1(W )) = codim (W ). (1.1)

In particular:

(a) if dim(X) < codim (W ), then f−1(W ) = ∅, that is f(X) ∩ W = ∅.

(b) if dim(X) = codim (W ), then f−1(W ) consists of isolated points in X .

Consequently, if f is a submersion, then for every submanifold W of Y , f−1(W )
is a submanifold of X with (1.1). Thus, in this case, f−1(y) is a submanifold of X of
codimension equal to dim(Y ) for every y ∈ Y .

Let again X and Y be smooth manifolds and let x ∈ X . Given two smooth maps
f, g : X −→ Y , we will write f ∼x g if dxf = dxg. For an integer k ≥ 2, we will
write f ∼k

x g if for the smooth maps df, dg : TX −→ TY , we have df ∼k−1
ξ dg for

every ξ ∈ TxX . In this way by induction one defines the relation f ∼k
x g for all inte-

gers k ≥ 1. Fix for a moment x ∈ X and y ∈ Y . Denote by Jk(X,Y )x,y the family
of all equivalence classes of smooth maps f : X −→ Y with f(x) = y with respect
to the equivalence relation ∼k

x. Define the space of k-jets by

Jk(X,Y ) =
⋃

(x,y)∈X×Y

Jk(X,Y )x,y.

So, for each k-jet σ ∈ Jk(X,Y ), there exist x ∈ X and y ∈ Y with
σ ∈ Jk(X,Y )x,y . We set α(σ) = x and β(σ) = y, thus obtaining maps

α : Jk(X,Y ) −→ X, β : Jk(X,Y ) −→ Y , (1.2)

called the source and the target map, respectively. Given an arbitrary smooth
f : X −→ Y , let

jkf : X −→ Jk(X,Y ) (1.3)

be the map assigning to every x ∈ X the equivalence class jkf(x) of f in
Jk(X,Y )x,f(x).

There is a natural structure of a smooth manifold on Jk(X,Y ) for every k.
We refer the reader to [GG] or [Hir] for its description and main properties. Let us
only mention that with respect to this structure for every smooth map f the maps
(1.2) and (1.3) are also smooth.
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For a non-empty set A and an integer s ≥ 1, define

A(s) = {(a1, . . . , as) ∈ As : ai �= aj , 1 ≤ i < j ≤ s}.

Note that if A is a topological space, then A(s) is an open (dense) subset of the product
space As. If f : A −→ B is an arbitrary map, define fs : As −→ Bs by

fs(a1, . . . , as) = (f(a1), . . . , f(as)),

Let X and Y be smooth manifolds, let s and k be natural numbers and let
αs : (Jk(X,Y ))s −→ Xs. The open submanifold

Jk
s (X,Y ) = (αs)−1(X(s))

of (Jk(X,Y ))s is called an s-fold k-jet bundle. For a smooth f : X −→ Y , define
the smooth map

jk
s f : X(s) −→ Jk

s (X,Y )

by
jk
s f(x1, . . . , xs) = (jkf(x1), . . . , j

kf(xs)).

We will now define the Whitney Ck topology on the space C∞(X,Y ) of all
smooth maps from X into Y . Let k ≥ 0 be an integer and let U be an open subset of
Jk(X,Y ). Set

M(U) = {f ∈ C∞(X,Y ) : jkf(X) ⊂ U}.

The family {M(U)}U , where U runs over the open subsets of Jk(X,Y ), is the basis
for a topology on C∞(X,Y ), called the Whitney Ck topology. The supremum of
all Whitney Ck topologies for k ≥ 0 is called the Whitney C∞ topology. It follows
from this definition that fn → f as n → ∞ in the C∞ topology if fn → f in the Ck

topology for all k ≥ 0. Note that if X is not compact (and dim(Y ) > 0), then any
of the Ck topologies (including the case k = ∞) does not satisfy the first axiom of
countability, and therefore is not metrizable. On the other hand, if X is compact, then
all Ck topologies on C∞(X,Y ) are metrizable with complete metrics.

In this book we always consider C∞(X,Y ) with the Whitney C∞ topology. An
important fact about these spaces, which will be often used in what follows, is that
whenever X and Y are smooth manifolds, the space C∞(X,Y ) is a Baire topological
space. Recall that a subset R of a topological space Z is called residual in Z if R
contains a countable intersection of open dense subsets of Z. If every residual subset
of Z is dense in it, then Z is called a Baire space.

In some of the next chapters we will consider spaces of the form C∞(X, Rn), X
being a smooth submanifold of R

n for some n ≥ 2. Let us note that these spaces have
a natural structure of Frechet spaces. Moreover, if X is compact, then C∞(X, Rn)
has a natural structure of a Banach space. Denote by

C(X) = C∞
emb(X, Rn)
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the subset of C∞(X, Rn) consisting of all smooth embeddings X −→ R
n. Then

C(X) is open in C∞(X, Rn) (cf. Chapter II in [Hir]), and therefore it is a Baire topo-
logical space with respect to the topology induced by C∞(X, Rn). Finally, notice
that for compact X the space C(X) has a natural structure of a Banach manifold.
We refer the reader to [Lang] for the definition of Banach manifolds and their main
properties.

The following theorem is known as the multijet transversality theorem and will
be used many times later in this book.

Theorem 1.1.2: Let X and Y be smooth manifolds, let k and s be natural numbers
and let W be a smooth submanifold of Jk

s (X,Y ). Then

TW = {F ∈ C∞(X,Y ) : jk
s F ��W}

is a residual subset of C∞(X,Y ). Moreover, if W is compact, then TW is open in
C∞(X,Y ).

For s = 1, this theorem coincides with Thom’s transversality theorem.
We conclude this section with a special case of the Abraham transversality

theorem which will be used in Chapter 6. Now by a smooth manifold we mean a
smooth Banach manifold of finite or infinite dimension (cf. [Lang]).

Let A, X and Y be smooth manifolds, and let

ρ : A −→ C∞(X,Y ) (1.4)

be a map, A  a �→ ρa. Define

evρ : A× X −→ Y (1.5)

by evρ(a, x) = ρ + a(x).
The next theorem is a special case of Abraham’s transversality theorem (see

[AbR]).

Theorem 1.1.3: Let ρ have the form (1.4) and let W be a smooth submanifold
of Y .

(a) If the map (1.5) is C1 and K is a compact subset of X , then

AK,W = {a ∈ A : ρa ��xW,x ∈ K}

is an open subset of A.
(b) Let dim(X) = n < ∞, codim (W ) = q < ∞ and let r be a natural number

with r > n − q. Suppose that the manifolds A, X and Y satisfy the second axiom of
countability, the map (1.5) is Cr and evρ ��W . Then

AW = {a ∈ A : ρa ��W}

is a residual subset of A.
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1.2 Generalized bicharacteristics

Our aim in this section is to define the generalized bicharacteristics of the wave
operator

� = ∂2
t − Δx

and to present their main properties which will be used throughout the book. Here
we use the notation from Section 24 in [H3]. In what follows Ω is a closed domain
in R

n+1 with a smooth boundary ∂Ω.
Given a point on ∂Ω, we choose local normal coordinates

x = (x1, . . . , xn+1), ξ = (ξ1, . . . , ξn+1)

in T ∗(Rn+1) about it such that the boundary ∂Ω is given by x1 = 0 and Ω is
locally defined by x1 ≥ 0. We assume that the coordinates ξi are those dual to xi.
The coordinates x, ξ can be chosen so that the principal symbol of � has the form

p(x, ξ) = ξ2
1 − r(x, ξ′),

where

x′ = (x2, . . . , xn+1), ξ′ = (ξ2, . . . , ξn+1),

and r(x, ξ′) is homogeneous of order 2 in ξ′. Introduce the sets

Σ = {(x, ξ) ∈ T ∗
R

n+1 \ {0} : p(x, ξ) = 0},

Σ0 = {(x, ξ) ∈ T ∗
R

n+1 : x1 > 0},
H = {(x, ξ) ∈ Σ : x1 = 0, r(0, x′, ξ′) > 0},
G = {(x, ξ) ∈ Σ : x1 = 0, r(0, x′, ξ′) = 0}.

The sets Σ, H and G are called the characteristic set, the hyperbolic set and the
glancing set, respectively. Let

r0(x
′, ξ′) = r(0, x′, ξ′), r1(x

′, ξ′) =
∂r

∂x1
(0, x′, ξ′).

The diffractive and the gliding sets are defined by

Gd = {(x, ξ) ∈ G : r1(x
′, ξ′) > 0},

Gg = {(x, ξ) ∈ G : r1(x
′, ξ′) < 0},

respectively.
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Next, consider the Hamiltonian vector fields

Hp =
n+1∑
j=1

(
∂p

∂ξj
· ∂

∂xj

− ∂p

∂xj
· ∂

∂ξj

)
,

Hr0
=

n+1∑
j=1

(
∂r0

∂ξj
· ∂

∂xj

− ∂r0

∂xj
· ∂

∂ξj

)
.

Notice that dξp(x, ξ) �= 0 on Σ and dξ′r0(x, ξ′) �= 0 on G, so Hp and Hr0
are not

radial on Σ and G, respectively. Next, introduce the sets

Gk = {(x, ξ) ∈ G : r1 = Hr0
(r1) = . . . = Hk−3

r0
(r1) = 0}, k ≥ 3,

G∞ =
∞⋂

k=3

Gk.

The above definitions are independent of the choice of local coordinates. Let us men-
tion that if ∂Ω is given locally by ϕ = 0 and Ω by ϕ > 0, ϕ being a smooth function,
then

H = {(x, ξ) ∈ T ∗(R × Ω) : p(x, ξ) = 0, Hpϕ(x, ξ) �= 0},

G = {(x, ξ) ∈ T ∗(R × Ω) : p(x, ξ) = 0, Hpϕ(x, ξ) = 0},

Gd = {(x, ξ) ∈ G : H2
pϕ(x, ξ) > 0},

Gg = {(x, ξ) ∈ G : H2
pϕ(x, ξ) < 0},

Gk = {(x, ξ) ∈ G : Hj
pϕ(x, ξ) = 0, 0 ≤ j < k}.

We define the generalized bicharacteristics of � using the special coordinates
(x, ξ) chosen above.

Definition 1.2.1: Let I be an open interval in R. A curve

γ : I −→ Σ (1.6)

is called a generalized bicharacteristic of � if there exists a discrete subset B of I
such that the following conditions hold:

(i) If γ(t0) ∈ Σ0 ∪ Gd for some t0 ∈ I \ B, then γ is differentiable at t0 and

d

dt
γ(t0) = Hp(γ(t0)).

(ii) If γ(t0) ∈ G \ Gd for some t0 ∈ I \ B, then γ(t) = (x1(t), x
′(t), ξ1(t),

ξ′(t)) is differentiable at t0 and

dx1

dt
(t0) =

dξ1

dt
(t0) = 0,

d

dt
(x′(t), ξ′(t))|t=t0

= Hr0
(γ(t0)).
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(iii) If t0 ∈ B, then γ(t0) ∈ Σ0 for all t �= t0, t ∈ I , with |t − t0| sufficiently
small. Moreover, for ξ±1 (x′, ξ′) = ±

√
r0(x′, ξ′), we have

lim
t→t0,±(t−t0)>0

γ(t) = (0, x′(t0), ξ
±
1 (x′(t0)), ξ

′(t0)) ∈ H.

This definition does not depend on the choice of the local coordinates. Note that
when ∂Ω is given by ϕ = 0 and Ω by ϕ > 0, then the condition (ii) means that if
γ(t0) ∈ G \ Gd, then

dγ

dt
(γ(t0)) = HG

p (γ(t0)),

where

HG
p = Hp +

H2
pϕ

H2
ϕp

Hϕ

is the so-called glancing vector field on G.

It follows from the above definition that if (1.6) is a generalized bicharacteristic,
the functions x(t), ξ′(t), |ξ1(t)| are continuous on I , while ξ1(t) has jump disconti-
nuities at any t ∈ B. The functions x′(t) and ξ′(t) are continuously differentiable on
I and

dx′

dt
= − ∂r

∂ξ′
,

dξ′

dt
=

∂r

∂x′ . (1.7)

Moreover, for t ∈ B, x1(t) admits left and right derivatives

d±x1

dt
(t) = lim

ε→+0
± x1(t ± ε) − x1(t)

ε
= 2ξ1(t ± 0). (1.8)

The function ξ1(t) also has a left derivative and a right derivative. For γ(t) /∈ Gg ,
we have

d±ξ1

dt
(t) = lim

ε→+0
± ξ1(t ± ε) − ξ1(t)

ε
=

∂r

∂x1
(x(t), ξ′(t)), (1.9)

while d±ξ1
dt (t) = 0 for γ(t) ∈ Gg . Thus, if γ(t) remains in a compact set, then the

functions x(t), ξ′(t), ξ2
1(t) and x1(t)ξ1(t) satisfy a uniform Lipschitz condition. For

the left and right derivatives of |ξ1(t)|, one gets∣∣∣∣d±|ξ1(t)|
dt

∣∣∣∣ ≤
∣∣∣∣ ∂r

∂x1
(x(t), ξ′(t))

∣∣∣∣ . (1.10)

Melrose and Sjöstrand [MS2] (see also Section 24 in [H3]) showed that for each
z0 ∈ Σ, there exists a generalized bicharacteristic (1.6) of � with γ(t0) = z0 for some
t0 ∈ I . Since the vector fields Hp and HG

p are not radial on Σ and G, respectively,
such a bicharacteristic γ can be extended for all t ∈ R. However, in general, γ is not
unique. We refer the reader to [Tay] or [H3] for examples demonstrating this.
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For ρ ∈ Σ, denote by Ct(ρ) the set of those μ ∈ Σ such that there exists a gen-
eralized bicharacteristic (1.6) with 0, t ∈ I , γ(0) = ρ and γ(t) = μ. In many cases
Ct(ρ) is related to a uniquely determined bicharacteristic γ. In the general case it is
convenient to introduce the following.

Definition 1.2.2: A generalized bicharacteristic γ : R −→ Σ of � is called uniquely
extendible if for each t ∈ R, the only generalized bicharacteristics (up to a change of
parameter) passing through γ(t) is γ. That is, for ρ = γ(0), we have Ct(ρ) = {γ(t)}
for all t ∈ R.

It was proved by Melrose and Sjöstrand [MS1] that if Im(γ) ⊂ Σ \ G∞, then
γ is uniquely extendible. If z0 = γ(t0) ∈ H for some t0 ∈ B, then γ(t) meets ∂Ω
transversally at x(t0) and (iii) holds. For z0 ∈ Σ0 ∪ Gd we have γ(t) ∈ Σ0 for
|t − t0| small enough, while in the case z0 ∈ Gg for small |t − t0|, γ(t) coincides
with the gliding ray

γ0(t) = (0, x′(t), 0, ξ′(t)), (1.11)

where (x′(t), ξ(t)) is a null bicharacterstic of the Hamiltonian vector field Hr0
.

To discuss the local uniqueness of generalized bicharacteristics, let
γ(t) = (x(t), ξ(t)) be such a bicharacteristic and let y′(t), η′(t)) be the solution of
the problem ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy′

dt
(t) =

∂r0

∂ξ′
(y′(t), η′(t)),

dη′

dt
(t) = −∂r0

∂x′ (y
′(t), η′(t)),

y′(0) = x′(0), η′(0) = ξ′(0).

(1.12)

Then setting e(t) = r1(y
′(t), η′(t)), we have the following local description of γ.

Proposition 1.2.3: Let γ(0) ∈ G3. If e(t) increases for small t > 0, then for such t
the bicharateristic γ(t) is a trajectory of Hp. If e(t) decreases for 0 ≤ t ≤ T , then
for such t, γ(t) is a gliding ray of the form (1.11).

A proof of this proposition and some other properties of generalized bicharacter-
istics can be found in Section 24.3 in [H3].

It should be mentioned that for k ≥ 3 and γ(0) ∈ Gk \ Gk+1, we have

e(t) =
1

2(k − 2)!
Hk

p ϕ(γ(0)) tk−2 + O(tk−1),

therefore the sign of Hk
p ϕ(γ(0)) determines the local behaviour of e(t).

Corollary 1.2.4: In each of the following cases, every generalized bicharacteristic
of � is uniquely extendible:

(a) the boundary ∂Ω is a real analytic manifold;
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(b) there are no points y ∈ ∂Ω at which the normal curvature of ∂Ω vanished of
infinite order in some direction ξ ∈ Ty(∂Ω);

(c) ∂Ω is given locally by ϕ = 0 and

H2
pϕ(z) ≤ 0 (1.13)

for every z ∈ G. If ∂Ω is locally convex in the domain of ϕ, then (1.13) holds.

Proof: In the case (a) the symbols r0(x
′, ξ′) and r1(x

′, ξ′) are real analytic, so the
solution (y′(t), η′(t)) of (1.12) is analytic in t. Consequently, the function e(t) is
analytic and we can use its Taylor expansion in order to apply Proposition 1.2.3.

In the case (c), using the special coordinates x, ξ, and combining (1.13) with
(1.9), we get d±ξ1

dt (t) ≥ 0. On the other hand, if ξ1(t) has a jump at γ(t) ∈ H , then
this jump is equal to 2r0(x

′(t), ξ′(t)) > 0. Thus, the function ξ1(t) is increasing. If
e(t) = 0 for 0 ≤ t ≤ t0, we get x1(t) = ξ1(t) = 0 for such t, so {γ(t) : 0 ≤ t ≤ t1}
is a gliding ray. Assume that there exists a sequence tk ↘ 0 such that e(tk) �= 0 for all
k ≥ 1. Then ξ1(t) > 0 for all sufficiently small t > 0. Now (1.8) shows that x1(t) is
increasing for such t, therefore there is t′ > 0 such that {γ(t) : 0 ≤ t ≤ t′} coincides
with a trajectory of Hp.

Let p =
∑n

j=1 ξ2
j − ξ2

n+1 and let ϕ depend on x1, . . . , xn only. Then

(H2
pϕ)(x, ξ) = 4

n∑
i,j=1

∂2ϕ

∂xi ∂xj

(x)ξiξj ,

and if the boundary ∂Ω is locally convex, we obtain (1.13).
Finally, in the case (b), for each x ∈ ∂Ω there exists a multi-index α, depending

on x, such that (∂αϕ)(x) �= 0. This implies G∞ = ∅, which completes the proof. �

According to Lemma 6.1.2, in the generic case discussed in Chapter 6 the assump-
tion (b) is always satisfied.

Let Q = Ω × R. We will again use the coordinates x = (x1, . . . , xn+1), this
time denoting the last coordinate by t, that is t = xn+1. For x ∈ ∂Q = ∂Ω × R, let
Nx(∂Q) be the space of covectors ξ ∈ T ∗

xQ vanishing on Tx(∂Q). Define the equiv-
alence relation ∼ on T ∗Q by (x, ξ) ∼ (y, η) if and only if either x = y ∈ Q \ ∂Q
and ξ = η, or x = y ∈ ∂Q and ξ − η ∈ Nx(∂Q). Then T ∗Q/ ∼ can be naturally
identified over ∂Q with T ∗(∂Q). Consider the map

∼: T ∗Q  (x, ξ) �→ (x, ξ|Tx(∂Q)) ∈ T ∗(∂Q),

defined as the identity on T ∗(Q \ ∂Q). Then Σ̃ = Σb is called the compressed char-
acteristic set, while the image γ̃ of a bicharacteristic γ under ∼ is called a compressed
generalized bicharacteristic. Clearly γ̃ is a continuous curve in Σb.
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Given ρ = (x, ξ), μ = (y, η) ∈ T ∗Q, denote by d(ρ, μ) the standard Euclidean
distance between ρ and μ. For ρ, μ ∈ Σ define

D(ρ, μ) = inf
ν ′,ν ′′∈Σ,ν∼ν ′′

(min{d(ρ, μ), d(ρ, ν ′) + d(ν ′′, μ)}).

Clearly, D(ρ, μ) = 0 if and only if ρ ∼ μ, and D(ρ, μ) = D(ρ′, μ′) provided ρ ∼ ρ′

and μ ∼ μ′. It is easy to check that D is symmetric and satisfies the triangle inequality.
Thus, D is a pseudo-metric on Σ, which induces a metric on Σb.

For the next lemma we assume that I is a closed non-trivial interval in R,
(y0, η0) ∈ Σ and Γ is a neighbourhood of (y0, η0) in Q.

Lemma 1.2.5: There exists a constant C0 > 0 depending only on Γ and I such that
for every generalized bicharacteristic γ : I −→ Σ ∩ γ we have

D(γ(t), γ(s)) ≤ C0|t − s|

for all t, s ∈ I .

Proof: It is enough to consider the case when |t − s| is small. Then we can use the
local coordinates introduced earlier. From (1.7), (1.8) and (1.10), we get

|x(t) − x(s)| + |ξ′(t) − ξ′(s)| ≤ C1|t − s|, | |ξ1(t)| − |ξ1(s)| | ≤ C1|t − s|,

where C1 > 0 is a constant independent of t and s. Thus, if ξ1(t) = 0 or ξ1(s) = 0 we
get |ξ1(t) − ξ1(s)| ≤ C1|t − s|. The latter holds also in the case when γ(t′) /∈ ∂Ω
for all t′ ∈ (t, s). Consequently, D(γ(t), γ(s)) ≤ C2|t − s| whenever either
ξ1(t)ξ1(s) = 0 or γ(t′) ∈ ∂Ω only for finitely many t′ ∈ (t, s).

Assume that there are infinitely many t′ ∈ (t, s) such that γ(t′) is a reflection
point of γ. Then there exists u ∈ [t, s] with γ(u) ∈ G. Hence,

D(γ(t), γ(u)) ≤ C2|t − u|, D(γ(u), γ(s)) ≤ C2|u − s|,

and using the triangle inequality for D, we complete the proof of the assertion. �

The next lemma shows that any sequence of generalized bicharacteristics has a
subsequence that is convergent on a given compact interval.

Lemma 1.2.6: Let I = [a, b] be a compact interval in R, let K be a compact subset
of Σ and let γ(k)(t) = (x(k)(t), ξ(k)(t)) : I −→ K ⊂ Σ be a generalized bicharac-
teristic of � for every natural number k. Then there exists an infinite sequence k1 <
k2 < . . . of natural numbers and a generalized bicharacteristic γ(t) = (x(t), ξ(t)) :
I −→ Σ such that

lim
m→∞

D(γ(km)(t), γ(t)) = 0 (1.14)

for all t ∈ I .
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Proof: Using local coordinates, we see that the derivatives of (x(k))′(t) and (ξ(k))′(t)
and the left and right derivatives of x

(k)
1 (t) and ξ

(k)
1 (t) are uniformly bounded for

t ∈ I and k ≥ 1. Hence the maps x(k)(t), (ξ(k))′(t), x(k)
1 (t)ξ(k)

1 (t) and (ξ(k)
1 (t))2 are

uniformly Lipschitz, which implies that there exists an infinite sequence k1 < k2 <

. . . of natural numbers such that the sequences x(km)(t), (ξ(km))′(t), (ξ(km)
1 (t))2 and

x
(km)
1 (t), ξ(km)

1 (t) are uniformly convergent for t ∈ I . It now follows from Proposi-
tion 24.3.12 in [H3] that there exists a generalized bicharacteristic γ(t) : I → Σ of
� such hat

lim
m−→∞

γ(km)(t) = γ(t) (1.15)

for all t ∈ I with γ(t) /∈ H .
Let t′ ∈ I be such that γ(t′) is a reflection point of γ. Then there exists a sequence

tj → t′ with γ(tj) ∈ Σ0 ∪ G for all j. Thus,

D(γ(km)(t′), γ(t′))

≤ D(γ(km)(t′), γ(km)(tj)) + D(γ(tj), γ(t′)) + D(γ(km)(tj), γ(tj)).

By Lemma 1.2.5, the first two terms in the right-hand side can be estimated uni-
formly with respect to m, while for the third term we can use (1.15). Taking j and m
sufficiently large, we obtain (1.14), which proves the lemma. �

In what follows we will use local coordinates (t, x) ∈ R × Ω and the corres-
ponding local coordinates (t, x; τ, ξ) ∈ T ∗(R × Ω). In these coordinates the principal
symbol p of � has the form

p(x, τ, ξ) = ξ2
1 − q2(x, ξ′) − τ 2,

where ξ′ = (ξ2, . . . , ξn) and q2(x, ξ′) is homogeneous of order 2 in ξ′. Consequently,
the vector fields Hp and HG

p do not involve derivatives with respect to τ , so by
Definition 1.2.1, the variable τ remains constant along each generalized bicharacter-
istic. This makes it possible to parametrize every generalized bicharacteristic by the
time t.

Given (y, η) ∈ T ∗(Ω) \ {0}, consider the points

μ± = (0, y,∓|η|, η) ∈ Σ.

Assume that locally ∂Ω is given by x1 = 0 and Ω by x1 ≥ 0. Let μ+be a hyperbolic
point and let ξ±1 (y′, η) be the different real roots of the equation

p(0, y′, |η|, z, η′) = 0

with respect to z. Denote by γ the generalized bicharacteristic parameterized by a
parameter s such that

lim
s↘0

γ(s) = μ+.
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Then τ = −|η| < 0 along γ and the time t increases when s increases. Such a bichar-
acteristic will be called forward. For the right derivative of x1(t) we get

d+x1

dt
=

d+x1/ds

dt/ds
=

ξ1(+0)
−τ

> 0,

since for small t > 0, γ(t) enters the interior of Ω and x1(t) > 0. Therefore, setting

ξ±1 (y′, η) = ±
√
|η|2 + q2(0, y′, η′),

we find
lim
s↘0

ξ1(s) = ξ+
1 (y′, η).

In the case μ+ ∈ G it may happen that there exist several forward bicharacteristic
passing through μ+. Denote by C+ the set of those

(t, x, y; τ, ξ, η) ∈ T ∗(R × Ω × Ω) \ {0}

such that τ = −|ξ| = −|η| and (t, x, τ, ξ) and (0, y, τ, η) lie on forward generalized
bicharacteristics of �. In a similar way we define C− using a backward bicharac-
teristic, determined as the forward ones replacing μ+ by μ−. The set C = C+ ∪
C− is called the bicharacteristic relation of �. If μ = (0, y, τ, η) ∈ H and τ < 0
(resp. τ > 0), we will say that μ is a reflection point of a forward (resp. backward)
bicharacteristic. Similarly, if ρ = (t, x, τ, ξ) ∈ H , then ρ is a reflection point of a
generalized bicharacteristic passing through (0, y, τ, η), and, working in local coor-
dinates as before, the sign of τ determines uniquely ξ1(t + 0). The sets C± and
C are homogeneous with respect to (τ, ξ, η), that is (t, x, y, τ, ξ, η) ∈ C± implies
(t, x, y, sτ, sξ, sη) ∈ C± for all s ∈ R

+.

Lemma 1.2.7: The sets C± are closed in T ∗(R × Ω × Ω) \ {0}.

Proof: Since C+ is homogeneous, it is sufficient to show that if

C+  zk = (tk, xk, yk,−1, ξk, ηk), |ξk| = |ηk| = 1

for all k ≥ 1 and there exists

lim
k→∞

zk = z0 = (t0, x0, y0,−1, ξ0, η0),

then z0 ∈ C+. Let γ(k)(t) be a generalized bicharacteristic of � such that
(tk, xk,−1, ξk) and (0, yk,−1, ηk) lie on Im(γ(k)). If one of these points belongs to
H , we consider it as a reflection point of γ(k), according to the above-mentioned
convention by suitably choosing ξ

(k)
1 (t). Assume |tk| ≤ T . Then there exists a

compact set K ⊂ Σ such that γ(k)(t) ∈ K for all |t| ≤ T , so we can apply the
argument in the proof of Lemma 1.2.6. Consequently, there exists an infinite



�

� �

�

DIFFERENTIAL TOPOLOGY AND MICROLOCAL ANALYSIS 13

sequence k1 < k2 < . . . of natural numbers and a generalized bicharacteristic γ
satisfying (1.14) and (1.15). Then for the Euclidean distance d we find

d(γ(km)(tkm
), γ(t0)) ≤ d(γ(km)(tkm

), γkm)(t0)) + d(γ(km)(t0), γ(t0)).

If γ(t0) ∈ Σ0 ∪ G, according to (1.15) and the continuity of x(t), ξ′(t) and |ξ1(t)|,
we get

d(γ(km)(tkm
), γ(t0)) → 0 (1.16)

as m → ∞, which shows that z0 ∈ C+. If γ(t0) ∈ H , then by our convention,
ξ1(t + 0) and ξ

(km)
1 (t + 0) have the same sign for large m, which implies z0 ∈ C+.

Therefore, C+ is closed. In the same way one proves that C− is closed as
well. �

Using C+ we now define the so-called generalized Hamiltonian flow Ft of �;
it is sometimes called the broken Hamiltonian flow. Given (y, η) ∈ T ∗Ω \ {0}, set

Ft(y, η) = {(x, ξ) ∈ T ∗Ω \ {0} : (t, x, y,−|η|, ξ, η) ∈ C+}.

In general, Ft(y, η) is not a one-point set. Nevertheless, setting

Ft(V ) = {Ft(y, η) : (y, η) ∈ V }

for V ⊂ T ∗Ω \ {0}, we have the group property

Ft+s(y, η) = Ft(Fs(y, η)).

The flow generated by C− is Ft(y,−η).
Let ∂Ω be locally given by x1 = 0 and let

p(x, τ, ξ) = ξ2
1 − q2(x, ξ′) − τ 2

be the principal symbol of �. A point

σ = (t, x′, τ, ξ′) ∈ T ∗(R × ∂Ω) \ {0}

is called hyperbolic (resp. glancing) for � if the equation

p(0, x′, τ, ξ1, ξ
′) = 0 (1.17)

with respect to ξ1 has two different real roots (resp. a double real root). These defi-
nitions are invariant with respect to the choice of the local coordinates. If (1.17) has
no real roots, then σ is called an elliptic point. Clearly, the set of hyperbolic points is
open in T ∗(R × ∂Ω), while that of the glancing points is closed.

Let π : T ∗(R × Ω) −→ Ω be the natural projection, π(t, x, τ, ξ) = x.
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Definition 1.2.8: A continuous curve g : [a, b] −→ Ω is called a generalized
geodesic in Ω if there exists a generalized bicharacteristic γ : [a, b] −→ Σ such that

g(t) = π(γ(t)), t ∈ [a, b]. (1.18)

Notice that, in general, a generalized geodesic is not uniquely determined by a
point on it and the corresponding direction. If the generalized bicharacteristic γ with
(1.18) satisfies

γ(t) ∈ Σ0 ∪ H, t ∈ [a, b],

we will say that g (or Im(g)) is a reflecting ray in Ω. Two special kinds of such rays
will be studied in detail in Chapter 2. One of them is defined as follows.

Definition 1.2.9: A point (x, ξ) ∈ T ∗Ω \ {0} is called periodic with period
T �= 0 if

(T, x, x,±|ξ|, ξ, ξ) ∈ C.

A generalized bicharacteristic γ(t) = (t, x(t), τ, ξ(t)) ∈ Σ, t ∈ R, will be called
periodic with period T �= 0 if for each t ∈ R the point (x(t), ξ(t)) is periodic with
period T . The projections on Ω of the periodic generalized bicharacteristics of � are
called periodic generalized geodesics.

Notice that if (T, x, x,−|ξ|, ξ, ξ) ∈ C+, then (T, x, x, |ξ|,−ξ,−ξ) ∈ C−, since
we can change the orientation on the bicharacteristic passing through (0, x,−|ξ|, ξ).
A uniquely extendible bicharacteristic γ is periodic provided Im(γ) contains a peri-
odic point. If T is the period of a generalized geodesic g, then |T | coincides with the
standard length of the curve Im(g).

Let LΩ be the set of all periodic generalized geodesics in Ω. For g ∈ LΩ
we denote by Tg the length of Im(g). We call length spectrum the following set

LΩ = {Tg : g ∈ LΩ}.

Lemma 1.2.10: The set LΩ is closed in R and 0 /∈ LΩ.

Proof: Consider a convergent sequence {Tk} of elements of LΩ converging to some
T0 ∈ R as k → ∞. Then for every k ≥ 1 there exists a generalized bicharacteristic
γ(k) of � with period Tk passing through a point of the form (0, xk,−1, ξk).
If T0 �= 0, choosing a subsequence as in the proof of Lemma 1.2.7, we obtain
T0 ∈ LΩ.

It remains to show that the case T0 = 0 is impossible. Assume T0 = 0. Passing
to an appropriate subsequence, we may assume that there exists limk→∞(xk, ξk) =
(x0, ξ0) and for every t there exists

lim
k→∞

γ(k)(t) = lim
k→∞

(t, x(k)(t),−1, ξ(k)(t)) = γ0(t) = (t, x0(t),−1, ξ0(t)),
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provided γ0(t) /∈ H and |t| ≤ T . If x0 is in the interior of Ω, then xk is also in the
interior of Ω for large k. Then for such k, x(k)(t) is in the interior of Ω for sufficiently
small t > 0, which is a contradiction. If there exists t′ with |t′| ≤ T and x0(t

′) in the
interior of Ω, then we get a contradiction by the same argument.

It remains to consider the case when γ0(t) ∈ G for all t ∈ [−T, T ]. Then for such
t, γ0(t) = (x0(t), ξ0(t)) is an integral curve of the glancing vector field HG

p . Since the
latter is not radial, γ0(t) has no stationary points for t ∈ [−T, T ]. Given a small neigh-
bourhood U of x0 in ∂Ω, there exist δ0, δ1 such that 0 < δ0 < δ1 ≤ T and x0(t) /∈ U
for δ0 ≤ |t| ≤ δ1. Since x(k)(t) → x0(t) as k → ∞ uniformly for |t| ≤ T , for suffi-
ciently large k there exists a natural number mk with

δ0 ≤ mkTk ≤ δ1, x(k)(Tk) = x(k)(mkTk).

Then x0 = limk→∞ xk = limk→∞ x(k)(Tk) /∈ U , which is a contradiction. This
proves that T0 �= 0 and this completes the proof of the proposition. �

1.3 Wave front sets of distributions

In this section we collect some basic facts concerning wave fronts of distributions.
For more details, we refer the reader to the books of Hörmander [Hl], [H3].

Let X be an open subset of R
n and let D′(X) be the space of all distributions on

X . The singular support sing supp(u) of u ∈ D′(X) is a closed subset of X such
that if x0 /∈ sing supp(u) there exists an open neighbourhood U of x0 in X and a
smooth function f ∈ C∞(U) such that

〈u, ϕ〉 =
∫

f(x)ϕ(x) dx, ϕ ∈ C∞
0 (U).

For a more precise analysis of sing supp(u), it is useful to consider the directions
ξ ∈ R

n \ {0} along which the Fourier transform ϕ̂u(ξ) of the distri-
bution ϕu ∈ E′(X) is not rapidly decreasing, provided ϕ ∈ C∞

0 (X) and
supp (ϕ) ∩ sing supp(u) �= ∅.

Definition 1.3.1: Let u ∈ D′(X) and let O be the set of all (x0, ξ0) ∈ X × R
n \ {0}

for which there exists an open neighbourhood U of x0 in X and an open conic neigh-
bourhood V of ξ0 in R

n so that for ϕ ∈ C∞
0 (U) and ξ ∈ V we have

|ϕ̂u(ξ)| ≤ Cm(1 + |ξ|)−m, m ∈ N.

The closed subset

WF (u) = (X × R
n) \ {0}

of X × R
n \ {0} is called the wave front set of u.
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It is easy to see that WF (u) is a conic subset of X × R
n \ {0} with the property

π(WF (u)) = sing supp(u),

where π : X × R
n −→ X is the natural projection.

For our aims in Chapter 3 we will describe the wave front sets of distributions
given by oscillatory integrals. Such integrals have the form∫

eiϕ(x,θ)a(x, θ) dθ. (1.19)

Here the phase ϕ(x, θ) is a C∞ real-valued function, defined for
(x, θ) ∈ Γ ⊂ X × (RN \ {0}), and Γ is an open conic set, i.e. (x, θ) ∈ Γ implies
(x, tθ) ∈ Γ for all t > 0. We assume that ϕ has the properties:

ϕ(x, tθ) = t ϕ(x, θ), (x, θ) ∈ Γ, t > 0,

dx,θϕ(x, θ) �= 0, (x, θ) ∈ Γ.

The amplitude a(x, θ) belongs to the class of symbols Sm(X × R
N ), formed by

C∞ functions on X × R
N such that for each compact K ⊂ X and all multi-indices

α, β, we have

|∂α∂βa(x, θ)| ≤ Cα,β,K (1 + |θ|)m−|β|, x ∈ K, θ ∈ R
N . (1.20)

We endow Sm(X × R
N ) with the topology defined by the semi-norms

pα,β,j(a) = sup
x∈Kj ,θ∈RN

(1 + |θ|)−m+|β| |∂α∂βa(x, θ)|,

where {Kj} is an increasing sequence of compact sets with ∪∞
j=1Kj = X .

Let F ⊂ Γ ∪ (X × {0}) be a closed cone and let supp (a) ⊂ F . For ψ ∈
C∞

0 (X) we will now define the integral∫
eiϕ(x,θ)a(x, θ) ψ(x) dx dθ

to obtain a distribution in D′(X). To do this, we need a regularization, since the
integral in θ is not convergent for m > −N .

Choose a function χ ∈ C∞
0 (RN ) such that χ(θ) = 1 for |θ| ≤ 1 and χ(θ) = 0

for |θ| ≥ 2. For 0 < ε ≤ 1, the functions χ(εθ) form a bounded set in S0(X × R
N ).

Then the functions aε = a(x, θ)χ(εθ) also form a bounded set in S0(X × R
N ) and

aε → a ∈ Sm′
(X × R

N )

as ε → 0 for each m′ > m.
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Consider the operator

L =
n∑

j=1

aj

∂

∂xj

+
N∑

j=1

bj

∂

∂θj

+ χ

with
aj = −i(1 − χ)κ−1ϕxj

, bj = −i(1 − χ)κ−1|θ|2ϕθj
,

and κ = |ϕx|2 + |θ|2|ϕθ|2. For each compact set K ⊂ X we have

κ(x, θ) ≥ δK |θ|2, x ∈ K, (x, θ) ∈ Γ,

where δK > 0 depends on K only. Clearly

L(eiϕ) = eiϕ,

and the operator tL formally adjoint to L has the form

tL = −
n∑

j=1

aj

∂

∂xj

−
N∑

j=1

bj

∂

∂θj

+ c

with
aj ∈ S−1(X × R

N ), bj ∈ S0(X × R
N ), c ∈ S−1(X × R

N ).

The operator t(L)k is a continuous map of Sm onto Sm−k. Define the linear map
Iϕ,a : C∞

0 (X) → R by

Iϕ,a(ψ) = lim
ε→0

∫ ∫
eiϕ(x,θ)a(x, θ)χ(εθ)ψ(x) dx dθ

= lim
ε→0

∫ ∫
eiϕ(x,θ)(tL)k [a(x, θ)χ(εθ)ψ(x)] dx dθ. (1.21)

For m − k < −N the integral on the right-hand side of (1.21) is absolutely conver-
gent, and it is easy to see that Iϕ,a becomes a distribution in D′(X). Thus, we obtain
the following.

Proposition 1.3.2: Let ϕ(x, θ) and a(x, θ) be as above. Then the oscillatory integral
(1.19) defines a distribution Iϕ,a given by (1.21).

We are now going to describe the set WF (Iϕ,a).

Theorem 1.3.3: We have

WF (Iϕ,a) ⊂ {(x, ϕx(x, θ)) : (x, θ) ∈ F, ϕθ(x, θ) = 0}. (1.22)
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Proof: Let f ∈ C∞
0 (X). Then the Fourier transform

f̂ Iϕ,a(ξ) =
∫ ∫

ei(ϕ(x,θ)−〈x,ξ〉)a(x, θ)f(x) dx dθ

is expressed by an oscillatory integral. Let V be a closed cone in R
N such that

V ∩ {ϕx(x, θ) : (x, θ) ∈ F, x ∈ supp (f), ϕθ(x, θ) = 0} = ∅.

By compactness, there exists δ > 0 such that

μ = |ξ − ϕx(x, θ)|2 + |θ|2|ϕθ(x, θ)|2 ≥ δ(|θ| + |ξ|)2 (1.23)

for (x, θ) ∈ F , x ∈ supp (f) and ξ ∈ V . To obtain (1.23) it suffices to observe that
if the latter conditions are satisfied, then the left-hand side of (1.23) is positive and
then use the homogeneity with respect to (θ, ξ). As above, consider the operator

L =
n∑

j=1

aj

∂

∂xj

+
N∑

j=1

bj

∂

∂θj

+ χ

with

aj = − i(1 − χ)
μ

(ϕxj
− ξj), bj = − i(1 − χ)

μ
|θ|2ϕθj

.

Then

f̂ Iϕ,a(ξ) = lim
ε→0

∫ ∫
ei(ϕ(x,θ)−〈x,ξ〉)(tL)k[a(x, θ)χ(εθ)f(x)] dx dθ,

and applying (1.23), we conclude that

|f̂ Iϕ,a(ξ)| ≤ CN (1 + |ξ|)−N , ξ ∈ V.

This implies (1.22). �

For asymptotics of oscillatory integrals depending on a parameter λ ∈ R we have
the following.

Lemma 1.3.4: Let u ∈ D′(X), f ∈ C∞
0 (X) and let ϕ ∈ C∞

0 (X) be a real-valued
function. Assume

WF (u) ∩ {(x, ϕx) : x ∈ supp (f)} = ∅.

Then for each m ∈ N we have

|〈u, f(x)eiλϕ(x)〉| ≤ Cm(1 + |λ|)−m, λ ∈ R.
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Proof: Choosing a finite partition of unity, we can restrict our attention to the case
u ∈ E′(X). Set

Σf = {ξ ∈ R
n \ {0} : ∃x ∈ supp (f) with (x, ξ) ∈ WF (u)}.

Then

〈u, f(x)eiλϕ(x)〉 = (2π)−n

∫ ∫
ei(〈x,ξ〉−λϕ(x))f(x)û(ξ) dx dξ

=
∫

X

∫
W

+
∫

X

∫
Rn\W

= I1(λ) + I2(λ).

Here W is a closed conic set such that Σf ⊂ W ,

W ∩ {ϕx(x) : x ∈ supp (f)} = ∅,

and I1(λ) is interpreted as an oscillatory integral. For x ∈ supp (f) and ξ ∈ W
we have

|ξ − λϕx(x)| ≥ δ(|ξ| + |λ|), λ ∈ R,

with δ > 0. Using the same argument as in the proof of Theorem 1.3.3, we see that
I1(λ) = O(|λ|−m) for all m ∈ N. For I2(λ) we use the fact that if ξ ∈ R

n \ W
and supp (u) ∩ supp (f) �= ∅, then û(ξ) is rapidly decreasing. This proves the
assertion. �

Now let Γ ⊂ X × R
n \ {0} be a closed conic set. Set

D′
Γ(X) = {u ∈ D′(X) : WF (u) ⊂ Γ}.

Using an argument similar to that in the proof of Lemma 1.3.4, it is easy to see that
u ∈ D′

Γ(X) if and only if for each ϕ ∈ C∞
0 (X) and each closed cone V ⊂ R

n with

(supp (ϕ) × V ) ∩ Γ = ∅ (1.24)

we have
sup
ξ∈V

|ξ|m|ϕ̂u(ξ)| < ∞, m ∈ N.

This makes it possible to introduce the following.

Definition 1.3.5: Let {uj}j ⊂ D′
Γ(X) and let u ∈ D′

Γ(X). We will say that the
sequence {uj} converges to u in D′

Γ(X) if:

(a) uj → u weakly in D′(X) ,

(b) supj∈N
supξ∈V |ξ|m|ϕ̂uj(ξ)| < ∞ for every m ∈ N, every ϕ ∈ C∞

0 (X) and
every closed cone V satisfying (1.24).
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For every u ∈ D′
γ(X) there exists a sequence {uj} ⊂ C∞

0 (X) converging to u
in D′

Γ(X). To prove this, consider two sequences χj , ϕj ∈ C∞
0 (X) such that χj = 1

on Kj , ϕj ≥ 0,
∫

ϕj(x) dx = 1 and supp (χj) + supp (ϕj) ⊂ X . Then

uj = ϕj ∗ χju ∈ C∞
0 (X)

and uj → u in D′(X). Moreover, the condition (b) also holds, so uj → u in D′
Γ(X).

For our aims in Chapter 3 we need to justify some operations on distributions
(see [Hl] for more details). For convenience of the reader we list these properties,
including only one proof of these – namely that of the existence of the pull-back f ∗.
We use the notation from [Hl].

Let X ⊂ R
n and Y ⊂ R

m be open sets and let f : X −→ Y be a smooth map.
Consider a closed cone Γ ⊂ Y × R

m \ {0} and set

Nf = {(f(x), η) ∈ Y × R
n :tf ′(x)η = 0},

f ∗(Γ) = {(x,tf ′(x)η : (f(x), η) ∈ Γ}.

For u ∈ C∞
0 (Y ), consider the map

(f ∗u)(x) = u(f(x)).

Theorem 1.3.6: Let Nf ∩ Γ = ∅. Then the map f ∗u can be extended uniquely on
the space D′

Γ(Y ) such that

WF (f ∗u) ⊂ f ∗Γ. (1.25)

Proof: Using a partition of unity, we may consider only the case when X and Y are
small open neighbourhoods of x0 ∈ X and y0 ∈ Y , respectively. Set

Γy = {η : (y, η) ∈ Γ}.

Choose a small compact neighbourhood X0 of x0 and a closed conic neighbourhood
V of Γy0

so that
tf ′(x)η �= 0 for x ∈ X0, η ∈ V.

Next, choose a small compact neighbourhood Y0 of y0 with Γy ⊂ V for all y ∈ Y0.
Now let χ ∈ C∞

0 (X0) and let {uj}j ⊂ C∞
0 (Y ) be a sequence such that uj → u

in D′
Γ(Y ). Choosing ϕ ∈ C∞

0 (Y0) with ϕ = 1 on f(X0), we have

〈f ∗uj , χ〉 = 〈f ∗(ϕuj), χ〉 = (2π)−m

∫
ϕ̂uj(η)Iχ dη =

∫
V

+
∫

Rm\V
= I1 + I2,

where
Iχ(η) =

∫
ei〈f(x),η〉χ(x) dx.

For x ∈ supp (χ) and η ∈ V we obtain

|∇x〈f(x), η〉| ≥ δ|η|, δ > 0.
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Using the operator

L =
−i

|∇x〈f(x), η〉|2
n∑

j=1

∂xj
(〈f(x), η〉) ∂

∂xj

,

we integrate by parts in Iχ(η) and get

|Iχ(η)| ≤ Cp(1 + |η|)−p, η ∈ V ,

for all p ∈ N. On the other hand, there exists M > 0 such that

|ϕ̂uj(η)| ≤ C(1 + |η|)−M , j ∈ N.

Thus, I1 is absolutely convergent, and we can consider the limit as j → ∞.
To deal with I2, notice that (suppϕ \ V ) ∩ Γ = ∅. For η /∈ V , (b) yields the
estimates

|ϕ̂uj(η)| ≤ C ′
p(1 + |η|)−p, p ∈ N, (1.26)

uniformly with respect to j. Thus, we can let j → ∞ in I2.
To establish (1.25), replace χ(x) by χ(x)e−i〈x,ξ〉 and write

Iχ(η, ε) = (2π)−n

∫
ei〈f(x),η〉−i〈x,ξ〉χ(x) dx.

Choose a small open conic neighbourhood W of the set

{ξ = tf ′(x0)η : (f(x0), η) ∈ Γ}

so that x ∈ X0 and η ∈ V imply tf ′(x)η ∈ W . As above, for x ∈ X0, η ∈ V and
ξ /∈ W we deduce the estimate

|ξ − tf ′(x)η| ≥ δ(|ξ| + |η|), δ > 0.

For such ξ and η we integrate by parts in Iχ(η, ε) and obtain

|Iχ(η, ε)| ≤ C ′′
p(1 + |ξ| + |η|)−p, p ∈ N.

For η /∈ V , ξ /∈ W we choose a function ψ(ξ) ∈ C∞
0 (R) with ψ(ξ) = 1 for |ξ| ≤ 1,

and consider the operator

L = −i(1 − ψ(ξ))|ξ|−2
〈

ξ,
∂

∂x

〉
+ ψ(x).

Then L(ei〈x,ξ〉) = ei〈x,ξ〉, and, as in the previous case, for η /∈ V and ξ /∈ W , we get
the estimates

|Iχ(η, ε)| ≤ Cp(1 + |η|)p(1 + |ξ|)−p, p ∈ N.

Combining these estimates with (1.26), we obtain

|χ(f̂ ∗uj)(ξ)| ≤ CN (1 + |ξ|)−N

for ξ /∈ W , where the constant CN does not depend on j. Letting j → ∞ proves
(1.25). �
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By an easy modification of the above-mentioned argument, one proves the
following modification of Theorem 1.3.6 for distributions depending on a parameter.

Corollary 1.3.7: Let Z be a compact subset of R
p and let

Z  z �→ (u, ·, z) ∈ D′
Γ(Y )

be a continuous map. Under the assumptions of Theorem 1.3.6, the map

Z  z �→ f ∗(u, ·, z) ∈ D′
f ∗Γ(X)

is continuous.

Next, consider a linear continuous map

K : C∞
0 (Y ) −→ D′(X).

By Schwartz’s theorem (cf. Theorem 5.2.1 in [Hl]), there exists a distribution
K ∈ D′(X × Y ), called the kernel of K, such that

〈K,ϕ(x) ⊗ ψ(y)〉 = 〈(Kψ)(x), ϕ(x)〉

for all ϕ ∈ C∞
0 (X) and ψ ∈ C∞

0 (Y ). WF (K) will be called the wave front set
of K. Set

WF ′(K) = {(x, y, ξ, η) : (x, y, ξ,−η) ∈ WF (K)},
WF (K)X = {(x, ξ) : (x, y, ξ, 0) ∈ WF (K) for some y ∈ Y },
WF ′(K)Y = {(y, η) : (x, y, 0, η) ∈ WF ′(K) for some x ∈ X},

and consider the composition

WF ′(K) ◦ WF (u) = {(x, ξ) : ∃(y, η) ∈ WF (u) with (x, y, ξ, η) ∈ WF ′(K)}.

The following two results will also be necessary for Chapter 3. Their proofs can be
found in Section 8.2 of [Hl].

Theorem 1.3.8: For ψ ∈ C∞
0 (Y ) we have

WF (Kψ) ⊂ {(x, ξ) : (x, y, ξ, 0) ∈ WF (K) for some y ∈ supp (ψ)}.

Theorem 1.3.9: There exists a unique extension of K on the set

{u ∈ E′(Y ) : WF (u) ∩ WF ′(K)Y = ∅}
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such that for each compact M ⊂ Y and each closed conic set Γ with
Γ ∩ WF ′(K)Y = ∅ the map

E′(M) ∩ D′
Γ(Y )  u �→ Ku ∈ D′(X)

is continuous. Moreover, the inclusion

WF (Ku) ⊂ WF (K)X ∪ WF ′(K) ◦ WF (u)

holds.

The wave front of u ∈ D′(X) can be described by means of the characteris-
tic set of pseudo-differential operators on X . Denote by Lm(X) the class of all
pseudo-differential operators (PDO) in X of order m. If x(x, ξ) ∈ Sm(X × R

n)
is the symbol of A ∈ Lm(X), then the oscillatory integral

KA(x, η) = (2π)−n

∫
ei〈x−y,ξ〉a(x, ξ) dξ

determines the kernel of A and WF (A) = WF (KA). The operator A ∈ Lm(X)
is called properly supported if for each compact K ⊂ X there exists another com-
pact K ′ ⊂ X so that supp (u) ⊂ K implies supp (Au) ⊂ K ′, and if u = 0 on K ′,
then Au = 0 on K. A point (x0, ξ0) ∈ T ∗X \ {0} is called non-characteristic for
a properly supported PDO A ∈ Lm(X) if there exists a properly supported PDO
B ∈ L−m(X) so that

(x0, ξ0) /∈ WF (AB − Id) ∪ WF (BA − Id).

In this case A is called elliptic at (x0, ξ0).

Proposition 1.3.10: If there exists a properly supported PDO A ∈ Lm(X), elliptic
at (x0, ξ0), such that Au ∈ C∞(X), then (x0, ξ0) /∈ WF (u).

The reader may consult Section 18 in [Hl] for the main properties of PDOs and
for a proof of the above-mentioned proposition.

1.4 Boundary problems for the wave operator

Let Ω ⊂ R
n be a domain in R

n, n ≥ 2 with C∞ smooth compact boundary ∂Ω.
Consider the problem ⎧⎪⎨

⎪⎩
(∂2

t − Δx)u = f in R × Ω◦,

u = u0 on R × ∂Ω,

u|t<t0
= 0.

(1.27)

Here the trace u|(t,x)∈R×∂Ω exists, since the boundary R × ∂Ω is not characteristic
for the operator � = ∂2

t − Δx. For the existence of a solution of (1.27) we refer to



�

� �

�

24 GENERALIZED GEODESIC FLOW AND INVERSE SPECTRAL PROBLEMS

[H3], Section 24. In particular, we have the following result proved in [H3], Theorem
24.1.1.

Theorem 1.4.1: Let f ∈ H loc
s (R × Ω◦), u0 ∈ H loc

s+1(R × ∂Ω) with s ≥ 0. Assume
that f and u0 vanish for t < t0. Then there exists an unique solution u ∈ H loc

s+1(Ω
◦)

of (1.27).

We may apply the above theorem when Ω is a bounded domain in R
n, as well

as in the case when Ω = R
n \ K̄, K being a bounded non-empty open obstacle with

smooth boundary.
To study the singularities of the solution of the Dirichlet problem

{
(∂2

t − Δx)u = f in R × Ω◦,

u = u0 on R × ∂Ω,
(1.28)

we need to introduce the wave front set WFb(u). Let Q = R × Ω. Consider the space
T̃ ∗(Q) = T ∗(Q◦) ∪ T ∗(∂Q) of equivalence classes in T ∗Q with respect to the equiv-
alence relation ∼ defined in Section 1.2. It will be called the compressed cotangent
bundle of Q. For the solution u of (1.27) we can define the generalized wave front
set WFb(u) ⊂ T̃ ∗Q \ {0} in such a way that

WFb(u)|T ∗(Q◦) = WF (u|Q◦),

and

WFb(u)|T ∗(∂Q) ⊂ Σb.

(See Section 1.2 for the definition of Σb.) For this purpose, as in Section 1.2, intro-
duce local coordinates (x1, x

′), x′ = (x2, . . . , xn, xn+1), xn+1 = t in Q so that ∂Q
is locally given by x1 = 0. Let (ξ1, ξ

′) be the dual coordinates to (x1, x
′).

Now define WFb(u)|T ∗(∂Q) as the subset of T ∗(∂Q) \ {0}, the complement of
which consists of all (x′

0, ξ
′
0) ∈ T ∗(∂Q) \ {0} such that there exists a PDO B(x,D′),

depending smoothly on x1, elliptic at (0, x0, ξ
′
0), and such that B(x,Dx′)u ∈ C∞(Q).

This definition does not depend on the choice of the local coordinates.
In Q◦ the set WF (u) \ WF (f) is contained in the characteristic set Σ and it is

propagating along the bicharacteristics of � which are rays. For simplicity assume
that f ∈ C∞(Q◦). The singularities of the solution u|Q of (1.28) can be described by
means of WFb(u). The simplest case is when (0, x′, ξ′) ∈ H is a hyperbolic point.
Then if (0, x′, ξ′) ∈ (WFb(u) ∩ H) \ WF (u0), the outgoing and incoming bichar-
acteristics issued from this point are included in WFb(u) over a small neighbourhood
of (0, x′

0, ξ
′
0). If (0, x′

0, ξ
′
0) ∈ G is a gliding point, the situation is more complicated

and we must consider the generalized compressed bicharacteristics of � issued from
this point. The following result was proved by Melrose and Sjöstrand [MS2] (see also
Section 24 and Theorem 24.5.3 in [H3]).
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Theorem 1.4.2: Let u ∈ D′(Q) be a solution of problem (1.28) with f ∈ C∞(Q)
and u0 ∈ D′(∂Ω) and let

ẑ ∈ (WFb(u) \ WF (u0)) ∩ {(x, ξ) ∈ T̃ ∗Q : xn+1 = t > t0}.

Then ẑ is either a characteristic point in Σ0 or a point in T ∗(∂Ω) ∩ Σ = H ∪ G, and
there exists a maximal compressed generalized bicharacteristics γ̃(σ) = (x(σ), ξ(σ))
of �, passing through ẑ and staying in WFb(u) as long as t(σ) = xn+1(σ) > t0.

One can also describe the singularities of a boundary problem with non-
homogeneous boundary condition{

(∂2
t − Δx)u = f in R × Ω◦,

u = g on R × ∂Ω,
(1.29)

with f = 0, g = 0 for t < t0. In this situation we have the following result
established in [MS2] (see Theorem 6.14).

Theorem 1.4.3: Let u be a solution of (1.29) and let f ∈ C∞. Then WFb(u) is a
complete union of the generalized half-bicharacteristics issued from WF (g).

Here half-bicharacteristics means that we consider these bicharacteristics γ for
which the time increases when we move along γ.

The same results hold for the boundary problem{
(∂2

t − Δx)u = f in R × Ω◦,

(∂ν + α(x))u = u0 on R × ∂Ω,
(1.30)

where ∂ν is the derivative with respect to a normal field of ∂Ω and α(x) is a C∞

function on ∂Ω. For α(x) = 0 we have the Neumann problem, while for α(x) �= 0
we obtain the Robin problem.

1.5 Notes

The results in Section 1.1 can be found with detailed proofs in [GG] and [Hir].
In Section 1.2 we follow [MS1], [MS2] and [H3]. Lemma 1.2.5 is proved in [MS1],
while Lemmas 1.2.6, 1.2.7 and 1.2.10 can be found in [H3]. The results in Section
1.3 concerning wave front sets of distributions and operators are due to Hörmander
[Hl], [H3]. The definition of generalized wave front set WFb(u) was introduced by
Melrose and Sjöstrand [MS1]. Theorem 1.3.11 was established in [MS1], [MS2].
We refer the reader to Section 24 in [H3] for more details concerning the generalized
bicharacteristics and the propagation of singularities for the Dirichlet problem.


