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The global economy is predominantly driven by fossil fuels, which release enormous 
amounts of CO2 with detrimental effects on the environment. To ensure that the rise of 
the average global temperature stays below the critical value of 2 °C, there is an urgent 
need to develop and deploy efficient CO2 mitigation technologies. However, this is very 
challenging because of the very non‐ideal chemical and physical behaviour of CO2, 
which requires extensive research and development efforts at various levels, prior to 
identifying and implementing efficient capture solutions.

Current engineering practice addresses such complexities mainly through experi-
mental investigations from lab‐ to plant‐wide levels. Experimental work is indispensa-
ble as it enables the understanding of important phenomena and facilitates the rigorous 
validation of theoretically predicted alternatives, prior to investing on a wider imple-
mentation. However, the need to perform experimental iterations on a vast number of 
available CO2 capture options is both costly and time consuming. Furthermore, the 
experimental costs and effort become prohibitive as experiments extend from the lab‐
level to pilot‐plants and industrial complexes.

To help address such challenges, this book brings forward an extensive collection of 
systematic computer‐aided tools and methods developed in recent years for CO2 capture 
applications. Computer‐aided approaches enable the fast, automated and accurate eval-
uation of a vast number of process and material characteristics that lead to economically 
efficient and sustainable CO2 capture systems. Their use is complementary to experi-
mental work which can be exploited to develop predictive mathematical models used in 
simulations and optimizations, whereas the results can be verified by further experi-
ments. In this context, computer‐aided approaches offer a promising route to guide the 
experimental search for novel and efficient CO2 capture processes and materials.

The book is unique because it presents works from scientists and engineers who are 
internationally acknowledged experts in CO2 capture research, organized in sections 
addressing the following topics:

1) Modelling and design of materials using approaches built on chemical and physical 
principles and exploiting experimental results.

2) Modelling and design of processes in view of different materials based on systematic 
simulation and optimization approaches.

3) Flexible process operation and control under conditions different than the nominal 
design settings.

4) Integrated design of CO2 capture and emission systems in different technological 
sectors.

Preface



  Prefacexxviii

Numerous case studies are presented to illustrate the computer‐aided approaches 
discussed in the chapters comprising each section, pertaining to:

a) Materials such as amine‐based or physical solvents, ionic liquids, adsorbents and 
membranes.

b) Process technologies such as absorption/desorption, pressure and vacuum swing 
adsorption, membranes, oxycombustion, solid looping, integrated gas‐combined 
cycles and power plants.

All chapters provide extensive introductory information for researchers and indus-
trial practitioners in the field of CO2 capture technology who wish to explore develop-
ments in computer‐aided tools and methods in this field. Chapters are also available 
which provide critical reviews either regarding computer‐aided technologies pertaining 
to one of the considered sections or cutting across different sections, hence illustrating 
how different tools and methods are tightly linked together. Finally, the book provides 
introductory information for CO2 capture technologies to process systems engineers 
working in the development of general computational tools and methods; the aim is to 
highlight opportunities for new developments in order to address the needs and chal-
lenges in CO2 capture technologies.

Athanasios I. Papadopoulos
Panos Seferlis
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Modelling and Design of Materials
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1.1 Introduction

Carbon capture, utilization and storage (CCUS) is widely considered to be a compre‑
hensive strategy to reduce the impact of the carbon dioxide (CO2) that is produced 
through the use of fossil fuels across a range of human activities. Carbon capture is an 
important first step in the implementation of such an approach. Despite the significant 
effort devoted to the development of carbon‐capture techniques, their implementation 
remains challenging due to the high energetic costs, large environmental impacts and 
rapid degradation of capture materials associated with some of the current processes. 
Of the many alternatives available for carbon capture, solvent‐based absorption is a 
competitive and mature technology for carbon dioxide removal from gas streams [1, 2]. 
A solvent can absorb CO2 through two broad mechanisms: chemical absorption and 
physical absorption. Chemical absorption entails the formation of chemical bonds 
between solvent molecules and CO2, typically through the formation of ionic species. 
Physical absorption, on the other hand, is driven by weaker van der Waals forces that 
promote interactions between the solvent and CO2.

Chemical absorption has some advantages over its physical counterpart: chemical 
solvents usually have a higher capacity for CO2 [3], chemisorption processes can be 
applied to streams with relatively low CO2 partial pressures, and mass transfer from the 
gas to the liquid phase may be enhanced due to the depletion of CO2 from the liquid 
phase caused by the reactions. The thermal regeneration of chemical solvents can, 
h owever, be highly energy intensive [4], whereas physical solvents can be regenerated 
simply with a less costly pressure‐swing process.

The carbon‐capture potential of many aqueous solutions of alkanolamines, amino 
acids, ammonia and caustic soda has been investigated [5], yet monoethanolamine 
(MEA) aqueous solutions remain the most widely used class of chemisorption solvents. 
A number of physical absorption processes are in common use such as the Rectisol 
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process (with methanol as solvent), the Selexol process (with a blend of dimethyl ethers 
of polyethylene glycol), the Purisol process (with N‐methyl‐2‐pyrrolidone), the 
Morphysorb process (with morpholine), and the Fluor solvent process (with propylene 
carbonate) [6]. Hybrid processes in which a blend of physical and chemical solvents are 
employed have also been investigated [1], as have switchable solvents. Switchable 
s olvents are a new class of solvent blends that undergo both physical and chemical 
absorption and form ionic liquids in the presence of CO2 [7].

The performance of absorption technologies is closely linked to the choice of solvent. 
Given the need to develop low‐cost and sustainable CO2 absorption processes, new 
solvents are being explored. In the quest for new solvents (and blends), it is highly 
unlikely that a universal ‘best’ solvent for CO2 capture will be found. Instead, the opti‑
mal solvent for CO2 capture is a function of a number of process specifications such as 
the conditions of the feed to be separated (pressure, temperature and chemical compo‑
sition), output requirements (e.g. the purity and the pressure of the treated gas), and 
process constraints (e.g. available equipment, restrictions on size, temperature and 
pressure). Solvent selection and process design have, however, traditionally been tack‑
led as separate or sequential activities [8], and this makes the task of finding improved 
solvents arduous. Experiments at the laboratory scale to find superior solvents are not 
only time consuming and expensive, but also can be extremely difficult to interpret in 
this multi‐dimensional solvent and process design space. On the other hand, large 
c ombinatorial spaces can in principle be explored efficiently using computational 
methods. It is especially desirable to combine computational studies that can identify 
the optimal (and near optimal) solvent(s) based on appropriate models of the relevant 
properties and processes with a small number of targeted experiments [9].

Computer‐aided molecular design (CAMD) methods have a useful role to play in this 
but are often focussed on finding molecules deemed optimal based on a few ‘key’ phys‑
icochemical properties [9–14]. There have been several studies to account for the 
impact of solvent properties on the overall performance of the process through process‐
based measures of varying levels of detail [15–18]. This makes it possible to take into 
account the dependence of physicochemical properties on process variables (such as 
operating pressure and temperature), the values of which are often unknown at the time 
of solvent selection. It has become clear that a design that takes into account both the 
solvent and the process can be deemed optimal only when the strong interactions 
between process and molecules are taken into account in arriving at the proposed 
design [18].

In recognition of this, several methodologies for the simultaneous design of both 
molecules (such as solvents) and processes have emerged. The molecular structure 
and process variables are optimized with respect to a process or plant‐wide objectives. 
This class of design strategies, known as computer‐aided molecular and process design 
(CAMPD), or integrated molecular and process design, presents many challenges. 
The CAMPD problem and possible solution approaches (not limited to carbon capture) 
have been discussed by a number of authors [8, 16, 17, 19–30].

Given the importance of intermolecular interactions to the performance of absorp‑
tion processes, CO2 capture studies are well suited to the application of a molecular 
systems engineering (MSE) approach in which a detailed molecular perspective is inte‑
grated with a description of the processes for the purpose of improved design [18, 31]. 
To apply an MSE approach to solvent design it is necessary to build tools for each of the 
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steps involved in the formulation and solution of CAMPD problems. First, the formula‑
tion of the CAMPD problem requires predictive models that relate the structure of the 
solvent to all relevant pure component and mixture properties, as well as predictive 
models of the process units and topology that are needed to evaluate the design 
objective(s) and constraints. Secondly, the design problem must be formalized by pos‑
ing one or more optimization problems that make it possible to explore the trade‐offs 
between the different design decisions. Finally, algorithms that can solve these highly 
challenging optimization problems are needed. We emphasize that data from experi‑
ments (e.g. physical property measurements and relevant process parameters) are also 
indispensable to the MSE approach; they are used to develop and improve property pre‑
diction and process models as well as to validate the results of the design. Thus, MSE 
entails multi‐scale modelling and experimental studies of phenomena across various 
sub‐system sizes, from molecules to processes [2, 18]. A balance must be struck between 
the accuracy of the models of the various sub‐systems, their predictive power and their 
computational complexity, to ensure that the resulting CAMPD optimization problems 
are numerically tractable. To this end, it is sometimes advantageous to develop physical 
and chemical property models that offer a similar computational performance to widely 
used engineering correlations and other highly parameterized models, but that are appli‑
cable to a broader range of molecules and mixtures. This can be achieved through a judi‑
cious choice of assumptions and physical abstractions. The appropriate level of abstraction 
can only be determined by considering the different elements of an MSE approach 
(models, problem formulations and optimization algorithms) in an integrated manner.

In the specific context of the integrated design of solvents and carbon‐capture absorp‑
tion processes, the deployment of an MSE approach requires a wide range of physico‑
chemical properties: thermodynamic properties such as density, kinematic properties 
such as viscosity, and interfacial properties such as surface tension. These properties are 
required as a function of process‐operating conditions. The property models used 
should preferably provide continuous and consistent descriptions of matter across the 
fluid region [26], avoiding the use of different models (e.g. equations of state or activity 
coefficient models) for the gas and liquid phases. This is particularly important in the 
vicinity of vapour–liquid critical points or in unit operations involving phase changes, 
such as heat‐exchange equipment, to avoid having to identify the phase(s) of the mix‑
ture before selecting an appropriate model. Furthermore, it is desirable to use accurate 
models that provide predictions of properties related to phase equilibrium such as activ‑
ity coefficients as well as calorific properties, to ensure thermodynamic consistency; it 
can be challenging to find such broadly applicable models [32–34]. Finally, an additional 
challenge in the modelling of absorption in reactive solvents is the need for predictive 
models of chemical equilibrium and/or kinetics, that provide a quantitative assessment 
of chemical changes within the process, as well as changes to physical properties.

In recent years, several groups have focussed on the development and application 
of  CAMPD approaches to CO2 capture. For instance, optimal solvents and process 
c onditions for physical absorption of CO2, while using the statistical associating fluid 
theory platform for property prediction, have been designed in [17], [25], [26], and 
[27]. Ng et al. [35] employed CAMD in the context of the use of ionic liquids for carbon 
capture. CAMD approaches have been applied to the design of alkanolamines and their 
blends in [36] and [37], respectively. CAMPD of novel chemisorption solvents has also 
been studied [29, 38, 39].
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In this chapter, we provide a review of the recent work carried out in our research 
group on the application of MSE concepts to carbon capture, with a brief mention of 
other work based on similar thermodynamic models. In Section 1.2, thermodynamic 
models are discussed, with a special focus on the SAFT family of thermodynamic 
approaches (SAFT is statistical associating fluid theory). In Section 1.3, we show how 
one can take advantage of the physical association concept used with the equation of 
state (EoS) to describe the reaction equilibria relevant to chemical absorption. In 
Section 1.4, we discuss approaches to the solution of the integrated solvent and process 
design problem that embed these thermodynamic models.

1.2 Predictive Thermodynamic Models for the Integrated 
Molecular and Process Design of Physical Absorption 
Processes

The modelling of solvent‐based carbon‐capture processes that are driven by physisorp‑
tion requires high‐fidelity thermodynamic models that capture the highly non‐ideal 
behaviour of the mixtures involved. This behaviour arises from the presence of species 
that can form hydrogen bonds (e.g. methanol, ethers, water), of apolar compounds such 
as hydrocarbons, and of CO2 with its large quadrupole moment and critical point that 
falls within the range of operating conditions. Due to the wide range of temperatures 
and pressures that are typical of physical absorption processes, thermodynamic models 
that are predictive over a wide range of conditions are required. Additional complexity 
can arise when modelling solvent blends due to the complex interactions that need to 
be considered and the larger number of model parameters required.

Given the need for thermodynamic models that are predictive outside the domain of 
available experimental data, thermodynamic models rooted in molecular theories and 
statistical mechanics, for example SAFT‐based approaches (for an overview, see [40], 
[41] and references therein), have been developed. These require fewer temperature‐
dependent parameters than traditional thermodynamic models. The impact of molecu‑
lar shape and non‐sphericity on thermodynamic properties can be described by 
representing molecules as chains of fused segments and the effect of strong directional 
interactions induced by hydrogen bonding or polarity can be captured by including 
appropriate association sites. SAFT EoSs are applicable across the entire fluid region so 
that consistent gas‐ and liquid‐phase models can be used; this is highly advantageous 
for modelling processes for which vapour–liquid and vapour–liquid–liquid equilibria 
are important. As a result, the modelling of mixtures containing CO2, water and/or 
hydrocarbons has long been a topic of interest in the development of SAFT‐based equa‑
tions (e.g. [42–45]). In this section, we present a brief overview of the SAFT family of 
thermodynamic approaches. We highlight in particular the development of group 
c ontribution versions of the EoSs, and we discuss the development of models applicable 
to the physical absorption of CO2.

1.2.1 An Introduction to SAFT

In this section, we briefly describe the SAFT EoSs and highlight their relevance to the 
design of physical absorption processes.
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SAFT‐based approaches constitute a family of state‐of‐the‐art equations of state with 
a firm theoretical grounding in statistical mechanics, a field which originates from the 
desire to describe thermodynamic systems in terms of statistical mechanical principles 
and which bridges the gap between the behaviour of individual molecules and bulk 
thermodynamics. The original version of SAFT [46, 47] was proposed to address the 
need for an equation of state for associating fluids that could not be described reliably 
by traditional cubic EoSs. The theory of association used within SAFT is based on 
Wertheim’s thermodynamic perturbation theory (TPT) [48–51], which makes it possi‑
ble to evaluate the contribution in free energy due to association in any fluid of mono‑
mers. The directional forces causing the monomers to associate are accounted for by 
specifying appropriate ‘association sites’ or ‘sticky sites’, which are defined by an inter‐
site potential function that is usually of the square‐well (SW) form. Accurate thermody‑
namic properties of the fluid can thus be obtained starting from information on 
intermolecular forces.

Within SAFT, molecules are represented as chains of spherical segments that inter‑
act via intermolecular potentials that determine the forces present between segments 
and between association sites. In homonuclear (or more precisely homosegmented) 
versions of SAFT, a molecule i is formed from mi identical segments that interact via a 
potential. The number of segments, mi, can be treated as an adjustable parameter and 
for molecules with non‐integer values of mi, segments are sometimes referred to as 
fused. To model real pure fluids or mixtures of real compounds, parameters are 
required to specify the number of segments, the energy and the range of interaction 
between segments and between association sites. Homonuclear models are often used 
to represent whole molecules, i.e. one set of parameters is used to describe one specific 
compound.

Various versions of SAFT for homonuclear models exist for neutral molecules, with 
differences arising from the potential used to describe the repulsive and dispersive 
interactions between monomers, the types of interactions considered in the model (e.g. 
whether to include dipole interactions), and other choices made in the derivation of the 
equations such as the order of the perturbation expansion or the reference fluid 
employed in developing the theory. Well‐known variants [41] include the original SAFT 
[46, 47], Chen and Kreglewski SAFT (CK‐SAFT) [52], simplified SAFT [53], Lennard‐
Jones SAFT (LJ‐SAFT) [42, 54], variable‐range SAFT (SAFT‐VR) [55, 56], SAFT‐VR 
Mie [33], soft‐SAFT [57], perturbed chain SAFT (PC‐SAFT) [58], and simplified PC‐
SAFT [59]. Some examples of polar and quadrupolar variants of SAFT include a variant 
of SAFT‐VR [60], a variant of CK‐SAFT [61], and variants of PC‐SAFT [62–72]. 
Extensions of the SAFT methodology that can be used to model charged compounds 
have also been developed [73–81].

The SW and Mie potentials are of most relevance to this chapter and are therefore 
discussed in more detail. The mathematical form of the SW potential used in SAFT‐VR 
SW [55, 56] is given by
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where the potential, u12
SW, is a function of the distance, r12, between the centres of two 

identical monomeric segments 1 and 2 of type i, and where σi is the diameter of the 
monomeric segments, εi the depth of the potential well, and λi characterizes the range 
of attraction. The SW potential is popular due to its simple form, leading to exact 
s tatistical mechanical calculations such as the algebraic evaluation of the second and 
third virial coefficients [82].

The Mie (generalized Lennard‐Jones) potential, u r12 12
Mie( ), used in our recently 

d eveloped SAFT‐VR Mie EoS [33] as well as in an earlier version [83], is given by
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where i
r  and i

a are the repulsive and attractive exponents respectively, which deter‑
mine the softness or hardness of the repulsive interactions and the range of attraction 
and the constant Ci is defined such that the minimum of the potential corresponds to 

i. The Lennard‐Jones (LJ) potential is equivalent to a Mie potential with i
r 12 and 

i
a 6. The characteristic form of the Mie potential is a steep curve at short separations, 

resulting in a large repulsive force, and a smooth shallow curve at greater separations, 
tapering off to zero as the distance increases. It is thus longer ranged and smoother than 
the SW potential, as can be seen in Figure 1.1 where a comparison between the SW 
potential and the Mie potential is shown.

Associating molecules are treated in SAFT by adding off‐centre, spherically sym‑
metrical SW bonding sites. The SW potential provides a good approximation for highly 
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Figure 1.1 Examples of the Mie (continuous curve) and the SW (dotted lines) potentials between two 
monomeric segments as a function of the scaled segment‐to‐segment distance.



91.2 Predictive Thermodynamic Models for the Integrated Molecular

directional and short ranged interactions (e.g. hydrogen bonds) [84]. The interaction 
between two association sites ‘a’ and ‘b’ on two molecules of type i is characterized by 
an association energy abii

HB , and a bonding volume Kabii.
In SAFT, the Helmholtz free energy A of a system is written as the sum of different 

perturbative contributions that are added to a reference free energy. This concept is 
illustrated in Figure 1.2, where a fluid consisting of monomeric spherical segments is 
used as reference fluid, as is the case for example in the SAFT‐VR EoSs. The corresponding 
general form of the equation of state is given in dimensionless form as

 
A

NkT
A
NkT

A
NkT

A
NkT

A
NkT

IDEAL MONO CHAIN ASSOC
,

. .
 (1.4)

where N is the total number of molecules, k is the Boltzmann constant, and T is the 
temperature. AIDEAL is the free energy of an ideal gas (Figure 1.2a), AMONO. includes the 
free energy of a reference hard‐sphere fluid (at this stage, the segments are assigned a 
volume) and the perturbative contributions arising from the chosen inter‐segment 
potential (Figure 1.2b), ACHAIN represents the free energy due to bonding the segments 
to form the molecular chains (Figure  1.2c), and AASSOC. is the free energy due to 

(a) (b)

(d) (c)

AIDEAL

NkT

AMONO.

NkT

AASSOC.

NkT

ACHAIN

NkT

Figure 1.2 Procedure for forming a molecule in most versions of SAFT. (a) The fluid is represented as 
an ideal gas (no intermolecular interactions). (b) Monomeric spherical segments corresponding to the 
‘atomized’ molecules are considered, with repulsion and dispersion interactions shown by the dotted 
circles (note that the potential between two particles is a function of the distance). (c) Chains are 
formed from tangentially bonded segments. (d) Association sites are added. This figure is based on 
Figure 1 in [53] and Figure 3.1 in [85].
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association between sites (Figure 1.2d) – this term can account for hydrogen bonding, 
charge transfer and other types of complexation. After obtaining the Helmholtz free 
energy of the system, the thermodynamic properties can be derived from standard rela‑
tions. For example, the pressure is related to the partial derivative of the free energy 

with respect to the volume, P A
V N T,

, and the chemical potential can be obtained 

from its partial derivative with respect to the number of molecules, A
N V T,

.

A recent major advance in SAFT‐VR has been the inclusion of the Mie potential 
(a  generalized Lennard‐Jones potential) to describe dispersion interactions between 
monomeric segments in a fluid, leading to the SAFT‐VR Mie equation [33, 84, 86]. The 
use of the Mie potential is advantageous for the prediction of properties that are func‑
tions of the second derivatives of the Helmholtz free energy, such as heat capacities, 
isothermal compressibilities and speeds of sound, whilst simultaneously providing a 
good description of vapour–liquid equilibria (VLE) [33, 83, 84, 86]. These properties are 
sensitive to the slope of the potential between segments, particularly the nature of 
repulsive interactions. In addition, the higher‐order perturbation expansion within the 
SAFT‐VR Mie formulation leads to a much improved representation of the critical 
point compared to SAFT‐VR SW [33, 84, 86].

These aspects are particularly important when considering thermodynamic models 
for carbon capture and storage: the critical point for CO2 is well within the relevant 
operating ranges and the phase behaviour and other thermodynamic properties of 
CO2‐containing mixtures can be modelled more accurately with SAFT‐VR Mie, reduc‑
ing the number of empirical correlations required to estimate key properties. 
Importantly, the assumption of ideal mixing that often needs to be made to compute the 
heat capacity of mixtures can be lifted. Although the Mie potential requires the specifi‑
cation of one more parameter than the SW potential, it has been shown that a confor‑
mal description of the thermodynamics can be achieved with an interrelationship 
between i

r and i
a [87], meaning that only i

r or i
a needs to be determined during model 

development.
The implementation of several SAFT EoSs in commercial chemical process simula‑

tion packages is a strong indicator that their predictive nature makes them desirable in 
industrial applications. Implementations within process modelling environments also 
make these EoSs accessible to a wider community. For example, the process simulator 
ASPEN PLUS [88] has an implementation of PC‐SAFT [58]. The DWSIM [89] open 
source simulator also comes with an implementation of this EoS, as does the Multiflash 
[90] thermodynamic modelling tool. The equation‐oriented modelling environment 
gPROMS [91] has an implementation (gSAFT [92]) that includes the SAFT‐VR SW 
[55, 56] and SAFT‐VR Mie [33] equations, as well as the group contribution version, 
SAFT‐γ Mie [34].

1.2.2 Group Contribution (GC) Versions of SAFT

Group contribution (GC) approaches [93] exploit the idea that although there are 
many possible chemical compounds of relevance to industry, the number of different 
chemical functional groups which form these compounds is significantly smaller. For 
example, the family of primary linear alkanolamines (monoethanolamine (MEA), 
C2H7ON; monopropanolamine (MPA), C3H9ON, etc.) can be represented with a small 
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number of functional groups, e.g. CH2NH2, CH2OH and CH2. This reduces the num‑
ber of parameters required to describe fluids consisting of different molecules; once 
parameters describing the relevant functional groups have been obtained, new 
 molecules can be quickly analysed by using the functional groups as building blocks. 
A key assumption in GC methods is that the thermodynamic properties of a fluid can 
be described for the contributions made by each functional group, regardless of its 
 environment and c onnectivity [94]. For example, the CH2OH group is assumed to 
behave in the same way in both monopropanolamine and monopentanolamine. The 
assumption of transferability of groups to other molecules is valid only if there is no 
significant difference in the  polarization of the same functional groups present in 
different molecules. If proximity effects are important or differences between isomers 
[94] are of interest, ‘second‐order’ groups can be used which specify the functional 
groups in close p roximity (e.g. see [95–97]). To ensure the transferability of functional 
groups, parameters are estimated from experimental data for a wide range of different 
molecules that contain the functional groups rather than from data specific to a given 
molecule.

Several group contribution versions of SAFT equations of state have been pro‑
posed, each differing in the GC schemes (e.g. mixing rules) used. GC SAFT meth‑
ods can be classified into two main approaches: homonuclear and heteronuclear. In 
homonuclear approaches, the monomeric segments used to represent a given mol‑
ecule are considered identical. Some examples of homonuclear GC SAFT approaches 
include the work of Vijande et al. [98], who proposed a homonuclear GC scheme 
for the PC‐SAFT EoS [58]; the work of Tobaly and co‐workers [99, 100], who pro‑
posed GC approaches for the original SAFT [46, 47], SAFT‐VR [55, 56] and PC‐
SAFT [58] relations; and the work of Tihic et al. [101], who applied the GC scheme 
proposed in [95] to a simplified version of PC‐SAFT [59]. In the aforementioned 
approaches, parameters describing functional groups are averaged, using group 
contribution rules, to calculate the equation of state parameters (see e.g. Equations 
(11)–(14) in [99]).

Heteronuclear GC SAFT methods have been developed, in which the averaging step 
is no longer needed as segments used to model a given compound are not identical 
[102], giving additional flexibility in developing models. Versions that have been pro‑
posed include GC extensions to the SAFT‐VR SW EoS, namely SAFT‐γ SW [103, 
104], GC‐SAFT‐VR [105], which builds on the hetero‐SAFT‐VR EoS [106], and SAFT‐γ 
Mie [34], which is based on SAFT‐VR Mie [33]. A GC version of p erturbed‐chain 
polar SAFT (PCP‐SAFT) [69], the GPC‐SAFT EoS [102], has also been proposed 
recently.

An example of a heteronuclear fused molecular model for 3‐amino‐1‐propanol 
(MPA) is shown in Figure 1.3(a), following the model developed in [107] within the 
framework of SAFT‐γ SW [103, 104]. A molecular (homonuclear) model for MPA 
(Figure  1.3(b)) is also shown for comparison, along with the skeletal formula for 
MPA (Figure 1.3(c)). As can be seen, in the molecular version, it is not possible to 
assign a specific functional group to a specific segment since all are identical. Group 
contribution versions of SAFT not only extend the predictive capabilities of the 
approach, but they also enable the broader use of the SAFT‐type platform for the 
formulation and solution of CAMD/CAMPD problems, as will be discussed in 
Section 1.4.
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1.2.3 Model Development in SAFT

The development of a SAFT model consists in selecting the basic structure of the 
molecular model (number of segments, number and types of association sites) and in 
estimating the remaining unknown parameters, by minimizing the deviations between 
the values of some of the properties predicted by the model and corresponding experi‑
mental measurements. The parameters required to model the thermodynamic proper‑
ties of a pure component are summarized in Table 1.1 for SAFT‐VR SW and SAFT‐VR 
Mie. The properties included in parameter estimation for homonuclear models of pure 
components are usually those that are readily accessible experimentally, and commonly 
include saturated liquid densities and vapour pressures taken at temperatures between 
the triple point and close to the critical temperature (e.g. temperatures up to 95% of the 
critical temperature). In some cases, other properties such as heats of vaporization, 
single‐phase liquid densities or speed of sound can be used.

In the case of heteronuclear models, the parameters needed to model a molecule and 
a given functional group k are listed in Table  1.2 for SAFT‐γ SW and SAFT‐γ Mie. 
Unlike group–group interactions can often be obtained from pure component data 
alone, although more reliable values of the parameters can be estimated by including 
mixture data such as enthalpies of mixing or binary mixture phase‐equilibrium data. 
The main unlike group–group interaction to be estimated is εkl, the dispersive interac‑
tion energy between groups of type k and l. Where relevant, the association energy 
between sites of type a on group k and sites of type b on group l, abkl

HB , is also estimated. 
Finally, the corresponding exponents characterizing the interaction ranges are sometimes 
estimated. All unlike interaction parameters that are not regressed to experimental data 
are derived from combining rules as presented in [103] for SAFT‐γ SW, in [34] for 
SAFT‐γ Mie, and in [84] for SAFT‐VR Mie.

HO

(a)

(b)

(c)

NH2

HO NH2

Figure 1.3 (a) The heteronuclear model for MPA developed in [107]. From left to right, the segments 
represent the CH2OH, CH2 and CH2NH2 functional groups, respectively. The association sites represent 
the lone pairs of electrons (green) and hydrogens (black) on the amino and hydroxyl functional 
groups. These sites mediate the directional short‐ranged interactions between molecules. (b) A 
homonuclear model for MPA where the segments are identical, with the same association scheme as 
in (a). (c) The skeletal formula for MPA.
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The parameter estimation problem that must be solved to estimate the molecular 
parameters is non‐convex, which leads to the possibility of converging to parameter 
values that correspond to a local minimum rather than the global minimum. In addi‑
tion, a variety of parameter sets (models) can provide equivalent performance due to 

Table 1.1 Parameters required to model pure components in SAFT‐VR Mie and SAFT‐VR SW 
homonuclear approaches.

Parameter Definition Potential

mi Number of segments in molecule i Mie, SW
σi Diameter of monomeric segments in molecule i Mie, SW
εi Depth of potential well between segments in molecule i Mie, SW
λi Width of potential well for segments in molecule i SW

i
a Attractive exponent of the Mie potential for segments in molecule i 

(usually set to 6)
Mie

i
r Repulsive exponent of the Mie potential for segments in molecule i Mie

NSTi Number of site types on molecule i Mie, SW
na,i Number of sites of type a on molecule i, a NSTi1, , Mie, SW

abii
HB Association energy between sites of types a and b on two 

molecules of type i, a NSTi1, , , b NSTi1, ,
Mie, SW

rabii
c

 or Kabii Range of association or bonding volume between sites of types 
a and b on two molecules of type i, a NSTi1, , , b NSTi1, ,

Mie, SW

Table 1.2 Parameters needed to model group self‐interactions in SAFT‐γ Mie and SAFT‐γ SW 
heteronuclear group‐contribution approaches.

Parameter Definition Potential

νi,k Number of groups of type k in molecule i Mie, SW

k
* Number of identical segments in group k Mie, SW

Sk Shape factor of segments in group k Mie, SW
σk Diameter of segments in group k Mie, SW
εk Depth of potential well for segments in group k Mie, SW
λk Width of potential well for segments in group k SW

k
a Attractive exponent of the Mie potential for segments in group k 

(usually set to 6)
Mie

k
r Repulsive exponent of the Mie potential for segments in group k Mie

NSTk Number of site types on group k Mie, SW
na,k Number of sites of type a on group k, a NSTk1, , Mie, SW

abkk
HB Association energy between sites of types a and b on two groups 

of type k, a NSTk1, , , b NSTk1, ,
Mie, SW

rabkk
c

 or Kabkk Range of association or bonding volume between sites of types 
a and b on two groups of type k, a NSTk1, , , b NSTk1, ,

Mie, SW
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the degenerate nature of the parameter space and the high degree of correlation between 
some parameters such as the dispersion energy and the range of dispersion interactions, 
or the dispersion and association energies. This becomes an issue when the number of 
model parameters increases, e.g. for complex associating compounds, or when experi‑
mental data are scarce. As a result, the best model is not always the one that corresponds 
to the global optimum [86, 108, 109]. The issue of model degeneracy can be addressed 
by choosing parameter values (or a range of values) that make physical sense, for exam‑
ple in SAFT‐VR Mie one can set λr to 6, following the arguments presented in [86] and 
[87]. Furthermore, properties not included in the objective function can be analysed in 
a predictive fashion to discriminate between models (for example, the heat of vaporiza‑
tion [108] and surface tension [108, 110]).

To develop mixture models based on homonuclear versions of SAFT, additional 
parameters often need to be estimated based on multi‐component (usually binary) 
phase‐equilibrium data, such as vapour–liquid equilibrium or liquid–liquid equilib‑
rium. It is usually sufficient to estimate unlike energy parameters for dispersive interac‑
tions (εij between compounds i and j) and, if relevant, for association interactions ( abij

HB  
between sites of type a on compound i and sites of type b on compound j). Occasionally, 
the unlike range parameters also need to be estimated from the data to increase model 
accuracy (e.g. see [45]). Once again, any unlike parameter not regressed to experimental 
data can be obtained from the like parameters using combining rules. For example, the 
unlike size parameter (σij) required to describe the interactions between a compound i 
with diameter σi and a compound j with diameter σj can be obtained by taking the 
a verage of the like segment diameters:

 ij
ii jj

2
, (1.5)

The combining rules for other unlike parameters can be found in [56] for SAFT‐VR 
SW, in [84] for SAFT‐VR Mie, in [103] for SAFT‐γ SW and in [34] for SAFT‐γ Mie.

1.2.4 SAFT Models for Physical Absorption Systems

In this section, we present a few examples of SAFT models that have been developed 
based on the SAFT‐VR and SAFT‐γ platforms to treat the species present in physisorp‑
tion processes.

Pereira et al. [25] considered the separation of CO2 from methane (CH4), a mixture 
relevant to the treatment of natural gas streams, using solvents consisting of different 
n‐alkanes. Molecular models were developed within the framework of SAFT‐VR SW 
[55, 56]. Following the approach proposed in [44] and [111], the SAFT parameters 
describing n‐alkane mixtures were determined as a function of the average number of 
carbon atoms in the mixture. Molecular models for CO2 and CH4 were transferred from 
previous work [43, 112], using parameters that were scaled to reproduce the critical 
temperature and critical pressure of CO2. To determine the unlike interaction parame‑
ters between CH4, CO2 and the n‐alkanes, mixtures consisting of CH4, CO2 and 
n‑decane (C10) were studied and a single parameter for each pair of species, describing 
the unlike interaction energy, εij, was used to describe accurately the vapour–liquid 
equilibria. Due to the transferability of SAFT‐VR parameters within a homologous 
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series (e.g. see [43, 112]), the predicted phase behaviour of various CO2 + n‐alkane mix‑
tures (up to hexadecane) was found to be in very good agreement with experiment. 
A good prediction of the ternary phase behaviour of the CH CO C4 2 10 mixture was 
also achieved and the cross‐interaction parameters were found to be transferable to 
other mixtures of CH CO4 2+ n‐alkane. The molecular nature of SAFT‐VR allowed for 
the formulation of a full CAMPD problem on the basis of these models, as discussed 
further in Section 1.4.

Burger et al. [26] developed SAFT‐γ Mie models for solvents consisting of the follow‑
ing functional groups: CH3, CH2, and two different oxygen functional groups, cO (an 
oxygen located between two CH2 groups) and eO (an oxygen next to a CH3 group). 
These groups represent the families of linear alkanes and ethers, and include highly 
oxygenated compounds such as diethers and glymes. The inclusion of two oxygen 
groups makes it possible to distinguish between some structural isomers, for instance 
methylpropyl ether and diethyl ether. SAFT‐γ Mie parameters for the relevant groups 
were obtained by fitting to vapour pressure and liquid density measurements for pure 
components and to binary phase equilibrium data. Using the parameters obtained, 
Burger et al. [26] predicted the phase behaviour of some of the pure solvents for which 
experimental data were available, as exemplified in Figure  1.4, where the predicted 
vapour pressures of six different ethers are compared to experimental data. The param‑
eters describing the CO2 and CH4 functional groups were transferred directly from 
previous work [113, 114]. The parameters describing the unlike interactions between 
CO2 and solvent functional groups were estimated by fitting to available mixture data, 
as shown in Figure 1.5, and used to predict the phase behaviour of binary mixtures of 
solvents and CO2. This application illustrates the highly predictive nature of the SAFT‐γ 
Mie equation of state as a wide variety of solvents can be modelled with only a few 
parameters. The use of this approach within a CAMPD problem will be discussed in 
Section 1.4.
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Figure 1.4 Logarithmic representation of the saturated vapour pressure, Ps, with respect to 
temperature T. The curves represent calculations with the SAFT‐γ Mie EoS and the symbols denote 
the corresponding experimental data [115–119] for methyl ethyl ether (white circles), diethyl ether 
(black circles), methyl propyl ether (white triangles), methyl butyl ether (white squares), dipropyl 
ether (black triangles), and dibutyl ether (black squares). The figure is reproduced from [26].
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Another notable application of SAFT‐based thermodynamic models to study the 
absorption of CO2 in physical solvents is the use of GPC‐SAFT [102]. Sauer et al. [102] 
developed parameters within the framework of GPC‐SAFT for various non‐polar and 
polar functional groups, by considering the vapour pressure and liquid density data of 
pure components. For polar groups, an additional term was required to characterize the 
dipole moment. The inclusion of parameters describing the dipolar interaction between 
functional groups can be useful when considering the design of solvents for physisorp‑
tion of CO2. Because CO2 possesses a strong quadrupole moment, it can interact 
favourably with polar groups [121], leading to an additional mode of absorption com‑
pared to non‐polar solvents (which interact with CO2 via weaker dispersion forces). 
This work facilitated a case study for the design of CO2 capture solvents (both polar and 
non‐polar) via physisorption [27], for which the full CAMPD problem is discussed in 
Section 1.4.

1.3 Describing Chemical Equilibria with SAFT

The predictive modelling of chemical equilibrium poses a greater challenge than phase 
equilibria for thermodynamic models. Of particular interest in chemisorption pro‑
cesses for CO2 capture is the reaction between CO2 and alkanolamines. Extensive theo‑
retical and experimental work has been undertaken to determine the reaction kinetics 
and reaction mechanisms of these systems, e.g. [122–131]. Primary and secondary 
amines, for example monoethanolamine (MEA) and diethanolamine (DEA), react to 
form a carbamate. Although the exact reaction mechanism is still not fully understood 
[131], the most prominent mechanism is thought to involve the formation of a zwitte‑
rionic form of the carbamate [122, 129, 130], followed by a slow proton exchange reaction 
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Figure 1.5 Pressure–mole fraction (liquid phase) isothermal slices of the vapour–liquid phase 
equilibrium envelope for the binary mixture of carbon dioxide and di(oxyethylene) dimethyl ether at 
different temperatures: T = 298.15 K (—;), T = 313.15 K – –;Δ), T = 333.15 K ;□). The curves 
represent the calculations of the SAFT‐γ Mie EoS and the symbols the corresponding experimental 
data [120]. The figure is reproduced from [26].
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with a base (water or another amine molecule). The overall reaction can be repre‑
sented as [2]:

 CO R R NH R R NCO R R NH .2 1 2 1 2 2 1 2 22 

 (1.6)

The other prominent reactions include carbamate hydrolysis:

 R R NCO H O R R NH HCO ,1 2 2 2 1 2 3

 (1.7)

and bicarbonate formation:

 CO OH HCO .2 3

 (1.8)

The carbamate hydrolysis reaction (1.7) only becomes important at high CO2 load‑
ings for non‐sterically hindered amines (e.g. MEA), where the loading is defined as the 
moles of CO2 absorbed per mole of amine solvent. In the case of MEA, the CO2 loading 
due to chemisorption is therefore limited to 0.5, although additional CO2 can be 
absorbed by physisorption, especially at high pressures. The hydrolysis reaction is 
important for sterically hindered amines, for example MDEA (N‐methyl diethanola‑
mine) and AMP (2‐amino‐2‐methyl‐1‐propanol). For these amines, the carbamate 
bond is weakened by the presence of a bulky substituent group adjacent to the amino 
nitrogen site. Hence, carbamate reversion to the bicarbonate ion and the free amine via 
reaction 1.7 becomes favourable and CO2 loadings due to chemisorption can approach 
one mole CO2 per mole amine [2, 132, 133].

1.3.1 Chemical and Physical Models of Reactions

The two approaches that are commonly adopted to model reaction equilibrium, based 
on chemical or on physical theories, are briefly introduced in this section.

1.3.1.1 The Chemical Approach
The most widely used approach stems from chemical theory (see e.g. [94, 134–138]), 
where all relevant reaction products must be identified a priori and modelled explicitly. 
To illustrate this, we consider a mixture consisting of reactants A and B and the bimo‑
lecular reaction:

 A B AB.

 (1.9)

Within the chemical view, the mixture consists of three species: A, B and AB in 
chemical equilibrium with an equilibrium constant K defined as

 
K T a

a a
AB

A B

 (1.10)

where ai is the activity of component i and K is the temperature‐dependent equilibrium 
constant, which is related to the standard change in Gibbs free energy (ΔG⦵) for the 
forward reaction, K(T) = exp(-ΔG⦵/RT), where R is the gas constant. Thus, to model 
the system using a chemical approach, speciation data for all species in the mixture at 
various temperatures are required.
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Electrolyte extensions to activity coefficient based models, for example eNRTL [139, 
140] and extended UNIQUAC [141] have been used to treat CO2 + amine + water (H2O) 
systems for a few well‐known solvents [136, 140, 142–146]. These methods have been 
shown to be highly successful in correlating the properties of mixtures for which appro‑
priate experimental data are available, and can readily be combined with models of 
carbon‐capture processes. We note that SAFT‐type equations can in principle be used 
to model the chemical and phase equilibria of CO2 capture mixtures using a chemical 
approach, by building on the extensions of SAFT EoSs that have been developed to treat 
explicitly the ionic species formed from reactions [73, 75–81]. No complete SAFT‐
based model of CO amine H O2 2  mixtures has yet been proposed within this frame‑
work, but we note that [136] have developed a model based on chemical theory in which 
the PC‐SAFT equation of state [58] is used to obtain gas‐phase fugacity coefficients, 
and the eNRTL equation and Henry’s law are used to compute the quantities needed for 
phase‐equilibria calculations. The gas phase is assumed not to contain any ionic species.

1.3.1.2 The Physical Approach
In physical approaches, an alternative description of the underlying physicochemical 
phenomena is used. Rather than considering the formation of new species explicitly, 
reaction products are treated as aggregates of the reactants that arise due to the pres‑
ence of strong intermolecular forces, akin to the association approach used to model 
hydrogen bonding. This does not require the a priori specification of reaction products, 
as aggregates such as dimers, trimers or longer chains can form if the chosen associa‑
tion scheme (i.e. the number and types of sites) permits this. Reactions can thus be 
modelled within the SAFT framework by the addition of association sites that enable 
chemical binding. Referring again to equation (1.9), the impact of the formation of 
aggregate AB on the thermodynamic behaviour of a mixture of A and B can then be 
derived as a function of the concentrations of A and B and the mixture temperature and 
pressure, solely based on the SAFT parameters describing A and B and their interac‑
tions, particularly via the types, number, energy and bonding volume of association 
sites. With this modelling approach, it is possible to develop SAFT models using only 
experimental vapour–liquid equilibrium data and the initial concentrations of the reac‑
tants (here, CO2, water and solvent) as a function of temperature and pressure; neither 
the reaction products nor any equilibrium constants need to be specified [147]. Based 
on the association scheme chosen for the reactants, the concentration of all species 
present can be found via a statistical analysis of the SAFT thermodynamics at the given 
thermodynamic state, specifically of the fractions of association sites of different types 
not bonded [110, 148].

Economou and Donohue [149] have compared the analytical form of the expressions 
for the mole fraction of monomers and the association contribution to the compressi‑
bility factor obtained with chemical and physical approaches. Under appropriate 
assumptions, e.g. a constant binding energy and an equilibrium constant that is inde‑
pendent of the degree of association of the reactants, they showed that the description 
obtained by both theories is the same in terms of their functional form, provided that 
the correct reaction stoichiometry is given. The results were also shown to be numeri‑
cally indistinguishable [149, 150]. In fact, the parameters obtained within the physical 
theory to describe the association interactions, namely the depth and range of the asso‑
ciation potential, can be related to the equilibrium constant. A key advantage of the 
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physical approach over the chemical approach is that the parameters obtained are not 
functions of the thermodynamic state, whereas the equilibrium constant is a function of 
temperature, requiring the consideration of larger sets of experimental data.

To illustrate how reactions can be represented within a physical association frame‑
work, an example is shown for the reactions occurring when CO2 is absorbed in an 
aqueous MEA solution, following the method of Mac Dowell et al. [151] and Rodriguez 
et al. [110], who developed models using a homonuclear SAFT approach, SAFT‐VR 
SW. Different off‐centre SW association sites are placed on the molecules in the mix‑
ture to mediate directional interactions, as shown in Figure 1.6. Sites labelled ‘e’ and ‘H’ 
represent lone pairs of electrons and hydrogen atoms, respectively, mediating hydrogen 
bonding and chemical binding. CO2 has two association sites, α1 and α2, which associ‑
ate with the electron site corresponding to the amino group of MEA. This treatment 
mediates the following reactions:

CO HO CH NH HO CH NHCOO HO CH NH
MEA Carbam

2 2 2 2 2 2 2 2 32  ,
aate pair

 (1.11)

 

HO CH NHCOO H O HO CH NH HCO
Bicarbonate pai

2 2 3 2 2 3 3 .
rr

 (1.12)

Ion pairs are represented by square brackets and these are assumed to be tightly 
bound species. A CO2 molecule for which both association sites are bonded is taken to 
exist in a carbamate structure. If only one association site is bonded (α1 or α2), the CO2 
molecule is assumed to be present as the bicarbonate HCO3  (cf. Figure 1.6). Inherent 
in the adoption of a physical approach is the assumption that ions aggregate to form 

MEA

MEA

e
e

H

+

+

α1 α2

Bicarbonate pair

Bicarbonate pair

Carbamate pair

CO2

Figure 1.6 Schematic to show how the addition of association sites leads to the formation of the 
expected reaction products for CO2 in an aqueous MEA solution: the bicarbonate pair (zwitterion) and 
carbamate pair. This association scheme was developed in [151] and [110].
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species (e.g. carbamate) with no overall charge; this is justified by the low dielectric 
constant of the aqueous alkanolamines of interest compared to water, which leads to 
strong ion pairing.

This simple treatment of the complex reactions underlying CO2 chemisorption can 
be used to predict the concentrations of carbamate and bicarbonate with remarkable 
accuracy for various CO2 loadings and temperatures [107, 110], despite the fact that no 
speciation data was used in model development. However, one must be careful when 
using a physical approach if the reaction products are chemically very different from the 
reactants as the monomeric segments and association sites in the aggregate species may 
interact differently. In the case of amines reacting with CO2 in water, the physical 
description appears to be a reasonable assumption as reaction products are not very 
different chemically and the reaction is fully reversible.

1.3.1.3 Comparison of Chemical and Physical Approaches
Most models developed to describe CO2 in solutions of aqueous amines follow a chemical‐
based approach to treat the reactions. Models based on chemical theory are generally more 
detailed than those based on physical theory and are usually more accurate. A state‐of‐the‐
art model for mixtures of CO2, water and MEA, for instance, is that of Zhang et al. [136], 
who modelled the relevant chemical equilibria explicitly by using the electrolyte NRTL 
model [135]. This model accounts for the long‐range ion–ion interactions and short‐range 
interactions between the nine major ionic and neutral species  present in solution. The 
model of Zhang et al. [136] provides an accurate representation of the VLE, heat capacity 
and speciation in CO H O MEA2 2  mixtures for a broad range of temperatures and pres‑
sures, and a good representation of the enthalpy of absorption at low temperatures and for 
loadings of up to 0.5 mol CO2 per mol of amine, with larger deviations observed at higher 
temperatures and/or higher loadings. Due to the high level of detail that is embedded in 
this chemical model, the representation of the behaviour of this well‐known solvent is 
more accurate than that achieved with a physical treatment using SAFT‐VR SW [152].

This level of accuracy comes at a high cost in terms of experimental effort, however, 
as different types of data must be acquired across a wide range of conditions for model 
parameterization. Relevant properties include pure component and mixture VLE data, 
heat capacities, excess enthalpies, enthalpies of absorption and NMR spectroscopic 
data. Furthermore, in developing a chemical model, the reaction scheme must be pos‑
tulated a priori and this becomes more challenging as the number of reactions increases 
since temperature‐dependent data is required to derive an expression for each equilib‑
rium constant. As a result of these data‐intensive requirements, there is currently no 
chemical approach that enables the prediction of the thermodynamics of mixtures of 
CO2 in solvents for which no data or very limited data are available. This reliance on 
extensive data sets presents a considerable hurdle to the application of a model‐based 
CAMD approach to the identification of new solvents.

On the other hand, physical models based on a SAFT EoS can be developed even with 
limited data (or even no data) and can then be used to predict thermodynamic proper‑
ties reliably, offering a way to compare the likely performance of different solvents. To 
develop a homonuclear model of a mixture of CO2, amine and H2O, a relatively small 
amount of data is required in terms of types of data and number of data points. Thus, it 
suffices to have equilibrium data on the concentrations of CO2, H2O and amine at a few 
temperatures and pressures, and no speciation data are required. This is a result of the 



1.3 Describing Chemical Equilibria with SAFT 21

temperature‐independence of the parameters in SAFT EoSs and of the fact that only 
three components (CO2, amine and H2O) need to be modelled. Thanks to their strong 
molecular basis, SAFT parameters that are highly transferable from compound to com‑
pound can often be obtained: for example, some of the association parameters in MEA 
can be derived from models of alkylamines and models of alkanols [151, 152], and other 
parameters can be transferred from one alkanolamine to another [110]. As a result, 
SAFT models for new solvents can typically be derived using very limited data sets. In 
the case of heteronuclear models, Chremos et al. [107, 153] have shown that the physi‑
cal approach can also be adopted successfully to model reactive systems within the 
SAFT‐γ SW group contribution framework. This paves the way for the modelling of 
many solvents and countless solvent blends can be considered without extensive 
 reliance on experimental data.

There is a clear synergy between physical SAFT‐based models that can provide an 
initial assessment of the capture potential of new solvents, and chemical models that 
can provide a detailed representation of the behaviour of the solvent once the necessary 
experimental data are available for model regression. While physical models can play an 
important role at the conceptual design stage, helping to focus the experimental effort 
on the most promising candidate molecules, chemical models can assist in the detailed 
design of CO2 capture processes. Owing to the explicit modelling of the reaction prod‑
ucts, reaction kinetics can easily be integrated with models based on chemical theory in 
order to calculate non‐equilibrium concentrations. Similarly, diffusion phenomena can 
be modelled more rigorously when all species are treated explicitly and the effect of 
ionic strength on mass transfer is taken into account. Thus, chemical approaches are 
invaluable in the development of the accurate process models that are needed for a full 
assessment of potential solvents. Since the development of accurate chemical models is 
well understood [136], we focus in the remainder of this section on the development of 
physical models of chemisorption thermodynamics.

1.3.2 Modelling Aqueous Mixtures of Amine Solvents and CO2

The first SAFT models of aqueous mixtures of amines and carbon dioxide were devel‑
oped by Button and Gubbins [154]. The original SAFT EoS [46, 47], in which molecules 
are described as chains of Lennard‐Jones segments, was used to predict the VLE of 
mixtures containing CO2 and MEA or DEA solutions. Four association sites were pro‑
posed to model CO2 to account for interactions occurring due to its strong quadrupole 
moment. Water was also modelled with four association sites, one for each hydrogen 
and one for each lone pair of electrons on the oxygen atom. To treat MEA, five associa‑
tion sites were proposed, with two sites of type e (one representing the set of two lone 
pairs on the OH group and one representing the lone pair on the NH2 group), and three 
sites of type H, to represent hydrogen bonding on the amino and hydroxyl groups of 
the molecules. The number of adjustable parameters used to define the molecular mod‑
els was limited by assuming that the cross‐association parameters between sites of 
types e and H were the same, regardless of whether they represent the bonding of the 
amino or hydroxyl groups. The number of adjustable parameters was also limited by 
taking cross‐association parameters (describing the energy and range of association) to be 
the geometric mean of the pure component association parameters. Thus, only a single 
temperature‐independent parameter needed to be estimated from phase‐equilibrium 
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data for the MEA H O2  and CO H O2 2  binary mixtures to determine the unlike dis‑
persion energy. The unlike dispersion energy between CO2 and MEA was taken as the 
geometric mean of the like pair values. Following this method, the liquid mole fractions 
in the ternary mixture were predicted with reasonable accuracy. However, small devia‑
tions in the liquid mole fractions lead to large deviations in the predicted CO2 loadings, 
which were therefore predicted with limited accuracy.

Mac Dowell et al. [152] developed models within the framework of SAFT‐VR SW [55, 
56] to describe the fluid‐phase behaviour of CO MEA H O2 2  mixtures. Both a sym‑
metric and an asymmetric association scheme for MEA were investigated. In the asym‑
metric model, the differences in association between the amine and hydroxyl functional 
groups are considered explicitly, whereas in a symmetric scheme these interactions are 
considered to be the same, as with the models proposed in [154]. The asymmetric 
model was found to provide a better description of the phase behaviour of mixtures 
than the symmetric model, especially in the description of the phase behaviour of 
MEA CO2 and of ternary mixtures of CO MEA H O2 2 . The transferability of param‑
eters in SAFT was exploited. For example, the unlike hydrogen‐bonding interactions 
between MEA and H2O were obtained from separate studies of aqueous solutions of 
ethanol and ethylamine.

A similar physical treatment of the reactions (see Section 1.3) was also successfully 
employed in subsequent work to model the phase behaviour of mixtures of CO2 and 
water with alkylamines [151] within the SAFT‐VR SW framework, including ammonia, 
NH3, and n‐alkylamines up to n‐hexylamine (CH3NH2 to n‐C6H13NH2). The reactions 
between CO2 and the amines were modelled by incorporating an association site on the 
CO2 molecule which interacts with the electron site on the NH3 and n‐alkylamine mol‑
ecules. The parameters describing the interaction between CO2 and NH3 were obtained 
by comparison to experimental data for the NH H O CO3 2 2 ternary mixture. These 
were then transferred to the other n‐alkylamines. The phase behaviour of ternary mix‑
tures of CO2 + n‐propylamine + H2O, CO2 + n‐butylamine +H2O and CO2 + n‐hexylamine 
+ H2O was then predicted. The ternary phase diagram for n‐hexylamine+CO H O2 2  
revealed the existence of separate regions of vapour–liquid and liquid–liquid coexist‑
ence. The demixing of the absorbent could have some promising advantages, e.g. the 
reduction in the energy penalty associated with solvent regeneration due to the reduced 
volume of the charged organic‐rich phase. If the solution demixes into two liquid phases 
upon heating, an amine‐rich phase with a high concentration of CO2 and a water‐rich 
phase with a low concentration of CO2, only the CO2‐rich phase needs to be sent to the 
stripper [155]. Several experimental studies have been conducted to identify amine sol‑
vents with these phase characteristics (e.g. [156–159]). n‐hexylamine was identified as 
a promising thermomorphic biphasic solvent [157–159] due to a liquid–liquid phase 
separation (LLPS), as predicted in [151], upon heating. The fact that Mac Dowell et al. 
[151] were able to anticipate the occurrence of a phase split illustrates the significant 
advantage of using a predictive thermodynamic model to identify promising CO2 cap‑
ture solvents.

The approach proposed in [151] was extended further in [110] to include different 
multi‐functional amine solvents, such as diethanolamine (DEA), methyldiethanolamine 
(MDEA) and 2‐amino‐2‐methyl‐1‐propanol (AMP). Extensive use was made of param‑
eter transferability in developing the models, with the aim to minimize reliance on VLE 
data. A good description of the vapour pressures and liquid densities of the binary and 
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ternary mixtures was obtained. Speciation, as derived from the fractions of association 
sites α1 and α2 bonded on the CO2 molecules, was successfully predicted for the 
MEA CO H O2 2  mixture.

Given the promising results obtained by transferring parameters from one homonu‑
clear model to another, an initial investigation of the effectiveness of the SAFT‐γ SW 
group contribution EoS was undertaken by Chremos et al. [107], developing models for 
the groups required to represent several primary alkanolamines (e.g. MEA and MPA), 
and models for a broader range of amines was developed in [153]. This work represents 
the first treatment of the chemical reaction equilibria involved in CO2 capture within a 
group‐contribution framework. In [107], an asymmetric association scheme was used 
to treat chemical reactions. To model ternary CO H O primary2 2  alkanolamine mix‑
tures, a small set of functional groups was considered: CO2, H2O, CH2, CH3, NH2CH2 
and CH2OH. Group parameters were developed based on data for pure alkylamines and 
alkanolamines, and mixture data where available. Thanks to the transferability of 
groups, this set of parameters was sufficient to describe any primary alkanolamine with 
an alkyl chain length of three or more carbons (from monopropanolamine onwards). 
The predicted solubility of CO2 in aqueous MPA solution is in good agreement with 
experimental data, as illustrated in Figure 1.7. The predictive capabilities of the approach 
were also demonstrated for the absorption of CO2 in aqueous solutions of alkanola‑
mines (5‐amino‐1‐pentanol and 6‐amino‐1‐hexanol), which were not considered in the 
parameter estimation. The scarce data available were predicted with good accuracy.

The concept of second‐order groups [95–97] was adopted in [107] to treat MEA due 
to the importance of proximity effects in this molecule. The CH2 groups present in the 
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Figure 1.7 Solubility of CO2 in a 30 wt% MPA aqueous solution at T = 313.15 K (× ×), and 393.15 K (+ +) 
as a function of the partial pressure of CO2 at vapour–liquid equilibrium for the ternary mixture of 
MPA + H2O + CO2. The solubility is represented as CO2 loading, CO2

, defined as the number of moles of 
CO2 absorbed in the liquid phase per mole of amine in the liquid. The symbols correspond to the 
experimental data [160] and the curves correspond to the SAFT‐γ SW calculations. This figure has 
been reproduced from [107].
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molecule are polarized due to the proximity of the NH2 and OH groups. As a result, the 
model for MEA included the second‐order CH2NH2[CH2OH] group, which denotes a 
CH2NH2 group that is covalently bonded to a CH2OH group. The parameters describ‑
ing the unlike interactions between CH2NH2[CH2OH], H2O and CO2 were re‐evaluated 
by using experimental mixture data, keeping all other interaction parameters the same 
as the CH2NH2 group. An improved description of the MEA H O2  system was then 
obtained, and the phase behaviour of the CO H O MEA2 2  mixture was described 
with good accuracy. In addition, the concentrations of bicarbonate and carbamate were 
predicted accurately for this reactive mixture at different temperatures, as shown in 
Figure 1.8. The predictive capabilities of SAFT‐γ were further illustrated by calculating 
the solubility of CO2 in a quaternary H O CO MEA MPA2 2  mixture, which can be 
carried out without the specification of additional parameters.

1.4 Integrated Computer‐aided Molecular and Process 
Design using SAFT

The SAFT thermodynamic platform described in Sections 1.2 and 1.3 has been success‑
fully employed to design solvents for carbon capture. It can be used to predict the 
behaviour of fluid mixtures as a function of operating conditions, and is hence amena‑
ble to exploring interactions between molecular (solvent) choices and process variables. 
In this section, we present the CAMPD problem in greater detail and discuss some 
methodologies for solvent design that embed the SAFT EoSs.
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Figure 1.8 Predicted mole fraction, x, of carbamate and bicarbonate in the liquid phase of a 30 wt% 
MEA aqueous solution at T = 313.15 K (circles) and 333.15 K (squares) at vapour–liquid equilibrium for 
the ternary mixture of MEA + H2O + CO2 as a function of the CO2 loading, CO2

, defined as the number 
of moles of CO2 absorbed in the liquid phase per mole of amine in the liquid. The symbols correspond 
to the experimental data [161,162] with open symbols corresponding to carbamate and filled symbols 
to bicarbonate. The curves correspond to the SAFT‐γ SW predictions; continuous curves for 313.15 K 
and dot‐dashed curves for 333.15 K. This figure has been reproduced from [107].
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The CAMPD problem is given by
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where u X 

c is a vector of continuous process (design) variables and n N 

m 
is a vector of continuous variables that represent the number of groups of each type in 
the molecule. y is a q‐dimensional vector of binary variables. f : X  is the process 
objective. gp is a set of process and property constraints, g represents process con‑
straints, Cy d represents molecular feasibility constraints (such as the octet rule [15] 
and n Dy 0 is a set of constraints that ensures that n take on integer values only. 
(uL, nL) and (uU, nU) are lower and upper bounds on the continuous design variables, 
respectively.

1.4.1 CAMPD of Physical Absorption Systems

The solution of the CAMPD problem (P), in the context of carbon capture via absorp‑
tion, yields the optimal solvent structure and operating conditions of the process. 
A realistic process must include both the absorption of CO2 and regeneration and 
subsequent recycle of the solvent. As an example we consider a simple process 
flowsheet for the physical absorption of carbon dioxide from high pressure natural 
gas, as shown in Figure 1.9. The feed enters at the bottom of the absorber (with N 
stages) at a temperature TF and a vapour composition xF

V. The clean natural gas exits 
at the top of the absorber. A solvent stream is contacted with the gas stream, with the 
clean solvent entering the absorber at the top and the loaded solvent leaving from the 
bottom stage. In this pressure‐driven process, the spent solvent is regenerated at a 
lower pressure in a flash drum. The recycled solvent is mixed with fresh solvent to 
make up for solvent losses.

Problem (P), which involves both continuous and integer decisions, belongs to 
the class of mixed integer non‐linear problems (MINLP). As with other MINLPs, the 
discrete decisions lead to a combinatorial explosion of the solution space [163]. 
Furthermore, for any given combination of the binary variables, the solution of the 
resulting non‐linear problem (NLP) can be very challenging. As the process and ther‑
modynamic models consist of a large number of coupled non‐linear equations, its solu‑
tion requires a good initial guess. Incompatible combinations of process and molecular 
variables can also result in numerical failure. For example, the evaluation of the absorber 
model may fail if, for the solvent under consideration, there are conditions within the 
process design space at which only one phase is present. Finally, the non‐convexity of 
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the feasible space is yet another challenge in converging to the optimal solution. To 
overcome some of these challenges, several strategies have been adopted to solve the 
CAMPD problem for carbon capture.

Pereira et al. [25] solved a simplified version of the CAMPD problem arising from the 
absorption of CO2 from a methane stream by a reformulation into a continuous optimi‑
zation problem, which was made possible by restricting the solvent design space to 
mixtures of n‐alkanes. The required thermophysical properties were obtained by apply‑
ing the principle of congruence within the homologous family of alkanes, and adopting 
a SAFT‐VR SW model of n‐alkanes using the chain length [44], and transferable param‑
eters to model their mixtures with CO2 and methane (cf. Section 1.2.4). The average 
chain length of the alkanes in the solvent blend was represented by a continuous variable, 
nC, that could be directly related to SAFT parameters, thereby removing the need for 
binary variables. The results of this study suggest that the optimal n‐alkanes in the 
blend and the optimal process conditions vary with the concentration of CO2 in the 
feed. The results indicated that process and molecular level decisions interact strongly, 
and that the optimal molecule is sensitive to both process specifications (inputs) and 
process variables. This was further confirmed by studying a modified flowsheet that 
includes an additional heat exchanger [164]. While this investigation showed that the 
SAFT‐VR EoSs can be used for the design of a blend of solvents, searching within a 
homologous series is restrictive and the extension of this approach to a broader range 
of solvents requires tackling the integer nature of the problem.

Another approach to solving the CAMPD MINLP, the continuous molecular target‑
ing CAMD (CoMT‐CAMD) approach, was proposed in [17]. The separation of carbon 
dioxide from hydrogen and water was studied. In the first step of the study, the param‑
eters of a hypothetical optimal solvent p* and the corresponding process variables that 
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Figure 1.9 A simple flowsheet for a carbon‐capture process.
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optimize the process objective were determined. The hypothetical solvent p* was rep‑
resented in terms of the continuous parameters of the homonuclear PC‐SAFT EoS [58], 
rather than via its molecular structure, so that an NLP was obtained. In the second 
stage, solvents in a database were examined to find the solvent with parameters p that 
is closest to p*. This solvent is expected to exhibit a similar performance in the process 
as the hypothetical solvent. In more recent work [27], the second stage was replaced by 
an integer optimization problem to find n by setting the vector p equal to ni ii p , 
where pi represents the parameters of group i in the GPC‐SAFT equation [102], the 
group contribution version of the PC‐SAFT EoS. The two‐stage approach circumvents 
the solution of the highly nonlinear MINLP (P). However, the combination of parame‑
ters p* is not necessarily attainable by a real solvent that obeys molecular feasibility 
constraints. Furthermore, the use of group parameters to form molecular parameters 
results in an averaging of group properties and the need for unlike molecular parame‑
ters which has been found to be less accurate than a heteronuclear GC version of 
SAFT [102].

With a view to maintain a tight integration between the molecular and process design 
problems, Burger et al. [26] developed a two‐stage hierarchical optimization methodol‑
ogy, HiOpt, in their CAMPD study of the removal of CO2 from a high‐pressure meth‑
ane stream, based on the flowsheet shown in Figure 1.9. Hierarchical optimization is an 
approach in which models of increasing complexity are developed and optimized for 
the solution of challenging optimization problems. In the first step, a reduced, or sim‑
plified, process model was constructed assuming isothermal operation, an absorber 
with an infinite number of theoretical stages, no solvent losses from the absorber, an 
ideal vapour phase in the flash drum, and 100% recovery of any CO2 and methane in the 
loaded solvent in the vapour stream leaving the flash drum. A mixed‐integer multi‐
objective optimization (MOO) problem was solved to minimize the solvent flowrate 
and solvent losses, while maximizing the treated gas flowrate. The decision variables 
included a reduced set of degrees of freedom for the process and discrete variables y, 
representing the structure of the solvent. Points lying on the Pareto front of the MOO 
problem were used as initial guesses for the optimization of the full MINLP CAMPD 
problem (P). The identification of these starting facilitates convergence of the MINLP 
solver to a solution. The authors used the heteronuclear SAFT‐γ Mie equation of state 
[34] for property prediction. The solvent search space comprised of the families of 
 linear n‐alkanes and linear ethers with various numbers of ether groups (requiring the 
groups CH3, CH2, cO, eO, as described in Section 1.2.4). Penta(oxymethylene)dimethyl 
ether was identified as an optimal solvent [26]. The optimal process conditions using 
this solvent are shown in the last row of Table 1.3.

A comparison between two cases with different solvent design spaces is shown in 
Table 1.3. The objective to be maximized in both cases is the net present value of the 
process, NPV, in billion USD. It may be seen that in the work of Pereira et al. [25], 
where the solvent design space was restricted to blends of n‐alkanes, the NPV was 22% 
lower, than in the work of Burger et al. [26] even though the concentration of CO2 in 
the feed to be separated, xF

V
CO2

, is lower and therefore the separation to achieve the same 
purity of 3 mol% of CO2 in the clean gas stream is less demanding. This clearly high‑
lights the important role of the solvent in determining process performance, as the 
expansion of the design space to include linear alkylethers results in a significant 
improvement in the NPV.
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1.4.2 CAMPD of Chemical Absorption Systems

The use of optimization techniques to design solvents has not been restricted to 
physical absorption systems alone. CAMPD systems for chemisorption have been 
made possible due to the development of group‐contribution methods capable of 
assessing combined physical and chemical equilibrium of systems of reactive solvents 
and CO2.

As has been discussed in Section 1.3.2, the use of physical association to describe the 
phase and chemical equilibrium at the heart of chemisorption paves the way for solvent 
design by making it possible to construct predictive thermodynamic models of reactive 
mixtures. The suitability of such models to provide a rapid and early assessment of 
absorption performance based on a process model has recently been demonstrated 
through an extensive comparison of predicted and pilot‐plant data for an absorber 
using monoethanolamine solutions [165]. Two modelling strategies were investigated: 
one in which no pilot‐plant data is used, and one in which one set of data from one 
pilot‐plant run is used to fit one model parameter related to mass transfer. It was found 
that in the absence of data, the proposed approach provides a useful bound on achiev‑
able process performance, while quantitative agreement between pilot‐plant data and 
predicted absorption profiles can be obtained by extrapolating from a single pilot‐plan 
run. Typical results from such an approach are illustrated in Figure 1.10. This indicates 
that physical absorption models based on the SAFT EoSs are a valuable tool to guide the 
identification of promising solvents prior to experimentation.

In a first integrated design strategy employing such models, multi‐functional amine 
solvents have been designed by developing a three‐step methodology [29]. Novel sol‑
vent structures and existing amine solvents were screened in a first step. The solutions 
of a MOO problem, along with database screening, were used to identify solvents with 
favourable thermodynamic, reactivity and sustainability characteristics. Computationally 
simple group‐contribution models were used to predict the properties of pure solvent 
candidates in the first step. In the second step, high‐performing molecules were further 
screened based on their VLE behaviour, which was predicted using the SAFT‐VR SW 
and SAFT‐γ SW EoSs for mixtures of CO2, water and amines as discussed in Section 1.3.2. 
Finally, the performance of selected solvents was evaluated through simulations of pro‑
cess flowsheets of various configurations. The results of the study showed that both the 
solvent structure and the process flowsheet configuration can have a huge impact on 
the cost and energy requirements of the carbon‐capture system. For instance, a carbon‐
capture flow sheet where a portion of the solvent stream was cooled between absorber 
stages, reduced the energy demand of the process to less than 80% of its value without 
cooling.

Table 1.3 Comparison of CAMPD results using a solvent design space of a blend of alkanes and ethers 
and alkanes. Two different values of the feed mole fraction of CO2, xF

V
CO2

, were used. The optimal values 
of the absorber, Pabs, the solvent flowrate, Fsol, and the net present value, NPV, are reported.

Ref. xF
V
CO2

Solvent design space Pabs/MPa Fsol
1kmol s/ NPV/109 USD

[25] 0.10 alkane blends 3 1.78 1.342
[26] 0.20 ethers + alkanes 3.84 0.84 1.721
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1.5 Conclusions

The applicability of molecular systems engineering concepts to CO2 capture has been 
discussed in this chapter. Molecular systems engineering, through its combination of 
molecular‐based predictive models and computer‐aided molecular and process design, 
offers the potential to design improved solvents in order to guide experimental investi‑
gations. It helps to reduce the time and investment needed to arrive at improved pro‑
cesses. The development of EoSs rooted in formal molecular theories, their extension to 
describe reaction equilibria, and the development of solution methodologies for the 
integrated solvent and process design problem all play an important role in realizing 
this potential.
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Figure 1.10 Comparison of the pilot‐plant data (circles) for the chemisorption of CO2 in aqueous 
monoethanolamine from Run T13 in [166] and predicted results using a SAFT‐VR SW thermodynamic 
model (curves) for Run T13. The dashed curves represent the results obtained without any use of 
pilot‐plant data in model development and the continuous curves the results obtained by fitting one 
model parameter to one run (Run T22). (a) Temperature profile for the liquid phase, (b) gas‐phase CO2 
concentration profile, and (c) liquid‐phase CO2 loading. Stage 50 corresponds to the bottom of the 
column. Figure reproduced from [165].
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Recent advances in the SAFT equations of state, in particular the development of a 
group‐contribution framework, have put the reliable prediction of a wide range of ther‑
modynamic properties for novel solvents and their mixtures within reach. Of interest in 
physical absorption, the prediction of the dependence on temperature, pressure and 
composition of the fluid‐phase equilibria of mixtures containing CO2, alkanes and 
potential solvents has become feasible in the absence of experimental data, even under 
conditions of high pressure and/or high CO2 concentrations. The use of the Mie poten‑
tial in the SAFT‐γ Mie equation ensures that a thermodynamically consistent model is 
available to obtain the thermodynamic properties relevant to process design to a good 
level of quantitative accuracy. In the context of chemical absorption, the physical 
approach to association embedded within the SAFT framework provides an advanta‑
geous platform for the prediction of the phase and chemical equilibria of mixtures of 
CO2, amines and water. As with models that account for phase equilibria only, the ther‑
modynamic behaviour of mixtures containing novel molecules can be predicted by 
using the SAFT‐γ SW equation of state. These models thus enable the solution of 
CAMPD problems involving the processing of CO2. This approach is the foundation of 
a molecular systems engineering of carbon‐capture systems and new groups and their 
parameters are currently being developed [45, 107, 114, 167], so that an increasingly 
wide range of structures can be described within the SAFT framework.

In tandem with these developments, several promising methodologies have been put 
forward to solve CAMPD problems that span larger and larger search spaces. Different 
approaches to problem decomposition have been proposed, resulting either in the 
approximate solution of the CAMPD problem [25, 27, 29, 164], or in the generation of 
starting points that facilitate convergence to the full solution [26]. These approaches 
have led to the identification of promising solvents for physical absorption and for 
chemical absorption of CO2 capture. The HiOpt approach [26] makes it possible to 
tackle the non‐linearity of the MINLP problem to achieve convergence in a larger sol‑
vent design space, but more powerful algorithms may be required to design solvents 
from larger search spaces, to deal with more complex flowsheets and to design solvent 
blends. The reliable solution of optimization problems that integrate choices of solvent 
structure, solvent blend‐composition, process variables and topology, while employing 
molecular‐based thermodynamic models, remains an exciting challenge in molecular 
systems engineering.
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