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Wind energy is playing an increasingly vital role in the efforts to decarbonise European 
and international energy systems. Power grids have seen a strong increase in wind 
power penetration, enhanced through the development of very large offshore wind 
farms consisting of hundreds of multi‐MW wind turbines. To optimally exploit these 
very valuable assets, all aspects of the design, operations and maintenance will need to 
be tightly integrated, and the strategies and algorithms required to achieve optimality 
will need to be developed.

Since its creation back in 2009, I have followed NOWITECH activities and given 
advice on its direction through my participation in its Scientific Committee. 
NOWITECH facilitated an intense cooperation between outstanding researchers 
(postgraduate students and academics) and strategic industry partners maintaining at 
all times a strong connectivity with research organisations and programmes in Norway 
and internationally.

Being an international precompetitive research cooperation with the required depth 
of experience and breadth of expertise on offshore wind technology, NOWITECH was 
ideally placed to successfully conduct innovative research on all relevant aspects of 
offshore wind technology aiming to maximise energy production, minimise downtime, 
reduce operational and maintenance costs and extend lifetime. This book presents 
first‐class material on some of these aspects.

It gives me great pleasure to write the Foreword for this timely book. I am confident 
it will be of great value to students, practising engineers and the offshore wind industry 
as a whole.

Peter Hauge Madsen
Head of Department

DTU Department of Wind Energy
Technical University of Denmark
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The motivation for this book is the rapid growth of offshore wind energy systems and 
the implications this has on power system operation, control and protection. 
Developments on wind turbine technology and power electronic converters along with 
new control approaches have enabled offshore wind energy systems performance to be 
improved. The authors identified the need for a book that covers up‐to‐date issues on 
this dynamic topic. This reference book is based on research material developed by the 
Norwegian Research Centre for Offshore Wind Technology (NOWITECH)1 and teach-
ing material developed by the authors over the last 20 years. It is useful to final year 
undergraduate and postgraduate students, and also practising engineers and scientists 
in the offshore wind industry. The book addresses offshore wind farm electric design, 
substructure and foundation design, operation and maintenance modelling, turbine 
and park control, offshore transmission and power system integration.

The book is organized into eleven chapters. In Chapter 1 the reader is presented with 
a brief overview on offshore wind developments and further introduced to the topics of 
the book. Chapter 2 provides a general description on the various topologies of wind 
turbine generators, main components and capacity sizes. Enhanced power electronic 
converters for wind turbine generators are also presented. A thorough review of model-
ling and analysis of drivetrains in offshore wind turbines are presented in Chapter 3 
while support structures for offshore wind turbines, that is substructures and founda-
tion, are covered in Chapter 4, which also provides a classification of wind turbine sub-
structure based on water depth covering both bottom‐fixed and floating support 
structures. Chapter 5 addresses the problem of controlling large bottom‐fixed offshore 
wind turbines. In order to make the material broadly accessible, we stick to relatively 
simple control algorithms and focus on the interplay between the controls and the 
dynamic response of the wind turbine. Alternative electrical designs of an offshore wind 
farm are presented in Chapter 6, covering topologies and protection aspects. Chapter 7 
provides an overview of, and a brief introduction to, operation and maintenance (O&M) 
modelling for offshore wind farms, including transportation and logistics for O&M. 

1 NOWITECH’s objective is international precompetitive (2009–2017) research cooperation on offshore 
wind technology established as part of the Norwegian Centres for Environment-friendly Energy Research 
(FME) scheme and cofinanced by the Research Council of Norway, industry and research partners. 
NOWITECH is hosted by SINTEF Energi AS with SINTEF Ocean, SINTEF Stiftelsen, Norwegian 
University of Science and Technology (NTNU) and Institute for Energy Technology (IFE) as research 
partners (www.nowitech.no).
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The main focus of the chapter is on strategic O&M modelling. Chapter 8 describes the 
main objectives of supervisory control, namely: maximize energy production; minimize 
fluctuating loads; provide ancillary services; handle faults; and global optimization, 
including enhanced control to reduce O&M costs. The design of enhanced controls to 
achieve these objectives is explained, including modelling‐related issues. The connec-
tion to shore is addressed in Chapter 9, which presents the various technologies cur-
rently used by industry. The chapter discusses AC transmission, VSC‐HVDC and gives 
an overview of low‐frequency AC transmission (LFAC). Chapter 10 discusses aspects of 
operation and control of power systems with high penetration of wind power and 
explores the possibilities for offshore wind power plants to provide power system oper-
ation support. Chapter 11 presents economics, regulatory and policy issues related to 
offshore wind power developments.

The authors would like to thank the following authors for their contributions to this 
book: Dr Amir Rasekhi Nejad (Chapter 3 in full), Dr Erin E. Bachynski (Chapter 4 in 
full), Dr David Campos‐Gaona (main parts of Chapter 6), Morten D. Pedersen (contri-
bution to Chapter 5) and Dr Thomas Michael Welte, Dr Iver Bakken Sperstad, Dr Elin 
Espeland Halvorsen‐Weare, Dr Øyvind Netland, Dr Lars Magne Nonås and Dr Magnus 
Stålhane (Chapter 7).

Olimpo Anaya‐Lara
John O. Tande

Kjetil Uhlen
Karl Merz
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Development of offshore wind energy is a great scientific and engineering challenge. 
It involves multiple disciplines, thus this textbook aims to contribute by giving concise 
information on design of offshore wind farms, addressing technology and power system 
integration. One chapter is devoted to operation and maintenance modelling. Other 
aspects, such as met‐ocean conditions, soil, spatial planning, impact on the environment 
and so on, are not part of this textbook. This chapter open by describing the historic 
development of offshore wind energy (Section  1.1) and continues by introducing 
the  topics being addressed in this textbook (Section  1.2). Thereafter, follows a brief 
section on cost of energy calculations (Section 1.3) before the chapter is concluded with 
considerations on the future development of offshore wind energy (Section 1.4).

1.1  Development of Offshore Wind Energy

The argument for the development of offshore wind energy is generally for providing 
clean energy without any emissions of carbon dioxide (CO2) or other greenhouse gasses 
and, in this way, battling climate change. Offshore wind development contributes to 
long‐term security of supply as a domestic renewable resource, rather than import or 
exhausting limited fossil fuel reserves, and can be a means of boosting industry activity 
with supplies for construction and operation. Many large cities are located close to the 
sea, hence offshore wind farms can be built in proximity to them. This can be attractive 
as an alternative to long transmission lines or deploying power plants on land close to 
large cites with high property values. The wind resource is generally much greater 
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 offshore than over land, and offshore wind farms can be built with very low negative 
environmental impact (WWF, 2014).

As can be concluded from the above, there are clearly many good reasons to develop 
offshore wind energy. But, as for any new source of energy, the market and technology 
needs to be matured before it can compete without any support. The technology must 
be proven with a professional supply chain, and developers must be able to carry out 
offshore wind farm projects with low risk and deliver energy at competitive cost.

The first offshore wind turbine was a 220 kW turbine installed about 250 m from 
shore at 6 m water depth outside Nogersund in southern Sweden in 1990. The year 
after, in 1991, the first offshore wind farm was installed. This was Vindeby, compris-
ing eleven 450 kW turbines about 1 km from shore at 2–4 m water depth outside 
Lolland in Denmark. These early developments may seem small compared to the state 
of the industry today but were utterly bold and pushed the limits at their time. They 
demonstrated offshore wind energy to be viable and that challenges related to instal-
lation and operation of wind turbines offshore could be overcome. The development 
of offshore wind energy continued to be slow, however, and it was not before the turn 
of the century that development started to gain real momentum (Figure 1.1). In this 
period (2000–2015) the typical size of offshore wind farms increased from tens of 
MW to hundreds of MW, and wind farms were built further from shore and in deeper 
waters. By the end of 2015, the accumulated installed offshore wind capacity was 12.1 
GW, distributed in 14 countries, with the United Kingdom top of the list with 5.1 GW, 
followed by Germany (3.3 GW), Denmark (1.3 GW) and China (1.0 GW) (Table 1.1).

Almost all wind capacity built in the period (Table 1.1) was bottom fixed, with the 
exception of projects in Norway (Hywind, 2.3 MW, 2009), Portugal (WindFloat, 2 MW, 
2011) and Japan (Fukushima 2 MW, 2013), which apply floating wind turbines to  harness 
the rich wind resources in deep sea regions. These installations represent a new bold 
development in offshore wind energy and tens of projects are in preparation to bring 
the technology forward. For example, in Japan the Fukushima project was expanded, in 
2016, with installation of two more floating turbines, rated 5 and 7 MW, and Statoil is 
continuing development of the Hywind concept, installing six 5‐MW units comprising 
a 30‐MW floating wind farm in Scottish water to be completed in 2017 (Figure 1.2).
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Figure 1.1 Global accumulated offshore wind capacity since 2000. Source: Data from Nikolaos 2004, 
McCarthy 2013 and GWEC 2016.
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The largest offshore wind farm built up to 2015 was the London Array that was 
 completed in 2013. It has an installed capacity of 630 MW, consisting of 175 turbines 
each rated 3.6 MW. The wind farm is located about 20 km offshore with an area of about 
100 km2 at water depths up to 25 m in the outer Thames estuary, UK. In 2015 the wind 
farm produced about 2.5 TWh (London Array, 2016), that is corresponding to a 
capacity factor1 of 45% or almost 4000 full load hours.2 In comparison, wind farms on 
land are generally exposed to less favourable wind resources and, therefore, achieve 
lower generation. For example, the International Renewable Energy Agency (IRENA, 
2016) reports that the global average capacity factor for onshore wind was 27 % in 2015, 
that is corresponding to 2365 full load hours.

The energy from offshore wind farms can replace generation based on fossil fuel, 
hence reduce emissions of CO2 by some 300–700 g CO2 per kWh wind generation, that 
is about 300 g/kWh for replacing natural gas and about 700 g/kWh for replacing coal 
fired power plants. Indeed, the actual savings will depend on how the power system is 
operated together with the wind farm. For the London Array (Figure 1.3), on average, 
yearly savings are assumed to be 925 000 tonnes of CO2 based on 420 g/kWh and a wind 
farm capacity factor of 39%, or, to put this in perspective, savings equal to the emissions 
of 289 000 passenger cars (London Array Limited, 2016).

1 The capacity factor is a normalized measure of the generation defined as the ratio between the annual 

average generation and the installed capacity: C E
PF

r
100

8760
Here, CF is the capacity factor (%), E is the annual generation and Pr is the installed capacity.
2 Full load hours (FLH) is another normalized measure of the generation. It is defined as the ratio between 
the annual generation and the installed capacity: FLH E

Pr
Here, FLH is the full load hours (h), E is the annual generation and Pr is the installed capacity.

Table 1.1 Installed offshore wind capacity by the end of 2015. Data from GWEC (2016).

Country Capacity (MW)

UK 5067
Germany 3295
Denmark 1271
PR China 1015
Belgium 712
The Netherlands 427
Sweden 202
Japan 53
Finland 26
Ireland 25
South Korea 5
Spain 5
Norway 2
Portugal 2
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Figure 1.3 The London Array 630‐MW offshore wind farm in operation in the outer Thames estuary. 
The wind farm spans about 100 km2 and includes 175 turbines each rated 3.6 MW installed in waters 
up to 25 m deep (London Array Limited, 2016). Source: London Array Limited.

Figure 1.2 Illustration of the Hywind Scotland 30‐MW floating wind farm scheduled to be in 
operation by late 2017 about 25 km offshore from Peterhead. The turbines are each rated 6 MW and 
the water depth is 95–120 m (Statoil, 2015). Source: Reproduced with permission of Statoil.
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1.2  Offshore Wind Technology

The significant elements of an offshore wind farm are (i) the wind turbines themselves, 
(ii) their substructure and foundation, (iii) the internal collection grid, (iv) the substation 
and (v) the transmission to shore (Figure 1.4).

Offshore wind turbines are typically quite similar to land‐based turbines but with 
greater rating and adapted to the marine environment. The largest turbines (2016) are 
8 MW with 180 m rotor diameter (Campbell, 2016). Chapter 2 gives more details on 
turbine technology with emphasis on the electrical design, while Chapter 3 addresses 
the mechanical drivetrain.

In shallow water (up to 40–60 m), monopiles or other bottom‐fixed structures are 
commonly used, whereas in deeper water floating support structures are generally 
thought to be a better option. Chapter 4 gives more details on support structures, both 
bottom‐fixed and floating.

Modern wind turbines include advanced control systems that provides for autono-
mous and safe operation generally aiming to maximize the energy output at all times, 
though respecting constraints that may be set by the wind farm Supervisory Control 
and Data Acquisition (SCADA) system. Turbine control systems are elaborated in 
Chapter 5, while wind farm control is described in Chapter 8.

The internal grid, substation and transmission to shore can have alternative configu-
rations depending on the size of the wind farm and distance to shore. The internal grid 
is commonly operated with alternating current (AC) at about 33 kV, though 66 kV 
 solutions are emerging for connecting larger turbines. The design should be carefully 
assessed, including application of broadband models of the electrical system to accu-
rately calculate switching transients and high frequency resonance phenomena 
(Gustavsen et. al., 2011). Alternative internal grid design with direct current (DC) 

Transmission
to shore

Collection
grid

Substation Wind turbines with monopile foundation

Figure 1.4 The main elements of an offshore wind farm. (Not to scale, for illustration only.) The 
turbines are normally installed 5–10 rotor diameters apart. Graphic by Tande, SINTEF.
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collection systems have been proposed, though so far such systems have not been 
implemented in any commercial offshore wind farm (Chapter 6). The internal grid is 
coupled to one or more offshore substations that are connected to the transmission 
network. The substation normally includes a transformer that brings the voltage up to 
transmission level, for example 150 kV. If the distance to shore is short and the wind 
farm has limited capacity, transmission by high voltage alternating current (HVAC) is 
the normal option. Often it is suggested that if the wind farm is more than 100 km from 
shore and rated above 200 MW, high voltage direct current (HVDC) may be the pre-
ferred option. This requires, however, application of a HVDC converter station offshore 
and on land. These represent quite significant investments, thus industry has recently 
shown interest in also applying HVAC for longer distances and higher capacities. 
Studies conducted as part of NOWITECH give evidence that losses in HVAC may be 
reduced by operating the HVAC cable at a variable voltage below rated, thus stretching 
the limits in terms of distance and capacity of HVAC transmission (Gustavsen and Mo, 
2016). Chapter 9 gives more detail on alternative transmission technologies and substa-
tion configuration.

Operation and maintenance (O&M) of wind farms are significantly more challenging 
offshore than onshore. Getting service personnel on‐board offshore wind turbines is 
not trivial, and the same goes for equipment and spare parts. While various options can 
be applied to secure efficient O&M, it is not straightforward to select the best one. 
Chapter 7 elaborates on this, presenting an O&M simulation model and a model for 
O&M vessel fleet optimization.

Chapters 10 and 11 consider how offshore wind farms interact with the power sys-
tem. Chapter 10 starts with an introduction to power system operation and control, and 
the connection requirements for generators in an interconnected power grid. Thereafter, 
the possibilities for offshore wind power plants to provide power system operation sup-
port are elaborated. Chapter 11 discusses the economics of offshore wind power in view 
of the relevant electricity markets and regulatory and policy issues related to incentive 
schemes for offshore wind development.

1.3  Levelized Cost of Energy

Offshore wind farms need to be designed to be safe, reliable, comply with grid and 
environmental requirements and give high energy output. An optimized design can be 
said to achieve this at minimum cost per kWh produced over the lifetime of the wind 
farm. It is, therefore, useful for anyone engaged in design of offshore wind farms to 
understand the basic concept for calculating cost of energy. As an example, say that it is 
found that by expanding the space between the turbines in an offshore wind farm some 
additional energy output can be gained. But this also means additional cost to pay for 
longer cables between the turbines. So, is it a good idea or not? This can be answered in 
economic terms by comparing the cost of energy for both cases.

The levelized cost of energy (LCOE) is the most commonly used metric to describe 
the cost of electric energy from power plants. It gives the average cost of production of 
one unit (kWh) levelized over the lifetime of the power plant. The total energy output 
and the total costs over the lifetime of the plant are both discounted to the start of 
operation by means of the chosen discount rate, and the LCOE is derived as the ratio of 
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the discounted total cost and energy output. For offshore wind energy, the LCOE can be 
calculated according to Equation 1.1, based on (IRENA, 2016):
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Here, LCOE is the average lifetime levelized cost of electricity generation, It is the 
investment expenditures in the year t, Mt is the operations and maintenance expendi-
tures in the year t, Et is the electricity generation in the year t, r is the discount rate and 
n is the lifetime of the offshore wind farm.

By definition, if the LCOE of a project is equal to the average lifetime selling price of 
electricity from the project, the investment gives a return equal to the discount rate. A 
higher electricity price means higher profit, whereas an electricity price lower than the 
LCOE would mean less return on the investment or possibly a loss.

The level of detail for describing the expenditures, It and Mt, and the electricity gen-
eration, Et, depends on the scope of the analysis. The elements shown in Figure 1.5 are 
included in the LCOE calculation (IRENA, 2016). The lifetime n of an offshore wind 
farm is typically assumed being 25 years, although, for financial decisions, often a 
shorter time is required for return on investment. The discount rate, r, should generally 
reflect the cost of capital and vary from market to market and over time, also depending 
on the perceived risk of the project. Typically, discount rates are assumed in the range 
of 5–10% in LCOE studies.

The LCOE of offshore wind farms put in operation in the period 2010–2015 are 
shown in Figure 1.6. It can be seen that there is a significant spread in cost between the 
projects, which is typical for market and technologies in their infancy. Projections for 
future cost indicate significant potential for cost reduction and that, by sometime after 
2025, the LCOE of offshore wind energy can be brought down to grid parity. In 2016, 
three offshore wind projects awarded through auctions got much attention because of 
their low kWh selling price. These are marked with the star symbol in Figure 1.6. The 

Transport cost
Import levies

Factory gate
Equipment

On site
Equipment

Project cost LCOE

LCOE:
Levelized cost of electricity
(Discounted lifetime cost divided
by discounted lifetime generation)

Operation and maintenance
Cost of finance
Resource quality
Capacity factor
Life span

Project development
Site preparation
Grid connection
Working capital
Auxiliary equipment
Non-commercial cost

Figure 1.5 Metrics in calculation of LCOE. Source: IRENA (2016).
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three projects are all at very favourable locations with no or negligible cost for grid con-
nection to shore, excellent access to site and other conditions that can explain the low 
price, and are not ‘typical’ for future offshore wind farms. Still, they give a clear signal 
that possibly, the cost of offshore wind energy can be brought down more quickly than 
earlier anticipated.

To better understand the LCOE numbers in Figure 1.6 or others, it is useful to do 
some simplified calculations. Lumping all investment expenditures to t = 1, assuming 
the annual energy output to be the same for all years t = 1 to n and assuming the annual 
operations and maintenance expenditures to be the same for all years t = 1 to n, Equation 
1.1 can be rewritten as:

 
LCOE I

E a
M
E

i
FLH a

m
FLH

 (1.2)

Here, i is the lump sum investment expenditures I expressed per installed kW, m is the 
assumed annual average operations and maintenance expenditures M expressed per 
kW, FLH is the assumed annual average electricity generation E divided by the rated 
capacity of the wind farm, and a is the annuity factor:

 

a
r

r

r

t

n
t

n
1

1

1 1

1

 (1.3)

where a is the annuity factor, r is the discount rate and n is the lifetime of the offshore 
wind farm.
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Figure 1.6 Historical LCOE of offshore wind farms and projection as reported by IRENA (2016) 
compared with reported auction prices for three new offshore wind farms to be in operation by 2020 
(star symbols). Costs for these three wind farms are, from the top, 72.7 EUR/MWh for Borssele (NL) 
700 MW (Dong, 2016), 63.8 EUR/MWh for Vesterhav (DK) 350 MW (Vattenfall, 2016a) and 49.9 EUR/
MWh for Kriegers Flak (DK) 600 MW (Vattenfall, 2016b). The graph is prepared converting data from 
IRENA (2016) to EUR/MWh assuming an exchange rate of 9 EUR = 10 USD for 2015.
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Applying these formulas (Equations 1.2 and 1.3), Table 1.2 sums up assumed input 
parameters and resulting LCOE for three characteristic cases. Cases A and B are apply-
ing input data as given by IRENA (2016), converting from USD to EUR assuming 9 
EUR = 10 USD. The two cases mimic the central LCOE estimates for offshore wind in 
2015 and 2025 (IRENA, 2016), stating that cost could be reduced from USD 0.17/kWh 
in 2015 to USD 0.11/kWh in 2025.

Case C illustrates a possible combination of parameters to give a LCOE of EUR 0.05/
kWh, taking information from Vattenfall (2016) as the starting point. The full load 
hours and the capacity factors are for sites with good wind resources, although there 
will be offshore wind projects with both higher and lower production. The investment 
expenditure for cases A and B include significant costs for transmission to shore, 
whereas for case C no such transmission costs are assumed.

Distribution of investment expenditures for a ‘representative’ offshore wind farm is 
shown in Figure 1.7. It should be noted to this that with the given USD 4650/kW, the 
wind turbines only (44 %) would cost EUR 1841/kW, that is about two times the cost of 
land‐based wind turbines, and seems a bit on the high side. Certainly, the investment 
expenditure for case C can only be achieved with turbine cost being close to that of 
land‐based wind turbines. The O&M cost of case C is approaching that of land‐based 
windfarms, and would be truly astonishing to achieve.

1.4  Future Offshore Wind Development

The offshore wind potential is tremendous. Assuming resources within 50 nautical 
miles of shore with a maximum water depth of 200 m, and omitting areas with low wind 
resources, the global offshore potential is estimated to 192 800 TWh (Arent et al., 2012), 
that is eight times global electricity generation in 2014, which was 23 816 TWh (IEA, 
2016a). Exactly how much of the potential will be realized is hard to say, but to reach 
climate targets renewable energy will play a central role. In the 450 Scenario by the 
International Energy Agency (IEA), the global operating wind capacity is expected to be 
2312 GW in 2040, delivering 6127 TWh annually (IEA, 2016b). Exactly how much of this will 

Table 1.2 Example calculation of LCOE for three characteristic cases.

Case A B C

FLH (h) 3767 3942 4200
Capacity factor (%) 43 45 48
Investment (EUR/kW) 4185 3555 1800
Discount rate (%) 10.0 8.0 8.0
Lifetime (yr) 25 25 25
Annuity factor 9.1 10.7 10.7
Investment (EURc/kWh) 12 8 4
Annual O&M (EUR/kW) 127 71 42
O&M (EURc/kWh) 3 2 1
LCOE (EURc/kWh) 15 10 5
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be offshore is not depicted but about 10% is indicated for a number of regions/countries. 
With the current trend providing continued reduced cost of energy from new offshore 
wind projects, this seems realistic. It requires though sustained strong efforts in 
developing market and technology.
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