Jyrki T. J. Penttinen

## Wireless Communications Security

## Solutions for the Internet of Things



## WIRELESS COMMUNICATIONS SECURITY

## WIRELESS COMMUNICATIONS SECURITY SOLUTIONS FOR THE INTERNET OF THINGS

Jyrki T. J. Penttinen

Giesecke & Devrient, USA

### WILEY

This edition first published 2017 © 2017 John Wiley & Sons, Ltd

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication data applied for

ISBN: 9781119084396

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Global, Pondicherry, India

10 9 8 7 6 5 4 3 2 1

## Contents

| About the Author xi |            |          | xii                                                           |      |
|---------------------|------------|----------|---------------------------------------------------------------|------|
| Pı                  | Preface 22 |          |                                                               | xiii |
| A                   |            |          |                                                               | XV   |
| A                   | bbrev      | iations  |                                                               | xvi  |
| 1                   | Intr       | oduction | n                                                             | 1    |
|                     | 1.1        | Introdu  | iction                                                        | 1    |
|                     | 1.2        | Wireles  | ss Security                                                   | 2    |
|                     |            | 1.2.1    | Background and Advances                                       | 2    |
|                     |            | 1.2.2    | Statistics                                                    | 2    |
|                     |            | 1.2.3    | Wireless Threats                                              | 4    |
|                     |            | 1.2.4    | M2M Environment                                               | 9    |
|                     | 1.3        | Standar  | rdization                                                     | 10   |
|                     |            | 1.3.1    | The Open Mobile Alliance (OMA)                                | 10   |
|                     |            | 1.3.2    | The International Organization for Standardization (ISO)      | 12   |
|                     |            | 1.3.3    | The International Telecommunications Union (ITU)              | 14   |
|                     |            | 1.3.4    | The European Telecommunications Standards Institute (ETSI)    | 14   |
|                     |            | 1.3.5    | The Institute of Electrical and Electronics Engineers (IEEE)  | 15   |
|                     |            | 1.3.6    | The Internet Engineering Task Force (IETF)                    | 16   |
|                     |            | 1.3.7    | The 3rd Generation Partnership Project (3GPP)                 | 16   |
|                     |            | 1.3.8    | The 3rd Generation Partnership Project 2 (3GPP2)              | 25   |
|                     |            | 1.3.9    | The GlobalPlatform                                            | 25   |
|                     |            | 1.3.10   | The SIMalliance                                               | 26   |
|                     |            | 1.3.11   | The Smartcard Alliance                                        | 27   |
|                     |            | 1.3.12   | The GSM Association (GSMA)                                    | 27   |
|                     |            | 1.3.13   | The National Institute of Standards and Technology (NIST)     | 28   |
|                     |            | 1.3.14   | The National Highway Transportation and Safety Administration |      |
|                     |            |          | (NHTSA)                                                       | 28   |

|      | 1.3.15            | Other Standardization and Industry Forums                        | 28 |
|------|-------------------|------------------------------------------------------------------|----|
|      | 1.3.16            | The EMV Company (EMVCo)                                          | 29 |
|      | 1.3.17            |                                                                  | 29 |
|      | 1.3.18            |                                                                  | 29 |
|      | 1.3.19            |                                                                  | 29 |
|      |                   | The Evaluation Assurance Level (EAL)                             | 30 |
|      |                   | The Federal Information Processing Standards (FIPS)              | 31 |
|      |                   | Biometric Standards                                              | 31 |
|      | 1.3.23            | Other Related Entities                                           | 32 |
| 1.4  | Wireles           | ss Security Principles                                           | 32 |
|      | 1.4.1             | General                                                          | 32 |
|      | 1.4.2             | Regulation                                                       | 33 |
|      | 1.4.3             | Security Architectures                                           | 33 |
|      | 1.4.4             | Algorithms and Security Principles                               | 33 |
| 1.5  | Focus a           | and Contents of the Book                                         | 36 |
| Refe | erences           |                                                                  | 38 |
|      |                   |                                                                  |    |
| Secu | urity of <b>V</b> | Wireless Systems                                                 | 42 |
| 2.1  | Overvi            | ew                                                               | 42 |
|      | 2.1.1             | <b>Overall Security Considerations in the Mobile Environment</b> | 42 |
|      | 2.1.2             | 1 0 5                                                            | 43 |
|      | 2.1.3             | RF Interferences and Safety                                      | 45 |
| 2.2  | Effects           | of Broadband Mobile Data                                         | 46 |
|      | 2.2.1             | Background                                                       | 46 |
|      | 2.2.2             |                                                                  | 47 |
|      | 2.2.3             | J 11                                                             | 50 |
|      | 2.2.4             | UE Application Development                                       | 52 |
|      | 2.2.5             | Developers                                                       | 55 |
|      | 2.2.6             | The Role of the SIM/UICC                                         | 56 |
|      | 2.2.7             | Challenges of Legislation                                        | 57 |
|      | 2.2.8             | Updating Standards                                               | 58 |
|      | 2.2.9             | 3GPP System Evolution                                            | 58 |
| 2.3  | GSM               |                                                                  | 59 |
|      | 2.3.1             | The SIM                                                          | 60 |
|      | 2.3.2             | Authentication and Authorization                                 | 62 |
|      | 2.3.3             | Encryption of the Radio Interface                                | 63 |
|      | 2.3.4             | Encryption of IMSI                                               | 65 |
|      | 2.3.5             | Other GSM Security Aspects                                       | 65 |
| 2.4  | UMTS              |                                                                  | 66 |
|      | 2.4.1             | Principles of 3G Security                                        | 66 |
|      | 2.4.2             | Key Utilization                                                  | 68 |
| a -  | 2.4.3             | 3G Security Procedures                                           | 69 |
| 2.5  | -                 | erm Evolution                                                    | 71 |
|      | 2.5.1             | Protection and Security Principles                               | 71 |
|      | 2.5.2             | X.509 Certificates and Public Key Infrastructure (PKI)           | 71 |
|      | 2.5.3             | IPsec and Internet Key Exchange (IKE) for LTE                    |    |
|      |                   | Transport Security                                               | 72 |

2

|      | 2.5.4     | Traffic Filtering                                 | 73  |
|------|-----------|---------------------------------------------------|-----|
|      | 2.5.5     | LTE Radio Interface Security                      | 74  |
|      | 2.5.6     | Authentication and Authorization                  | 78  |
|      | 2.5.7     | LTE/SAE Service Security – Case Examples          | 79  |
|      | 2.5.8     | Multimedia Broadcast and Multicast Service (MBMS) |     |
|      |           | and enhanced MBMS (eMBMS)                         | 83  |
| 2.6  | Securit   | y Aspects of Other Networks                       | 91  |
|      | 2.6.1     | CDMA (IS-95)                                      | 91  |
|      | 2.6.2     | CDMA2000                                          | 93  |
|      | 2.6.3     | Broadcast Systems                                 | 94  |
|      | 2.6.4     | Satellite Systems                                 | 94  |
|      | 2.6.5     | Terrestrial Trunked Radio (TETRA)                 | 95  |
|      | 2.6.6     | Wireless Local Area Network (WLAN)                | 96  |
| 2.7  | Interop   | erability                                         | 102 |
|      | 2.7.1     | Simultaneous Support for LTE/SAE and 2G/3G        | 102 |
|      | 2.7.2     | VoLTE                                             | 105 |
|      | 2.7.3     | CS Fallback                                       | 105 |
|      | 2.7.4     | Inter-operator Security Aspects                   | 106 |
|      | 2.7.5     |                                                   | 106 |
|      | 2.7.6     | Femtocell Architecture                            | 108 |
| Refe | erences   |                                                   | 109 |
| Inte | rnet of 7 | Things                                            | 112 |
| 3.1  | Overvie   |                                                   | 112 |
| 3.2  | Founda    | tion                                              | 113 |
|      | 3.2.1     | Definitions                                       | 113 |
|      | 3.2.2     | Security Considerations of IoT                    | 115 |
|      | 3.2.3     | 0                                                 | 115 |
|      | 3.2.4     | IoT Environment                                   | 117 |
|      | 3.2.5     | IoT Market                                        | 120 |
|      | 3.2.6     | •                                                 | 121 |
|      | 3.2.7     | 8                                                 | 122 |
|      | 3.2.8     | Security Risks                                    | 123 |
|      | 3.2.9     | Cloud                                             | 128 |
|      |           | Cellular Connectivity                             | 129 |
|      | 3.2.11    | WLAN                                              | 133 |
|      | 3.2.12    | Low-Range Systems                                 | 133 |
| 3.3  |           | pment of IoT                                      | 140 |
|      | 3.3.1     | GSMA Connected Living                             | 140 |
|      | 3.3.2     | The GlobalPlatform                                | 141 |
| 2.4  | 3.3.3     | Other Industry Forums                             | 141 |
| 3.4  |           | cal Description of IoT                            | 142 |
|      | 3.4.1     | General                                           | 142 |
|      | 3.4.2     | Secure Communication Channels and Interfaces      | 143 |
|      | 3.4.3     | Provisioning and Key Derivation                   | 144 |
| Ъć   | 3.4.4     | Use Cases                                         | 144 |
| Refe | erences   |                                                   | 148 |

| 4 | Smar | tcards a | nd Secure Elements                       | 150 |
|---|------|----------|------------------------------------------|-----|
|   | 4.1  | Overvie  | ew                                       | 150 |
|   | 4.2  | Role of  | Smartcards and SEs                       | 151 |
|   | 4.3  | Contact  | tCards                                   | 153 |
|   |      | 4.3.1    | ISO/IEC 7816-1                           | 154 |
|   |      | 4.3.2    | ISO/IEC 7816-2                           | 155 |
|   |      | 4.3.3    | ISO/IEC 7816-3                           | 155 |
|   |      | 4.3.4    | ISO/IEC 7816-4                           | 157 |
|   |      | 4.3.5    | ISO/IEC 7816-5                           | 157 |
|   |      | 4.3.6    | ISO/IEC 7816-6                           | 157 |
|   |      | 4.3.7    | ISO/IEC 7816-7                           | 157 |
|   |      | 4.3.8    | <i>ISO/IEC</i> 7816-8                    | 157 |
|   |      | 4.3.9    | ISO/IEC 7816-9                           | 158 |
|   |      | 4.3.10   | ISO/IEC 7816-10                          | 158 |
|   |      | 4.3.11   | ISO/IEC 7816-11                          | 158 |
|   |      | 4.3.12   | ISO/IEC 7816-12                          | 158 |
|   |      | 4.3.13   | ISO/IEC 7816-13                          | 158 |
|   |      | 4.3.14   | ISO/IEC 7816-15                          | 158 |
|   | 4.4  | The SI   | M/UICC                                   | 159 |
|   |      | 4.4.1    | Terminology                              | 159 |
|   |      | 4.4.2    | Principle                                | 159 |
|   |      | 4.4.3    | Key Standards                            | 160 |
|   |      | 4.4.4    | Form Factors                             | 161 |
|   | 4.5  | Conten   | ts of the SIM                            | 164 |
|   |      | 4.5.1    | UICC Building Blocks                     | 164 |
|   |      | 4.5.2    | The SIM Application Toolkit (SAT)        | 167 |
|   |      | 4.5.3    | Contents of the UICC                     | 168 |
|   | 4.6  | Embede   | ded SEs                                  | 168 |
|   |      | 4.6.1    | Principle                                | 168 |
|   |      | 4.6.2    | M2M Subscription Management              | 169 |
|   |      | 4.6.3    | Personalization                          | 172 |
|   |      | 4.6.4    | M2M SIM Types                            | 173 |
|   | 4.7  |          | Card Types                               | 174 |
|   |      | 4.7.1    | Access Cards                             | 174 |
|   |      | 4.7.2    | External SD Cards                        | 175 |
|   | 4.8  |          | tless Cards                              | 175 |
|   |      | 4.8.1    | ISO/IEC Standards                        | 175 |
|   |      | 4.8.2    | NFC                                      | 176 |
|   | 4.9  |          | mechanical Characteristics of Smartcards | 178 |
|   |      | 4.9.1    | HW Blocks                                | 178 |
|   |      | 4.9.2    | Memory                                   | 178 |
|   |      | 4.9.3    | Environmental Classes                    | 179 |
|   | 4.10 | Smartca  |                                          | 181 |
|   |      | 4.10.1   |                                          | 181 |
|   |      | 4.10.2   |                                          | 183 |
|   |      | 4 10 3   | Java Card                                | 184 |

|   | 4.11  | UICC     | Communications                         | 184 |
|---|-------|----------|----------------------------------------|-----|
|   |       | 4.11.1   | Card Communications                    | 184 |
|   |       | 4.11.2   | Remote File Management                 | 185 |
|   | Refer | ences    |                                        | 186 |
| 5 | Wire  | less Pay | ment and Access Systems                | 188 |
|   | 5.1   | Overvi   | iew                                    | 188 |
|   | 5.2   | Wirele   | ess Connectivity as a Base for Payment |     |
|   |       | and Ac   | ccess                                  | 188 |
|   |       | 5.2.1    | Barcodes                               | 189 |
|   |       | 5.2.2    | RFID                                   | 191 |
|   |       | 5.2.3    | NFC                                    | 192 |
|   |       | 5.2.4    | Secure Element                         | 196 |
|   |       | 5.2.5    | Tokenization                           | 198 |
|   | 5.3   | E-com    | imerce                                 | 200 |
|   |       | 5.3.1    | EMV                                    | 200 |
|   |       | 5.3.2    | Google Wallet                          | 200 |
|   |       | 5.3.3    | Visa                                   | 201 |
|   |       | 5.3.4    | American Express                       | 201 |
|   |       | 5.3.5    | Square                                 | 201 |
|   |       | 5.3.6    | Other Bank Initiatives                 | 201 |
|   |       | 5.3.7    | Apple Pay                              | 201 |
|   |       | 5.3.8    | Samsung Pay                            | 202 |
|   |       | 5.3.9    | MCX                                    | 202 |
|   |       | 5.3.10   | Comparison of Wallet Solutions         | 202 |
|   | 5.4   | Transp   |                                        | 203 |
|   |       | 5.4.1    | MiFare                                 | 204 |
|   |       | 5.4.2    | CiPurse                                | 204 |
|   |       | 5.4.3    | Calypso                                | 204 |
|   |       | 5.4.4    | FeliCa                                 | 205 |
|   | 5.5   |          | Secure Systems                         | 205 |
|   |       | 5.5.1    | Mobile ID                              | 205 |
|   |       | 5.5.2    | Personal Identity Verification         | 205 |
|   |       | 5.5.3    | Access Systems                         | 206 |
|   | Refer | ences    |                                        | 206 |
| 6 | Wire  | less Sec | urity Platforms and Functionality      | 208 |
|   | 6.1   | Overvi   | iew                                    | 208 |
|   | 6.2   | Formir   | ng the Base                            | 208 |
|   |       | 6.2.1    | Secure Service Platforms               | 209 |
|   |       | 6.2.2    | SEs                                    | 209 |
|   | 6.3   |          | e Subscription Management              | 210 |
|   |       | 6.3.1    | SIM as a Basis for OTA                 | 210 |
|   |       | 6.3.2    | TSM                                    | 212 |
|   |       | 6.3.3    | TEE                                    | 213 |
|   |       | 6.3.4    | HCE and the Cloud                      | 216 |
|   |       | 6.3.5    | Comparison                             | 219 |

|   | 6.4      | Tokenization                                                | 219 |
|---|----------|-------------------------------------------------------------|-----|
|   | 0        | 6.4.1 PAN Protection                                        | 219 |
|   |          | 6.4.2 HCE and Tokenization                                  | 221 |
|   | 6.5      | Other Solutions                                             | 221 |
|   |          | 6.5.1 Identity Solutions                                    | 221 |
|   |          | 6.5.2 Multi-operator Environment                            | 222 |
|   | Refe     | erences                                                     | 222 |
| 7 | Mol      | bile Subscription Management                                | 223 |
|   | 7.1      | Overview                                                    | 223 |
|   | 7.2      | Subscription Management                                     | 223 |
|   |          | 7.2.1 Development                                           | 223 |
|   |          | 7.2.2 Benefits and Challenges of Subscription Management    | 225 |
|   | 7.3      | OTA Platforms                                               | 226 |
|   |          | 7.3.1 General                                               | 226 |
|   |          | 7.3.2 Provisioning Procedure                                | 227 |
|   |          | 7.3.3 SMS-based SIM OTA                                     | 227 |
|   |          | 7.3.4 HTTPS-based SIM OTA                                   | 230 |
|   |          | 7.3.5 Commercial Examples of SIM OTA Solutions              | 231 |
|   | 7.4      | Evolved Subscription Management                             | 232 |
|   |          | 7.4.1 GlobalPlatform                                        | 233 |
|   |          | 7.4.2 SIMalliance                                           | 233 |
|   |          | 7.4.3 OMA                                                   | 233 |
|   |          | 7.4.4 GSMA                                                  | 235 |
|   | Refe     | erences                                                     | 240 |
| 8 |          | urity Risks in the Wireless Environment                     | 242 |
|   |          | Overview                                                    | 242 |
|   | 8.2      | Wireless Attack Types                                       | 243 |
|   |          | 8.2.1 Cyber-attacks                                         | 243 |
|   |          | 8.2.2 Radio Jammers and RF Attacks                          | 244 |
|   |          | 8.2.3 Attacks against SEs                                   | 245 |
|   |          | 8.2.4 IP Breaches                                           | 245 |
|   |          | 8.2.5 UICC Module                                           | 246 |
|   | 8.3      | Security Flaws on Mobile Networks                           | 247 |
|   |          | 8.3.1 Potential Security Weaknesses of GSM                  | 247 |
|   | <b>.</b> | 8.3.2 Potential Security Weaknesses of 3G                   | 254 |
|   | 8.4      | Protection Methods                                          | 254 |
|   |          | 8.4.1 LTE Security                                          | 254 |
|   |          | 8.4.2 Network Attack Types in LTE/SAE                       | 255 |
|   | 0 =      | 8.4.3 Preparation for the Attacks                           | 256 |
|   | 8.5      | Errors in Equipment Manufacturing                           | 259 |
|   |          | 8.5.1 Equipment Ordering                                    | 259 |
|   | 06       | 8.5.2 Early Testing                                         | 260 |
|   | 8.6      | Self-Organizing Network Techniques for Test and Measurement | 264 |
|   |          | 8.6.1 Principle<br>8.6.2 Self-configuration                 | 264 |
|   |          | 8.6.2 Self-configuration                                    | 265 |

|    |      | 8.6.3        | Self-optimizing                                                 | 266 |
|----|------|--------------|-----------------------------------------------------------------|-----|
|    |      | 8.6.4        | Self-healing                                                    | 266 |
|    |      | 8.6.5        | Technical Issues and Impact on Network Planning                 | 266 |
|    |      | 8.6.6        | Effects on Network Installation, Commissioning and Optimization | 267 |
|    |      | 8.6.7        | SON and Security                                                | 268 |
|    | Refe | rences       | -                                                               | 268 |
| 9  | Mon  | itoring a    | and Protection Techniques                                       | 270 |
|    | 9.1  | Overvi       | iew                                                             | 270 |
|    | 9.2  | Person       | al Devices                                                      | 271 |
|    |      | 9.2.1        | Wi-Fi Connectivity                                              | 271 |
|    |      | 9.2.2        | Firewalls                                                       | 271 |
|    | 9.3  | IP Cor       | e Protection Techniques                                         | 272 |
|    |      | 9.3.1        | General Principles                                              | 272 |
|    |      | 9.3.2        | LTE Packet Core Protection                                      | 272 |
|    |      | 9.3.3        | Protection against Roaming Threats                              | 275 |
|    | 9.4  | HW Fa        | ault and Performance Monitoring                                 | 276 |
|    |      | 9.4.1        | Network Monitoring                                              | 277 |
|    |      | 9.4.2        | Protection against DoS/DDoS                                     | 277 |
|    |      | 9.4.3        | Memory Wearing                                                  | 277 |
|    | 9.5  | Securi       | ty Analysis                                                     | 278 |
|    |      | 9.5.1        | Post-processing                                                 | 278 |
|    |      | 9.5.2        | Real-time Security Analysis                                     | 278 |
|    | 9.6  | Virus I      | Protection                                                      | 279 |
|    | 9.7  | Legal        | Interception                                                    | 281 |
|    | 9.8  | Person       | al Safety and Privacy                                           | 283 |
|    |      | 9.8.1        | CMAS                                                            | 283 |
|    |      | 9.8.2        | Location Privacy                                                | 285 |
|    |      | <i>9.8.3</i> | Bio-effects                                                     | 286 |
|    | Refe | rences       |                                                                 | 287 |
| 10 | Futu | re of Wi     | ireless Solutions and Security                                  | 288 |
|    | 10.1 | Overvi       | iew                                                             | 288 |
|    | 10.2 | IoT as       | a Driving Force                                                 | 288 |
|    | 10.3 | Evolut       | ion of 4G                                                       | 289 |
|    | 10.4 | Develo       | opment of Devices                                               | 291 |
|    |      | 10.4.1       |                                                                 | 291 |
|    |      | 10.4.2       | Mobile Device Considerations                                    | 291 |
|    |      | 10.4.3       | IoT Device Considerations                                       | 292 |
|    |      | 10.4.4       | Sensor Networks and Big Data                                    | 293 |
|    | 10.5 |              | obile Communications                                            | 294 |
|    |      | 10.5.1       | Standardization                                                 | 294 |
|    |      | 10.5.2       | Concept                                                         | 295 |
|    |      | 10.5.3       | Industry and Investigation Initiatives                          | 297 |
|    |      | 10.5.4       | Role of 5G in IoT                                               | 297 |
|    | Refe | rences       |                                                                 | 297 |

#### About the Author



Dr Jyrki T. J. Penttinen, the author of this *Wireless Communications Security* book, started working in the mobile communications industry in 1987 evaluating early stage NMT-900, DECT and GSM radio network performance. After having obtained his MSc (EE) grade from Helsinki University of Technology (HUT) in 1994, he continued with Telecom Finland (Sonera and TeliaSonera Finland) and with Xfera Spain (Yoigo) participating in 2G and 3G projects. He also established and managed the consultancy firm Finesstel Ltd in 2002–03 operating in Europe and the Americas, and afterwards he worked with Nokia and Nokia Siemens Networks in Mexico, Spain and the United States in 2004–2013. During his time working with mobile network operators and equip-

ment manufacturers, Dr Penttinen was involved in a wide range of operational and research activities performing system and architectural design, investigation, standardization, training and technical management with special interest in the radio interface of cellular networks and mobile TV such as GSM, GPRS/EDGE, UMTS/HSPA and DVB-H. Since 2014, in his current Program Manager's position with Giesecke & Devrient America, Inc, his focus areas include mobile and IoT security and innovation.

Dr Penttinen obtained his LicSc (Tech) and DSc (Tech) degrees in HUT (currently known as Aalto University, School of Science and Technology) in 1999 and 2011, respectively. In addition to his main work, he is an active lecturer, has written dozens of technical articles and authored telecommunications books, the recent ones being *The LTE-Advanced Deployment Handbook* (Wiley, 2016), *The Telecommunications Handbook* (Wiley, 2015) and *The LTE/SAE Deployment Handbook* (Wiley, 2011). More information about his publications can be found at www.tlt.fi.

#### Preface

This *Wireless Communications Security* book summarizes key aspects related to radio access network security solutions and protection against malicious attempts. As such a large number of services depend on the Internet and its increasingly important wireless access methods now and in the future, proper shielding is of the utmost importance. Along with the popularization of wireless communications systems such as Wi-Fi and cellular networks, the utilization of the services often takes place via wireless equipment such as smartphones and laptops supporting short and long range radio access technologies. Threats against these services and devices are increasing, one of the motivations of the attackers being the exploitation of user credentials and other secrets to achieve monetary benefits. There are also plenty of other reasons for criminals to attack wireless systems which thus require increasingly sophisticated protection methods by users, operators, service providers, equipment manufacturers, standardization bodies and other stakeholders.

Along with the overall development of IT and communications technologies, the environment has changed drastically over the years. In the 1980s, threats against mobile communications were merely related to the cloning of a user's telephone number to make free phone calls and eavesdropping on voice calls on the unprotected radio interface. From the experiences with the relatively poorly protected first-generation mobile networks, modern wireless communications systems have gradually taken into account security threats in a much more advanced way while the attacks are becoming more sophisticated and involve more diversified motivations such as deliberate destruction of the services and ransom-type threats. In addition to all these dangers against end-users, security breaches against the operators, service providers and other stakeholder are on the rise, too. In other words, we are entering a cyber-world, and the communications services are an elemental part of this new era.

The Internet has such an integral role in our daily life that the consequences of a major breakdown in its services would result in chaos. Proper shielding against malicious attempts requires a complete and updated cyber-security to protect the essential functions of societies such as bank institutes, energy distribution and telecommunications infrastructures. The trend related to the Internet of Things (IoT), with estimations of tens of billions of devices being taken into use within a short time period, means that the environment is becoming even more challenging due to the huge proportion of the cheaper IoT devices that may often lack their own protection mechanisms. These innocent-looking always-connected devices such as intelligent household appliances – if deployed and set up improperly – may expose doors deeper into the home network, its services and information containers, and open security holes even further into the business networks. This is one of the key areas in modern wireless security preparation.

As my good friend Alfredo so well summarized, the Internet can be compared to nuclear power; it is highly useful while under control, but as soon as security threats are present, it may lead to major disaster. Without doubt, proper protection is thus essential. This book presents the solutions and challenges of wireless security by summarizing typical, currently utilized services and solutions, and paints the picture for the future by presenting novelty solutions such as advanced mobile subscription management concepts. I hope you find the contents interesting and relevant in your work and studies and obtain an overview on both the established and yet-to-be-formed solutions of the field. In addition to this book, the contents are available in eBook format, and you can find additional information and updates from the topics at *www.tlt.fi*, which complement the overall picture of wireless security. As has been the case with my previous books published by Wiley, I would be glad to receive your valuable feedback about this *Wireless Communications Security* book directly via my email address: *jyrki.penttinen@hotmail.com*.

Jyrki T. J. Penttinen Morristown, NJ, USA

#### Acknowledgements

It has been a highly interesting task to collect all this information about wireless security aspects into a single book. I reckon many of the presented solutions tend to develop extremely fast as the threats become increasingly sophisticated and innovative. The challenge is, of course, to maintain the relevancy of the written material. It is perhaps equally difficult for the stakeholders to ensure proper shielding of the wireless communications networks, devices, mobile apps and services along with all the advances in consumer and machine-to-machine domains – not forgetting the overall development of the Internet of Things (IoT), which is currently experiencing major interest. Even so, I believe that the foundations are worth describing in a book format, while the latest advances of each presented field can be checked via the identified key references and root sources of information.

An important part of this book, that is, describing the basics, is something I have been involved with throughout my career when I was working with mobile network operators as well as network and device vendors, while the rest of the contents complete the picture by presenting the most recent advances such as embedded SIM and respective subscription management which will be highly relevant in the near future for the most dynamic ways of utilizing consumers' mobile and companion devices as well as the ever growing amount of IoT equipment. I thank all my good colleagues I have had the privilege to work with and to exchange ideas related to mobile security. I want to especially mention the important role of Giesecke & Devrient in offering me the possibility to focus on the topic in my current position.

I warmly thank the Wiley team for the professional work and firm yet tender ways for ensuring the book project and schedules advanced according to the plans. Special thanks belong to Mark Hammond, Sandra Grayson, Tiina Wigley and Nithya Sechin, as well as Tessa Hanford, among all the others who helped me to make sure this book was finalized in good order.

I also want to express my warmest gratitude to the Finnish Association of Non-fiction Writers for their most welcomed support.

Finally, I thank Elva, Stephanie, Carolyne, Miguel, Katriina and Pertti for all their support.

Jyrki T. J. Penttinen Morristown, NJ, USA

## Abbreviations

| 3DES    | Triple-Data Encryption Standard                 |
|---------|-------------------------------------------------|
| 3GPP    | 3 <sup>rd</sup> Generation Partnership Program  |
| 6LoWPAN | IPv6 Low power Wireless Personal Area Network   |
| AAA     | Authentication, Authorization and Accounting    |
| AAS     | Active Antenna System                           |
| ACP     | Access Control Policy                           |
| ADF     | Application Dedicated File                      |
| ADMF    | Administration Function                         |
| ADSL    | Asymmetric Digital Subscriber Line              |
| ADT     | Android Developer Tool                          |
| AES     | Advanced Encryption Standard                    |
| AF      | Authentication Framework                        |
| AID     | Application ID                                  |
| AIDC    | Automatic Identification and Data Capture       |
| AIE     | Air Interface Encryption                        |
| AK      | Anonymity Key                                   |
| AKA     | Authentication and Key Agreement                |
| ALC     | Asynchronous Layered Coding                     |
| AMF     | Authenticated Management Field                  |
| AMI     | Advanced Metering Infrastructure                |
| AMPS    | Advanced Mobile Phone System                    |
| ANDSF   | Access Network Discovery and Selection Function |
| ANSI    | American National Standards Institute           |
| AOTA    | Advanced Over-the-Air                           |
| AP      | Access Point                                    |
| AP      | Application Provider                            |
| APDU    | Application Protocol Data Unit                  |
| API     | Application Programming Interface               |
| AR      | Aggregation Router                              |
| ARIB    | Association of Radio Industries and Businesses  |
|         |                                                 |

| AS     | Access Stratum                                                          |
|--------|-------------------------------------------------------------------------|
| AS     | Authentication Server                                                   |
| ASIC   | Application-Specific Integrated Circuit                                 |
| ASME   | Access Security Management Entity                                       |
| ASN.1  | Abstract Syntax Notation One                                            |
| ATCA   | Advanced Telecommunications Computing Architecture                      |
| ATR    | Answer to Reset                                                         |
| ATSC   | Advanced Television Systems Committee                                   |
| AuC    | Authentication Centre                                                   |
| AUTN   | Authentication Token                                                    |
| AV     | Authentication Vector                                                   |
| AVD    | Android Virtual Device                                                  |
| BAN    | Business/Building Area Network                                          |
| BCBP   | Bar Coded Boarding Pass                                                 |
| BCCH   | Broadcast Control Channel                                               |
| BE     | Backend                                                                 |
| BGA    | Ball Grid Array                                                         |
| BIN    | Bank Identification Number                                              |
| BIP    | Bearer-Independent Protocol                                             |
| BLE    | Bluetooth, Low-Energy                                                   |
| BM-SC  | Broadcast – Multicast Service Centre                                    |
| BSC    | Base Station Controller                                                 |
| BSP    | Biometric Service Provider                                              |
| BSS    | Billing System                                                          |
| BSS    | Business Support System                                                 |
| BTS    | Base Transceiver Station                                                |
| C2     | Command and Control                                                     |
| CA     | Conditional Access                                                      |
| CA     | Carrier Aggregation                                                     |
| CA     | Certificate Authority                                                   |
| CA     | Controlling Authority                                                   |
| CAT    | Card Application Toolkit                                                |
| CAT_TP | Card Application Toolkit Transport Protocol                             |
| CAVE   | Cellular Authentication and Voice Encryption                            |
| CB     | Cell Broadcast                                                          |
| CBEFF  | Common Biometric Exchange Formats Framework                             |
| CC     | Common Criteria                                                         |
| CC     | Congestion Control                                                      |
| CCM    | Card Content Management                                                 |
| CCMP   | Counter-mode Cipher block chaining Message authentication code Protocol |
| CCSA   | China Communications Standards Association                              |
| CDMA   | Code Division Multiple Access                                           |
| CEIR   | Central EIR                                                             |
| CEPT   | European Conference of Postal and Telecommunications Administrations    |
| CFN    | Connection Frame Number                                                 |
| CGN    | Carrier-Grade NAT                                                       |
|        |                                                                         |

| CHV  | Chip Holder Verification            |
|------|-------------------------------------|
| CI   | Certificate Issuer                  |
| CK   | Cipher Key                          |
| CL   | Contactless                         |
| CLA  | Class of Instruction                |
| CLF  | Contactless Frontend                |
| CLK  | Clock                               |
| CMAS | Commercial Mobile Alert System      |
| CMP  | Certificate Management Protocol     |
| CN   | Core Network                        |
| CoAP | Constrained Application Protocol    |
| CoC  | Content of Communication            |
| CPU  | Central Processing Unit             |
| CS   | Circuit Switched                    |
| CSFB | Circuit Switched Fallback           |
| CSG  | Closed Subscriber Group             |
| CSS7 | Common Signaling System             |
| CVM  | Cardholder Verification Method      |
| DBF  | Database File                       |
| DD   | Digital Dividend                    |
| DDoS | Distributed Denial-of-Service       |
| DE   | Data Element                        |
| DES  | Data Encryption Standard            |
| DF   | Dedicated File                      |
| DFN  | Dual-Flat, No leads                 |
| DHCP | Dynamic Host Configuration Protocol |
| DL   | Downlink                            |
| DM   | Device Management                   |
| DM   | Device Manufacturer                 |
| DMO  | Direct Mode Operation               |
| DNS  | Domain Name System                  |
| DoS  | Denial-of-Service                   |
| DPA  | Data Protection Act                 |
| DPI  | Deep Packet Inspection              |
| DRM  | Digital Rights Management           |
| DS   | Data Synchronization                |
| DSS  | Data Security Standard              |
| DSSS | Direct Sequence Spread Spectrum     |
| DTLS | Datagram Transport Layer Security   |

- DTLS Datagram Transport Layer Security
- DTMB Digital Terrestrial Multimedia Broadcast
- DVB Digital Video Broadcasting
- EAL Evaluation Assurance Level
- EAN Extended Area Network
- EAP Extensible Authentication Protocol
- EAPoL Extensible Authentication Protocol over Local Area Network
- EAP-TTLS Extensible Authentication Protocol-Tunneled Transport Layer Security

| ECASD   | eUICC Controlling Authority Secure Domain       |
|---------|-------------------------------------------------|
| eCAT    | Encapsulated Card Application Toolkit           |
| ECC     | Elliptic Curve Cryptography                     |
| ECDSA   | Elliptic Curve Digital Signature Algorithm      |
| ECO     | European Communications Office                  |
| EDGE    | Enhanced Data Rates for Global Evolution        |
| EEM     | Ethernet Emulation Mode                         |
| EEPROM  | Electrically Erasable Read-Only Memory          |
| EF      | Elementary File                                 |
| EGAN    | Enhanced Generic Access Network                 |
| EID     | eUICC Identifier                                |
| EIR     | Equipment Identity Register                     |
| E-MBS   | Enhanced Multicast Broadcast Service            |
| EMC     | Electro-Magnetic Compatibility                  |
| EMF     | Electro-Magnetic Field                          |
| EMI     | Electro-Magnetic Interference                   |
| EMM     | EPS Mobility Management                         |
| EMP     | Electro-Magnetic Pulse                          |
| eNB     | Evolved Node B                                  |
| EPC     | Enhanced Packet Core                            |
| EPC     | Evolved Packet Core                             |
| EPS     | Electric Power System                           |
| EPS     | Enhanced Packet System                          |
| ERP     | Enterprise Resource Planning                    |
| ERTMS   | European Rail Traffic Management System         |
| eSE     | Embedded Security Element                       |
| eSIM    | Embedded Subscriber Identity Module             |
| ESN     | Electronic Serial Number                        |
| ESP     | Encapsulating Security Payload                  |
| ETSI    | European Telecommunications Standards Institute |
| ETWS    | Earthquake and Tsunami Warning System           |
| eUICC   | Embedded Universal Integrated Circuit Card      |
| EUM     | eUICC Manufacturer                              |
| E-UTRAN | Enhanced UTRAN                                  |
| EV-DO   | Evolution Data Only/Data Optimized              |
| FAC     | Final Approval Code                             |
| FAN     | Field Area Network                              |
| FCC     | Federal Communications Commission               |
| FDD     | Frequency Division Multiplex                    |
| FDT     | File Delivery Table                             |
| FEC     | Forward Error Correction                        |
| FF      | Form Factor                                     |
| FICORA  | Finnish Communications Regulatory Authority     |
| FID     | File-ID                                         |
| FIPS    | Federal Information Processing Standards        |
| FLUTE   | File Transport over Unidirectional Transport    |
|         |                                                 |

| FM               | Frequency Modulation                                |
|------------------|-----------------------------------------------------|
| FPGA             | Field Programmable Gate Array                       |
| GAA              | Generic Authentication Architecture                 |
| GBA              | Generic Bootstrapping Architecture                  |
| GCSE             | Group Communication System Enabler                  |
| GEA              | GPRS Encryption Algorithm                           |
| GERAN            | GSM EDGE Radio Access Network                       |
| GGSN             | Gateway GPRS Support Node                           |
| GMSK             | Gaussian Minimum Shift Keying                       |
| GoS              | Grade of Service                                    |
| GP               | GlobalPlatform                                      |
| GPRS             | General Packet Radio Service                        |
| GPS              | Global Positioning System                           |
| GRX              | GPRS Roaming Exchange                               |
| GSM              | Global System for Mobile Communications             |
| GSMA             | GSM Association                                     |
| GTP              | GPRS Tunnelling Protocol                            |
| GUI              | Graphical User Interface                            |
| HAN              | Home Area Network                                   |
| HCE              | Host Card Emulation                                 |
| HCI              | Host Controller Interface                           |
| HE               | Home Environment                                    |
| HF               | High Frequency                                      |
| HFN              | Hyperframe Number                                   |
| HIPAA            | Health Insurance Portability and Accountability Act |
| HLR              | Home Location Register                              |
| HNB              | Home Node B                                         |
| HRPD             | High Rate Packet Data                               |
| HSPA             | High Speed Packet Access                            |
| HSS              | Home Subscriber Server                              |
| HTTPS            | HTTP Secure                                         |
| HW               | Hardware                                            |
| I/O              | Input/Output                                        |
| I <sup>2</sup> C | Inter-Integrated Circuit                            |
| IAN              | Industrial Area Network                             |
| IANA             | Internet Assigned Numbers Authority                 |
| IARI             | IMS Application Reference ID                        |
| ICAO             | International Civil Aviation Organization           |
| ICC              | Integrated Circuit Card                             |
| ICCID            | ICC Identification Number                           |
| ICE              | In Case of Emergency                                |
| ICE              | Intercepting Control Element                        |
| ICIC             | Inter Cell Interference Control                     |
| ICT              | Information and Communication Technologies          |
| IDE              | Integrated Development Environment                  |
| IDEA             | International Data Encryption Algorithm             |
|                  |                                                     |

| ID-FF  | Identity Federation Framework                        |
|--------|------------------------------------------------------|
| IDM    | Identity Management                                  |
| IDS    | Intrusion Detection System                           |
| ID-WSF | Identity Web Services Framework                      |
| IEC    | International Electrotechnical Commission            |
| IEEE   | Institute of Electrical and Electronics Engineers    |
| IETF   | Internet Engineering Task Force                      |
| IF     | Intermediate Frequency                               |
| IK     | Integrity Key                                        |
| IKE    | Internet Key Exchange                                |
| IMEI   | International Mobile Equipment Identity              |
| IMEISV | IMEI Software Version                                |
| IMS    | IP Multimedia Subsystem                              |
| IMSI   | International Mobile Subscriber Identity             |
| IOP    | Interoperability Process                             |
| IoT    | Internet of Things                                   |
| IOT    | Inter-Operability Testing                            |
| IP     | Internet Protocol                                    |
| IPS    | Intrusion Prevention System                          |
| IPSec  | IP Security                                          |
| IR     | Infrared                                             |
| IRI    | Intercept Related Information                        |
| ISD    | Issuer Security Domain                               |
| ISDB-T | Terrestrial Integrated Services Digital Broadcasting |
| ISD-P  | Issuer Security Domain Profile                       |
| ISD-R  | Issuer Security Domain Root                          |
| ISIM   | IMS SIM                                              |
| ISO    | International Organization for Standardization       |
| ISOC   | Internet Society                                     |
| ITSEC  | Information Technology Security Evaluation Criteria  |
| ITU    | International Telecommunications Union               |
| IWLAN  | Interworking Wireless Local Area Network             |
| JBOH   | JavaScript-Binding-Over-HTTP                         |
| JTC    | Joint Technical Committee                            |
| K      | User Key                                             |
| KASME  | Key for Access Security Management Entity            |
| KDF    | Key Derivation Function                              |
| LA     | Location Area                                        |
| LAN    | Local Area Network                                   |
| LBS    | Location Based Service                               |
| LCT    | Layered Coding Transport                             |
| LEA    | Law Enforcement Agencies                             |
| LEAP   | Lightweight Extensible Authentication Protocol       |
| LEMF   | Law Enforcement Monitoring Facilities                |
| LF     | Low Frequency                                        |
| LI     | Legal/Lawful Interception                            |
| -      | <i>o r r r</i>                                       |

| LIF          | Location Interoperability Forum                 |
|--------------|-------------------------------------------------|
| LIG          | Legal Interception Gateway                      |
| LLCP         | Logical Link Control Protocol                   |
| LOS          | Line-of-Sight                                   |
| LPPM         | Location-Privacy Protection Mechanism           |
| LTE          | Long Term Evolution                             |
| LTE-M        | LTE M2M                                         |
| LTE-U        | LTE Unlicensed                                  |
| LUK          | Limited Use Key                                 |
| LWM2M        | Lightweight Device Management of M2M            |
| M2M          | Machine-to-Machine                              |
| MAC          | Machine-to-Machine<br>Medium Access Control     |
| MAC          | Message Authentication Code                     |
| MBMS         | Multimedia Broadcast and Multicast Service      |
| MC           | Multinedia Broadcast and Multicast Service      |
| MCC          | Mobile Country Code                             |
| MCPTT        | Mission Critical Push To Talk                   |
| ME           |                                                 |
| ME ID        | Mobile Equipment<br>Mobile Equipment Identifier |
| MEID         | Moone Equipment identifier<br>Master File       |
| MF<br>MFF2   | Master File<br>Machine-to-Machine Form Factor 2 |
| MFF2<br>MGIF |                                                 |
| MOIF         | Mobile Gaming Interoperability Forum            |
|              | Machine Identity Module                         |
| MIMO         | Multiple In Multiple Out                        |
| MITM         | Man in the Middle                               |
| MM           | Mobility Management                             |
| MME          | Mobility Management Entity                      |
| MMS          | Multimedia Messaging                            |
| MNC          | Mobile Network Code                             |
| MNO          | Mobile Network Operator                         |
| MPLS         | Multiprotocol Label Switching                   |
| MPU          | Multi Processing Unit                           |
| MRTD         | Machine Readable Travel Document                |
| MSC          | Mobile services Switching Centre                |
| MSISDN       | Mobile Subscriber's ISDN number                 |
| MSP          | Multiple Subscriber Profile                     |
| MST          | Magnetic Secure Transmission                    |
| MT           | Mobile Terminal                                 |
| MTC          | Machine-Type Communications                     |
| MVNO         | Mobile Virtual Network Operator                 |
| MVP          | Minimum Viable Product                          |
| MWIF         | Mobile Wireless Internet Forum                  |
| NAA          | Network Access Application                      |
| NACC         | Network Assisted Call Control                   |
| NAF          | Network Application Function                    |
| NAN          | Neighborhood Area Network                       |
|              |                                                 |

| NAS SMC | NAS Security Mode Command                                 |
|---------|-----------------------------------------------------------|
| NAS     | Non-Access Stratum                                        |
| NAT     | Network Address Translation                               |
| NB      | Node B                                                    |
| NCSC-FI | National Cyber Security Centre of Finland                 |
| NDEF    | NFC Data Exchange Format                                  |
| NDS     | Network Domain Security                                   |
| NE ID   | Network Element Identifier                                |
| NFC     | Near Field Communications                                 |
| NGMN    | Next Generation Mobile Network                            |
| NH      | Next Hop                                                  |
| NHTSA   | National Highway Transportation and Safety Administration |
| NIS     | Network and Information Security                          |
| NIST    | National Institute of Standards and Technology            |
| NMS     | Network Monitoring System                                 |
| NMT     | Nordic Mobile Telephony                                   |
| NP      | Network Provider                                          |
| NPU     | Numerical Processing Unit                                 |
| NTP     | Network Time Protocol                                     |
| NWd     | Normal World                                              |
| OAM     | Operations, Administration and Management                 |
| OBU     | Onboard Unit                                              |
| OCF     | Open Card Framework                                       |
| OCR     | Optical Character Recognition                             |
| ODA     | On-Demand Activation                                      |
| ODM     | Original Device Manufacturer                              |
| OEM     | Original Equipment Manufacturer                           |
| OFDM    | Orthogonal Frequency Division Multiplexing                |
| ОМ      | Order Management                                          |
| OMA     | Open Mobile Alliance                                      |
| OP      | Organizational Partner                                    |
| OPM     | OTA Provisioning Manager                                  |
| OS      | Operating System                                          |
| OSPT    | Open Standard for Public Transport (Alliance)             |
| OTA     | Over-the-Air                                              |
| OTT     | Over-the-Top                                              |
| PAN     | Personal Account Number                                   |
| PAN     | Personal Area Network                                     |
| PC/SC   | Personal Computer/Smart Card                              |
| PCC     | Policy and Charging Control                               |
| PCI     | Payment Card Industry                                     |
| PCI-DSS | Payment Card Industry Data Security Standard              |
| PDA     | Personal Digital Assistant                                |
| PDCP    | Packet Data Convergence Protocol                          |
| PDN     | Packet Data Network                                       |
| PDP     | Packet Data Protocol                                      |
|         |                                                           |

| PDPC      | Packet Data Convergence Protocol                      |
|-----------|-------------------------------------------------------|
| PDS       | Packet Data Services                                  |
| PDU       | Protocol/Packet Data Unit                             |
| PED       | PIN-Entry Device                                      |
| PGC       | Project Coordination Group                            |
| P-GW      | Proxy Gateway                                         |
| PICC      | Proximity ICC                                         |
| PIN       | Personal Identification Number                        |
| PITA      | Portable Instrument for Trace Acquisition             |
| PIV       | Personal Identity Verification                        |
| PKI       | Public Key Infrastructure                             |
| PLI       | Physical Layer Identifier                             |
| PLMN      | Public Land Mobile Network                            |
| PMR       | Private Mobile Radio                                  |
| PNAC      | Port-based Network Access Control                     |
| POS       | Point-of-Sales                                        |
| PP        | Protection Profile                                    |
| PTM       | Point-to-Multipoint                                   |
| PTP       | Point-to-Point                                        |
| PTS       | PIN Transaction Security                              |
| PTS       | Protocol Type Selection                               |
| PUK       | Personal Unblocking Key                               |
| PWS       | Public Warning System                                 |
| QoS       | Quality of Service                                    |
| Q03<br>QR | Quick Read                                            |
| RA        | -                                                     |
| RAM       | Registration Authority                                |
| RAM       | Random Access Memory<br>Remote Application Management |
| RAN       | Radio Access Network                                  |
| RANAP     | RAN Application Protocol                              |
| RAND      | Random Number                                         |
| RAT       |                                                       |
| RCS       | Radio Access Technology<br>Rich Communications Suite  |
| REE       | Rich Execution Environment                            |
| RES       | _                                                     |
| RF        | Response<br>Redio Fraguency                           |
| RFID      | Radio Frequency<br>Radio Frequency Identity           |
| RFM       | Remote File Management                                |
| RLC       | Radio Link Control                                    |
| RN        | Relay Node                                            |
| RNC       | Radio Network Controller                              |
| RoI       | Return on Investment                                  |
| ROM       | Read-Only Memory                                      |
| RPM       | Remote Patient Monitoring                             |
| RRC       | Radio Resource Control                                |
| RRM       | Radio Resource Management                             |
| ININI     | Raulo Resource management                             |

| RSP             | Remote SIM Provisioning                             |
|-----------------|-----------------------------------------------------|
| RTC             | Real Time Communications                            |
| RTD             | Record Type Definition                              |
| RTT             | Radio Transmission Technology                       |
| RUIM            | Removable User Identity Module                      |
| SA              | Security Association                                |
| SA              | Security Association<br>Services and System Aspects |
| SaaS            | Software-as-a-Service                               |
| SAE             |                                                     |
| SAE             | System Architecture Evolution                       |
|                 | Specific Absorption Rate                            |
| SAS             | Security Accreditation Scheme                       |
| SAT             | SIM Application Toolkit                             |
| SATCOM          | Satellite Communications                            |
| SBC             | Session Border Controller                           |
| SC              | Sub-Committee                                       |
| SCD             | Signature-Creation Data                             |
| SCP             | Secure Channel Protocol                             |
| SCQL            | Structured Card Query Language                      |
| SCTP            | Stream Control Transmission Protocol                |
| SCWS            | Smart Card Web Server                               |
| SD              | Secure Digital                                      |
| SD              | Security Domain                                     |
| SDCCH           | Stand Alone Dedicated Control Channel               |
| SDK             | Software Development Kit                            |
| SDS             | Short Data Services                                 |
| SE              | Secure Element                                      |
| SE              | Service Enabler                                     |
| SEG             | Security Gateway                                    |
| SEI             | Secure Element Issuer                               |
| SES             | Secure Element Supplier                             |
| SFPG            | Security and Fraud Prevention Group                 |
| SG              | Smart Grid                                          |
| SGSN            | Serving GPRS Support Node                           |
| S-GW            | Serving Gateway                                     |
| SIM             | Subscriber Identity Module                          |
| SIP             | Session Initiation Protocol                         |
| SiP             | Silicon Provider                                    |
| SM              | Short Message                                       |
| SMC             | Security Mode Command                               |
| SM-DP           | Subscription Manager, Data Preparation              |
| SMG             | Special Mobile Group                                |
| SMS             | Short Message Service                               |
| SMSC            | Short Message Service Centre                        |
| SM-SR           | Subscription Manager, Secure Routing                |
| SNI-SK<br>SN ID | Serving Network's Identity                          |
| SNID            | Sequence Number                                     |
| JIN .           | Sequence Mulliver                                   |

| SN     | Serving Network                           |
|--------|-------------------------------------------|
| SoC    | System on Chip                            |
| SON    | Self-Organizing Network                   |
| SP     | Service Provider                          |
| SPI    | Serial Peripheral Interface               |
| SQN    | Sequence Number                           |
| SRES   | Signed Response                           |
| SRVCC  | Single Radio Voice Call Continuity        |
| SS     | Service Subscriber                        |
| SSCD   | Secure Signature-Creation Device          |
| SSD    | Shared Secret Data                        |
| SSDP   | Simple Service Discovery Protocol         |
| SSID   | Service Set Identifier                    |
| SSL    | Secure Sockets Layer                      |
| SSO    | Single Sign On                            |
| SubMan | Subscription Management                   |
| SVLTE  | Simultaneous Voice and LTE                |
| SVN    | Software Version Number                   |
| SW     | Software                                  |
| SWd    | Secure World                              |
| SWP    | Single Wire Protocol                      |
| TAC    | Type Approval Code                        |
| TACS   | Total Access Communications System        |
| TC     | Technical Committee                       |
| TCAP   | Transaction Capabilities Application Part |
| TCP    | Transmission Control Protocol             |
| TDD    | Time Division Multiplex                   |
| TDMA   | Time Division Multiple Access             |
| TE     | Terminal Equipment                        |
| TEDS   | TETRA Enhanced Data Service               |
| TEE    | Trusted Execution Environment             |
| TETRA  | Terrestrial Trunked Radio                 |
| TIA    | Telecommunications Industry Association   |
| TKIP   | Temporal Key Integrity Protocol           |
| TLS    | Transport Layer Security                  |
| TMO    | Trunked Mode Operation                    |
| TMSI   | Temporary Mobile Subscriber Identity      |
| TOE    | Target of Evaluation                      |
| ToP    | Timing over Packet                        |
| TPDU   | Transmission Protocol Data Unit           |
| TSC    | Technical Sub-Committee                   |
| TSG    | Technical Specification Group             |
| TSIM   | TETRA Subscriber Identity Module          |
| TSM    | Trusted Service Manager                   |
| TTA    | Telecommunications Technology Association |
| TTC    | Telecommunications Technology Committee   |

| TTLS  | Tunneled Transport Layer Security                |
|-------|--------------------------------------------------|
| TUAK  | Temporary User Authentication Key                |
| ΤZ    | Trusted Zone                                     |
| UART  | Universal Asynchronous Receiver/Transmitter      |
| UDP   | User Data Protocol                               |
| UE    | User Equipment                                   |
| UHF   | Ultra High Frequency                             |
| UICC  | Universal Integrated Circuit Card                |
| UIM   | User Identity Module                             |
| UL    | Uplink                                           |
| UMTS  | Universal Mobile Telecommunications System       |
| UN    | United Nations                                   |
| UP    | User Plane                                       |
| URI   | Uniform Resource Identifier                      |
| USAT  | USIM Application Toolkit                         |
| USB   | Universal Serial Bus                             |
| USIM  | Universal Subscriber Identity Module             |
| UTRAN | Universal Terrestrial Radio Access Network       |
| UWB   | Ultra-Wide Band                                  |
| UX    | User Experience                                  |
| VLAN  | Virtual Local Area Network                       |
| VLR   | Visitor Location Register                        |
| VoIP  | Voice over Internet Protocol                     |
| VoLTE | Voice over LTE                                   |
| VPLMN | Visited PLMN                                     |
| VPN   | Virtual Private Network                          |
| WAN   | Wide Area Network                                |
| WAP   | Wireless Access Protocol                         |
| WCDMA | Wideband Code Division Multiplexing Access       |
| WEP   | Wired Equivalent Privacy                         |
| WG    | Working Group                                    |
| WIM   | Wireless Identity Module                         |
| WISPr | Wireless Internet Service Provider roaming       |
| WLAN  | Wireless Local Area Network                      |
| WLCSP | Wafer-Level re-distribution Chip-Scale Packaging |
| WPA   | Wi-Fi Protected Access                           |
| WPA2  | Wi-Fi Protected Access, enhanced                 |
| WPS   | Wi-Fi Protected Setup                            |
| WRC   | World Radio Conference                           |
| WSN   | Wireless Sensor Network                          |
| WWW   | World Wide Web                                   |
| XOR   | Exclusive Or                                     |
| XRES  | Expected Response                                |
|       | • •                                              |

# 1

### Introduction

#### 1.1 Introduction

*Wireless Communications Security: Solutions for the Internet of Things* presents key aspects of the mobile telecommunications field. The book includes essential background information of technologies that work as building blocks for the security of the current wireless systems and solutions. It also describes many novelty and expected future development options and discusses respective security aspects and protection methods.

This first chapter gives an overview to wireless security aspects by describing current and most probable future wireless security solutions, and discusses technological background, challenges and needs. The focus is on technical descriptions of existing systems and new trends like the evolved phase of Internet of Things (IoT). The book also gives an overview of existing and potential security threats, presents methods for protecting systems, operators and end-users, describes security systems attack types and the new dangers in the ever-evolving mobile communications networks and Internet which will include new ways of data transfer during the forthcoming years.

Chapter 1 presents overall advances in securing mobile and wireless communications, and sets the stage by summarizing the key standardization and statistics of the wireless communications environment. This chapter builds the base for understanding wireless network security principles, architectural design, deployment, installation, configuration, testing, certification and other security processes at high level while they are detailed later in the book. This chapter also discusses the special characteristics of the mobile device security, presents security architectures and gives advice to fulfil the regulatory policies and rules imposed. The reader also gets an overview about the pros and cons of different approaches for the level of security.

In general, this book gives the reader tools for understanding the possibilities and challenges of wireless communications, the main weight being on typical security vulnerabilities and practical examples of the problems and their solutions. The book thus functions as a practical guide to describe the evolvement of the wireless environment, and how to ensure the fluent continuum of the new functionalities yet minimize potential risks in the network security.

Wireless Communications Security: Solutions for the Internet of Things, First Edition. Jyrki T. J. Penttinen. © 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

#### **1.2 Wireless Security**

#### 1.2.1 Background and Advances

The development of wireless communications, especially the security aspects of it, has been relatively stable compared to the overall issues in the public Internet via fixed access until early 2000. Nevertheless, along with the enhanced functionalities of smart devices, networks and applications, the number of malicious attacks has increased considerably. It can be estimated that security attacks, distribution of viruses and other illegal activities increase exponentially in a wireless environment along with the higher number of devices and users of novelty solutions. Not only are payment activities, person-to-person communications and social media types of utilization under constant threat, but furthermore one of the strongly increasing security risks is related to the Machine-to-Machine (M2M) communications which belong in the IoT realm. An example of a modern threat is malicious code in an Internet-connected self-driving car. In the worst case, this may lead to physically damaging the car's passengers.

There is a multitude of ideas to potentially change the role of the current Subscriber Identity Module (SIM), or Universal Integrated Circuit Card (UICC) which has traditionally been a solid base for the 3rd Generation Partnership Program (3GPP) mobile communications as it provides a highly protected hardware-based Secure Element (SE). Alternatives have been presented for modifying or for replacing the SIM/UICC concept with, e.g., cloud-based authentication, authorization and payment solutions. This evolution provides vast possibilities for easing the everyday life of end-users, operators, service providers and other stakeholders in the field, but it also opens unknown doors for security threats. The near future will show the preferred development paths, one of the logical possibilities being a hybrid solution that keeps essential data like keys within hardware-protected SEs such as SIM/UICC cards while, e.g., mobile payment would benefit from the flexibility of the cloud concept via dynamically changing tokens that have a limited lifetime.

In the near future, the penetration of autonomously operated devices without the need for human interactions will increase considerably, which results in much more active automatic communication, e.g., the delivery of telemetric information, diagnostics and healthcare data. The devices act as a base for value-added services for vast amounts of new solutions that are still largely under development or yet to be explored. Nevertheless, the increased share of such machines attached to networks may also open new security threats if the respective scenarios are not taken into account in early phases of the system, hardware (HW) and software (SW) development.

The field of new subscription management, along with the IoT concept, automatised communications and other new ways of transferring wireless data, will evolve very quickly. The updated information and respective security mechanisms are highly needed by the industry in order to understand better the possibilities and threats, and to develop ways to protect end-users and operators against novelty malicious attempts. Many of the solutions are still open and under standardization. This book thus clarifies the current environment and most probable development paths interpreted from the fresh messages of industry and standardization fields.

#### 1.2.2 Statistics

In the mobile communications, wireless Local Area Networks (LANs) are perhaps the most vulnerable to security breaches. Wi-Fi security is often overlooked by both private individuals and companies. Major parts of wireless routers have been equipped in advance with default

settings in order to offer fluent user experience for installation especially for non-technical people. Nevertheless, this good aim of the vendors leads to potential security holes for some wireless routers and access points in businesses and home offices due to poor or non-existing security. According to Ref. [21], around 25% of wireless router installations may be suffering from such security holes. From tests executed, Ref. [21] noted in 2011 that 61% of the studied cases (combined 2133 consumer and business networks) had a proper security set up either via Wi-Fi Protected Access (WPA) or Wi-Fi Protected Access, enhanced (WPA2). For the rest of the cases, 6% did not have security set up at all while 19% used low protection of Wired Equivalent Privacy (WEP), 11% used default credentials, and 3% used hidden Service Set Identifier (SSID) without encryption.

Ref. [26] presents recent statistics of Internet security breaches, and has concluded that the three most affected industries are public, information and financial services. Typical ways for illegal actions include the following:

- **Phishing**. Typically in the form of email, the aim is to convince users to change their passwords for banking services via legitimate-looking web pages. The investigations of Ref. [26] shows that phishing is nowadays more focused and continues being successful for criminals as 23% of users opened the phishing email, and 11% clicked the accompanying attachments.
- **Exploitation of vulnerabilities**. As an example, half of the common vulnerabilities and exposures during 2014 fell within the first two weeks which indicates the high need for addressing urgent breaches.
- Mobile. Ref. [26] has noted that Android is clearly the most exploited mobile platform. Not necessarily due to weak protection as such, but 96% of malware was focused on Android during 2014. As a result, more than 5 billion downloaded Android apps are vulnerable to remote attacks, e.g., via JavaScript-Binding-Over-HTTP (JBOH) which provides remote access to Android devices. Nevertheless, even if the mobile devices are vulnerable to breaches, after filtering the low-grade malware, the amount of compromised devices has been practically negligible. An average of only 0.03% of smartphones per week in the Verizon network during 2014 were infected with higher grade malicious code.
- Malware. Half of the participating companies discovered malware events during 35 or fewer days during the period of 2014. Malware is related to other categories like phishing which is the door for embedding malicious code to user's devices. Depending on the industry type, the amount of malware varies, so, e.g., financial institutes protect themselves more carefully against phishing emails which indicates a low malware proportion.
- **Payment card skimmers and Point-of-Sale (POS) intrusions.** This breach type has gained big headlines in recent years as there have been tens of millions of affected users per compromised retailer.
- **Crimeware**. The recent development indicates the increase of Denial-of-Service (DoS) attacks, with Command and Control (C2) continuing to defend its position in 2014.
- Web app attacks. Virtually all the attacks in this set, with 98% share, have been opportunistic in nature. Financial services and public entities are the most affected victims. Some methods related to this area are the use of stolen credentials, use of backdoor or C2, abuse of functionality, brute force and forced browsing.
- Distributed Denial-of-Service (DDoS) attacks. This breach type is heavily increasing. Furthermore, DDoS attacks are being prepared increasingly via malware. The attacks rely on improperly secured services like Network Time Protocol (NTP), Domain Name System

(DNS) and Simple Service Discovery Protocol (SSDP) which provide the possibility to spoof IP addresses.

- **Physical theft and insider misuse**. These are related to human factors; in general, this category belongs to the 'opportunity makes theft', which is very challenging to remove completely as long as the chain of trust relies on key personnel who might have the possibility and motivation to compromise or bypass security. Detecting potential misuse by insiders is thus an important role to prevent and reveal fraudulent attempts early enough. This detection can be related to deviation of the data transfer patterns, login attempts, time-based utilization and, in general, time spent in activities that may indicate dissatisfaction at the working place.
- Cyber espionage. According to Ref. [26], especially manufacturing, government and information services are noted to be typical targets of espionage. Furthermore, the most common way to open the door for espionage seems to be the opening of an email attachment or link.
- Any other errors that may open doors for external or internal misuse.

More detailed information about data breach statistics and impacts in overall IT and wireless environments can be found in Ref. [26].

#### 1.2.3 Wireless Threats

#### 1.2.3.1 General

Wireless communications systems provide a functional base for vast opportunities in the area of IoT including advanced multimedia and increasingly real-time virtual reality applications. Along with the creation and offering of novelty commercial solutions, there also exist completely new security threats that are the result of such a fast developing environment such that users and operators have not yet fully experienced the real impacts. Thus, there is a real need for constant efforts to identify the vulnerabilities and better protect any potential security holes. The following sections present some real-world examples of the possibilities and challenges of wireless communications, the weight being in the discussion of security vulnerabilities and their solutions.

Protection in the wireless environment largely follows the principles familiar from fixed networks. Nevertheless, the radio interface especially, which is the most important difference from the fixed systems, opens new challenges as the communications are possible to capture without physical 'wire-tapping' to the infrastructure. Knowledgeable hackers may thus try to unscramble the contents either in real time or by recording the traffic and attacking the contents offline without the victims' awareness. The respective protection level falls to the value of the contents – the basic question is how much end-users, network operators and service providers should invest in order to guarantee the minimum, typical or maximum security. As an example, the cloud storage for smart device photos would not need to be protected too strongly if a user uploads them to social media for public distribution. The scenery changes, though, if a user stores highly confidential contents that may seriously jeopardize privacy if publicly exposed. There are endless amounts of examples about such incidences and their consequences, including the stealing and distribution of personal photos of celebrities. Regardless of the highly unfortunate circumstances of these security breaches, they can also