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We are honored and privileged to have been part of assembling and editing 
Antibody–Drug Conjugates: Fundamentals, Drug Development, and Clinical 
Outcomes to Target Cancer. This is a critical field of drug discovery, develop-
ment, and commercialization focused on improving a patient’s quality of life by 
specifically targeting the disease with a highly effective therapy, while simultane-
ously sparing normal tissue. We worked closely with distinguished,  knowledgeable, 
and well‐known industry, academic, and government researchers, drug develop-
ers, and clinicians to present a comprehensive story with concrete examples of 
novel therapies across various indications in oncology. We  intentionally have 
overlap in various chapters to ensure full coverage of essential topics, which 
allows for a variety of opinions and strategies to be  thoroughly explored.

As the reader may be aware, in order to effectively treat cancer and improve 
the quality of life for patients, therapeutic oncology molecules must kill all can-
cer cells without adversely affecting normal cells. Combinations of cytotoxic 
chemotherapeutic drugs have been the traditional means to this end, but often 
have off‐target dose‐limiting toxicities in normal cells and tissues that prevent 
sufficient exposure to kill all tumor cells. While the advent of engineered tar-
geted monoclonal antibodies (mAbs) significantly improved the clinical out-
comes for patients with several types of cancer, optimal efficacy requires they 
be given in combination with cytotoxic chemotherapy. Antibody–drug conju-
gates (ADCs) have the advantage of specifically targeting cancer cells to deliver 
cytotoxic drugs. This combination has created widespread enthusiasm in the 
oncology drug development community as well as in patient advocacy net-
works and can be largely explained by the properties of these molecules in their 
exquisite binding specificity and their substantially decreased toxicity profile. 
Several approaches are being evaluated including linkage of mAbs to highly 
cytotoxic drugs and targeted delivery of cytotoxic drug payloads in liposomes. 
This book will provide academic oncologists, drug researchers, and clinical 
developers and practitioners with a depth of knowledge regarding the  following 
topics: (i) ADC fundamentals, (ii) molecules, structures, and compounds 
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included in this class, (iii) chemistry manufacturing and controls associated 
with ADC development, (iv) nonclinical approaches in developing various 
ADCs, (v) clinical outcomes and successful regulatory approval strategies asso-
ciated with the use of ADCs, and (vi) case studies/examples (included through-
out) from oncology drug discovery. Readers will be educated about ADCs so 
that they can affect important improvements in this novel developing field. 
They will have practical, proven solutions that they can apply to improve their 
ADC drug discovery success.

We feel this book will be a valuable reference to significantly augment the 
scope of currently available published information on ADCs. Considering how 
expansive this field is and the potential benefit to researchers, clinicians, and 
ultimately our patients, we felt a more comprehensive book covering the newest 
cutting‐edge information was essential to the field of oncology drug development.

Cambridge, MA and Los Angeles, CA,  Kennath J. Olivier Jr. and
30 June 2016 Sara A. Hurvitz
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 Introduction

Developing drugs that are able to target disease and spare healthy tissue has been 
a long‐time goal of both oncologic and non‐oncologic drug development. Since 
the late nineteenth century, it has been recognized that effective treatment of 
disease by therapeutic agents is improved when therapeutics demonstrate selec-
tiveness for foreign bodies (bacteria) or diseased cells and spare healthy cells. 
The development of novel and highly selective antibody–drug conjugates 
(ADCs) has moved us closer to this goal in cancer therapy (Figure 1). Agents 
such as trastuzumab emtansine (T‐DM1) and brentuximab vedotin have shown 
promising results, particularly in patients with advanced disease who have pro-
gressed on other treatments. Combining cancer‐specific antibody targets with 
potent cytotoxic therapies makes these agents revolutionary in their efforts to 
deliver potent treatments while minimizing adverse effects, coming closer to the 
“magic bullet” concept of Ehrlich and other early  twentieth‐century pharma-
cologists [1].

 Early Work in Monoclonal Antibody Development: 
Ehrlich’s Magic Bullets

Ehrlich and colleagues hypothesized that there may be antigens specific to 
tumors and bacteria that could be targeted with drugs for the treatment of 
cancer and infectious disease. Throughout the 1960s and 1970s, there was 
much work to develop specific antibodies that could be easily generated in 
large quantity and used for therapeutics. In a 1975 letter to the journal Nature, 
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Georges Kohler and César Milstein described the development of a mecha-
nism to generate large quantities of antibodies with a defined specificity by 
fusing myeloma cells that reproduce easily in cell culture with mouse spleen 
cells that are antibody‐producing cells [2]. By combining these two types of 
cells, a continuous supply of specific antibody was produced in quantities suf-
ficient for use as therapeutic agents. As with the production of other human 
proteins, the use of microbial agents for antibody production further advanced 
the field, as these methods were able to generate antibody and antibody frag-
ments in the quantities needed for drug development [3–5].

1975 Kohler and Milstein describe their efforts to generate 
large quantities of antibody through tissue culture cell lines

1984 Use of radioactive iodine conjugated to tumor 
associated antibody in ovarian cancer reported

1997 Rituximab, approved for treatment of relapsed
lymphoma

1998 Trastuzumab, approved for the treatment of
metastatic HER-2 positive breast cancer

2000s Work to improve monoclonal antibodies and
linker agents leads to further development of ADCs

2000 Gentuzumab ozogamacin approved for the
treatment of older patients with AML

2011 Brentuximab vedotin approved for the treatment
of refractory Hodgkin’s Lymphoma

2013 Trastuzumab emtansine approved for second
line therapy for metastatic HER-2 positive breast cancer

Figure 1 Timeline of events in development of ADCs.
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Subsequent work demonstrated that monoclonal antibodies could be used to 
identify and characterize the multiple different types of surface receptors 
found on cells [6, 7]. These receptors could then be used as targets for cancer 
therapeutics with better tumor specificity and potentially less toxicity.

 Use of Monoclonal Antibodies to Identify 
and Treat Cancer

Early on, the potential for monoclonal antibodies in the detection and treat-
ment of cancer was recognized as promising [8, 9]. The use of antibodies to 
improve tumor localization was of great interest in the 1970s and 1980s and 
was a first step in transitioning the use of these antibodies from tumor identi-
fication to tumor treatment [10]. Radioactive iodine was conjugated to a 
tumor‐associated monoclonal antibody to effectively deliver cytotoxic doses 
of radiation to tumor sites in women with metastatic ovarian cancer with lower 
doses of radiation to surrounding tissues and the remainder of the body [11].

During the 1980s and 1990s, the development of monoclonal antibodies for 
therapeutic treatment of cancers delivered promising results. In 1997, rituxi-
mab, an anti‐CD20 monoclonal antibody that targets malignant B cells, was 
initially approved for use in relapsed follicular lymphoma [12]. Trials demon-
strated that in low‐grade lymphomas, this agent had a response rate of 48%. 
Importantly, this therapy was relatively well tolerated with only 12% grade 3 
and 3% grade 4 toxicity [13]. Subsequent trials established the role of rituximab 
in aggressive B‐cell lymphomas as it significantly improved survival when 
added to standard chemotherapy [14–16].

Following the initial approval of rituximab, trastuzumab was approved in 
1998 for the treatment of human epidermal growth factor receptor‐2 (HER2) 
overexpressing metastatic breast cancer (MBC). Based on significant survival 
benefits in phase III clinical trials, this agent was approved in combination 
with paclitaxel for the first‐line treatment of HER2 overexpressing MBC and 
as a single agent for those who had progressed on one or more previous chem-
otherapy regimens [17]. Similar to rituximab, trastuzumab was well tolerated  
with few side effects. The main safety signal reported was cardiomyopathy that 
was primarily seen when used in combination with anthracycline‐containing 
regimens [18, 19]. Subsequently, a number of other agents were approved for 
use in solid tumor malignancies including those that target vascular endothe-
lial growth factor (VEGF) and epidermal growth factor receptor (EGFR). 
Table  1 is a comprehensive listing of monoclonal antibody that have been 
approved along with their approval dates and indications.

Although these agents have provided therapeutic benefits, there have been 
multiple efforts to enhance the efficacy of monoclonal antibodies. This has been 
done in a variety of ways including the development of monoclonal  antibodies 
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that target immune cells [24, 25], the development of bispecific monoclonal 
antibodies that target multiple cell surface receptors and link malignant cells 
with host immune cells [26], and the development of monoclonal antibodies 
through the conjugation of radioisotopes for the targeted delivery of cytotoxic 
radiation [27, 28]. Examples of these agents are found in Table 2.

 Linking Monoclonal Antibodies 
with Cytotoxic Agents

The linkage of monoclonal antibodies to potent cytotoxic drugs is a further 
step toward enhancing the efficacy of these agents in cancer treatment. 
Although specific cell surface receptors on malignant cells may not be directly 
involved in tumor proliferation, receptors that are identified as unique to 
tumor cells can allow for targeted delivery of cytotoxic agents. An effective 
ADC consists of three primary components: a monoclonal antibody that rec-
ognizes a cell surface receptor that is expressed primarily on malignant cells, a 
linking agent, and a potent cytotoxic agent that is known as the “payload” [29].

Much work has been devoted to improving the linking molecule between the 
monoclonal antibody and the cytotoxic agent as this is a crucial component of 

Table 1 Monoclonal antibodies directed at malignant cell surface receptors.

Drug name Target
Year 
approved Initial indication

Rituximab CD20 1997 Follicular lymphoma
Trastuzumab HER2 1998 Metastatic HER2 overexpressing breast cancer
Alemtuzumab [20] CD52 2001 CLL refractory to fludarabine
Cetuximab [21] EGFR 2004 Metastatic colorectal cancer
Bevacizumab VEGF‐A 2004 Metastatic colorectal cancer
Panitumumab [22] EGFR 2004 Metastatic colorectal cancer that is KRAS wild 

type and has progressed on a regimen containing 
a fluoropyrimidine and oxaliplatin or irinotecan

Ofatumumab [23] CD20 2009 Refractory CLL
Obinutuzumab CD20 2014 Combined with chlorambucil for the 

treatment of previously untreated patients 
with CLL

Ramucirumab VEGF‐2 2014 Patients with metastatic gastric or GE junction 
cancer that progressed on fluoropyrimidine‐ 
or platinum‐containing regimen

Abbreviations: CLL, chronic lymphocytic leukemia; GE, gastroesophageal.
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drug stability and potency. Effective linkers are able to maintain the cytotoxic 
agent on the monoclonal antibody such that it is trafficked to the targeted can-
cer cell and then transported into the cell where the link is then cleaved within 
the lysosome. This linkage allows potent cytotoxic whose dosing is limited by its 
toxicity to be delivered directly to malignant cells and improves the therapeutic 
index of these agents. Improvements in the identification and development of 
monoclonal antibodies to specific tumor cell targets, along with the type of 
cytotoxic agent and the linker used to conjugate the agents, have been critical in 
the development and improvement of ADC agents for use in  oncology [30].

 Antibody–Drug Conjugates in the Clinic

The first ADC approved for use in oncology was gemtuzumab ozogamicin 
(GO), a CD33 monoclonal antibody linked to a calicheamicin, a potent cyto-
toxic derived from bacteria. This agent was given accelerated approval based 
on phase II data and was approved from 2000 to 2010 for use in patients aged 
60 and older with acute myeloid leukemia who were otherwise unable to be 
treated with standard induction chemotherapy. Food and Drug Administration 
(FDA) approval was withdrawn in 2010 as results from the SWOG S0106 study 
evaluating the use of GO combined with standard induction chemotherapy in 
patients younger than 60 years demonstrated no improvement in efficacy and 

Table 2 Additional monoclonal antibodies approved for use.

Type of modification Drug name Target Year approved

Immune cell surface 
receptors targeted to 
enhance immune 
response

Ipilimumab CTLA‐4 2011
Nivolumab PD‐1 2014
Pembrolizumab PD‐1 2015

Bispecific monoclonal 
antibody to link 
immune cell and 
malignant cell

Blinatumomab CD3 and CD19 2014

Conjugate with 
radioisotope

Ibritumomab 
tiuxetan

CD20; linked to 
yttrium‐90 for 
treatment

2002

Iodine 
tositumomab

CD20 2003; as of February 2014, 
this drug has been 
discontinued by 
manufacturer and is no 
longer available
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no difference in overall survival (OS), with a 5‐year OS rate in the arm  containing 
GO being 46–50% in the standard therapy arm [31]. This lack of survival ben-
efit combined with toxicities observed post‐approval including hepatotoxicity 
with severe veno‐occlusive disease, infusion reactions including anaphylaxis, 
and pulmonary toxicity leading to Pfizer’s voluntary withdrawal of the product 
in 2010. However, there are additional data demonstrating the benefit of this 
agent in acute promyelocytic leukemia and in those patients without adverse 
cytogenetic features [32]. Although this agent is no longer approved for routine 
clinical use, there may be a role for this drug in the treatment of specific sub-
types and in specific populations of patients with acute myeloid leukemia [33].

Brentuximab vedotin, an ADC that links anti‐CD30 activity with the antimi-
totic agent monomethyl auristatin E (MMAE), was the second agent approved 
in this class of drugs and was initially approved in 2011 for the use in refractory 
Hodgkin’s disease (HD) and in anaplastic large‐cell lymphoma (ALCL) [34, 
35]. While early work on monoclonal antibodies targeting CD30 had demon-
strated little therapeutic efficacy, the linkage of this antibody to the potent 
cytotoxic agent MMAE [36, 37] resulted in potent drug delivery to the target 
and enhanced treatment effect. Trials of this agent in patients who had relapsed 
after autologous stem cell transplant (ASCT) demonstrated an overall response 
rate of 75% with a complete remission in 34% of patients [38]. Subsequent trials 
have demonstrated the efficacy of this agent as consolidation therapy after 
ASCTs in patients with Hodgkin’s disease who are at high risk of relapse [39]. 
This agent has shown significant efficacy in those patients with high‐risk 
Hodgkin’s disease as well as those with ALCLs where initial trials of naked 
monoclonal antibodies to CD30 demonstrated little to no efficacy [40].

Shortly after the approval of brentuximab vedotin, trastuzumab emtansine 
was approved in February 2013 for the treatment of HER2‐positive MBC that 
had progressed on trastuzumab‐based therapy [41]. This agent used the already 
effective monoclonal antibody to HER2, trastuzumab, and linked the antibody 
to the potent cytotoxic DM1, a maytansinoid, which is a microtubule depolym-
erizing agent [42]. OS with this agent in patients who had progressed on prior 
therapy with trastuzumab and taxane was improved by 5.8 months when com-
pared to capecitabine and lapatinib. This agent is a significant advance for 
patients who have MBC that has progressed on standard anti‐HER2 regimens 
and is well tolerated without significant alopecia or neuropathy.

Table 3 demonstrates the clinical trials and settings where each of these agents 
has been or is currently being evaluated. As of 1 June 2015, over 200 clinical trials 
evaluating ADCs across a variety of hematological and solid tumor malignancies 
were listed on clinical trials.gov. For both brentuximab vedotin and trastuzumab 
emtansine, successful use of these therapies in patients with recurrent or refrac-
tory disease has prompted evaluation of the use of these agents earlier in disease 
course. Data from these pivotal trials will help us to better understand the role of 
these agents at various stages of the treatment trajectory.
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 Why ADCs Are Revolutionary?

The primary goal of drug development is the creation of therapeutic agents 
that are effective at treating disease while minimizing the effects of the treat-
ment on healthy tissue. This goal is closer to being reached in oncology with 
the successful development of ADCs that can deliver potent cytotoxic therapy 
to targeted malignant cells. Clinical validation of this concept has been demon-
strated with two recently approved agents in cancer: brentuximab vedotin and 
trastuzumab emtansine. In addition, there is an exciting pipeline of multiple 
ADCs that are in various stages of clinical development, including agents for 
triple‐negative breast cancer [44], platinum‐resistant ovarian cancer [45], 
 glioblastoma [46], as well as additional solid tumor and hematological malig-
nancies. These agents move us closer to the realization of the goal of “magic 
bullets” that Ehrlich and colleagues conceptualized in the early twentieth cen-
tury and offer exciting potential as agents that improve treatment efficacy 
while reducing toxicity, leading to improvements in both survival and quality 
of life in patients with cancer.
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1.1  Introduction

1.1.1 A Simple Concept

Ever since cancer patients were first treated with cytotoxic agents with the goal 
of eradicating the tumor tissue, oncologists have looked to widen the therapeu-
tic window for these agents. The goal of combination chemotherapy, pioneered 
by Emil “Tom” Frei and others [1], was to increase antitumor efficacy of cyto-
toxic drug therapy, without substantially increasing overall toxicity to the 
patient, by using agents with nonoverlapping dose-limiting toxicities. However, 
such modalities have proven only partially effective at the maximum achievable 
doses, limited by the severe side effects of the cytotoxic agents used. Attaching 
cytotoxic effector molecules to an antibody to form an antibody–drug conjugate 
(ADC) provides a mechanism for the selective delivery of the cytotoxic payload 
to cancer cells via the specific binding of the antibody moiety to cancer-selective 
cell surface molecules. This simple concept was thought to be a particularly 
attractive solution to the challenge of finding a way to increase the therapeutic 
window of the cytotoxic agent (Figure 1.1). Furthermore, conjugation of a small 
molecular weight cytotoxic agent to a large hydrophilic antibody protein is 
expected to restrict penetration of the cytotoxic compound across cellular 
membranes of antigen-negative normal cells, providing an additional mecha-
nism by which the therapeutic index of the small molecule cytotoxin is widened, 
beyond that of targeted delivery. Thus, from the perspective of a medicinal 
chemist, an ADC is a prodrug that can only be activated within tumor cells and 
is excluded from normal cells by virtue of conjugation to a protein. In addition, 
giving the in vivo distribution properties of an antibody to the small molecular 
weight cytotoxic agent has the potential to reduce its systemic toxicity.

Typical Antibody–Drug Conjugates
John M. Lambert

ImmunoGen, Inc., Waltham, MA, USA
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1.1.2 Turning Antibodies into Potent Anticancer Compounds

There is another way to look at the simple concept of an ADC. Ever since the 
advent of monoclonal antibody technology [2], a focus of cancer research has 
been to develop antibodies for anticancer therapy. Indeed, four monoclonal 
antibodies, rituximab, trastuzumab, cetuximab, and bevacizumab, are among 
the most commercially successful anticancer drugs [3]. However, many more 
antibodies to a variety of target antigens have been tested, both in preclinical 
studies and in clinical trials, and have proven to have insufficient anticancer 
activity to be developed as therapeutic agents. In general, the immunologic 
mechanisms for killing malignant cells induced upon binding of antibodies to 
cell surface antigens present in cancers appear to be insufficient to affect sig-
nificant reduction in tumor cell burden in most instances. Thus, providing an 
additional killing mechanism to such anticancer antibodies via conjugation to 
cytotoxic agents was thought to be a solution to their lack of potency. From the 
perspective of an immunologist, enhancing antibody activity by creating ADCs 
was one approach to be able to fully exploit the full potential of their exquisite 
specificity toward tumor cells [4–6].

1.1.3 What is a Typical ADC and How Does it Act?

A typical ADC consists of several molecules of a potent cytotoxic agent (gener-
ally in the range of two to six molecules per antibody molecule on average), 
which are linked covalently to side chains of particular amino acid residues of 
a monoclonal antibody (Figure 1.2). The chosen linker chemistry should be 

Cytotoxic
chemotherapy

MTD (maximum
tolerated dose)

Therapeutic index

Increase MTD (increase selectivity)
Decreased systemic toxicity via altered distribution

Decrease MED (increase potency)
Specific delivery to tumor via antibody binding

MED (minimum
effective dose)

Antibody-drug
conjugate therapy

D
o

se

Figure 1.1 Increasing the therapeutic index of cytotoxic drugs by conjugation to 
antibodies.
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sufficiently stable during in vivo circulation in the bloodstream so that the pay-
load stays linked to the antibody during the time it takes for the antibody to 
distribute into tissues, yet must allow release of an active cytotoxic compound 
once the ADC is taken up by cancer cells within tumor tissue. Once at the 
tumor, the antibody component of the ADC binds specifically to its target anti-
gen on cancer cells; in the case of a typical ADC, the cytotoxic payload is liber-
ated after internalization of the antibody–antigen complex and routing to the 
relevant intracellular compartment for release of an active cytotoxic compound 
from the ADC (Figure 1.2).

1.1.4 Simple Concept, but Not So Simple to Execute

The earliest notion in the field of ADC research was that conjugation to spe-
cific monoclonal antibodies was a way to widen the therapeutic window of 
existing chemotherapeutic drugs, such as the vinca alkaloids [7], and doxo-
rubicin [8], following on from the early attempts to provide specificity to 
cytotoxic drugs by conjugation to serum immunoglobulins [9]. However, 
despite the early optimism generated by some of the preclinical results [8], 
the results of clinical trials of such conjugates were disappointing [10–12]. 
During the 1980s, increased knowledge of the biodistribution properties of 
monoclonal antibodies based on clinical dosimetry measurements with radi-
olabeled an  ti  bodies pointed to one explanation for such disappointing results. 

Optimized linker

Cytotoxic agent

Cancer
cell

•   ADC components:

    An integrated system

      –  Targeting antibody

      –  Cytotoxic agent

      –  Linker

•   ADC mechanism:

      –  Binds to target on surface of
          cancer cell

      –  Internalized into the cell

      –  Cytotoxic agent is released
          inside the cell

      –  Cytotoxic agent affects its
          target (eg., DNA; tubulin)

      –  Cell death

Antibody

Figure 1.2 The components of an ADC and its mechanism of action. (See color plate section 
for the color representation of this figure.)
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It was found that the amount of antibody that could be localized to a solid tumor 
24 h after administration, a time corresponding approximately to the peak deliv-
ered concentration, was only about 0.01% of the injected dose of antibody per 
gram of tumor tissue for a range of different antibodies, to a variety of targets in 
patients with a variety of tumor types [13]. Thus, it was reasoned that the lack 
of clinical benefit from ADCs made with conventional chemotherapeutic drugs 
was that not enough of these agents could be localized at the tumor via antibody- 
mediated delivery to have an antitumor effect. The use of these only moderately 
cytotoxic compounds as payloads for ADCs was at least one of the barriers to 
the successful execution of the ADC concept. The idea that conventional chem-
otherapeutic drugs were not potent enough to serve as payloads for ADCs has 
guided much of the subsequent research in the field [4–6].

1.2  The Building Blocks of a Typical ADC

All three parts of an ADC, the antibody, the cytotoxic payload, and the linker 
chemistry that joins them together, are important in designing an ideal ADC. 
The design goal is to add the potent tumor cell-killing mechanism afforded by 
the payload, while retaining all the favorable properties of the antibody in terms 
of in vivo pharmacokinetics and biodistribution, together with any intrinsic bio-
logic activity and immunologic properties. It is beyond the scope of this chapter 
to discuss the properties of the cell surface target molecule, but suffice to say that 
selecting the right target, and matching the design of the ADC to the properties 
of the target, is vital to the creation of an effective therapeutic agent.

1.2.1 The Antibody

The first monoclonal antibodies used in ADCs and also in immunotoxins  – 
antibodies conjugated to potent protein toxins such as derivatives of ricin, or 
diphtheria toxin [14] – were murine antibodies. However, apart from other limi-
tations, such conjugates proved to be immunogenic in humans [10]. The advent 
of chimerization and a variety of humanization techniques (CDR grafting, resur-
facing) for rendering murine antibodies less immunogenic or nonimmunogenic 
in humans [15], and the methods for cloning of human immunoglobulin genes 
into a variety of organisms, such as transgenic animals, bacteriophage, or yeast, 
for the generation of fully human antibodies [16–18], have largely addressed this 
problem (Figure 1.3), as has been generally borne out by the recent clinical expe-
rience with ADCs [19]. Of the 51 ADCs currently in clinical trials, at least two 
utilize chimeric antibodies, including the approved ADC, brentuximab vedotin, 
while for the other ADCs, antibody usage is, where known, fairly evenly split 
between humanized antibodies and fully human antibodies. Several of the 
humanizations were done by the method of variable domain resurfacing [15], for 
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example, the anti-CanAg antibody, cantuzumab, utilized in the first maytansi-
noid ADC (cantuzumab mertansine) to enter into clinical trials [20]. Recently, 
however, the World Health Organization decided to alter criteria for providing 
generic names to antibodies, resulting in the confusing situation of many human-
ized antibodies being given names bearing the suffix of a chimeric antibody 
(“-ximab”), for example, the anti-CD19 antibody, coltuximab [15, 21], and the 
antifolate receptor alpha (anti-FRα) antibody, mirvetuximab [22], both of which 
were humanized by the resurfacing method [15, 23].

1.2.1.1 Antibody Isotype in ADCs
Most of the antibodies utilized in ADCs evaluated in clinical trials to date, 
including those (about 20) now discontinued, have been of the human IgG1 
isotype (60 of 67 ADCs, with an additional four not disclosed, upon this author’s 

Fab
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Chimeric

cH

vH

vL

cL

CDRs Human CDRs
Human Fv

and constant

Human
constant

Mouse CDRs
Human Fv

and constant

Mouse 

Mouse Fv

Mouse CDRs
Human Fv
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constant

Buried
Mouse Fv
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Human

Humanized
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Figure 1.3 Schematic representations of a mouse (green) and a fully human (blue) monoclonal 
antibody, together with a chimeric antibody, and those humanized by complementarity-
determining region (CDR) grafting and by variable domain resurfacing methodologies (mixed 
green and blue). The antibody sub-domains are indicated on the mouse antibody, including 
the Fab fragment, the Fc fragment, the heavy-chain (vH) and light-chain (vL) variable regions, 
the heavy-chain (cH) and light-chain (cL) constant regions, and the CDRs. The light chains are 
represented in a lighter shade of color than the heavy chains. CDRs derived from murine 
antibodies are in red, while CDRs generated on human IgG backbone sequences are in purple. 
(See color plate section for the color representation of this figure.)
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review of source information). In general, the Fc regions of these IgG1  antibodies 
are unmodified with respect to Fc receptor binding properties so that all could 
be capable of inducing immune effector cell killing or complement-mediated 
cytotoxicity (Figure 1.4). However, at least one ADC was designed with an IgG1 
antibody having enhanced FcγR (FcγRIIIa) binding for enhanced antibody-
dependent cellular cytotoxicity (ADCC) activity by virtue of being produced in 
an afucosylated form [24]. Thus far, no ADC with a human IgG1 isotype in clini-
cal development has employed an antibody with amino acid mutations known 
to abrogate FcγR binding, despite some speculation that such modifications 
may reduce certain toxicities observed in clinical trials with some ADCs [25]. 
Indeed, where abrogation of FcγR binding was part of the stated design goal of 
the resulting ADC, the IgG4 format has been the preferred option to date, 
known to be used in three ADCs currently in clinical trials (gemtuzumab ozo-
gamicin, inotuzumab ozogamicin, and indatuximab ravtansine). At least three 
ADCs have employed a human IgG2 antibody, all of which were fully human 
antibodies generated in transgenic mice engineered to express human immu-
noglobulin genes in place of the corresponding mouse genes [17].

1.2.1.2 Functional Activity of the Antibody Moiety in ADCs
Antibodies for ADCs may be developed to targets where the antibody may 
have functional activity beyond intrinsic immunological functions of ADCC, 
ADCP, or CDC. The primary exemplar of this would be the approved 
ADC, ado-trastuzumab emtansine, wherein the antibody component, trastu-
zumab, inhibits HER2-driven cell growth in HER2-positive (overexpressing) 
breast cancer [26]. In this case, arming the antibody with a payload provides an 
additional mechanism for cancer cell killing over and above its intrinsic  biologic 
and immunologic activities (Figure 1.4). In another example, antibody selec-
tion for an ADC that targets CD37 (IMGN529) was based on screening for 
those antibodies that could directly induce apoptotic cell death in CD37-
positive tumor B cell lines. The antitumor activity of the antibody was then 
further augmented by arming it with a payload to create the ADC compound 
that was taken into clinical development [27]. For targets that have no signaling 
function, one would not anticipate finding antibodies that can induce any bio-
logic function upon binding to the target, saving perhaps for immunologic 
effector functions triggered by antibody binding to the cell surface. In general, 
antibodies whose only function upon binding to tumor cells is to induce ADCC 
and/or ADCP often exhibit very little antitumor activity in clinical trials, spark-
ing efforts to enhance effector functions [28]. Most ADCs in development are 
to such targets, where arming the antibodies with a payload to exploit their 
specific binding to cells is one way to provide them with a direct cell-killing 
function. For these targets, the antibodies should be selected for the property 
of efficient payload delivery, as in the example of an ADC designed to target 
FRα, IMGN853, recently named mirvetuximab soravtansine [22].



1 Typical Antibody–Drug Conjugates 9

Apart from specificity for their target, antibodies should bind with sufficient 
affinity for good retention at the tumor in vivo. Typically, the apparent binding 
affinities of the antibody component of most ADCs currently in clinical evalu-
ation are in the range of about 0.1 to 1.0 nM. However, there is little published 
data regarding what the optimal binding affinity should be for an ADC. Some 
studies with antibodies suggest that very high affinity may compromise deliv-
ery of antibodies throughout solid tumors [29], although such findings may 
depend on target biology and tumor type. Since typical ADCs are designed to 
require intracellular release of an active payload, the antibody should be inter-
nalized upon binding to its target [30–33].

1.2.2 The Payload

For an ADC to exhibit potent antitumor activity, the cytotoxic agent that 
serves as the payload must be active at killing cells at the intracellular concen-
trations achievable within tumor cells by antibody-mediated distribution into 
tumor tissue followed by target-mediated uptake into tumor cells. As the 
constraints on payload delivery via antibody-mediated distribution and cel-
lular uptake became better understood [13], it was reasoned that the cyto-
toxic compounds suitable for ADC approaches should have potency in the 

Delivery of
cytotoxic agent

Effector cell

Apoptosis/growth
inhibition by

direct signaling or
receptor downregulation
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Cytotoxin

ADC

Fc Receptor

Tumor
cell

Complement

Antibody-dependent
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Antibody-dependent
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dependent
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Figure 1.4 Potential cell-killing mechanisms for an ADC. Illustration of the mechanisms by 
which an ADC can effect cell death. For some targets and some antibodies, only the payload 
delivery mechanism of cell killing is operative. For other targets and antibodies, one or more 
of the biologic or immunologic mechanisms may also contribute to the overall activity of an 
ADC. (See color plate section for the color representation of this figure.)
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picomolar range [4–6]. The structures of several highly potent cytotoxic 
compounds that are currently being used as payloads for ADCs are shown in 
Figure 1.5. All but calicheamicin, of those shown in Figure 1.5, were (or, in the 
case of SJG-136, are still being) evaluated in clinical trials, and all proved too 
toxic, with limited antitumor activity at the achievable maximum tolerated 
doses [5].
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Calicheamcin antibiotics cause DNA double-stranded breaks via a radical mechanism, 
SJG-136, a pyrrolobenzodiazepine dimer, alkylates and cross-links DNA, and the 
duocarmycin, adozelesin, alkylates DNA [5]. Dolastatin 10 and maytansine are potent 
tubulin-interacting compounds that disrupt microtubule dynamics [5, 34].
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1.2.2.1 DNA-Targeting Payloads
The first ADC to receive marketing approval by FDA, gemtuzumab ozogamicin 
[35], used calicheamicin as the payload, a potent DNA-targeting agent that 
causes double-stranded breaks in the DNA resulting in cell death [5]. However, 
in 2010, it was withdrawn from the US market by the sponsor, 10 years after its 
initial approval for treating acute myeloid leukemia (AML), following an 
unsuccessful confirmatory phase III trial [36] and unacceptable safety profile. 
Subsequently, results from other trials utilizing dose fractionation have sug-
gested patient benefit and have revived interest in this compound [37], and also 
in CD33 as an ADC target for AML [38]. Calicheamicin is known to be used as 
the payload in at least two other ADCs in current clinical testing, inotuzumab 
ozogamicin that targets CD22 on malignant B cells and that is in a phase III 
trial for treating acute B-cell leukemia [39], and an ADC that targets EphA4, a 
marker expressed on the cell surface of tumor stem cells in certain solid tumors 
[40], that is being evaluated in a phase I trial.

Another potent class of DNA-targeting agent are derivatives of the antican-
cer agent, SJG-136 (Figure 1.5), a pyrrolobenzodiazepine (PBD) dimer [41] that 
cross-links DNA, which are being assessed as payloads for three ADCs in 
ongoing clinical trials (e.g., see references [38] and [42]). Others include the 
camptothecin analog SN38 that is the payload for two ADCs [43], and a duo-
carmycin, a member of a family of DNA-alkylating antibiotics which includes 
adozelesin (Figure 1.5), that is, the payload of an ADC targeting HER2 [44]. 
Recently, a potent DNA-alkylating indolinobenzodiazepine dimer has been 
developed as a payload for ADCs, the first of which, IMGN779, entered into 
clinical testing in early 2016 [45].

1.2.2.2 Payloads Targeting Tubulin
Although these DNA-acting cytotoxins have the desired attribute of extraordi-
nary high potency to be effective as an ADC payload, such compounds do have 
drawbacks. In general, DNA-interacting compounds are hydrophobic and may 
lack sufficient solubility in aqueous conditions for facile conjugation to antibodies, 
and some (e.g., duocarmycins) may not be stable in aqueous environments, thus 
requiring the use of prodrug approaches to protect the DNA-alkylating function 
[44]. These factors may explain why, even though the first ADC to receive 
approval utilized calicheamicin as the payload [35], only 11 of the 51 ADCs in 
clinical development at the time of writing utilize DNA-targeting compounds as 
payloads. Currently, the most important classes of ADC payload are potent tubu-
lin-acting agents, which are used in 37 of the 51 ADCs in development (the pay-
loads for three of the 51 ADCs have not yet been publicly disclosed). There are 
two main classes of these potent tubulin-acting agents in widespread use in 
ADCs undergoing clinical testing. Where the payload structures are disclosed 
(n = 37), 60% use auristatins, analogs of dolastatin 10, while 35% utilize deriva-
tives of maytansine (Figure 1.5).
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The binding of auristatins or maytansinoids to tubulin interferes with micro-
tubule dynamicity, causing cells to arrest in the G2/M phase of the cell cycle, 
which ultimately results in apoptotic cell death [31, 34, 46]. Since these agents 
act as antimitotic agents because of their effect at disrupting the mitotic 
spindle, they have a natural selectivity for rapidly dividing cells. In the context 
of an ADC, this attribute of a payload may bring an additional level of selectiv-
ity beyond that provided by the specific binding of the antibody moiety. Target 
antigens are rarely completely tumor specific, their selectivity being based on 
differential expression on tumor versus normal cells rather than the complete 
absence of expression on normal cells. In any case, in most circumstances, 
most of the administered antibody is eventually removed from circulation for 
catabolism via cells of the reticuloendothelial system with only a small portion 
of the injected material passing through and being retained in tumor tissue 
[13]. Thus, the lack of cytotoxicity of these potent microtubule-acting com-
pounds toward nondividing, or only slowly dividing, normal cells may contrib-
ute to the tolerability of ADCs made using them as payloads.

1.2.3 Linker Chemistries

An optimal linker should be sufficiently stable in circulation in the blood-
stream to take advantage of the pharmacokinetic properties of the antibody 
moiety (the long half-life), yet should allow efficient release of an active cyto-
toxic compound within the tumor cell. Linkers used in typical ADCs can be 
characterized as either cleavable or noncleavable. The only mechanism of 
release of an active metabolite from an ADC utilizing noncleavable linker 
chemistry is by the complete proteolysis of the antibody moiety down to its 
constituent amino acids, which requires that following antigen-mediated 
internalization of the ADC, it is trafficked to lysosomes for proteolytic degra-
dation. The active cytotoxic metabolite is thus appended with an amino acid 
residue, a lysine or a cysteine residue in a typical ADC – the site of attachment 
of the payload to the antibody via the linker. The necessity for sufficient lysoso-
mal trafficking of the ADCs designed with noncleavable linkers means that 
lysosomal trafficking becomes a key selection criterion for the antibody and its 
target for ADCs of this design [33].

Cleavable linkers are those whose structure includes a mechanism of cleavage 
of chemical bonds between the amino acid attachment site on the antibody and 
the payload, thus freeing the active cytotoxic metabolite from any residual amino 
acid residue derived from the antibody attachment site. The cleavage mecha-
nisms used in typical ADCs with cleavable linkers include the hydrolysis of acid-
labile bonds in acidic intracellular compartments, proteolytic cleavage of amide 
bonds by intracellular proteases, and reductive cleavage of disulfide bonds by the 
reducing environment inside cells (see Section  1.3). It is possible that these 
mechanisms can operate in the pre-endosomal and endosomal  compartments  
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of cells without a strict requirement for lysosomal trafficking, although in the 
case of proteolytic cleavage, one must design peptide linkers susceptible to 
the proteases present in such nonlysosomal compartments. When the chem-
ical structure of the linker–payload results in the release of an unmodified 
payload, such linkers may be referred to as “traceless linkers.” In other cases, 
the final active cytotoxic metabolite released intracellularly from the ADC is 
a derivative of the “parent” cytotoxic compound, which now includes struc-
tures and/or functional groups introduced as part of the linker chemistry. 
Indeed, varying the linker–payload chemistry to alter the properties of the 
final active metabolite is part of the design space of developing an effective, 
well-tolerated ADC [26, 30, 32, 47]. For example, increasing the hydropho-
bicity of the cytotoxic metabolite may increase the rate of transfer across 
cellular membranes for more efficient exit of the released payload moiety 
from lysosomes to enable access to its target within the cell. Alternatively, 
increasing its hydrophilic nature, for example, via charged groups, may 
decrease the rate of transmembrane transfer and thereby increase cellular 
retention [47, 48].

Linkers can be “stand-alone” bifunctional reagents that have one functional 
group designed to react with a functional group on an antibody, typically the 
amino group of a lysine residue or the sulfhydryl group of a cysteine residue 
(Figure 1.6), and a second functional group capable of reacting with an 
appropriate complementary functional group of the cytotoxic payload. This 
approach is the one taken in making ADCs using the maytansinoid platform, 
as exemplified by ado-trastuzumab emtansine [5, 26, 49]. Alternatively, the 
linker chemistry can be built into the payload as a single chemical entity, 
which then contains a single functional group for reaction with the antibody 
protein, again usually targeting either lysine amino groups or sulfhydryl 
groups of lysine or cysteine residues, respectively (Figure 1.6). This approach 
is exemplified by ADCs such as brentuximab vedotin using the auristatin 
platform [4, 5, 31].

1.3  Building an ADC Molecule

1.3.1 Conjugation of Payloads to Antibodies at Lysine Residues

The surface-accessible amino groups of lysine residues in an antibody make 
good attachment sites for a linker–payload since a sizable fraction of them 
can be modified without disturbing the integrity of the protein structure, 
thus preserving the native function and favorable pharmacokinetic proper-
ties of the antibody [5]. Most linkers/linker–payloads designed for attach-
ment to lysine amino groups utilize N-hydroxysuccinimide esters, which 
react readily and preferentially with primary amines to form stable amide 
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bonds between the linker and the side-chain amino group of the lysine. Lysine 
attachment sites are used in the approved ADC, ado-trastuzumab emtansine 
(Figure 1.7), and in the other maytansinoid ADCs in clinical development, as 
well as in calicheamicin- containing ADCs, such as gemtuzumab ozogamicin 
and inotuzumab ozogamicin [35, 39, 40]. The examples of typical ADC struc-
tures conjugated through lysine residues, shown in Figure 1.7, include 
ADCs  with an acid-labile hydrazine linker (the calicheamicin conjugates), 
an  uncleavable linker (ado-trastuzumab emtansine), and a hindered 
disulfide linker cleavable by the reduction of the disulfide bond (mirvetuxi-
mab soravtansine).
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Figure 1.6 Functional groups of antibodies typically used in conjugation reactions. The 
ribbon diagram shows the structure of an IgG1, with the backbone color coded according 
to the inset. Lysine residues (purple) and those cysteine residues involved in interchain 
disulfide bonds (green) are shown with space-filling atomic spheres. N-hydroxysuccinimide 
ester cross-linkers (NHS-linker) are typically used for a two-step conjugation of 
maytansinoids (red space-filling) to lysine residues [5, 47], for example, in the preparation 
of ado-trastuzumab emtansine [5, 26, 49, 50]. Maleimido-linker–auristatin compounds 
(magenta space-filling) are typically used to conjugate auristatin derivatives to antibodies 
at free sulfhydryl groups formed by partial reduction of interchain cysteine–cysteine 
disulfide bonds [4], for example, in the preparation of brentuximab vedotin [31, 51]. Similar 
conjugation chemistry can conjugate payloads to sulfhydryl groups of cysteine residues 
introduced into antibody structures by protein engineering [38, 52, 53]. (See color plate 
section for the color representation of this figure.)
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A typical human(ized) IgG1 antibody contains between 80 and 90 unique 
lysine residues within its amino acid sequence [50, 54]. The conditions of the 
modification reaction between the antibody and the linker/linker–payload 
(e.g., reagent concentrations, reaction pH) must be carefully controlled to limit 
the average level of payload addition to a typical range of about three to four 
conjugated sites per antibody molecule. For example, the average maytansi-
noid-to-antibody molar ratio (also characterized as “drug”-to-antibody ratio, or 
DAR) for ado-trastuzumab emtansine is about 3.5 [26, 49, 50]. The ratio was 
selected for the defined ADC product based on (i) minimizing the amount of 
nonconjugated antibody and (ii) avoiding species in the mixture with very high 
DAR, which may be problematic in manufacturing and formulation due to 
higher hydrophobicity and lower solubility [26, 50]. Furthermore, higher DAR 
species may have altered pharmacokinetic properties, the increased hydropho-
bicity resulting in more rapid clearance [21]. The relative abundance of ADC 
species with different numbers of payloads attached per antibody  molecule can 
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Figure 1.7 Examples of typical ADCs conjugated at lysine residues. Gemtuzumab 
ozogamicin and inotuzumab ozogamicin are conjugates of a calicheamicin payload where 
the linker includes an acid-labile hydrazone moiety (shaded gray), and also contains a 
hindered disulfide bond cleavable by reduction (average DAR of these ADCs are in the 
range of 2 to 4 – only one linker-payload structure drawn for simplicity). The two 
maytansinoid ADCs show examples of conjugates with either a non-cleavable link created 
by reaction of the sulfhydryl group of the maytansinoid DM1 with the maleimido group of 
the linker (thioether bond so formed is shaded gray), as in ado-trastuzumab emtansine, or 
with a hindered disulfide-containing link (disulfide shaded gray) that is cleavable by 
reduction, as in mirvetuximab soravtansine (values for n and m are between 3 and 4 
maytansinoids per antibody). The linker for mirvetuximab soravtansine also bears a 
hydrophilic charged sulfonate group.
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be estimated by mass spectrometry [50, 54–56]. In the case of maytansinoid 
ADCs, for an average DAR of about 3.5 for which three representative mass 
analyses are shown in Figure 1.8 (three different linker–maytansinoid species), 
about 70–80% of the antibody molecules have between two and five maytansi-
noids per antibody and > 90% of the antibody molecules have individual DAR 
values in the range of 1 to 6 [55]. At this average level of payload addition (DAR 
~3.5), only about 3% of the antibody was nonconjugated antibody and only a 
similarly low proportion of antibody molecules had DAR values ≥7 [55, 56]. 
The distribution pattern of species with different DAR found experimentally is 
quite predictable for a given average DAR and can be described by statistical 
models, either by Poisson distribution [50] or by the binomial distribution [55]. 
One implication of these observations is that measurement and control of the 
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Figure 1.8 Deconvoluted mass spectra of three deglycosylated ADCs. Shown are examples 
of three different antibodies conjugated to three different linker–maytansinoid moieties 
with an average DAR value of 3.5 for each conjugate (determined spectrophotometrically). 
(a) mAb1-SMCC-DM1; (b) mAb2-SPP-DM1; (c) mAb3-sulfo-SPDB-DM4. Source: Adapted with 
permission from Goldmacher, V.S., et al., Molecular Pharmaceutics, 12, 1738–1744, copyright 
2015, American Chemical Society [55].
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DAR value itself during conjugation reactions could be sufficient to control the 
levels of nonmodified antibody in the defined ADC preparation [50].

Mass spectroscopy is also a useful tool to analyze chromatographic peptide 
maps in order to determine the actual conjugation sites in the antibody moiety 
of the ADC. Depending on the sensitivity of the technique, from 40 to 70 
individual lysine residues (more than half of the total possible) are partially 
modified in the example of maytansinoid technology [50, 54, 56]. The range of 
levels of modification of individual lysine residues in ado-trastuzumab emtan-
sine, for example, is from about 25% to <1%, with a median value of about 4% 
[50]. Such peptide mapping techniques provide a fingerprint that can be used 
to compare different lots of an ADC to ensure process consistency and robust-
ness during scale-up to commercial manufacturing.

1.3.2 Conjugation of Payloads to Antibodies at Cysteine Residues

Linker–payload constructs designed for attachment to sulfhydryl groups of 
cysteine residues of the antibody have made use of the rapid reaction between 
maleimido groups and sulfhydryl groups to form thioether bonds [31, 42, 51]. 
The auristatin (MMAE) used as the payload of the approved ADC, brentuxi-
mab vedotin, and the auristatins used in the other ADCs in current clinical 
development, which use this payload class (MMAE and MMAF), are synthe-
sized as maleimide-bearing linker–payload compounds for reaction with 
protein sulfhydryl groups. ADCs made with the DNA-crosslinking payload, 
PBD, can also be conjugated by this approach [42]. Figure 1.9 shows the 
structure of brentuximab vedotin and also shows a structure for an MMAF 
conjugate. The valine-citrulline-para-aminobenzyl-containing linker of bren-
tuximab vedotin is an example of a protease-cleavable linker; the amide bond 
between the dipeptide and the para-aminobenzyl moiety is cleaved by the 
lysosomal protease, cathepsin B [5, 51]. It is also an example of a “traceless 
linker,” since cleavage of the amide bond is followed by self-immolation of the 
para-aminobenzyl moiety with loss of carbon dioxide to yield MMAE as 
the  final metabolite [5, 51]. Other payloads exploit a similar mechanism of 
release [42]. The MMAF conjugate has an uncleavable link so that the final 
metabolite released inside the cell contains the linker plus a cysteine reside [5].

Antibodies generally do not contain free, solvent-accessible sulfhydryl 
groups, but rather they contain cysteine residues whose sulfhydryl groups are 
oxidized to form disulfide bonds between pairs of cysteine residues (see 
Figure  1.6). An IgG1 contains 16 disulfide bonds, four interchain disulfide 
bonds, two between the two heavy chains and one between each light chain 
and a heavy chain, and 12 intrachain disulfides. The four interchain bonds 
can be readily reduced and maintained as pairs of free sulfhydryl groups 
under nonoxidative conditions, and these can serve as sites of reaction with 
 maleimido-linker–payload compounds [4, 5, 51].
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The level of interchain disulfide bond reduction is carefully controlled so that 
in a typical auristatin conjugate, the DAR is limited to an average of about four 
[51]. As mentioned earlier for lysine conjugation, the ratio of about four 
auristatins per antibody molecule was selected to minimize the amount of non-
conjugated antibody, and also to minimize the amount of ADC species with 
DAR values of eight, obtained by complete reduction of the intrachain disulfide 
bonds of an IgG1 antibody followed by complete reaction of all sulfhydryl 
groups thus produced with the maleimido-linker–payload. Such “fully-loaded” 
auristatin conjugates show less antitumor activity than ADCs with lower DAR, 
likely due to the finding that they are rapidly cleared from circulation in blood 
in vivo [57]. In brentuximab vedotin, the size distribution analysis, done by 
hydrophobic interaction chromatography [56, 57], shows that antibody species 
bearing predominantly two, four, and six molecules of auristatin per antibody 
are present in the defined product mixture, with small amounts (~8% each) of 
nonconjugated antibody and species with a DAR of eight [51, 56, 57].

The loss of interchain disulfide bonds that accompanies conjugation of 
maleimido-linker–payloads to an antibody may come at a cost of some degree 
of stability in vivo, which may vary from antibody to antibody, and may become 
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Figure 1.9 Examples of typical ADCs conjugated at cysteine residues. Brentuximab vedotin, 
approved for the treatment of Hodgkin lymphoma and acute large cell lymphoma, is an 
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linked to cysteine residues via a non-cleavable link (shown shaded gray). Values for n are 
typically about 4 in each case.
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particularly apparent when such modification is pushed to completion (all four 
disulfides of an IgG1 reduced to yield an ADC bearing eight linker–payload 
moieties) [57]. Auristatin conjugates with DAR values of eight have a very short 
half-life in vivo, likely accounting for poor efficacy, and perhaps increased toxic-
ity [52, 57]. One approach to address this issue is to express antibody genes 
bearing mutations, which result in the replacement of a solvent-accessible 
amino acid with a cysteine residue whose unpaired sulfhydryl group can serve as 
a payload attachment site [38, 52]. This approach also allows an ADC to be 
made with a DAR value of about two, with most conjugation occurring at a 
single site on each half-antibody (see Figure 1.6). Such site-specific conjugation 
minimizes the generation of any ADC species with DAR values ≥3, which may 
be an important consideration when conjugating very hydrophobic payloads 
(e.g., see reference [38]). However, selecting the correct site in the antibody 
molecule up front is not trivial [58], and furthermore, having 100% of the modi-
fication at a single site could potentially increase the possibility of an adverse 
immune response to the ADC. Several ADCs made using site-specific cysteine 
conjugation have recently entered clinical trials (structures are disclosed for 
four such “site-specific” ADCs at time of writing). There are a variety of other 
site-specific conjugation approaches that are being evaluated in the research 
laboratory [53, 59, 60]; however, a detailed description of these approaches is 
beyond the scope of this chapter and is about “typical” ADCs at this time.

1.4  Attributes of a Typical ADC

1.4.1 Structural Attributes of a Typical ADC

A typical ADC with a DAR value in the range of 3.5 to 4.0 has a molecular mass 
that is about 2% greater than that of the corresponding “naked” antibody moi-
ety. Ideally, the biochemical parameters of an ADC should be broadly similar to 
those of its nonmodified antibody moiety, behaving mostly as intact monomeric 
molecules upon size-exclusion chromatography, with very little aggregate pre-
sent [56, 61]. However, addition of payloads does alter surface hydrophobicity 
properties, with effects on solubility and the propensity to aggregate. The mag-
nitude of such effects depends on DAR and relative hydrophobicity of the pay-
load and must be carefully studied to ensure appropriate formulation designed 
to minimize any aggregation [56, 61]. In many cases, ADCs can be formulated 
in a similar manner to the parent “naked” antibody and can be provided to the 
clinical pharmacy as vials of either a liquid (e.g., coltuximab ravtansine) or a 
lyophilized (e.g., ado-trastuzumab emtansine) drug product [62, 63]. It is impor-
tant to have an accurate assay to test for the presence of any nonconjugated 
(“free”) payload, including any small molecule linker–payload derivatives, which 
are typically at levels that are less than a few percent of the total conjugated 
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payload [56]. As mentioned earlier, size distribution analysis by mass spectros-
copy or by hydrophobic interaction chromatography are important tools for 
characterizing the ADC product, together with other biochemical and biophys-
ical techniques such as imaged capillary isoelectric focusing for charge-based 
separation of species, and peptide mapping by liquid chromatography coupled 
to mass spectroscopy [54, 56, 61]. Many of these biochemical and biophysical 
tools are the same tools that are already widely used to characterize “naked” 
antibody products, which are themselves heterogeneous molecules, for exam-
ple, with respect to glycosylation patterns, deamidation of glutamine or aspara-
gine, level of C-terminal lysine, and so on [54, 56, 61].

1.4.2 Functional Characteristics of a Typical ADC

1.4.2.1 In Vitro Properties
Ideally, conjugation of 3.0–4.0 payloads per antibody should have little or no 
effect on the binding specificity and apparent binding affinity of the antibody 
component of the ADC to its cell surface target [64, 65]. ADCs should also 
exhibit specificity and selectivity in their cytotoxicity upon evaluation of their 
in vitro potency. For example, a maytansinoid ADC targeting FRα made with 
the uncleavable SMCC-DM1 linker–payload format shows specific killing of 
cells expressing human FRα on their cell surface relative to an isotype-matched 
nonbinding control conjugate (Figure 1.10). Also shown in Figure 1.10 is the 
kill curve for a maytansinoid ADC targeting FRα made with a cleavable sulfo-
SPDB-DM4 linker–payload format (IMGN853) that shows selectivity for 
antigen-mediated killing as demonstrated by the blockade of cytotoxic effects 
by the addition of a large excess of nonmodified “naked” antibody (Figure 1.10) 
[22]. Thus, for maytansinoid ADCs targeting FRα, in vitro cytotoxicity assays 
do not distinguish between a conjugate made with a cleavable linker (disulfide, 
in this case) and a noncleavable linker, a common observation in such in vitro 
assays [30, 32, 47]. However, differences in potency may be observed in vivo 
depending on the biology of the target [21, 22, 30, 32, 49].

It is worth noting that the magnitude of the difference between antigen-medi-
ated killing and that of a nonbinding control ADC (about 100-fold as shown in 
Figure 1.10) is largely a function of antibody binding affinity to its target in these in 
vitro assays. An antibody with an apparent KD only in the 5–10 nM range will show 
only a small degree of specificity in vitro. However, it may be that the apparent 
binding affinity of an antibody is only one of the factors important for in vivo 
potency of an antibody/ADC, and high affinity may actually decrease overall uptake 
and retention by a tumor mass in vivo under some circumstances [29, 66, 67].

1.4.2.2 In Vivo Efficacy
Once an ADC has met the biochemical quality attributes (monomeric mole-
cule, with only low levels of aggregates and of free payload species), and exhibits 
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appropriate in vitro activity, its antitumor activity should be evaluated in sev-
eral in vivo models representing human tumors that are relevant indications 
for the particular ADC. These preclinical models can be xenograft models 
derived from human tumor cell lines or from patient-derived tumor xenograft 
models (PDx models). Clearly, it is a prerequisite that whatever in vivo models 
are to be used for the determination of antitumor activity, their levels of target 
antigen expression should be assessed. Immunohistochemical methods that 
are calibrated to have a dynamic range covering a relevant range of antigen 
expression levels appropriate for the cell-killing capability of the ADC are typi-
cally used for this purpose and should as closely as possible match the test 
method to be used on clinical samples for cancer patients.
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Figure 1.10 In vitro cytotoxicity was measured after a 5-day exposure of FRα-positive KB 
cells to (i) a maytansinoid ADC targeting FRα made with a cleavable sulfo-SPDB-DM4 
linker-payload format (IMGN853), with (dotted line, open circles) or without (solid line, 
closed circles) a blocking concentration (2 μM) of the “parent” non-conjugated anti-FRα 
antibody (M9346A), and (ii) M9346A-SMCC-DM1, a maytansinoid ADC targeting FRα made 
with a non-cleavable SMCC-DM1 linker-payload format (solid line, closed triangles),  
compared with the cytotoxicity curve of a non-targeting huIgG1-SMCC-DM1 (dotted line, 
open triangles). Source: Adapted from Ab, O., et al., Molecular Cancer Therapeutics, 14(7); 
1605–1613, copyright 2015, American Association for Cancer Research [22].


