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PREFACE

Welcome to the era of unlimited communications, video-centric applications, and
Internet! Internet applications require both bandwidth and Quality of Service (QoS)
because of a huge number of Internet users and growing number of real-time appli-

mand, Internet Protocol
TeleVision (IPTV), video-conferencing, Internet gaming, voice over IP, etc.) that
need different levels of QoS. IP networks consist of core networks and access net-

oth size and count
s ADSL and Fiber To

The Home (FTTH) is continually increasing every year. To tra
offered by IP networks, the core networks capabilities must be increased to avoid

roblem when the
network bandwidth is limited, the network supports only the

The need for more and more bandwidth forces us to think of more granularity.
The best promising solution is to use Wavelength Division Multiplexing (WDM)
all-optical networks in core networks. Note that an optical network that uses op-
tical transmission and keeps optical data paths through the nodes from source to
destination is called all-optical network. Due to the fact that all-optical networks
use photonic technology for the implementation of both switching and transmission
functions, signals in these networks can be maintained in optical form without any

xxxvii
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conversion to the electronic domain resulting in much high transmission rates. All-
optical networking with deployment of Dense Wavelength Division Multiplexing
(DWDM) appears to be the sole approach to transport the huge n
ture backbone networks. The DWDM technology provides the multiplexing of many

everal Tbits/s bandwidth
capacity.

Similar to the electronic domain in which packet switching is the most granular
method of switching, the most promising technique for optical core networks could
be Optical Packet Switching (OPS) due to its high throughput and very good gran-
ularity and scalability. In an OPS edge node, a header is attached to each client
packet received from a legacy network, where the header includes the information
about source edge node, destination edge node, and content of packet payload such
as its length. The packet is then transmitted in the optical domain, called an opti-
cal packet, toward the OPS network. In OPS, an optical packet stays in the optical
domain inside the core network and switched optically. The optical packet can only
be converted to the electronic domain in its destination edge node. Packet switching
provides connectionless transmission of packets. Thus, there is no need to estab-
lish a path (i.e., a circuit) between source–destination nodes like in circuit switching.
However, contention of optical packets in the core network is the major problem in
OPS networks.

Since different applications need different levels of QoS, service differentiation
must be considered in optical networks as well. Under the best-effort service in
which no guarantees are given to any packet regarding loss rate, delay, and delay

ll, in turn, degrade the QoS
ble optical backbone net-

work will be a requirement in which low latency, low jitter, low loss, and bandwidth

For providing QoS in OBS networks, [2] details (a) the basic mechanisms devel-
oped for improving end-to-end QoS and (b) relative and absolute QoS differentiation
among multiple service classes. On the other hand, for OCS networks, the work in
[3] focuses on the methods developed for service-differentiated and constraint-based
wavelength routing and allocation in multi-service WDM networks. However, there
is no comprehensive work on QoS in OPS networks.

In future, OPS networks must be setup for worldwide communications in order to
plications. In addition,

research and development on optical communication networking have been matured
f these principles have

moved from the optical research laboratories to formal graduate courses. More-
over, there are a large number of experts working on designing optical devices and
physical-layer of optics that are interested in learning more about OPS network archi-
tectures, protocols, and the corresponding engineering problems in order to design
new state-of-the-art OPS networking products. Finally, there are many books written
for device level of optical communications, and there are even devices suitable for
OPS. However, there is almost no work dedicated solely for system level of OPS
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(say architectures and protocols), improving quality of service, and the operation of
OPS networks.

In general, there are some books published for covering optical networking such
as [4–10]. However, the number of published books dedicated to the system level
of OPS is limited to OPS in access networks [11], design of optical buffers for OPS
[12], edge node design for contention avoidance in slotted OPS [13], scheduling in
star-based OPS networks [14], and OPS for ring networks [15].

This book provides a comprehensive study on OPS networks, its architectures,
and developed techniques for improving its quality of switching and managing qual-
ity of service. This book is organized in six chapters, each covering a unique topic
in detail:

Chapter 1 provides an introduction to OPS networks, its architectures, and QoS
in OPS. Since many optical networking books have stated optical systems in
much detail, this chapter does not include them. In addition to OPS networks,
GMPLS-supported optical networks and optical networks based on Orthogonal
Frequency Division Multiplexing (OOFDM) are studied in this chapter.

Chapter 2 describes contention avoidance schemes proposed for OPS networks
in which edge switches send optical packets to the OPS network in a way to
reduce their collisions. Broadly, these schemes are classi
based or software-based.

Chapter 3 details contention resolution schemes proposed for OPS networks
in which OPS switches resolve the collision of contenting optical packets. In

ther hardware-based
or software-based.

Chapter 4 studies the hybrid contention resolution schemes that use a number
of contention resolution schemes in the same architecture in order to reduce
optical packet loss rate. In addition, hybrid contention resolution and contention

ptical packet loss
rate in a cost-effective manner.

Chapter 5 describes hybrid optical switching schemes in which OPS network-
ing is combined with another optical switching technique (say optical circuit

nsmission in the
optical domain.

Chapter 6 states different OPS architectures designed for metro area. These net-
works are mainly based on ring and star topologies with active optical switches.

This book is a useful resource for students, engineers, and researchers to learn
more about optical packet switched networking from system level points of view. It
is intended as a textbook for graduate level and senior undergraduate level courses
in electrical engineering and computer science on (advanced) optical networking.
Knowledge about computer networks is a prerequisite for understanding this book.
For advanced optical networks course relevant to OPS, the book can be entirely used.
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Reasonable care has been taken in eliminating any types of errors. However,
readers are encouraged to send their comments and suggestions to the author via
e-mail. I personally hope that this book will give the reader enough information in

ient, QoS-capable, and
cost-effective OPS networks suitable for future core optical networks.

AKBAR GHAFFARPOUR RAHBAR

Sahand University of Technology

ghaffarpour@sut.ac.ir
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