AKBAR GHAFFARPOUR RAHBAR

QUALITY OF SERVICE IN OPTICAL PACKET SWITCHED NETWORKS

IEEE Press Series on Information & Communication Networks Security Stamatios Kartalopoulos, Series Editor

QUALITY OF SERVICE IN OPTICAL PACKET SWITCHED NETWORKS

IEEE Press

445 Hoes Lane Piscataway, NJ 08854

IEEE Press Editorial Board Tariq Samad, *Editor in Chief*

George W. Arnold Dmitry Goldgof Ekram Hossain Mary Lanzerotti Vladimir Lumelsky Pui-In Mak Jeffrey Nanzer Ray Perez

Linda Shafer Zidong Wang MengChu Zhou George Zobrist

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

QUALITY OF SERVICE IN OPTICAL PACKET SWITCHED NETWORKS

Akbar Ghaffarpour Rahbar

Sahand University of Technology

IEEE Press Series on Information & Communication • Networks Security Stamatios Kartalopoulos, Series Editor

Copyright © 2015 by The Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication is available.

ISBN 978-1-118-89118-6

Printed in the United States of America.

To my parents and my family

CONTENTS IN BRIEF

1	Introduction to Optical Packet Switched (OPS) Networks	1
2	Contention Avoidance in OPS Networks	67
3	Contention Resolution in OPS Networks	151
4	Hybrid Contention Avoidance/Resolution in OPS Networks	235
5	Hybrid OPS Networks	291
6	Metro OPS Networks	319

CONTENTS

List of Figures						
List of Tables						
Preface		xxxvii				
References		xli				
Acknowledg	ments	xliii				
Acronyms		xlv				
Glossary						
List of Symb	pols	liii				
1 Introd	Juction to Optical Packet Switched (OPS) Networks	1				
1.1	Optical Fiber Technology	1				
1.2	Why Optical Networks?	5				
1.3	Optical Networking Mechanisms	7				
	1.3.1 Asynchronous Optical Switching	9				
	1.3.1.1 Optical Circuit Switching	9				
	1.3.1.2 Optical Packet/Burst Switching	13				

ix

х CONTENTS

		1.3.2	Synch	ronous	(Slotted) Optical Switching	16
		1.3.	2.1	Optic	al Circuit Switching	16
		1.3.	2.2	Optic	al Packet/Burst Switching	16
	1.4	Overvie	w of O	PS Net	working	19
		1.4.1	Netwo	ork Top	ologies for OPS	19
		1.4.2	Core S	Switch	Architecture in OPS Networks	21
		1.4.3	Edge S	Switch	Architecture in OPS	25
		1.4.4	Signal	ing in (OPS	27
		1.4.5	Conte	ntion P	roblem in OPS	31
		1.4.6	Qualit	y of Se	rvice (QoS) in OPS	33
		1.4.	6.1	QoS M	Metrics	33
		1.4.	6.2	QoS I	Provisioning	36
			1.4.	6.2.1	QoS Improvement	36
			1.4.	6.2.2	QoS Differentiation	37
			1.4.	6.2.3	Quality of Transmission (QoT)-Based	
					Scheduling	40
		1.4.	6.3	QoS S	Support by GMPLS	41
			1.4.	6.3.1	MPLS Operation	41
			1.4.	6.3.2	GMPLS Operation	42
	1.5	Optical	OFDM	-Based	Elastic Optical Networking (EON)	44
		1.5.1	OOFD	OM Mo	dulation	45
		1.5.2	EON	Compo	nents	47
		1.5.3	Routir	ng and S	Spectrum Assignment in EON Networks	49
		1.5.4	IP ove	r OOF	DM	52
	1.6	Summa	ry			55
Refe	rences					57
2	Conte	ention A	voidar	nce in	OPS Networks	67
	2.1	Softwar	e-Based	d Conte	ention Avoidance Schemes	68
		2.1.1	Single	-Class	Traffic	68
		2.1.	1.1	Packe	t Transmission Based on the Scheduling	
				of Em	pty Time Slots	68
		2.1.	1.2	Symn	netric Traffic Transmission	69
		2.1.	1.3	Load-	Balanced Traffic Transmission	70
			2.1.	1.3.1	Balancing on Wavelength Channels	70
			2.1.	1.3.2	Balancing on Routing Operation	71
		2.1.	1.4	Reser	vation-Based OPS	72
			2.1.	1.4.1	Reservation in Single-Hop OPS	72

		2.1.1	.4.2	Network Global Control (NGC)	74
	2.1.1.	.5	Reneg	otiation-Based Transmission of Optical	
			Packet	ts	75
	2.1.1.	.6	Monit	oring of Core Switch Traffic	78
	2.1.1.	.7	Virtua	l Optical Bus (VOB)	79
	2.1.1.	.8	Packet	t Aggregation (PA)	81
	2.1.1.	.9	Offset	-Based Traffic Transmission	86
	2.1.1.	.10	Netwo	ork Layer Packet Redundancy	87
	2.1.1.	.11	Even-	Spaced Optical Packet Transmission	88
	2.1.1.	.12	Active	e Congestion Control	89
	2.1.1.	.13	Delay	-Controlled Traffic Shaping	90
	2.1.1.	.14	Adapt	ive IP/OOFDM	93
	2.1.1.	.15	Minin	num Interference in GMPLS-Enabled OPS	96
	2.1.1.	.16	Comp	arison of Software-Based Contention	
			Avoid	ance Schemes for Single-Class Traffic	97
	2.1.2	QoS Di	fferen	tiation	98
	2.1.2.	.1	Packet	t Aggregation (PA)	101
		2.1.2	.1.1	Composite Packet Aggregation (CPA)	102
		2.1.2	.1.2	Non-Composite Packet Aggregation	
				(NCPA)	104
		2.1.2	.1.3	Comparison Between CPA and NCPA	105
	2.1.2.	.2	Distril	oution-Based Bandwidth Access (DA)	106
		2.1.2	.2.1	Bandwidth Provisioning in DA	108
		2.1.2	.2.2	Time-Slot Scheduling in DA	109
		2.1.2	.2.3	Traffic Transmission in DA	112
		2.1.2	.2.4	Advantages of DA	113
	2.1.2.	.3	The O	PORON Packet Aggregation Approach	115
	2.1.2.	.4	Netwo	ork Layer Packet Redundancy	116
	2.1.2.	.5	MPLS	-Based QoS Differentiation	117
	2.1.2.	.6	Comp	arison of Software-Based Contention	
			Avoid	ance Schemes for Multi-Class Traffic	117
2.2	Hardware	e-Based	l Schei	mes	121
	2.2.1	Design	ing a N	Aulti-Fiber (MF) OPS Architecture	121
	2.2.2	Using A	Additic	onal Wavelengths (AW) to Carry the Same	
		Traffic			123
	2.2.3	Combii	ned Ha	rdware-Based Schemes	124
	2.2.4	Compa	rison c	of Hardware-Based Schemes	126
2.3	Formulat	ion of I	Even T	raffic Transmission in Slotted OPS	128

		2.3.1	Evenne	ess Inde	ex Parameters	128
		2.3.	1.1	Distan	ce-Based Even Distribution	130
		2.3.	1.2	Densit	ty-Based Even Distribution	131
		2.3.	1.3	Fair D	issemination (FD) Distribution	132
		2.3.	1.4	Load I	Balanced (LB) Distribution	132
		2.3.	1.5	Benefi	its of Even Optical Packet Transmission	133
		2.3.2	Norma	lized E	venness Index Parameters	135
		2.3.	2.1	Norma	alized Distance-Based Even Distribution	136
		2.3.	2.2	Norma	alized Density-Based Even Distribution	136
		2.3.	2.3	Norma	alized Fair Dissemination (FD) Distribution	137
		2.3.	2.4	Norma	alized Load Balanced (LB) Distribution	138
		2.3.3	Hybrid	l Index	Parameters	138
		2.3.4	Even C	Optical	Packet Transmission under DA and NCPA	140
	2.4	Summa	ry			141
Refer	rences					145
3	Conte	ention R	lesolut	ion in	OPS Networks	151
	3.1	Hardwa	re-Base	d Conte	ention Resolution Schemes	152
		3.1.1	Single-	-Class	Traffic	153
		3.1.	1.1	Optica	al Buffers	153
			3.1.1	1.1.1	FDL Buffer Architectures	155
			3.1.1	1.1.2	Issues on Fiber Delay Lines	161
			3.1.1	1.1.3	Wavelength and Delay Selection (WDS)	
					Techniques	163
		3.1.	1.2	Wavel	ength Converters	166
			3.1.1	1.2.1	Types of Wavelength Converters	167
			3.1.1	1.2.2	Architectures of Wavelength Converters	
					in OPS Switches	171
			3.1.1	1.2.3	Complexity Comparison of Wavelength	
					Converters	186
			3.1.1	1.2.4	Scheduling of Wavelength Converters	
					in OPS Switches	187
			3.1.1	1.2.5	Issues on Wavelength Converters	195
		3.1.	1.3	Non-E	Blocking Receiver (NBR)	197
		3.1.2	QoS D	ifferen	tiation	199
		3.1.	2.1	QoS E	Differentiation with Optical Buffers	199
			3.1.2	2.1.1	Output Circuiting Shared Buffer (OCSB)	199
			3.1.2	2.1.2	Wavelength Partitioning for FDLs	201

		3.1.2	2.1.3	Threshold-Based Technique	201
		3.1.2	2.1.4	Wavelength-Based Technique	201
	3.1.	2.2	QoS D	Differentiation with Wavelength Converters	202
		3.1.2	2.2.1	Reserving Wavelength Converters	202
		3.1.2	2.2.2	Adaptive Wavelength Converter Allocation	1203
		3.1.2	2.2.3	Exclusive Reservation of Wavelength	
				Converters for High-Priority Optical	
				Packets	203
		3.1.2	2.2.4	SPN Wavelength Converters without	
				Reservation	204
		3.1.2	2.2.5	SPIW Wavelength Converters without	
				Reservation	204
		3.1.2	2.2.6	SPOL Wavelength Converters without	
				Reservation	205
	3.1.3	Compa	rison o	f Hardware-Based Contention Resolution	
		Schem	es		206
3.2	Softwar	e-Based	Conte	ntion Resolution Schemes	206
	3.2.1	Single-	Class 7	Fraffic	206
	3.2.	1.1	Routir	ng-Based Schemes	206
		3.2.1	.1.1	Deflection Routing (DR)	206
		3.2.1	.1.2	Multi-Path Routing (MPR)	209
	3.2.	1.2	Merit-	Based Scheduling (MBS)	210
	3.2.	1.3	Retran	smission in the Optical Domain	210
		3.2.1	.3.1	Random Retransmission (RR)	210
		3.2.1	.3.2	Prioritized Retransmission (PR)	211
	3.2.2	QoT-A	ware S	cheduling	213
	3.2.3	QoS D	ifferent	tiation	214
	3.2.	3.1	Drop-	Based Schemes	214
		3.2.3	5.1.1	Preemptive Drop Policy (PDP)	214
		3.2.3	5.1.2	Intentional Packet Dropping (IPD)	215
	3.2.	3.2	Routir	ng-Based Schemes	216
		3.2.3	3.2.1	Deflection Routing (DR)	216
		3.2.3	3.2.2	Multi-Path Routing (MPR)	216
		3.2.3	3.2.3	Shortest Hop-Path (SHP)	216
	3.2.	3.3	Comp	osite Optical Packet Scheduling (COPS)	217
		3.2.3	3.3.1	COPS Type 1	218
		3.2.3	3.3.2	COPS Type 2	219
		3.2.3	3.3.3	COPS Type 3	220

			3.2.3	.3.4	COPS Type 4	220
		3.2.3	3.4	Wavele	ength Access Restriction (WAR) Schemes	221
			3.2.3	.4.1	Exclusive Wavelength Reservation for	
					HP Optical Packets	222
			3.2.3	.4.2	Free Wavelength Usage for HP Optical	
					Packets	222
			3.2.3	.4.3	Adaptive Access Restriction Mechanism	222
		3.2.4	Compa	rison of	f Software-Based Contention Resolution	
			Scheme	es		224
	3.3	Summa	ry			226
Refer	ences					227
	•					
4	Hybri	d Conte	ention A	voida	nce/Resolution in OPS Networks	235
	4.1	Hybrid	Contenti	on Res	olution Schemes	236
		4.1.1	Hybrid	WC Te	chniques	236
		4.1.	1.1	Hybrid	SPN-LRWC + SPOF-PWC Architecture	236
		4.1.1.2		Hybrid	SPN-LRWC + SPN-PWC Architecture	238
		4.1.	1.3	Two-L	ayer Wavelength Conversion (TLWC)	239
		4.1.2	Hybrid	FDL +	WC Techniques	240
		4.1.2	2.1	Hybrid	SPN FDL + LRWC Architecture	240
		4.1.2	2.2	Hybrid	Shared FDL + WC per Output Port	
				Archite	ecture	241
		4.1.2	2.3	Hybrid	WC + Shared per Node FDL Architecture	242
		4.1.2	2.4	Hybrid	WC + Feed-Forward Input Buffering	
				Archite	ecture	243
		4.1.2	2.5	Hybrid	WC + Feed-Forward Output Buffering	
				Archite	ecture	244
		4.1.3	Hybrid	WDS -	HMPR Architecture	245
		4.1.4	Hybrid	WC +	FDL + DR Architecture	246
	4.2	Hybrid	Contenti	on Res	olution and Avoidance Schemes	246
		4.2.1	Hybrid	MF + \$	SPIW Architecture	248
		4.2.2	Hybrid	MF + \$	SPN WCs Architecture	249
		4.2.3	Hybrid	MF + \$	SPOL WC Architecture	250
		4.2.4	Hybrid	MF + \$	SPOL WCs + FDL Architecture	255
		4.2.5	Hybrid	DA + l	M_PR + SPN WC Architecture	257
		4.2.6	Hybrid	DA + 1	MF + PR + NBR + SPN WC Architecture	262
		4.2.0	5.1	Schedu	lling in DA + MF + PR + NBR + SPN	

4.2.6.1	Scheduling in DA + MF + PR + NBR + SPN	
	WC Architecture	263

		4.2.6.2		Performance Evaluation in DA + MF + PR +	
				NBR + SPN WC Architecture	265
		4.2.	6.3	Network Cost Evaluation in DA + MF + PR +	
				NBR + SPN WC Architecture	268
		4.2.7	Hybrid	I PA + MF + NBR + DRwBD + IAS + SHP +	
			SPN W	VC Architecture	270
		4.2.8	Hybrid	I DA + MF + NBR + SPN WC Architecture	280
		4.2.9	Smoot	hed Flow Decomposition (SFD)	282
	4.3	Summa	ry		285
Refe	rences				287
5	Hybri	d OPS I	Networ	ks	291
	5.1	Hybrid	Asynch	ronous and Synchronous OPS Networks	292
	5.2	Hybrid	OPS and	d OCS Networks	293
		5.2.1	Client-	-Server Hybrid Optical Networks	293
		5.2.2	Paralle	el Hybrid Optical Networks	295
		5.2.2.1		Parallel OCS/OBS/OPS	296
		5.2.2	2.2	Parallel OCS and Multi-Wavelength (MW) OPS	298
		5.2.3	Integra	nted Hybrid Optical Networks	301
		5.2.	3.1	Overspill Routing in Optical Networks (ORION)	302
		5.2.	3.2	Optical Migration Capable Network with	
				Service Guarantees (OpMiGua)	304
		5.2.	3.3	3-Level Integrated Hybrid Optical Network	
				(3LIHON)	307
		5.2.	3.4	Integrated Hybrid Optical Switching (HOS)	309
	5.3	Compar	rison of	Hybrid OPS Schemes	312
	5.4	Summa	ry		313
Refe	rences				315
6	Metro	OPS N	etwork	S	319
	6.1	OPS in	Star Top	pology	319
		6.1.1	Overla	id OPS Architectures	320
		6.1.2	Advan	tages of Overlaid OPS Architectures	322
		6.1.3	Reserv	ation-Based Traffic Transmission in Overlaid	
			OPS		323
		6.1.	3.1	Some Definitions for Frame-Based Scheduling	324
		6.1.	3.2	Common Steps in Frame-Based Scheduling	327
		6.1.	3.3	Multi-Processor BvN (MPBvN)	329

xvi CONTENTS

	6.1.3.4	The Ef	ficient BvN (EBvN)	332
	6.1.3.5	The Se	parated BvN (SBvN)	336
	6.1.3.6	The EE	BvN with Filling Empty Cells (EBvN_FEC)	337
	6.1.3.7	Compa	rison of Reservation-Based Traffic	
		Transn	nission in Overlaid OPS	338
	6.	.1.3.7.1	Performance Comparison of SBvN and	
			EBvN	338
	6.	.1.3.7.2	Performance Comparison of EBvN and	
			EBvN_FEC	343
	6.1.4 Cor	tention-Ba	sed Traffic Transmission in Overlaid OPS	345
	6.1.4.1	Hybrid	DA + MF + PR + SPN WC + COPS	
		Type 3	Architecture	345
	6.1.4.2	Packet	Transmission Based on Scheduling of	
		Empty	Time Slots (PTES)	346
	6.	.1.4.2.1	Edge Switch Functions under PTES	349
	6.	1.4.2.2	Core Switch Functions under PTES	350
	6	.1.4.2.3	Computing Normalized Traffic Load in	
			the Core Switch	350
	6.	1.4.2.4	Computing the Number of Empty Time	
			Slots in an Edge Switch	351
	6.	.1.4.2.5	Scheduling of Empty Time Slots in an	
			Edge Switch	352
	6.	1.4.2.6	Timing Issues in PTES	355
	6.	.1.4.2.7	Discussion on the Features of PTES	356
	6.	1.4.2.8	Packet Loss Rate Analysis in PTES	357
	6.	.1.4.2.9	Packet Loss Rate Performance	
			Evaluation in PTES	361
	6.1.4.3	Hybrid	Additional Wavelengths + Prioritized	
		Retran	smission Architecture	363
	6.1.5 Hyt	orid Reserv	ation/Contention-Based OPS	368
	6.1.5.1	Switch	ing Protocol from DA to MPBvN	369
	6.1.5.2	Switch	ing Protocol from MPBvN to DA	371
	6.1.5.3	HTDM	1 Parameters	372
	6.1.5.4	Perform	nance Comparison	373
6.2	OPS in Ring	Topology		375
	6.2.1 Res	ervation-B	ased OPS	377
	6.2.1.1	Local (Cyclic Reservation (LCR)	377

	6.2.	1.2	Local Cyclic Reservation with Source-	
			Destination (LCR-SD)	378
	6.2.2	Conten	tion-Based OPS	378
	6.2.2.1 La 6.2.2.2 Ro 6.2.2.3 Ca		Label-Based MAC in Packet-Based ECOFRAME	378
			Removing of Overdue Blocks (ROB)	379
			CSMA/CA-Based MAC Protocol for Non-	
			Slotted Ring Networks	380
	6.2.3	Hybrid	Reservation/Contention-Based OPS	381
	6.2.	3.1	SWING MAC Protocol	381
	6.2.3.2		PQOC MAC Protocol	383
6.3	Summa	ry		385
References				387
Index				391

LIST OF FIGURES

1.1	Attenuation versus wavelength curve [4]	3	
1.2	The SSMF, DSF, and NZDSF fibers [6]	4	
1.3	General optical network model	5	
1.4	Hierarchy of optical communications networks	6	
1.5	Link model in an optical network	8	
1.6	Light-path setup example in a WRN optical network	9	
1.7	An example for OBS operation	14	
1.8	Synchronized multi-fiber OPS switch architecture	16	
1.9	General OPS switch architecture	21	
1.10	An example for switching module in an OPS core switch at $N = 3, f = 2$, and $W = 4$	22	
1.11	Synchronization unit for an input link of a multi-fiber OPS network	23	
1.12	Edge switch architecture in a multi-fiber OPS network	26	
		xix	

XX LIST OF FIGURES

1.13	OPS signaling: (a) subcarrier multiplexing, (b) serial transmission, (c) separate wavelength, (d) header stripping	28
1.14	Aggregated header for three data wavelength channels	28
1.15	An example for spectrum assignment [148]	46
1.16	Bandwidth-variable WXC switch architecture [149]	48
1.17	An example for connection establishment	52
1.18	An OOFDM core switch model under IP over OOFDM [159]	53
2.1	An example for smoothing and shifting in renegotiation-based transmission of optical packets	77
2.2	An example for VOB and its node architecture	80
2.3	An aggregated optical packet	81
2.4	Ingress switch architecture for single-class OPS network	82
2.5	Pseudo code of packet aggregation in single-class OPS networks	83
2.6	Active congestion control mechanism for TCP traffic management in asynchronous OPS networks	89
2.7	Delay controlled traffic shaper with variable rate scheduler [46]	91
2.8	Pseudo code of computing deadline curve in delay-controlled traffic shaping [46]	92
2.9	Pseudo code for scheduling of client packets in each time slot	92
2.10	An example for the logical topology in IP/OOFDM	94
2.11	Adaptive OOFDM subcarrier allocation and assignment algorithm [49]	95
2.12	Ingress switch architecture 1 (ISA1) for QoS-capable OPS network with M classes of traffic	100
2.13	Ingress Switch Architecture 2 (ISA2) for QoS-capable OPS network with <i>M</i> classes of traffic. Reprinted from <i>Computer</i> <i>Networks</i> , Vol. 53, Akbar Ghaffarpour Rahbar and Oliver Yang, Distribution-based bandwidth access scheme in slotted all-optical packet-switched networks, 744–758, copyright 2009, with permission from Elsevier.	101
2.14	Pseudo code of composite optical packet aggregation (CPA) in multi-class OPS networks. Reproduced from [59] with permission from De Gruyter.	103

LIST OF FIGURES	xxi

2.15	Pseudo code of non-composite optical packet aggregation (CPA) in multi-class OPS networks	104
2.16	The OBM operation in the DA technique. Reprinted from <i>Computer Networks</i> , Vol. 53, Akbar Ghaffarpour Rahbar and Oliver Yang, Distribution-based bandwidth access scheme in slotted all-optical packet-switched networks, 744–758, copyright 2009, with permission from Elsevier.	107
2.17	Time-slot scheduling (assignment) under the DA technique. Reproduced from <i>Computer Networks</i> , Vol. 53, Akbar Ghaffarpour Rahbar and Oliver Yang, Distribution-based bandwidth access scheme in slotted all-optical packet-switched networks, 744–758, copyright 2009, with permission from Elsevier.	110
2.18	The function <i>getEmptyOPSet</i> used in Fig.2.17. Reproduced from <i>Computer Networks</i> , Vol. 53, Akbar Ghaffarpour Rahbar and Oliver Yang, Distribution-based bandwidth access scheme in slotted all-optical packet-switched networks, 744–758, copyright 2009, with permission from Elsevier.	111
2.19	An example for bit memory management at $F = 90$ OP sets and $\phi = 32$ bits. Reprinted from <i>Computer Networks</i> , Vol. 53, Akbar Ghaffarpour Rahbar and Oliver Yang, Distribution-based bandwidth access scheme in slotted all-optical packet-switched networks, 744–758, copyright 2009, with permission from Elsevier.	111
2.20	Optical packet generation rate over optical packet service rate (L_{OP}) under DA and NCPA	113
2.21	Optical packet load in OPS network under DA, CPA, and NCPA bandwidth access schemes. Reproduced from [59] with permission from De Gruyter.	119
2.22	Optical packet generation rate under Poisson traffic arrivals in NCPA	120
2.23	OPS multi-fiber links	121
2.24	The effect of using multi-fiber OPS switch on reducing PLR at $N = 30$	123
2.25	The effect of using additional channels vs. different number of OPS switch sizes under a network with $W = 3$ wavelengths	124
2.26	PLR at the core switch for different architectures at $\omega = 12$	125
2.27	Network model for even packet transmission [73]	127

XXII LIST OF FIGURES

Three types of optical packet distributions at $\tau = 10$ OP sets [73]	133
Two types of optical packet distributions at $\tau = 10$ OP sets for distance and density evaluations [73]	134
Three types of optical packet distributions at $\tau = 10$ OP sets for fairness evaluation [73]	135
Three distributions at $\tau = 8$ OP sets, $n_e = 3$ edge switches (and 3 Torrents), $f = 2$, and $W = 3$ for hybrid index evaluations [73]	139
Average LB and FD distribution indices [73]	141
Average EDF_{di} and EDF_{de} distribution indices [73]	142
Average hybrid distribution indices under Scenario 1 [73]	142
Symbols used in OPS core switch architectures	152
An optical buffer module	155
A <i>d</i> -stage optical buffer with $d + 1$ cross-bar switching elements [5]	155
A dedicated feed-forward output buffer architecture in an OPS switch [11]	156
A feed-forward shared-per-output buffer architecture in an OPS switch (Architecture 1) [1]	157
A feed-forward shared-per-output buffer architecture in an OPS switch (Architecture 2) [12]	158
A feed-forward shared-per-node output buffer architecture in an OPS switch [17]	159
A feed-forward input buffer FDL architecture in an OPS switch	160
A shared-per-node recirculation buffer architecture in an OPS switch [11]	161
A shared-per-port recirculation buffer architecture in an OPS switch	162
An example for WDS mechanism	163
PLR under different wavelength selection schemes in WDS suitable for connectionless OPS. Reprinted from <i>Computer</i> <i>Networks</i> , Vol. 44, F. Callegati, W. Cerroni, C. Raffaelli, and P. Zaffoni, Wavelength and time domain exploitation for QoS management in optical packet switches, 569–582, copyright 2004, with permission from Elsevier.	166
	Three types of optical packet distributions at $\tau = 10$ OP sets [73] Two types of optical packet distributions at $\tau = 10$ OP sets for distance and density evaluations [73] Three types of optical packet distributions at $\tau = 10$ OP sets for fairness evaluation [73] Three distributions at $\tau = 8$ OP sets, $n_e = 3$ edge switches (and 3 Torrents), $f = 2$, and $W = 3$ for hybrid index evaluations [73] Average LB and FD distribution indices [73] Average <i>EDF_{di}</i> and <i>EDF_{de}</i> distribution indices [73] Average hybrid distribution indices under Scenario 1 [73] Symbols used in OPS core switch architectures An optical buffer module A <i>d</i> -stage optical buffer with $d + 1$ cross-bar switching elements [5] A dedicated feed-forward output buffer architecture in an OPS switch [11] A feed-forward shared-per-output buffer architecture in an OPS switch (Architecture 1) [1] A feed-forward shared-per-output buffer architecture in an OPS switch (Architecture 2) [12] A feed-forward shared-per-node output buffer architecture in an OPS switch [17] A feed-forward shared-per-node output buffer architecture in an OPS switch [11] A feed-forward input buffer FDL architecture in an OPS switch [11] A shared-per-node recirculation buffer architecture in an OPS switch [11] A shared-per-port recirculation for OCOMUER A example for WDS mecha

3.13	PLR under different wavelength selection schemes in WDS for connection-oriented OPS. Reprinted from <i>Computer Networks</i> , Vol. 44, F. Callegati, W. Cerroni, C. Raffaelli, and P. Zaffoni, Wavelength and time domain exploitation for QoS management in optical packet switches, 569–582, copyright 2004, with permission from Elsevier.	166
3.14	A non-circular LRWC example at $W = 8$ and $d_c = 2$	168
3.15	Parametric wavelength converter at pump wavelength λ_5 under NRP [31, 32]	168
3.16	Parametric wavelength converter at different pump wavelengths under VRP [31, 32]	169
3.17	OPS switch with SPC Architecture 1	172
3.18	OPS switch with SPC Architecture 2 [33]	173
3.19	OPS switch with recirculating SPN WC architecture [47, 48]	174
3.20	OPS switch with feed-forward SPN Architecture 1. Reprinted from <i>Optics Communications</i> , Vol. 54, N. Akara, C. Raffaellib, M. Savib, and E. Karasana, Shared-per-wavelength asynchronous optical packet switching: a comparative analysis, 2166–2181, copyright 2010, with permission from Elsevier.	175
3.21	OPS switch with feed-forward SPN Architecture 2 [33]	176
3.22	OPS switch with SPN-PWC architecture [31, 51]: (a) WB-OPS, (b) NWB-OPS	177
3.23	An OPS switch with SPN architecture with recursive PWC [52]	178
3.24	PLR of the NRR and VRP at $N = 16$ and $W = 32$ [31]	178
3.25	PLR of NRP and VRP in the WB-OPS and the NWB-OPS at $N = 16, W = 32$, and $L_{OP} = 0.1$ [31]	178
3.26	OPS switch with SPOL Architecture 1. Reprinted from <i>Optics Communications</i> , Vol. 54, N. Akara, C. Raffaellib, M. Savib, and E. Karasana, Shared-per-wavelength asynchronous optical packet switching: a comparative analysis, 2166–2181, copyright 2010, with permission from Elsevier.	180
3.27	OPS switch with SPOL Architecture 2 [33]	181
3.28	OPS switch with SPIL WC architecture [56]	182
3.29	OPS switch with SPIW WC architecture [60]	183

XXIV LIST OF FIGURES

3.30	OPS switch with SPOW WC architecture. Reprinted from <i>Optics Communications</i> , Vol. 54, N. Akara, C. Raffaellib, M. Savib, and E. Karasana, Shared-per-wavelength asynchronous optical packet switching: a comparative analysis, 2166–2181, copyright 2010, with permission from Elsevier.	184
3.31	PLR of SPOW, SPIW, and SPN switches as a function of α and varying load at $N = 8$ and $W = 48$ [65]	185
3.32	PLR under the SPIL, SPOL, and SPN architectures at $L_{OP} = 0.8$, $N = 16$, and $W = 7, 11, 15$ [56]	186
3.33	Pseudo code of Phase 1 of contention resolution scheduling in a core switch	188
3.34	Pseudo code of Phase 2 of contention resolution scheduling in a core switch with SPN converters	189
3.35	Pseudo code of contention resolution scheduling in a core switch with SPN with PWC in WB-OPS	190
3.36	Pseudo code of contention resolution scheduling in a core switch with SPN with PWC in NWB-OPS	191
3.37	Pseudo code of Phase 2 of contention resolution scheduling in a core switch with SPOL converters	191
3.38	Pseudo code of contention resolution scheduling in a core switch with SPC converters	192
3.39	Pseudo code of Phase 2 of contention resolution scheduling in a core switch with SPIL converters	193
3.40	Pseudo code of Phase 2 of contention resolution scheduling in a core switch with SPIW converters	194
3.41	Pseudo code of Phase 2 of contention resolution scheduling in a core switch with SPOW converters	194
3.42	Non-blocking receiver architecture	198
3.43	The output circuiting shared buffer architecture in an OPS switch	200
3.44	PLR under MINL for HP and LP traffic as a function of <i>D</i> for connectionless OPS at $B = 4$. Reprinted from <i>Computer Networks</i> , Vol. 44, F. Callegati, W. Cerroni, C. Raffaelli, and P. Zaffoni, Wavelength and time domain exploitation for QoS management in optical packet switches, 569–582, copyright 2004, with permission from Elsevier.	202

3.45	PLR under MQWS for HP and LP traffic as a function of <i>D</i> for connection-oriented OPS at $B = 8$. Reprinted from <i>Computer Networks</i> , Vol. 44, F. Callegati, W. Cerroni, C. Raffaelli, and P. Zaffoni, Wavelength and time domain exploitation for QoS management in optical packet switches, 569–582, copyright 2004, with permission from Elsevier.	202
3.46	PLR as a function of percentage of number of WCs reserved for HP traffic [74]	203
3.47	PLR as a function of percentage of number of wavelengths and WCs reserved for HP traffic [74]	203
3.48	PLR as a function of the preemption probability at $W = 16$, $L = 0.5$, 20% class-0 (HP) traffic [2]	215
3.49	PLR as a function of the dropping probability at $W = 16, L = 0.5,$ 20% HP traffic [2]	215
3.50	Pseudo code of composite optical packet scheduling in multi- class multi-fiber OPS networks. Reprinted from <i>Computer</i> <i>Networks</i> , Vol. 53, Akbar Ghaffar Pour Rahbar and Oliver Yang, Distribution-based bandwidth access scheme in slotted all-optical packet-switched networks, 744–758, copyright 2009, with permission from Elsevier.	217
4.1	Hybrid SPN and SPOL WC architecture [5]	237
4.2	Hybrid SPN architecture with LRWC and PWC converters [6]	238
4.3	Hybrid OPS switch architecture with FDL and LRWC [10]	239
4.4	Shared FDL and wavelength conversion per output port in an OPS switch	241
4.5	Hybrid contention resolution with WC and shared FDLs [16]	242
4.6	A feed-forward input buffering FDL architecture combined with wavelength conversion in an OPS switch [18]	243
4.7	A feed-forward shared-per-output buffer architecture in an OPS switch [18]	245
4.8	Multi-fiber OPS switch with SPIW WC architecture [23]	247
4.9	Pseudo code of contention resolution scheduling in a multi-fiber core switch with SPIW converters	248
4.10	Multi-fiber OPS switch with SPN WC architecture [26]	250

XXVI LIST OF FIGURES

4.11	Pseudo code of contention resolution scheduling in a multi-fiber core switch with SPN converters	251
4.12	Core switch model for a MF + SPOL WC core switch [32]	252
4.13	An example for the same-wavelength groups [32]	252
4.14	PLR in a core switch with asymmetric and symmetric traffic distribution. Reprinted from <i>Optics Communications</i> , Vol. 124, Akbar Ghaffarpour Rahbar, Analysis of optical packet loss rate under asymmetric traffic distribution in multi-fiber synchronous OPS switches, 769–772, copyright 2013, with permission from Elsevier.	255
4.15	Multi-fiber OPS core switch with SPOL and FDL [35]	256
4.16	Pseudo code of contention resolution in a core switch under DA + M_PR + SPN. Reprinted from Akbar Ghaffar Pour Rahbar, Improving throughput of long-hop TCP connections in IP over OPS networks, <i>Photonic Network Communications</i> 2009, 17:226–237, Figure 2, with kind permission from Springer Science and Business Media.	258
4.17	TCP throughput under DA + NR + SPN combination at $N_{WC} = 1$ and $N_{WC} = 4$. Reprinted from Akbar Ghaffar Pour Rahbar, Improving throughput of long-hop TCP connections in IP over OPS networks, <i>Photonic Network Communications</i> 2009, 17:226–237, Figures 3 and 5, with kind permission from Springer Science and Business Media.	259
4.18	TCP throughput under DA + RR + SPN combination at $N_{WC} = 1$. Reprinted from Akbar Ghaffar Pour Rahbar, Improving throughput of long-hop TCP connections in IP over OPS networks, <i>Photonic Network Communications</i> 2009, 17:226–237, Figure 6, with kind permission from Springer Science and Business Media.	260
4.19	TCP throughput under DA + M_PR + SPN combination at $N_{WC} = 1$ and $N_{WC} = 4$ and $\alpha = \{1, 2, 3\}$. Reprinted from Akbar Ghaffar Pour Rahbar, Improving throughput of long-hop TCP connections in IP over OPS networks, <i>Photonic Network Communications</i> 2009, 17:226–237, Figures 7 to 12, with kind permission from Springer Science and Business Media.	261
4.20	An OPS switch with multi-fiber architecture with SPN wavelength conversion	262

4.21 Pseudo code of contention resolution under the DA + MF + PR + NBR + SPN mechanism. Reproduced from Ontics Communications, Vol. 282, Akbar Ghaffarpour Rahbar, Cost-effective combination of contention resolution/avoidance schemes in bufferless slotted OPS networks, 798–808, copyright 2009, with permission from Elsevier. 264 4.22 Network-wide TCP throughput under the DA + MF + PR + NBR + SPN mechanism. Reprinted from *Optics Communications*. Vol. 282, Akbar Ghaffarpour Rahbar, Cost-effective combination of contention resolution/avoidance schemes in bufferless slotted OPS networks, 798-808, copyright 2009, with permission from Elsevier. 266 4.23 Per-hop TCP throughput under the DA + MF + PR + NBR+ SPN mechanism. Reprinted from Optics Communications, Vol. 282, Akbar Ghaffarpour Rahbar, Cost-effective combination of contention resolution/avoidance schemes in bufferless slotted OPS networks, 798-808, copyright 2009, with permission from Elsevier. 267 4.24 Pseudo code of optical packet scheduling in a core switch under the PA + MF + NBR + DRwBD + IAS + SHP + SPN mechanism. Reproduced from [40] with permission from De Gruvter. 272 4.25 Client traffic loss rate under the PA + MF + NBR + DRwBD + IAS + SHP + SPN mechanism without deflection at f = 2, W = 4, and $N_{WC} = 8$. Reproduced from [40] with permission from De Gruyter. 275 4.26 Traffic loss rate under the PA + MF + NBR + DRwBD + IAS+ SHP + SPN mechanism at f = 2 and $N_{WC} = 10$. Reproduced from [40] with permission from De Gruyter. 278 4.27 Delay under the PA + MF + NBR + DRwBD + IAS + SHP + SPN architecture at f = 2 and $N_{WC} = 10$. Reproduced from [40] with permission from De Gruyter. 279 4.28 Average normalized throughput of differentiated packets under the DA + NBR + MF + SPN mechanism. Reprinted from Computer Networks, Vol. 53, Akbar Ghaffar Pour Rahbar and Oliver Yang, Distribution-based bandwidth access scheme in slotted all-optical packet-switched networks, 744-758, copyright 2009, with permission from Elsevier. 281

XXVIII LIST OF FIGURES

4.29	Average system delay for differentiated client packets under the DA + NBR + MF + SPN mechanism. Reprinted from <i>Computer Networks</i> , Vol. 53, Akbar Ghaffar Pour Rahbar and Oliver Yang, Distribution-based bandwidth access scheme in slotted all-optical packet-switched networks, 744–758, copyright 2009, with permission from Elsevier.	282
4.30	Different flows injected into a core switch: an irregular-spaced flow and a regular-spaced flow, where two decomposed sub-flows can be made from the regular-spaced flow [43]	283
4.31	Scheduling of sub-flows on an output link [43]	284
5.1	Client-server hybrid OPS network	294
5.2	Parallel hybrid model on a single physical topology	296
5.3	A parallel hybrid OCS/OPS/OBS core switch architecture [8]	297
5.4	An example for borders in hybrid OCS and MW-OPS [9]: (a) static border, (b) dynamic border	298
5.5	An example for sending an optical packet in hybrid OCS and MW-OPS architecture [9]	299
5.6	Average number of wavelengths for MW-OPS among all nodes using First-Fit [9]	300
5.7	Comparison of number of wavelengths for MW-OPS between MD-Pkt and MSL-Pkt, normalized by the MW-OPS in MD-Pkt [9]	300
5.8	An integrated hybrid optical network model	301
5.9	An example for integrated ORION network scenario [13]	302
5.10	Block diagram of the ORION core switch	303
5.11	Block diagram of the core switch under OpMiGua [14]	305
5.12	HCT PLR as a function of GST packet length for various GST traffic shares, no NCT [14]	306
5.13	HCT delay as a function of GST packet length for various GST traffic shares, no NCT [14]	306
5.14	Core switch architecture under 3LIHON [17]	308
5.15	Packet loss probability of SM/RT traffic as a function of length ratio b [18]	309
5.16	Packet loss probability of SM/BE traffic as a function of total load on output wavelengths [18]	309

5.17	Core switch architecture in HOS [20, 21]	311
5.18	Data loss rate as a function of the input load in each link under HOS [21]	311
6.1	Basic single-hop overlaid OPS network model	320
6.2	Alternative single-hop overlaid OPS network model	321
6.3	The framework of reservation-based scheduling in overlaid-star OPS. Reprinted from <i>Computer Networks</i> , Vol. 54, Akbar Ghaffarpour Rahbar and Oliver Yang, Agile bandwidth management techniques in slotted all-optical packet interconnection networks, 387–403, copyright 2010, with permission from Elsevier.	327
6.4	Construction of traffic demand information in an ingress switch. Reprinted from <i>Computer Networks</i> , Vol. 54, Akbar Ghaffarpour Rahbar and Oliver Yang, Agile bandwidth management techniques in slotted all-optical packet interconnection networks, 387–403, copyright 2010, with permission from Elsevier.	329
6.5	The MPBvN scheduling in the core switch. Reprinted from <i>Computer Networks</i> , Vol. 54, Akbar Ghaffarpour Rahbar and Oliver Yang, Agile bandwidth management techniques in slotted all-optical packet interconnection networks, 387–403, copyright 2010, with permission from Elsevier.	330
6.6	BvN decomposition in the core switch. Reprinted from <i>Computer Networks</i> , Vol. 54, Akbar Ghaffarpour Rahbar and Oliver Yang, Agile bandwidth management techniques in slotted all-optical packet interconnection networks, 387–403, copyright 2010, with permission from Elsevier.	331
6.7	A 4×4 traffic demand matrix, its decomposition, and the scheduling map to ingress switches at $F = 10$. Reprinted from <i>Computer Networks</i> , Vol. 54, Akbar Ghaffarpour Rahbar and Oliver Yang, Agile bandwidth management techniques in slotted all-optical packet interconnection networks, 387–403, copyright 2010, with permission from Elsevier.	332
6.8	Pseudo code for time-slot assignment from scheduling matrix <i>S</i> with <i>k</i> permutation matrices in EBvN. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, <i>Journal of Annals of Telecommunications</i> 2012, 67:575–588, Figure 2, with kind permission from Springer Science and Business Media.	334

XXX LIST OF FIGURES

6.9 An example for mapping of permutation matrices to ingress switches. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, *Journal of Annals of Telecommunications* 2012, 67:575–588, with kind permission from Springer Science and Business Media.

335

336

337

339

- 6.10 Pseudo code for dividing an entry of traffic demand matrix among wavelength channels under SBvN. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multiwavelength overlaid-star optical networks, *Journal of Annals of Telecommunications* 2012, 67:575–588, Figure 3, with kind permission from Springer Science and Business Media.
- 6.11 Pseudo code for initialization phase of EBvN_FEC. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, *Journal of Annals of Telecommunications* 2012, 67:575–588, Figure 9, with kind permission from Springer Science and Business Media.
- 6.12 Pseudo code for time-slot assignment from the scheduling matrix *S* with *k* permutation matrices with filling empty slots. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, *Journal of Annals of Telecommunications* 2012, 67:575–588, Figure 9, with kind permission from Springer Science and Business Media.
- 6.13 Average residual traffic percentage under non-uniform traffic distribution. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, *Journal of Annals of Telecommunications* 2012, 67:575–588, Figure 6, with kind permission from Springer Science and Business Media.
 341
- 6.14 Average scheduling time under uniform traffic distribution. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, *Journal of Annals of Telecommunications* 2012, 67:575–588, Figure 4, with kind permission from Springer Science and Business Media.

6.15	Average scheduling time under non-uniform traffic distribution. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, <i>Journal of Annals of Telecommunications</i> 2012, 67:575–588, Figure 7, with kind permission from Springer Science and Business Media.	341
6.16	Maximum scheduling time under uniform traffic distribution. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, <i>Journal of Annals of Telecommunications</i> 2012, 67:575–588, Figure 5, with kind permission from Springer Science and Business Media.	342
6.17	Maximum scheduling time under non-uniform traffic distribution. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, <i>Journal of Annals of Telecommunications</i> 2012, 67:575–588, Figure 8, with kind permission from Springer Science and Business Media.	343
6.18	Average residual traffic under non-uniform traffic in EBvN and EBvN_FEC.Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, <i>Journal of Annals of Telecommunications</i> 2012, 67:575–588, Figure 10, with kind permission from Springer Science and Business Media.	344
6.19	Average scheduling time under non-uniform traffic in EBvN and EBvN_FEC. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, <i>Journal of Annals of Telecommunications</i> 2012, 67:575–588, Figure 11, with kind permission from Springer Science and Business Media.	344
6.20	Maximum scheduling time under non-uniform traffic in EBvN and EBvN_FEC. Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid- star optical networks, <i>Journal of Annals of Telecommunications</i> 2012, 67:575–588, Figure 12, with kind permission from Springer Science and Business Media.	345
6.21	Pseudo code of contention resolution in DA + MF + PR + SPN + COPS Type 3. Reprinted from <i>Computer Networks</i> , Vol. 54, Akbar Ghaffar Pour Rahbar and Oliver Yang, Agile bandwidth management techniques in slotted all-optical packet interconnection networks, 387–403, copyright 2010, with permission from Elsevier.	346

XXXII LIST OF FIGURES

] 351
353
354
6] 358
362
362
366
367
368
370
370
372
374

LIST OF FIGURES	xxxiii

6.35	The ECOFRAME architecture [33]	376
6.36	The HOPSMAN architecture [34, 35]	376
6.37	Node architecture in CSMA/CA-based MAC for non-slotted ring networks [42]	381
6.38	Cycles in HOPSMAN [34, 35]	384

LIST OF TABLES

2.1	Performance of packet aggregation at load $L = 0.6$ [31]	85
2.2	Comparison of single-class software-based contention avoidance schemes	99
2.3	Aggregation parameters and simulation results for NCPA and OPORON [64]	116
2.4	Comparison of multi-class software-based contention avoidance schemes	117
2.5	Computation of normalized and hybrid indices [73]	139
3.1	Complexity comparison of shared WCs in an OPS switch	187
3.2	Retransmission probabilities under PR and RR at $L = 0.7$, $N = 100$, and $f = 1, 2, 3, 4$ [94]	212
3.3	Example for composite optical packet scheduling	219
3.4	Evaluation of rank parameter at $D_{max} = 3$ under composite packet scheduling (Type 4). Reproduced from [67] with permission from De Gruyter.	221

XXXVI LIST OF TABLES

4.1	Study parameter $\theta(NR, f, N_d, N_{WC})$ under NR. Reprinted from <i>Optics Communications</i> , Vol. 282, Akbar Ghaffarpour Rahbar, Cost-effective combination of contention resolution/avoidance schemes in bufferless slotted OPS networks, 798–808, copyright 2009, with permission from Elsevier.	270
4.2	Study parameter $\theta(PR, f, N_d, N_{WC})$ under PR. Reprinted from <i>Optics Communications</i> , Vol. 282, Akbar Ghaffarpour Rahbar, Cost-effective combination of contention resolution/avoidance schemes in bufferless slotted OPS networks, 798–808, copyright 2009, with permission from Elsevier.	270
4.3	End-to-end delay (ms) in Scenario 1 under Tout1. Reproduced from [40] with permission from De Gruyter.	276
4.4	End-to-end delay (ms) in Scenario 1 under Tout2. Reproduced from [40] with permission from De Gruyter.	276
4.5	End-to-end delay (ms) in Scenario 1 under DA. Reproduced from [40] with permission from De Gruyter.	276
4.6	Comparison of client traffic loss rate under DRwBD in the PA + MF + NBR + DRwBD + IAS + SHP + SPN mechanism. Reproduced from [40] with permission from De Gruyter.	280
6.1	An example for a scheduled frame at $F = 8$, $f = 2$, and $W = 3$ in ingress switch 3. Reprinted from Akbar Ghaffar Pour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid- star optical networks, <i>Journal of Annals of Telecommunications</i> 2012, 67:575–588, Table 1, with kind permission from Springer Science and Business Media.	325
6.2	Mapping permutation matrices to a frame for ingress switch <i>m</i> . Reprinted from Akbar Ghaffarpour Rahbar, EBvN: efficient BvN in multi-fiber/multi-wavelength overlaid-star optical networks, <i>Journal of Annals of Telecommunications</i> 2012, 67:575–588, Table 2, with kind permission from Springer Science and Business Media.	335
6.3	Distribution of empty time slots on wavelength λ_w at $n = 8$, $E = 3$, and $b_w = 4$, where the left column shows ingress switch numbers (from 0 to 7) [26]	348
6.4	Distribution of empty time slots on wavelength λ_w at $n = 14$, $E = 4$, and $b_w = 0$, where the left column shows ingress switch numbers (from 0 to 13) [26]	349
6.5	Performance comparison of WA + PR at $L = 0.7$ and $n = 32$ [27]	366

PREFACE

Welcome to the era of unlimited communications, video-centric applications, and Internet! Internet applications require both bandwidth and Quality of Service (QoS) because of a huge number of Internet users and growing number of real-time applications (such as 3D TV, ultrahigh-definition TV, video-on demand, Internet Protocol TeleVision (IPTV), video-conferencing, Internet gaming, voice over IP, etc.) that need different levels of QoS. IP networks consist of core networks and access networks. By increasing IP traffic, access networks can grow in both size and count [1]. For example, traffic of broadband access networks such as ADSL and Fiber To The Home (FTTH) is continually increasing every year. To transport the huge traffic offered by IP networks, the core networks capabilities must be increased to avoid them from becoming bottleneck for IP traffic. This could be a problem when the network bandwidth is limited, the network supports only the best effort traffic, and the Internet traffic does not have a uniform characteristic.

The need for more and more bandwidth forces us to think of more granularity. The best promising solution is to use Wavelength Division Multiplexing (WDM) all-optical networks in core networks. Note that an optical network that uses optical transmission and keeps optical data paths through the nodes from source to destination is called all-optical network. Due to the fact that all-optical networks use photonic technology for the implementation of both switching and transmission functions, signals in these networks can be maintained in optical form without any

XXXVIII PREFACE

conversion to the electronic domain resulting in much high transmission rates. Alloptical networking with deployment of Dense Wavelength Division Multiplexing (DWDM) appears to be the sole approach to transport the huge network traffic in future backbone networks. The DWDM technology provides the multiplexing of many wavelength channels in a single optical fiber, resulting in several Tbits/s bandwidth capacity.

Similar to the electronic domain in which packet switching is the most granular method of switching, the most promising technique for optical core networks could be Optical Packet Switching (OPS) due to its high throughput and very good granularity and scalability. In an OPS edge node, a header is attached to each client packet received from a legacy network, where the header includes the information about source edge node, destination edge node, and content of packet payload such as its length. The packet is then transmitted in the optical domain, called an optical packet, toward the OPS network. In OPS, an optical packet stays in the optical domain inside the core network and switched optically. The optical packet can only be converted to the electronic domain in its destination edge node. Packet switching provides connectionless transmission of packets. Thus, there is no need to establish a path (i.e., a circuit) between source–destination nodes like in circuit switching. However, contention of optical packets in the core network is the major problem in OPS networks.

Since different applications need different levels of QoS, service differentiation must be considered in optical networks as well. Under the best-effort service in which no guarantees are given to any packet regarding loss rate, delay, and delay jitter, all traffic in the network is equally treated. This will, in turn, degrade the QoS requirements for real-time traffic. Thus, having a QoS-capable optical backbone network will be a requirement in which low latency, low jitter, low loss, and bandwidth guarantees must be provided for real-time traffic.

For providing QoS in OBS networks, [2] details (a) the basic mechanisms developed for improving end-to-end QoS and (b) relative and absolute QoS differentiation among multiple service classes. On the other hand, for OCS networks, the work in [3] focuses on the methods developed for service-differentiated and constraint-based wavelength routing and allocation in multi-service WDM networks. However, there is no comprehensive work on QoS in OPS networks.

In future, OPS networks must be setup for worldwide communications in order to transport the huge traffic generated by Internet users and applications. In addition, research and development on optical communication networking have been matured significantly during the last decade to the extent that some of these principles have moved from the optical research laboratories to formal graduate courses. Moreover, there are a large number of experts working on designing optical devices and physical-layer of optics that are interested in learning more about OPS network architectures, protocols, and the corresponding engineering problems in order to design new state-of-the-art OPS networking products. Finally, there are many books written for device level of optical communications, and there are even devices suitable for OPS. However, there is almost no work dedicated solely for system level of OPS (say architectures and protocols), improving quality of service, and the operation of OPS networks.

In general, there are some books published for covering optical networking such as [4–10]. However, the number of published books dedicated to the system level of OPS is limited to OPS in access networks [11], design of optical buffers for OPS [12], edge node design for contention avoidance in slotted OPS [13], scheduling in star-based OPS networks [14], and OPS for ring networks [15].

This book provides a comprehensive study on OPS networks, its architectures, and developed techniques for improving its quality of switching and managing quality of service. This book is organized in six chapters, each covering a unique topic in detail:

- Chapter 1 provides an introduction to OPS networks, its architectures, and QoS in OPS. Since many optical networking books have stated optical systems in much detail, this chapter does not include them. In addition to OPS networks, GMPLS-supported optical networks and optical networks based on Orthogonal Frequency Division Multiplexing (OOFDM) are studied in this chapter.
- Chapter 2 describes contention avoidance schemes proposed for OPS networks in which edge switches send optical packets to the OPS network in a way to reduce their collisions. Broadly, these schemes are classified as either hardwarebased or software-based.
- Chapter 3 details contention resolution schemes proposed for OPS networks in which OPS switches resolve the collision of contenting optical packets. In general, contention resolution schemes are classified as either hardware-based or software-based.
- Chapter 4 studies the hybrid contention resolution schemes that use a number of contention resolution schemes in the same architecture in order to reduce optical packet loss rate. In addition, hybrid contention resolution and contention avoidance schemes are reviewed that can efficiently reduce optical packet loss rate in a cost-effective manner.
- Chapter 5 describes hybrid optical switching schemes in which OPS networking is combined with another optical switching technique (say optical circuit switching) in order to improve the performance of traffic transmission in the optical domain.
- Chapter 6 states different OPS architectures designed for metro area. These networks are mainly based on ring and star topologies with active optical switches.

This book is a useful resource for students, engineers, and researchers to learn more about optical packet switched networking from system level points of view. It is intended as a textbook for graduate level and senior undergraduate level courses in electrical engineering and computer science on (advanced) optical networking. Knowledge about computer networks is a prerequisite for understanding this book. For advanced optical networks course relevant to OPS, the book can be entirely used.

XI PREFACE

Reasonable care has been taken in eliminating any types of errors. However, readers are encouraged to send their comments and suggestions to the author via e-mail. I personally hope that this book will give the reader enough information in OPS networks and motivate his/her interests to develop efficient, QoS-capable, and cost-effective OPS networks suitable for future core optical networks.

AKBAR GHAFFARPOUR RAHBAR

Sahand University of Technology ghaffarpour@sut.ac.ir

REFERENCES

- 1. A. Shami, M. Maier, and C. Assi. Broadband Access Networks: Technologies and Deployments. Springer, 2009.
- K. C. Chua, M. Gurusamy, Y. Liu, and M. H. Phung. *Quality of Service in Optical Burst Switched Networks*. Springer, 2007.
- A. Jukan. QoS-based Wavelength Routing in Multi-Service WDM Networks. Springer, 2001.
- 4. B. Mukherjee. Optical WDM Networks. Springer, 2006.
- 5. R. Ramaswami, K. Sivarajan, and G. Sasaki. *Optical Networks: A Practical Perspective*. third edition, Morgan Kaufmann, 2009.
- T. E. Stern, G. Ellinas, and K. Bala. *Multiwavelength Optical Networks: Architectures, Design, and Control.* second edition, Cambridge University Press, 2008.
- 7. J. M. Simmons. Optical Network Design and Planning. Springer, 2008.
- 8. V. Alwayn. Optical Network Design and Implementation. Cisco Press, 2004.
- 9. R. J. B. Bates. Optical Switching and Networking Handbook. McGraw-Hill, 2001.
- 10. M. Maier. Optical Switching Networks. Cambridge University Press, 2008.
- 11. K. Bengi. Optical Packet Access Protocols for WDM Networks. Springer, 2002.
- 12. E. H. Salas. Design of Optical Buffer Architectures for Packet-Switched Networks: An Optical Packet Buffer Overview. LAP Lambert Academic Publishing, 2010.

Quality of Service in Optical Packet Switched Networks, First Edition. By Akbar Ghaffarpour Rahbar Copyright © 2015 IEEE. Published by John Wiley & Sons, Inc.

xlii REFERENCES

- 13. A. G. Rahbar and O. Yang. *OPS Networks: Bandwidth Management & QoS.* VDM Verlag, Germany, 2009.
- 14. N. Saberi. *Photonic Networks: Bandwidth Allocation and Scheduling*. LAP LAMBERT Academic Publishing, 2011.
- 15. B. Uscumlic. *Optical Packet Ring Engineering: Design and Performance Evaluation*. LAP LAMBERT Academic Publishing, 2011.

ACKNOWLEDGMENTS

To all those wonderful people I owe a deep sense of gratitude especially now that this book has been completed. To my wife and daughter for their consistent patience and encouragement. To the publisher's staff for their collaboration and project management.

Akbar Ghaffarpour Rahbar