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FOREWORD

Dr. Jean Mahseredjian1

This book on power system harmonics and passive filter designs is a comprehensive
resource on this subject, covering harmonic generation, mitigation, measurement and
estimation, limitations according to IEEE and IEC standards, harmonic resonance,
formation of shunt capacitor banks, modeling of power system components and sys-
tems. Harmonic penetration in the power systems, passive filters, and typical study
cases, covering renewable energy sources – solar and wind power generation – are
included. There are many aspects of harmonics discussed in this book, which are not
covered in the current publications.

The following is a chapter-wise summary of the book content.
Chapter 1 forms a background on the subject of power system harmonics with

discussions of harmonic indices and power theories. The coverage of nonsinusoidal
single-phase and three-phase systems and popular instantaneous power theory of H.
Akagi and A. Nabe, much used for active filter designs discussed later on in the book,
leads a reader to understand the nonlinearity.

The second chapter on Fourier analysis, though much mathematical, paves the
way for the applications to harmonic analysis and measurements with limitations of
window functions. The examples given in the chapter help the readers to understand
the transformations.

Harmonic generation from conventional power equipment, ferroresonance,
and electronically switched devices, converters, home appliances, cycloconverters,
PWM, voltage source converters, switch mode power supplies, wind farm genera-
tion, pulse burst modulation, chopper circuits, traction and slip recovery schemes,
are well described in Chapters 3 and 4. A reader will find an interesting analysis
of transformer modeling, third harmonic voltages in generators, and many EMTP
simulations. Harmonics due to saturation of current transformers is an added feature.
Chapter 4 is fairly exhaustive and includes harmonic generation from many sources
of practical importance. The analysis and topologies of ASDs (adjustable speed
drives) are well documented. Though the author provides some background, yet a
reader must be conversant with elements of power electronics.

Interharmonics is a new field of research, and Chapter 5 is well written so as to
provide a reader a clear concept of interharmonic generation and their effects. This
is followed by a well-written work on flicker from arcing loads, arcing and induction

1Dr. Jean Mahseredjian is an IEEE-Fellow and Professor of Electrical Engineering at École Polytechnique
de Montréal, Montréal, Québec, Canada. He is world renowned authority on the simulation and analysis of
electromagnetic transients. He was also a member of IEEE working groups on Power System Harmonics.

xv



xvi FOREWORD

furnaces, and tracing methods of flicker. The control of flicker through the application
of a STATCOM followed by torsional analysis due to harmonics in large drives with
graphics is one problem that is not so well addressed in current texts. The subsyn-
chronous resonance in series compensated HV transmission lines and drive system
cascades, with EMTP simulation results, will be of interest to special readers inter-
ested in this field.

Having discussed the generation of harmonics in previous chapters, Chapter 6 is
logically placed to discuss the various strategies that can be adopted to reduce the har-
monics at source itself, so that harmonic penetration in the power systems is avoided.
This covers active filters, combination of active and passive filters, their controls,
active current shaping matrix converters, multilevel inverters, THMI inverters and
theory of harmonic reduction at source, new breed of matrix and multilevel convert-
ers, followed with the theory of the resultant of polynomials. Then, the demonstration
of this theory and control of switching angles is demonstrated to reduce harmonic
distortion to a very low level. Some sections of this chapter will need a prior under-
standing of many aspects of converters and their switching, and on first reading the
mathematical treatment cannot be easily followed by an average reader. The author
provides excellent references at each step for further reading.

The calculations, estimation, time stamp of harmonics are the first step before a
model can be generated for study. The relevance of modeling angles of the harmonics,
measuring equipment, transducers, analysis of various waveforms will be of interest
to all readers, while probabilistic concepts, regression methods, Kalman filtering, and
so on will be of special interest. The author provides fundamental aspects leading to
these advanced concepts.

The effects of harmonics can be very deleterious on electrical power equipment,
Chapter 8. Practically all power system equipment of interest, motors, insulation
stresses, and traveling wave phenomena on drive system cables, common mode volt-
ages, bearing currents, protective relaying, circuit breakers, and the like are covered.
Of special interest to a reader will be derating of dry and liquid-filled transformers
serving nonlinear loads, which at times may be ignored, resulting in overloads.

After this background is grasped, harmonic resonance in various forms is dis-
cussed in Chapter 9. The reactance curves, Foster networks, composite resonance,
secondary resonance are illustrated, which are commonly missing topics in other
texts.

The limits of harmonic distortions in Chapter 10 cover both, IEEE and IEC
guidelines, with limits on interharmonics and calculations of effects of notching on
harmonic distortions.

In the design of passive filters, formation of shunt capacitor banks and their
grounding and protection is an important aspect, Chapter 11. Often failures on har-
monic filters occur due to improper selection of the ratings of unit capacitors forming
the bank, as well as ignoring their protection and switching transients. The impor-
tance of this chapter cannot be overstated for a reader involved in harmonic filter
designs.

The next step in harmonic analysis is accurate modeling of power system com-
ponents and power systems, depending on their nature and extent of study, which is
detailed in Chapters 12 and 13. These two chapters form the backbone of harmonic
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analysis. The modeling described for transmission lines, transformers, loads, cables,
motors, generators, and converters in Chapter 12 is followed by system modeling in
industrial, distribution, and transmission systems and HVDC, which are the aspects
that should be clearly grasped by a reader interested in harmonics.

Study of harmonic penetration discussed in Chapter 14 can be undertaken
after the material in the previous chapters is grasped. Apart from time and frequency
domain methods, the chapter covers the latest aspects of probabilistic modeling.

It may seem that in the entire book only one chapter, Chapter 15, is devoted
to passive filters. However, harmonic filter designs may be called the last link of the
long chain of harmonic studies. The chapter describes practically all types of passive
filters commonly applied in the industry, with some new technologies such as genetic
algorithms and particle swarm theories.

Lastly, Chapter 16 has many real-world studies of harmonic analysis and fil-
ters designs, including arc furnaces, transmission systems, solar and wind generation
plants. A reader with adequate modeling tools and software can duplicate these stud-
ies and it will be a tremendous exercise in learning.

I conclude that the book is well written and should appeal to beginners and
advanced readers, in fact, this can become a standard reference book on harmonics.
Many solved examples and real-world simulations of practical systems enhance the
understanding. The book is well illustrated with relevant figures in each chapter.





PREFACE

The power system harmonics is a subject of continuous research; this book attempts
to present the state-of-art technology and advancements. It is a subject of interest of
many power system professionals engaged in harmonic analysis and mitigation and
the applications in the modern climate when the nonlinear loads in the utility systems
are on the increase.

The book provides a comprehensive coverage of generation, effects, and control
of harmonics. New harmonic mitigation technologies, detailed step-by-step design of
passive filters, interharmonics, and flicker are covered. The intention is that the book
can serve as a reference and practical guide on harmonics.

A beginner should be able to form a clear base for understanding the subject of
harmonics, and an advanced reader’s interest should be simulated to explore further.
A first reading of the book followed by a detailed critical reading is suggested. The
many real-world study cases, examples, and graphics strive for this objective and
provide clear understanding. The subject of harmonics may not form a curriculum
even for graduate studies in many universities. In writing this book, an undergraduate
level of knowledge is assumed; yet, the important aspects with respect to connectivity
of each chapter are not lost sight of. It has the potentiality of serving as advance
undergraduate and graduate textbook. Surely, it can serve as continuing education
textbook and supplementary reading material.

The effects of harmonics can be experienced at a distance, and the effect on
power system components is a dynamic and evolving field. These interactions have
been analyzed in terms of current thinking.

The protective relaying has been called “an art and science.” The author
will not hesitate to call the passive harmonic filter designs and mitigation tech-
nologies the same. This is so because much subjectivity is involved. Leaving aside
high-technology research tools such as Monte Carlo simulations, the available com-
puter techniques invariably require iterative studies to meet a number of conflicting
objectives.

A first reading of the book will indicate that the reader must understand the
nature of harmonics, modeling of power system components, and characteristics of
filters, before attempting a practical filter design for real-world applications. Chapter
16 is devoted to practical harmonic passive filter designs and case studies including
solar and wind generation. A reader can modal and reproduce the results and get a
“feel” of the complex iterative and analytical procedures.

xix
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C H A P T E R 1
POWER SYSTEM HARMONICS

The electrical power systems should be designed not only for the sinusoidal currents
and voltages but also for nonlinear and electronically switched loads. There has been
an increase in such loads in the recent times, and these can introduce harmonic pol-
lution, distort current and voltage waveforms, create resonances, increase the system
losses, and reduce the useful life of the electrical equipment. Harmonics are one of
the major problems of ensuring a certain power quality. This requires a careful anal-
ysis of harmonic generation and their measurements and the study of the deleterious
effects, harmonic controls, and limitation to acceptable levels. Interest in harmonic
analysis dates back to the early 1990s in connection with high voltage DC (HVDC)
systems and static var compensators (SVC; Reference [1]). The analytical and har-
monic limitation technology has progressed much during this period (see Reference
[2] for a historical overview of the harmonics in power systems).

DC power is required for a number of applications from small amount of power
for computers, video equipment, battery chargers, UPS (uninterrptible power sup-
plies) systems to large chunks of power for electrolysis, DC drives, and the like. A
greater percentage of office and commercial building loads are electronic in nature,
which have DC as the internal operating voltage. Fuel and solar cells and batteries can
be directly connected to a DC system, and the double conversion of power from DC to
AC and then from AC to DC can be avoided. A case study conducted by Department
of Electrical Power Engineering, Chalmers University of Technology, Gothenburg,
Sweden is presented in [3]. This compares reliability, voltage drops, cable sizing,
grounding and safety: AC verses DC distribution system. In Reference [4], DC ship-
board distribution system envisaged by US Navy is discussed. Two steam turbine
synchronous generators are connected to 7000 V DC bus through rectifiers, and DC
loads are served through DC–DC converters. However, this is not a general trend,
bulk and consumer power distribution systems are AC; and we will not be discussing
industrial or commercial DC distribution systems in this book, except that HVDC
converter interactions with respect to harmonics and DC filters are of interest and
discussed in the appropriate chapters.

Harmonics in power systems originate due to varied operations, for example,
ferroresonance, magnetic saturation, subsynchronous resonance, and nonlinear
and electronically switched loads. Harmonic emission from nonlinear loads
predominates.

Power System Harmonics and Passive Filter Designs, First Edition. J.C. Das.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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2 CHAPTER 1 POWER SYSTEM HARMONICS

1.1 NONLINEAR LOADS

To distinguish between linear and nonlinear loads, we may say that linear
time-invariant loads are characterized so that an application of a sinusoidal voltage
results in a sinusoidal flow of current. These loads display constant steady-state
impedance during the applied sinusoidal voltage. Incandescent lighting is an example
of such a load. The electrical motors not supplied through electronic converters also
approximately meet this definition. The current or voltage waveforms will be almost
sinusoidal, and their phase angles displaced depending on power factor of the elec-
trical circuit. Transformers and rotating machines, under normal loading conditions,
approximately meet this definition. Yet, it should be recognized that flux wave in the
air gap of a rotating machine is not sinusoidal. Tooth ripples and slotting in rotating
machines produce forward and reverse rotating harmonics. Magnetic circuits can
saturate and generate harmonics. Saturation in a transformer on abnormally high
voltage produces harmonics, as the relationship between magnetic flux density B
and the magnetic field intensity H in a magnetic material (the transformer core)
is not linear. Yet, the harmonics emissions from these sources are relatively small
(Chapter 3).

In a nonlinear device, the application of a sinusoidal voltage does not result in
a sinusoidal flow of current. These loads do not exhibit constant impedance during
the entire cycle of applied sinusoidal voltage. Nonlinearity is not the same as the
frequency dependence of impedance, that is, the reactance of a reactor changes in
proportion to the applied frequency, but it is linear at each applied frequency if we
neglect saturation and fringing. However, nonlinear loads draw a current that may
even be discontinuous or flow in pulses for a part of the sinusoidal voltage cycle.

Mathematically, linearity implies two conditions:

• Homogeneity

• Superposition

Consider the state of a system defined in the state equation form:

⋅
x = f [x(t), r(t), t] (1.1)

If x(t) is the solution to this differential equation with initial conditions x(t0) at t = t0
and input r(t), t > t0:

x(t) = 𝜑[x(t0), r(t)] (1.2)

then homogeneity implies that

𝜑[x(t0), 𝛼r(t)] = 𝛼𝜑[x(t0), r(t)] (1.3)

where 𝛼 is a scalar constant. This means that x(t) with input 𝛼 r(t) is equal to 𝛼 times
x(t) with input r(t) for any scalar 𝛼.

Superposition implies that

𝜑[x(t0), r1(t) + r2(t)] = 𝜑[x(t0), r1(t)] + 𝜑[x(t0), r2(t)] (1.4)
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That is, x(t) with inputs r1(t) + r2(t) is equal to the sum of x(t) with input r1(t) and
x(t) with input r2(t).Thus, linearity is superimposition plus homogeneity.

1.2 INCREASES IN NONLINEAR LOADS

Nonlinear loads are continuously on the increase. It is estimated that, during the next
10 years, more than 60% of the loads on utility systems will be nonlinear. Also much
of the electronic load growth involves residential sector and household appliances.
Concerns for harmonics originate from meeting a certain power quality, which leads
to the related issues of (1) effects on the operation of electrical equipment, (2) har-
monic analysis, and (3) harmonic control. A growing number of consumer loads are
sensitive to poor power quality, and it is estimated that power quality problems cost
US industry tens of billion of dollars per year. Although the expanded use of con-
sumer automation equipment and power electronics is leading to higher productivity,
these heavy loads are a source of electrical noise and harmonics and are less tolerant
to poor power quality. For example, adjustable speed drives (ASDs) are less tolerant
to voltage sags and swells as compared to an induction motor; and a voltage dip of
10% of certain time duration may precipitate ASD shutdown. These generate line har-
monics and a source containing harmonics impacts their operation, leading to further
generation of harmonics. This implies that the nonlinear loads which are a source
of generation of harmonics are themselves relatively less tolerant to the poor power
quality that originates from harmonic emission from these loads.

Some examples of nonlinear loads are as follows:

• ASD systems

• Cycloconverters

• Arc furnaces

• Rolling mills

• Switching mode power supplies

• Computers, copy machines, television sets, and home appliances

• Pulse burst modulation

• Static var compensators (SVCs)

• Thyristor-controlled reactors (TCRs)

• HVDC transmission, harmonics originate in converters

• Electric traction, chopper circuits

• Wind and solar power generation

• Battery charging and fuel cells

• Slip frequency recovery schemes of induction motors

• Fluorescent lighting and electronic ballasts

• Electrical vehicle charging systems

• Silicon-controlled rectifier (SCR) heating, induction heating, and arc welding.
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The harmonics are also generated in conventional power equipment, such as
transformer and motors. Saturation and switching of transformers generate harmon-
ics. The harmonic generation is discussed in Chapters 3–5. The application of capaci-
tor banks for power factor corrections and reactive power support can cause resonance
and further distortions of waveforms (Chapter 9). Earlier rotating synchronous con-
densers have been replaced with modern shunt capacitors or SVCs (Chapter 4).

1.3 EFFECTS OF HARMONICS

Harmonics cause distortions of the voltage and current waveforms, which have
adverse effects on electrical equipment. The estimation of harmonics from nonlinear
loads is the first step in a harmonic analysis, and this may not be straightforward.
There is an interaction between the harmonic producing equipment, which can have
varied topologies, and the electrical system. Over the course of years, much attention
has been focused on the analysis and control of harmonics, and standards have been
established for permissible harmonic current and voltage distortions (Chapter 10).
The effects of harmonics are discussed in Chapter 8.

1.4 DISTORTED WAVEFORMS

Harmonic emissions can have varied amplitudes and frequencies. The most com-
mon harmonics in power systems are sinusoidal components of a periodic waveform,
which have frequencies that can be resolved into some multiples of the fundamental
frequency. Fourier analysis is the mathematical tool employed for such analysis, and
Chapter 2 provides an overview.

The components in a Fourier series that are not an integral multiple of the power
frequency are called noninteger harmonics (Chapter 5).

The distortion produced by nonlinear loads can be resolved into a number of
categories:

• A distorted waveform having a Fourier series with fundamental frequency equal
to power system frequency and a periodic steady state exists. This is the most
common case in harmonic studies. The waveform shown in Fig. 1.1 is syn-
thesized from the harmonics shown in Table 1.1. The waveform in Fig. 1.1 is
symmetrical about the x-axis and can be described by the equation:

I = sin(𝜔t − 30∘) + 0.17 sin(5𝜔t + 174∘) + 0.12 sin(7𝜔t + 101∘) + …

Chapter 4 shows that this waveform is typically of a six-pulse current source
converter, harmonics limited to 23rd, though higher harmonics will be present.
The harmonic emission varies over wide range of distorted waveforms.
Figure 1.2 shows a typical waveform for HVDC link, DC drives, and a
six-pulse voltage source inverter (VSI) ASD, Ref. [1]. Chapter 4 studies
typical waveforms and distortions from various types of power electronic
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Figure 1.1 Simulated waveform of the harmonic spectrum shown in Table 1.1.

TABLE 1.1 Harmonic Content of the Waveform in Fig. 1.1

h 5 7 11 13 17 19 23

% 17 12 11 5 2.8 1.5 0.5

h = harmonic orders shown in percentage of fundamental current.
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Figure 1.2 Typical line current waveforms of HVDC, DC drive, and six-pulse ASD.
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Figure 1.3 Erratic current signature of an
electric arc furnace during scrap melting.

switching equipment. This is the most common situation in practice, and the
distorted waveforms can be decomposed into a number of harmonics. The
system can usually be modeled as a linear system.

• A distorted waveform having a submultiple of power system frequency and a
periodic steady state exists. Certain types of pulsed loads and integral cycle
controllers produce these types of waveforms (Chapters 4 and 5).

• The waveform is aperiodic, but perhaps almost periodic. A trigonometric series
expansion may still exist. Examples are arcing devices: arc furnaces, fluores-
cent, mercury, and sodium vapor lighting. The process is not periodic in nature,
and a periodic waveform is obtained if the conditions of operation are kept con-
stant for a length of time. Consider the current signature of an arc furnace during
scrap melting (Fig. 1.3). The waveform is highly distorted and aperiodic. Yet,
typical harmonic emissions from arc furnace during melting and refining have
been defined in IEEE standard 519 [5].

The arc furnace loads are highly polluting and cause phase unbalance, flicker,
impact loading, harmonics, interharmonics, and resonance, and may give rise to tor-
sional vibrations in rotating equipment.

1.4.1 Harmonics and Power Quality

Harmonics are one of the major power quality concerns. The power quality concerns
embrace much wider concerns such as voltage sags and swells, transients, under and
overvoltages, frequency variations, outright interruptions, power quality for sensitive
electronic equipment such as computers. Table 3.1 summarizes some power quality
problems. A reference of importance is IEEE Recommended Practice for Emergency
and Standby Power Systems for Industrial and Commercial Applications, [6]. This
book is not about power quality; however, some important publications are separately
listed in References for the interested readers.
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1.5 HARMONICS AND SEQUENCE COMPONENTS

The theory of sequence components is not discussed in this book and references
[7–10] may be seen. In a three-phase balanced system under nonsinusoidal condi-
tions, the hth-order harmonic voltage (or current) can be expressed as

Vah =
∑
h≠1

Vh(h𝜔0t − 𝜃h) (1.5)

Vbh =
∑
h≠1

Vh(h𝜔0t − (h𝜋∕3)𝜃h) (1.6)

Vch =
∑
h≠1

Vh(h𝜔0t − (2h𝜋∕3)𝜃h) (1.7)

Based on Eqs. (1.5–1.7) and counterclockwise rotation of the fundamental phasors,
we can write

Va = V1 sin𝜔t + V2 sin 2𝜔t + V3 sin 3𝜔t + V4 sin 4𝜔t + V5 sin 5𝜔t + ....

Vb = V1 sin(𝜔t − 120∘) + V2 sin(2𝜔t − 240∘) + V3 sin(3𝜔t − 360∘) + V4 sin(4𝜔t − 480∘)

+ V5 sin(5𝜔t − 600∘) + ....

= V1 sin(𝜔t − 120∘) + V2 sin(2𝜔t + 120∘) + V3 sin 3𝜔t + V4 sin(4𝜔t − 120∘)

+ V5 sin(5𝜔t + 120∘) + ....

Vc = V1 sin(𝜔t + 120∘) + V2 sin(2𝜔t + 240∘) + V3 sin(3𝜔t + 360∘) + V4 sin(4𝜔t + 480∘)

+ V5 sin(5𝜔t + 600∘) + ....

= V1 sin(𝜔t + 120∘) + V2 sin(2𝜔t − 120∘) + V3 sin 3𝜔t + V4 sin(4𝜔t + 120∘)

+ V5 sin(5𝜔t − 120∘) + ....

Under balanced conditions, the hth harmonic (frequency of harmonic = h times the fundamen-
tal frequency) of phase b lags h times 120∘ behind that of the same harmonic in phase a. The
hth harmonic of phase c lags h times 240∘ behind that of the same harmonic in phase a. In the
case of triplen harmonics, shifting the phase angles by three times 120∘ or three times 240∘
results in cophasial vectors.

Table 1.2 shows the sequence of harmonics, and the pattern is clearly
positive–negative–zero. We can write

Harmonics of the order 3h + 1 have positive sequence (1.8)

Harmonics of the order 3h + 2 have negative sequence (1.9)

Harmonics of the order 3h are of zero sequence (1.10)

All triplen harmonics generated by nonlinear loads are zero sequence phasors. These
add up in the neutral. In a three-phase four-wire system, with perfectly balanced
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TABLE 1.2 Harmonic Order and Rotation

Harmonic Order Forward Reverse

Fundamental x

2 x

4 x

5 x

7 x

8 x

10 x

11 x

13 x

14 x

16 x

17 x

19 x

20 x

22 x

23 x

25 x

26 x

28 x

29 x

31 x

Note: The pattern is repeated for higher order harmonics.

single-phase loads between the phase and neutral, all positive and negative sequence
harmonics will cancel out leaving only the zero sequence harmonics.

In an unbalanced three-phase system, serving single-phase load, the neutral car-
ries zero sequence and the residual unbalance of positive and negative sequence cur-
rents. Even harmonics are absent in the line because of phase symmetry (Chapter 2),
and unsymmetrical waveforms will add even harmonics to the phase conductors, for
example, half-controlled three-phase bridge circuit discussed in Chapter 4.

1.5.1 Sequence Impedances of Power System Components

Positive, negative, and zero sequence impedances vary over large limits, depending
on the power system equipment. For example, for transformers, positive and nega-
tive sequence impedances may be considered equal, but zero sequence impedance
can be infinite depending on transformer winding connections and grounding. The
zero sequence impedance of transmission lines can be two to three times that of the
positive or negative sequence impedance. Even for fundamental frequency current
flow, the accurate modeling of sequence impedances is important and the sequence
impedances to harmonics must be modeled (Chapter 12).
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1.6 HARMONIC INDICES

1.6.1 Harmonic Factor

An index of merit has been defined as a harmonic distortion factor [5] (harmonic
factor). It is the ratio of the root mean square of the harmonic content to the root
mean square value of the fundamental quantity, expressed as a percentage of the
fundamental:

DF =

√√√√∑
of squares of amplitudes of all harmonics

Square of the amplitude of the fundamental
× 100% (1.11)

The most commonly used index, total harmonic distortion (THD), which is in
common use is the same as DF.

1.6.2 Equations for Common Harmonic Indices

We can write the following equations.
RMS voltage in presence of harmonics can be written as

Vrms =

√√√√h=∞∑
h=1

V2
h,rms (1.12)

And similarly, the expression for the current is

Irms =

√√√√h=∞∑
h=1

I2
h,rms (1.13)

The total distortion factor for the voltage is

THDV =

√√√√h=∞∑
h=2

V2
h,rms

Vf ,rms
(1.14)

where Vf ,rms is the fundamental frequency voltage. This can be written as

THDV =

√(
Vrms

Vf ,rms

)2

− 1 (1.15)

or

Vrms = Vf ,rms

√
1 + THD2

V (1.16)
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Similarly,

THDI =

√√√√h=∞∑
h=2

I2
h,rms

If ,rms
=

√(
Irms

If ,rms

)2

− 1 (1.17)

Irms = If ,rms

√
1 + THD2

I (1.18)

where If ,rms is the fundamental frequency current.
The total demand distortion (TDD) is defined as

TDD =

√√√√h=∞∑
h=2

I2
h

IL
(1.19)

where IL is the load demand current.
The partial weighted harmonic distortion (PWHD) of current is defined as

PWHDI =

√√√√h=40∑
h=14

hI2
h

If ,rms
(1.20)

Similar expression is applicable for the voltage. The PWHD evaluates influence of
current or voltage harmonics of higher order. The sum parameters are calculated with
single harmonic current components Ih.

1.6.3 Telephone Influence Factor

Harmonics generate telephone Influence through inductive coupling. The telephone
influence factor (TIF) for a voltage or current wave in an electrical supply circuit is
the ratio of the square root of the sum of the squares of the weighted root mean square
values of all the sine wave components (including AC waves both fundamental and
harmonic) to the root mean square value (unweighted) of the entire wave:

TIF =

√∑
W2

f I2
f

Irms
(1.21)

where If is the single frequency rms current at frequency f , Wf is the single frequency
TIF weighting at frequency f . The voltage can be substituted for current. This def-
inition may not be so explicit, see example in Chapter 8 for calculation. A similar
expression can be written for voltage.
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IT product is the inductive influence expressed in terms of the product of its
root mean square magnitude I in amperes times its TIF.

IT = TIF ∗ Irms =
√∑

(Wf If )2 (1.22)

kVT product is the inductive influence expressed in terms of the product of its root
mean square magnitude in kV times its TIF.

kVT = TIF ∗ kVrms =
√∑

(Wf Vf )2 (1.23)

The telephone weighting factor that reflects the present C message weighting and the
coupling normalized to 1 kHz is given by:

Wf = 5Pf f (1.24)

where Pf = C message weighting at frequency f under consideration. See
Section 8.12 for further details.

1.7 POWER FACTOR, DISTORTION FACTOR, AND
TOTAL POWER FACTOR

For sinusoidal voltages and currents, the power factor is defined as kW/kVA and the
power factor angle 𝜙 is

𝜑 = cos−1 kW
kVA

= tan−1 kvar
kW

(1.25)

The power factor in presence of harmonics comprises two components: dis-
placement and distortion. The effect of the two is combined in total power factor.
The displacement component is the ratio of active power of the fundamental wave
in watts to apparent power of fundamental wave in volt-amperes. This is the power
factor as seen by the watt-hour and var-hour meters. The distortion component is the
part that is associated with harmonic voltages and currents.

PFt = PFf × PFdistortion (1.26)

At fundamental frequency the displacement power factor will be equal to the total
power factor, as the displacement power factor does not include kVA due to harmon-
ics, while the total power factor does include it. For harmonic generating loads, the
total power factor will always be less than the displacement power factor.

Continuing with the relation between power factor and displacement factor, the
power factor of a converter with DC-link reactor is given by the expression from IEEE
519, Ref. [5]:

Total PF =
q

𝜋
sin

(
𝜋

q

)
(1.27)
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where q is the number of converter pulses and 𝜋∕q is the angle in radians (see
Chapter 4). This ignores commutation overlap and no-phase overlap, and neglects
transformer magnetizing current. For a six-pulse converter, the maximum power
factor is 3∕𝜋 = 0.955. A 12-pulse converter has a theoretical maximum power factor
of 0.988. The power factor drops drastically with the increase in firing angle.

Note that the power factor is a function of the drive topology, for example, with
pulse width modulation, the input power factor is dependent on the type of converter
only and the motor power factor is compensated by a capacitor in the DC link.

In the case of sinusoidal voltage and current, the following relationship holds

S2 = P2 + Q2 (1.28)

where P is the active power, Q is the reactive volt-ampere, and S is the volt-ampere.
This relationship has been amply explored in load flow programs:

S = Vf If , Q = Vf If sin(𝜃f − 𝛿f ), P = Vf If cos(𝜃f − 𝛿f ), and PF = P∕S (1.29)

𝜃f − 𝛿f = phase angle between fundamental voltage and fundamental current.
In the case of nonlinear load or when the source has nonsinusoidal waveform,

the active power P can be defined as

P =
h=∞∑
h=1

VhIh cos(𝜃h − 𝛿h) (1.30)

Q can be written as

Q =
h=∞∑
h=1

VhIh sin(𝜃h − 𝛿h) (1.31)

Vh and Ih are in rms values, and the apparent power can be defined as

S =
√

P2 + Q2 + D2 (1.32)

where D is the distortion power. Consider D2 up to the third harmonic:

D2 = (V2
0 + V2

1 + V2
2 + V2

3 )(I
2
0 + I2

1 + I2
2 + I2

3 )

− (V0I0 + V1I1 cos 𝜃1 + V2I2 cos 𝜃2 + V3I3 cos 𝜃3)2

− (V1I1 sin 𝜃1 + V2I2 sin 𝜃2 + V3I3 sin 𝜃3)2 (1.33)

An expression for distortion power factor can be arrived from current and volt-
age harmonic distortion factors. From the definition of these factors, rms harmonic
voltages and currents can be written as

Vrms(h) = Vf

√
1 +

(
THDV

100

)2

(1.34)
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Irms(h) = If

√
1 +

(
THDI

100

)2

(1.35)

Therefore, the total power factor is

PFtot =
P

Vf If

√
1 +

(
THDV

100

)2
√

1 +
(

THDI

100

)2
(1.36)

Neglecting the power contributed by harmonics and also voltage distortion, as it is
generally small, that is,

THDV ≅ 0 (1.37)

PFtot = cos(𝜃f − 𝛿f ) ⋅
1√

1 +
(

THDI

100

)2

= PFdisplacementPFdistortion (1.38)

The total power factor is the product of displacement power factor (which is the same
as the fundamental power factor) and is multiplied by the distortion power factor as
defined earlier.

The discussion is continued in Chapter 4. The modern trends in converter tech-
nology are to compensate for line harmonics and improve power factor to approxi-
mately unity simultaneously (Chapter 6).

1.8 POWER THEORIES

A number of power theories exist to explain the active, reactive, and instantaneous
power relations in presence of harmonics, each fraught with some controversies:

1. Fryze theory in time domain

2. Shepherd and Zakikhani theory in frequency domain

3. Czarnecki power theory in frequency domain

4. Nabe and Akagi instantaneous power theory

See references [12–16].

1.8.1 Single-Phase Circuits: Sinusoidal

The instantaneous power is

p = vi = 2VI sin𝜔t sin(𝜔t − 𝜃) = pa + pq (1.39)
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Figure 1.4 The waveform of separated components of instantaneous power in a
single-phase circuit, with linear resistive-inductive load.

The active power also called real power is the average value of instantaneous power
measured over a certain time period, say, 𝜏 to 𝜏 + kT

We will denote instantaneous values in lowercase (v and i in (1.39) are in peak
values).

pa = VI cos 𝜃[1 − cos(2𝜔t)] = P[1 − cos(2𝜔t]

pq = −VI sin 𝜃 sin(2𝜔t) = −Q sin(2𝜔t) (1.40)

The energy flows unidirectional from source to load pa ≥ 0. The instantaneous active
power has two terms, active or real power and the intrinsic power −P cos 2𝜔t, which
is always present when energy is transferred from source to load. If load is inductive
Q > 0, and if load is capacitive Q < 0.

Figure 1.4 illustrates the instantaneous power components in single-phase cir-
cuits: the nonnegative component pa, the oscillatory component pb, and total instan-
taneous power pi are shown.

1.8.2 Single-Phase Circuits: Nonsinusoidal

We can write

v = v1 + vH
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i = i1 + iH

vH = V0 +
√

2
∑
h≠1

Vh sin(h𝜔t − 𝛼h)

iH = I0 +
√

2
∑
h≠1

Ih sin(h𝜔t − 𝛽h) (1.41)

v1 and i1 are power frequency components and vH and iH are other components.
The active power (rms value) is

pa = V0I0 +
∑

h

VhIh cos 𝜃h[1 − cos(2h𝜔t − 2𝛼h)] (1.42)

It has two terms: Ph = VhIh cos 𝜃h and the intrinsic harmonic power −Ph cos(2h𝜔t −
2𝛼h), which does not contribute to the net transfer of energy or additional power loss
in the conductors.

Also, fundamental active power is

P1 = V1I1 cos 𝜃1 (1.43)

And harmonic active power is

PH = V0I0 +
∑
h≠1

VhIh cos 𝜃h = P − P1 (1.44)

Pq does not represent a net transfer of energy, its average value is nil. The current
related to these nonactive components causes additional power loss in the conductors.

The apparent power is

S2 = (V2
1 + V2

H)(I
2
1 + I2

H) = S2
1 + S2

N (1.45)

where

S2
N = (V1IH)2 + (VHI1)2 + (VHIH)2

= D2
1 + D2

V + S2
H (1.46)

where

D1 = current distortion power (var) = S1(THDI)

DV = voltage distortion power (var) = S1(THDV )

SH = harmonic apparent power (VA) = VHIH

= S1(THDI)(THDV ) =
√

P2
H + D2

H

where DH is the harmonic distortion power.
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As THDV is ≪ THDI ,
SN = S1(THDI)

The fundamental power factor is

PF1 = cos 𝜃1 =
P1

S1
(1.47)

It is also called the displacement power factor.
And

PF = P∕S =
[1 + (PH∕P1)]PF1√

1 + THD2
I + THD2

V + (THDITHDV )2
≈ 1√

1 + THD2
I

PF1 (1.48)

DI > DV > SH > PH

Equation (1.48) is the same as Eq. (1.38).

1.8.3 Three-Phase Systems

We can consider

• Balanced three-phase voltages and currents

• Asymmetrical voltages or load currents

• Nonlinear loads

Figure 1.5(a) shows balanced three-phase voltages and currents and balanced
resistive load, and Fig. 1.5(b) depicts the instantaneous power in Fig. 1.5(a). The
summation of phase instantaneous active powers in three phases is constant. Thus,
the concepts arrived at in single-phase circuits cannot be applied. We examined that
in single-phase circuits the active power has an intrinsic power component.

In three-phase circuits, it is impossible to separate reactive power on the basis
of instantaneous power. Reactive power interpretation of single-phase circuits cannot
be applied.

Figure 1.6 shows waveforms of voltages and currents in three-phase circuits
with unbalanced resistive load. Now, the instantaneous active power is no longer
constant. Considering three-phase circuit as three single-phase circuits leads to major
misinterpretation of power phenomena.

Figure 1.7 depicts the symmetrical nonlinear load current and symmetrical
waveforms of the supply voltage. Again the instantaneous active power is no longer
constant. The individual instantaneous active powers in phases are shown in Fig. 1.8.

The extension of concept of apparent power in three-phase circuits has led to

Arithmetic apparent power:

VaIa + VbIb + VcIc = SA (1.49)
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Figure 1.5 (a) Balanced three-phase voltages and currents in a three-phase system,
(b) phase instantaneous powers, pa, pb, and pc and total instantaneous power.

Va,Vb, … Ia, Ib … . in rms values.

Geometric apparent power:

SG =
√

P2 + Q2 (1.50)

where three-phase active and reactive powers P and Q are
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Figure 1.6 The waveform of the supply voltage and currents in a three-phase circuit with
unbalanced resistive load and three-phase instantaneous active power.
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Figure 1.7 The waveforms of the supply voltage and current with symmetrical unbalanced
load and three-phase instantaneous active power.

P = Pa + Pb + Pc

Q = Qa + Qb + Qc (1.51)

Buchholz apparent power:

SB =
√

V2
a + V2

b + V2
c ⋅

√
I2
a + I2

b + I2
c (1.52)
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Figure 1.8 Phase instantaneous active powers for Fig. 1.7.

So long as the supply voltage is sinusoidal and symmetrical, and the load is
balanced, these three relations (Eqs. (1.49), (1.51), and (1.52)) give the same correct
result. If one of the above conditions is not met, the results will differ. Buchholz
definition of apparent power allows correct calculation of apparent power.

We can define positive, negative, and zero sequence active and reactive powers:

P+ = 3V+I+ cos 𝜃+ P− = 3V−I− cos 𝜃− P0 = 3V0I0 cos 𝜃0

Q+ = 3V+I+ sin 𝜃+ Q− = 3V−I− sin 𝜃− Q0 = 3V0I0 sin 𝜃0 (1.53)

1.8.4 Nonsinusoidal and Unbalanced Three-Phase Systems

For nonsinusoidal and unbalanced three-phase systems, the following treatment can
be applied:

Effective apparent power Se can be written as

S2
e = p2 + N2 (1.54)

where N is nonactive power and p is the active power.
In a three-phase three-wire system:

Ie =

√
I2
a + I2

b + I2
c

3

Ie1 =

√
I2
a1 + I2

b1 + I2
c1

3
= fundamental
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IeH =

√
I2
aH + I2

bH + I2
cH

3
=
√

I2
e − I2

e1 (1.55)

Similar expressions can be written for voltages.
Resolution of Se is implemented as

S2
e = S2

e1 + S2
eN (1.56)

Se1 is the fundamental apparent power and SeN is nonfundamental apparent power.

Se1 = 3Ve1Ie1

S2
eN = D2

e1 + D2
ev + S2

eH = 3Ve1IeH + 3VeHIe1 + 3VeHIeH (1.57)

SeN =
√

THD2
eI + THD2

eV + (THDeITHDeV )2 (1.58)

where

DeI = Se1(THDeI) DeV = Se1(THDeV ) DeH = Se1(THDeV )(THDeI) (1.59)

are the components of nonfundamental apparent power.
The load unbalance can be evaluated using unbalance power:

SU1 =
√

S2
e1 − (S+1 )2 (1.60)

where
S+1 =

√
(P+

1 )2 + (Q+
1 )2 (1.61)

Here,

P+
1 = 3V+

1 I+1 cos 𝜃+1

Q+
1 = 3V+

1 I+1 sin 𝜃+1

The fundamental positive sequence power factor is

PF+
1 =

P+
1

S+1
(1.62)

It plays the same role as the fundamental power factor has in nonsinusoidal
single-phase circuits.

The combined power factor is

PF = P
Se

(1.63)

Table 1.3 shows these relations.
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TABLE 1.3 Three-Phase Systems with Nonsinusoidal Waveforms

Quantity or Indicator Combined Fundamental Powers Nonfundamental Powers

Apparent Se (VA) Se1 S+
1 SU1 (VA) SeN SeH (VA)

Active P (W) P+
1 (W) PH (W)

Nonactive N (var) Q+
1 (var) DeI DeV DeH (var)

PF P∕Se P+
1 ∕S+

1

Harmonic pollution SeN∕Se1

Load unbalance SU1∕S+
1

Source: Ref. [11].

Example 1.1: This example is based on Ref. [13]. Consider nonsinusoidal voltage
and currents containing harmonics of the order of 3rd, 5th, and 7th.

v = v1 + v3 + v5 + v7 =
√

2
∑

h=1,3,5,7

Vh sin(h𝜔t − 𝛼h)

i = i1 + i3 + i5 + i7 =
√

2
∑

h=1,3,5,7

Ih sin(h𝜔t − 𝛽h)

Then,

p = phh + pmn

phh = v1i1 + v3i3 + v5i5 + v7i7

pmn = v1(i3 + i5 + i7) + v3(i1 + i5 + i7) + v5(i1 + i3 + i7) + v7(i1 + i3 + i5)

Pmn is the instantaneous power that contains only cross terms.
The direct product yields

vhih =
√

2Vh sin(h𝜔t − 𝛼h)
√

2Ih sin(h𝜔t − 𝛽h)

= Ph[1 − cos(2h𝜔t − 2𝛼h)] − Qh sin(2h𝜔t − 2𝛼h)

where
Ph = VhIh cos(𝜃h) Qh = VhIh sin(𝜃h)

are the harmonic active and reactive powers of order h, and 𝜃h = (𝛽h − 𝛼h) is the phase
angle between phasors Vh and Ih.

The total active power is

P =
∑

h=1,3,5,7

Ph = P1 + PH

where
P1 = V1I1 cos 𝜃1 PH = P3 + P5 + P7
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For each harmonic

Sh =
√

P2
h + Q2

h

The total apparent power squared is

S2 = V2I2 = (V2
1 + V2

3 + V2
5 + V2

7 )(I
2
1 + I2

3 + I2
5 + I2

7 )

= V2
1 I2

1 + V2
3 I2

3 + V2
5 I2

5 + V2
7 I2

7 + V2
1 (I

2
3 + I2

5 + I2
7 ) + I2

1 (V
2
3 + V2

5 + V2
7 )

+ V2
3 I2

5 + V2
3 I2

7 + V2
5 I2

3 + V2
5 I2

7 + V2
7 I2

3 + V2
7 I2

5

or

S2 = S2
1 + S2

3 + S2
5 + S2

7 + D2
I + D2

V + D2
35 + D2

37 + D2
53 + D2

57 + D2
73 + D2

75

= S2
1 + S2

N

where

S2
1 = P2

1 + Q2
1

S2
N = D2

I + D2
V + S2

H

If the load is supplied by a line having a resistance r, the power loss in the line is

ΔP = r
V2

(P2
1 + Q2

1 + D2
I + D2

V + S2
H) =

r
V2

(S2
1 + S2

N)

Note that distortion power and harmonic power contribute to the losses.
Consider following instantaneous currents and voltages:

v1 =
√

2 ⋅ 100 sin(𝜔t − 0∘) i1 =
√

2⋅100 sin(𝜔t − 30∘)

v3 =
√

2 ⋅ 8 sin(3𝜔t − 70∘) i3 =
√

2 ⋅ 20 sin(3𝜔t − 165∘)

v5 =
√

2 ⋅ 15 sin(5𝜔t + 140∘) i5 =
√

2 ⋅ 15 sin(5𝜔t + 234∘)

v7 =
√

2 ⋅ 5 sin(7𝜔t + 20∘) i7 =
√

2 ⋅ 10 sin(7𝜔t + 234∘)

The calculated active powers are shown in Table 1.4. The total harmonic power PH =
−27.46 < 0∘ is supplied by the load and injected into the power system. This is typical
for dominant nonlinear loads. Bulk of the power is supplied to the load by fundamen-
tal component.

The reactive powers are shown in Table 1.5. Q5 is negative, while all others are
positive. Note that it will be incorrect to arithmetically add the reactive powers, and
it will give incorrect power loss due to reactive power. The arithmetic sum of reactive
powers is 4984.67 var. Then the reactive power loss calculated in a resistance of 1 ohm
and voltage of 240 volts is
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TABLE 1.4 Active Powers, Example 1.1

P1 (W) P3 (W) P5 (W) P7 (W) P (W) PH (W)

8660.00 −13.94 −11.78 −1.74 8632.54 −27.46

Source: Ref. [11].

TABLE 1.5 Reactive Powers, Example 1.1

Q1 (var) Q3 (var) Q5 (var) Q7 (var)

5000.00 159.39 −224.69 49.97

Source: Ref. [11].

TABLE 1.6 Distortion Powers and Their Components, Example 1.1

D13 (var) D15 (var) D17 (var) DI (var)

2000.00 1500.00 1000.00 2692.58

D31 (var) D51 (var) D71 (var) DV (var)

800.00 1500.00 500.00 1772.00

Source: Ref. [11].

ΔPB = r
V2

(4984.67)2 = 431.37W

This is incorrect. It should be calculated as

ΔP = r
V2

(Q2
1 + Q2

3 + Q2
5 + Q2

7) = 435.39 W

The cross products that produce distortion powers are in Table 1.6, and the cross
products that belong to harmonic apparent power are in Table 1.7.

The system has V = 101.56 V, I = 103.56A, THDV = 0.177, THDI = 0.269,
fundamental power factor PF1 = 0.866, PF = 0.821.

The power components are shown in Fig. 1.9.

1.8.5 Instantaneous Power Theory

The Nabe–Akagi instantaneous reactive power p–q theory is based on Clark’s com-
ponent transformations [10] and provides power properties in three-phase circuits.
Figure 1.10 shows the transformation of a − b − c coordinates into 𝛼 − 𝛽 − 0 coor-
dinates. The description of power properties of the electrical circuits using instanta-
neous voltage and current values without the use of Fourier series generates interest
in this theory, used for switching compensators and active filter controls.

The instantaneous power method calculates the desired current so that the
instantaneous active power and reactive power in a three-phase system are kept con-
stant, that is, the active filter compensates for variation in instantaneous power [17].
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By linear transformation, the phase voltages ea, eb, ec and load currents ia, ib, ic are
transformed into an 𝛼 − 𝛽 (two-phase) coordinate system:

||||e𝛼e𝛽

|||| =
√

2
3

||||||
1 − 1

2
− 1

2

0
√

3
2

−
√

3
2

||||||
||||||
ea
eb
ec

|||||| (1.64)

and ||||i𝛼i𝛽 |||| =
√

2
3

||||||
1 − 1

2
− 1

2

0
√

3
2

−
√

3
2

||||||
||||||
ia
ib
ic

|||||| (1.65)

The instantaneous real power 𝜌 and the instantaneous imaginary power q are
defined as ||||pq|||| =

||||| e𝛼 e𝛽
−e𝛽 e𝛼

|||||
||||i𝛼i𝛽 |||| (1.66)

S = 10,517.55 VA

S1 = 10,000 VA 

SN = 3256.88 VA P1 = 8660 W Q1 = 5000 var 

D1 = 2,692.58 var SH = 477.13 VA Dv = 1,772.00 var 

DH = 476.34 var PH = –27.46 W

Figure 1.9 Calculations tree of various power components, Example 1.1.

TABLE 1.7 Distortion Harmonic Powers, Example 1.1

D35 (var) D37 (var) D53 (var) D57 (var) D73 (var) D75 (var)

120.00 80.00 300.00 150.00 100.00 75.00

Source: Ref. [11].
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Figure 1.10 Transformation of
a − b − c coordinates into 𝛼 − 𝛽 − 0
coordinates, p − q theory.

Here, p and q are not conventional watts and vars. The p and q are defined by the
instantaneous voltage in one phase and the instantaneous current in the other phase:

p = e𝛼i𝛼 + e𝛽 i𝛽 = eaia + ebib + ecic (1.67)

To define instantaneous reactive power, the space vector of imaginary power is
defined as

q = e𝛼i𝛽 + e𝛽 i𝛼

= 1√
3
[ia(ec − eb) + ib(ea − ec) + ic(eb − ea)] (1.68)

Equation (1.66) can be written as

||||i𝛼i𝛽 |||| =
||||| e𝛼 e𝛽
−e𝛽 e𝛼

|||||
−1 ||||pq|||| (1.69)

These are divided into two kinds of currents:

||||i𝛼i𝛽 |||| =
||||| e𝛼 e𝛽
−e𝛽 e𝛼

|||||
−1 ||||p0|||| +

||||| e𝛼 e𝛽
−e𝛽 e𝛼

|||||
−1 ||||0q|||| (1.70)

This can be written as ||||i𝛼i𝛽 |||| =
|||||i𝛼p
i𝛽p

||||| +
|||||i𝛼q
i𝛽q

||||| (1.71)
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where i𝛼p is the 𝛼-axis instantaneous active current:

i𝛼 p =
e𝛼

e2
𝛼 + e2

𝛽

p (1.72)

iαq is the 𝛼-axis instantaneous reactive current:

i𝛼q =
−e𝛽

e2
𝛼 + e2

𝛽

q (1.73)

i𝛽p is the 𝛽-axis instantaneous active current:

i𝛽 p =
e𝛼

e2
𝛼 + e2

𝛽

p (1.74)

and i𝛽q is the 𝛽-axis instantaneous reactive current:

i𝛽q =
e𝛼

e2
𝛼 + e2

𝛽

q (1.75)

The following equations exist:

p = e𝛼i𝛼P + e𝛽 i𝛽P ≡ P𝛼P + P𝛽P

0 = e𝛼i𝛼q + e𝛽 i𝛽q ≡ P𝛼q + P𝛽q (1.76)

where the 𝛼-axis instantaneous active and reactive powers are

P𝛼 p =
e2
𝛼

e2
𝛼 + e2

𝛽

p P𝛼 q =
−e𝛼e𝛽

e2
𝛼 + e2

𝛽

q (1.77)

The 𝛽-axis instantaneous active power and reactive power are

P𝛽q =
e2
𝛽

e2
𝛼 + e2

𝛽

p P𝛽q =
e𝛼e𝛽

e2
𝛼 + e2

𝛽

q (1.78)

The sum of the instantaneous active powers in two axes coincides with the instan-
taneous real power in the three-phase circuit. The instantaneous reactive powers Paq
and P𝛽q cancel each other and make no contribution to the instantaneous power flow
from the source to the load.

Consider instantaneous power flow in a three-phase cycloconverter. The instan-
taneous reactive power on the source side is the instantaneous reactive power circu-
lating between source and cycloconverter while the instantaneous reactive power on
the output side is the instantaneous reactive power between the cycloconverter and
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the load. Therefore, there is no relationship between the instantaneous reactive pow-
ers on the input and output sides, and the instantaneous imaginary power on the input
side is not equal to the instantaneous imaginary power on the output side. However,
assuming zero active power loss in the converter, the instantaneous real power on the
input side is equal to the real output power. An application to active filters is discussed
in Chapter 6.

The author in Ref. [15] critiques this theory that it suggests an erroneous
interpretation of three-phase power circuits. According to the theory, instantaneous
imaginary current can occur in the current of a load with zero reactive power, Also
instantaneous active current may occur in the current of a load with zero active
power.

1.9 AMPLIFICATION AND ATTENUATION
OF HARMONICS

Harmonics originating from their source are propagated in the power systems and
their impact can be present at a distance [18]. In this process, the harmonics can be
either amplified or mitigated. Capacitor banks in the power system are a major source
of harmonic amplifications and waveform distortions. Many different types of har-
monic sources may be dispersed throughout the system, and the current and voltage
distortions due to these become of concern. Utilities must maintain a certain voltage
quality at the consumer premises and, in turn, the harmonics injected into the power
systems by a consumer must be controlled and limited. The nature of power system:
industrial plant distributions, commercial distribution systems, and utility distribution
or transmission systems are important in this aspect. An analysis requires correct esti-
mation of the harmonic generation at a certain point in the power systems, modeling
of system components and harmonics themselves for accurate results, for example,
constant current injection models for all types of harmonic generation may not be
accurate. Based on the accurate harmonic analysis, provisions of active harmonic
mitigation strategies at the source of harmonic generation can be applied to limit
the harmonics. Passive filters are another important option, especially in large Mvar
ratings. These subjects are covered in this book.

New Power Conversion Techniques

Advances in power electronics have resulted in techniques for improving the current
wave shape and power factor simultaneously, minimizing the filter requirements [19].
In general, these systems use high-frequency switching to achieve greater flexibility
in power conversion and can reduce the lower order harmonics also. Distortion is cre-
ated at high-frequency switching, which is generally above 20 kHz, and the distortion
cannot penetrate into the system (see Chapter 6).

Some publications (books only) on harmonics are separately listed in Refer-
ences. Also some important ANSI/IEEE standards, though referenced appropriately
in the rest of the book, are listed.
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C H A P T E R 2
FOURIER ANALYSIS

The French mathematician J. B. J. Fourier (1758–1830) showed that arbitrary peri-
odic functions could be represented by an infinite series of sinusoids of harmonically
related frequencies. This was related to heat flow as the electrical applications were
not developed at that time. We first define periodic functions.

2.1 PERIODIC FUNCTIONS

A function is said to be periodic if it is defined for all real values of t and if there is a
positive number T such that

f (t) = f (t + T) = f (t + 2T) = f (t + nT) (2.1)

then T is called the period of the function.
If k is any integer and f (t + kT) = f (t) for all values of t and if two functions

f1(t) and f2(t) have the same period T , then the function f3(t) = af1(t) + bf2(t), where a
and b are constants, also has the same period T . Figure 2.1 shows periodic functions.

The functions

f1(t) = cos
2𝜋n
T

t = cos n𝜔0t

f2(t) = sin
2𝜋n
T

t = sin n𝜔0t (2.2)

are of special interest. Each frequency of the sinusoids n𝜔0 is said to be of nth har-
monic of the fundamental frequency 𝜔0, and each of these frequencies is related to
period t.

2.2 ORTHOGONAL FUNCTIONS

Two functions f1(t) and f2(t) are orthogonal over the interval (T1, T2) if

∫

T2

T1

f1(t) f2(t) = 0 (2.3)
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f(t)

–2T T–T 0

T0

T0

2T

Figure 2.1 Periodic functions.

Figure 2.2 shows the orthogonal functions over a period T. Observe that

∫

T

0
sin m𝜔0t dt = 0 all m

∫

T

0
cos n𝜔0t dt = 0 all n ≠ 0 (2.4)

The average value of a sinusoid over m or n complete cycles is zero; therefore,
the following three cross products are also zero.

∫

T

0
sin m𝜔0t dt. cos n𝜔0t dt = 0 all m, n

∫

T

0
sin m𝜔0t dt. sin n𝜔0t dt = 0 m ≠ n

∫

T

0
cos m𝜔0t dt. cos n𝜔0t dt = 0 m ≠ n (2.5)
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f2(t)

f1(t)

Figure 2.2 Orthogonal functions.

Nonzero values occur when m = n:

∫

T

0
sin2m𝜔0t dt = T∕2 all m

∫

T

0
cos2m𝜔0t dt = T∕2 all n (2.6)

2.3 FOURIER SERIES AND COEFFICIENTS

A periodic function can be expanded in a Fourier series. The series has the expression:

f (t) = a0 +
∞∑

n=1

(
an cos

(2𝜋nt
T

)
+ bn sin

(2𝜋nt
T

))
(2.7)

where a0 is the average value of function f (t). It is also called the DC component, and
an and bn are called the coefficients of the series. A series such as Eq. (2.7) is called
a trigonometric Fourier series. The Fourier series of a periodic function is the sum
of sinusoidal components of different frequencies. The term 2𝜋∕T can be written as
𝜔. The nth term n𝜔 is then called the nth harmonic and n = 1 gives the fundamental;
a0, an, and bn are calculated as follows:

a0 = 1
T ∫

T∕2

−T∕2
f (t)dt (2.8)

an = 2
T ∫

T∕2

−T∕2
cos

(2𝜋nt
T

)
dt for n = 1, 2, … ,∞ (2.9)
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bn = 2
T ∫

T∕2

−T∕2
sin

(2𝜋nt
T

)
dt for n = 1, 2, … ,∞ (2.10)

These equations can be written in terms of angular frequency:

a0 = 1
2𝜋∫

𝜋

−𝜋
f (x)𝜔td𝜔t (2.11)

an = 1
𝜋∫

𝜋

−𝜋
f (x)𝜔t cos(n𝜔t) d𝜔t (2.12)

bn = 1
𝜋∫

𝜋

−𝜋
f (x)𝜔t sin(n𝜔t) d𝜔t (2.13)

This gives

x(t) = a0 +
∞∑

n=1

[an cos(n𝜔t) + bn sin(n𝜔t)] (2.14)

We can write

an cos n𝜔t + bn sin𝜔t = [a2
n + b2

n]1∕2[sin𝜙n cos n𝜔t + cos𝜙n sin n𝜔t]

= [a2
n + b2

n]1∕2 sin(n𝜔t + 𝜙n) (2.15)

where
𝜙n = tan−1 an

bn

The coefficients can be written in terms of two separate integrals:

an = 2
T ∫

T∕2

0
x(t) cos

(2𝜋nt
T

)
dt+ 2

T ∫

0

−T∕2
x(t) cos

(2𝜋nt
T

)
dt

bn = 2
T ∫

T∕2

0
x(t) sin

(2𝜋nt
T

)
dt + 2

T ∫

0

−T∕2
x(t) sin

(2𝜋nt
T

)
dt (2.16)

Example 2.1: Find the Fourier series of a periodic function of period 1 defined by

f (x) = 1∕2 + x, −1∕2 < x ≤ 0

= 1∕2 − x, 0 < x < 1∕2

When the period of the function is not 2𝜋, it is converted to length 2𝜋, and the
independent variable is also changed proportionally. Say, if the function is defined
in interval (−t, t), then 2𝜋 is interval for the variable = 𝜋x∕t, so put z = 𝜋x∕t or
x = zt∕𝜋. The function f (x) of 2t is transformed to function f (tz∕𝜋) or F(z) of 2𝜋. Let

f (x) =
a0

2
+ a1 cos

𝜋x
t

+ a2 cos
2𝜋x

t
+ ....b1 sin

𝜋x
t

+ a2 sin
2𝜋x

t
+ ....

2t = 1
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By definition,

a0 = 1
1∕2∫

0

−1∕2

(1
2
+ x

)
dx + 1

1∕2∫

1∕2

0

(1
2
− x

)
dx = 1∕2

an = 1
t ∫

t

−t
f (x) cos

n𝜋x
t

dx

= 1
1∕2∫

0

−1∕2

(1
2
+ x

)
cos

n𝜋x
1∕2

dx +
∫

1∕2

0

(1
2
− x

)
cos

n𝜋x
1∕2

dx

= 2
[(1

2
+ x

) sin 2n𝜋x
2n𝜋

− (1)
(cos 2n𝜋x

4n2𝜋2

)]0

−1∕2

+ 2
[(1

2
− x

) sin 2n𝜋x
2n𝜋

− (−1)
(− cos 2n𝜋x

4n2𝜋2

)]1∕2

0

= 2
n2𝜋2

for n = odd

= 0 for n = even

bn = 1
t ∫

t

−t
f (x) sin

n𝜋x
t

dx

= 1
1∕2∫

0

−1∕2

(1
2
+ x

)
sin

n𝜋x
1∕2

dx +
∫

1∕2

0

(1
2
− x

)
sin

n𝜋x
1∕2

dx

= 2
[(1

2
+ x

) − cos 2n𝜋x
2n𝜋

− (1)
(
− sin 2n𝜋x

4n2𝜋2

)]0

−1∕2

+ 2
[(1

2
− x

) − cos 2n𝜋x
2n𝜋

− (−1)
(− sin 2n𝜋x

4n2𝜋2

)]1∕2

0
= 0

Substituting the values

f (x) = 1
4
+ 2

𝜋2

[cos 2𝜋x
12

+ cos 6𝜋x
32

+ cos 10𝜋x
52

− ....

]

2.4 ODD SYMMETRY

A function f (x) is said to be an odd or skew symmetric function, if

f (−x) = −f (x) (2.17)

The area under the curve from −T∕2 to T∕2 is zero. This implies that

a0 = 0, an = 0 (2.18)
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f(x)

–T/2 T/2
t

f(x)

–T/2 T/2

t

f(x)

−T –T/2 T/2 T t

Triangular function
Odd symmetry   

Triangular function
Even symmetry

Square function
Half-wave symmetry

(a)

(b)

(c)

Figure 2.3 (a) Triangular function with odd symmetry, (b) triangular function with even
symmetry, and (c) square function with half-wave symmetry.

bn = 4
T ∫

T∕2

0
f (t) sin

(2𝜋nt
T

)
dt (2.19)

Figure 2.3(a) shows a triangular function, having odd symmetry, the Fourier series
contains only sine terms.

2.5 EVEN SYMMETRY

A function f (x) is even symmetric, if

f (−x) = f (x) (2.20)

The graph of such a function is symmetric with respect to the y-axis. The y-axis
is a mirror reflection of the curve.

a0 = 0, bn = 0 (2.21)
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an = 4
T ∫

T∕2

0
f (t) cos

(2𝜋nt
T

)
dt (2.22)

Figure 2.3(b) shows a triangular function with even symmetry. The Fourier series
contains only cosine terms. Note that the odd and even symmetry has been obtained
with the triangular function by shifting the origin.

2.6 HALF-WAVE SYMMETRY

A function is said to have half-wave symmetry if

f (x) = −f (x + T∕2) (2.23)

Figure 2.3(c) shows that a square-wave function has half-wave symmetry, with
respect to the period −T∕2. The negative half-wave is the mirror image of the
positive half, but phase shifted by T∕2 (or 𝜋 radians). Due to half-wave symmetry,
the average value is zero. The function contains only odd harmonics.

If n is odd, then

an = 4
T ∫

T∕2

0
x(t) cos

(2𝜋nt
T

)
dt (2.24)

and an = 0 for n = even.

bn = 4
T ∫

T∕2

0
x(t) sin

(2𝜋nt
T

)
dt (2.25)

for n = odd, and it is zero for n = even.

Example 2.2: Calculate the Fourier series for an input current to a six-pulse con-
verter, with a firing angle of 𝛼.

Then, as the wave is symmetrical, DC component is zero.
The waveform pattern with firing angle 𝛼 is shown in Fig. 2.4.

2π/3

2π/3

7π/6

π/6 5π/6

11π/6
Id

α

Figure 2.4 Waveform for Example 2.2.
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The Fourier series of the input current is

∞∑
n=1

(an cos n𝜔t + bn sin n𝜔t)

an = 1
𝜋

[
∫

5𝜋∕6+𝛼

𝜋∕6+𝛼
Id cos n𝜔t d (𝜔t) −

∫

11𝜋∕6+𝛼

7𝜋∕6+𝛼
Id cos n𝜔t d(𝜔t)

]

= −
4Id

n𝜋
sin

n𝜋
3

sin n𝛼, for n = 1, 3, 5, …

= 0, for n = 2, 6, …

bn = 1
𝜋

[
∫

5𝜋∕6+𝛼

𝜋∕6+𝛼
Id sin n𝜔t d (𝜔t) −

∫

11𝜋∕6+𝛼

7𝜋∕6+𝛼
Id sin n𝜔t d(𝜔t)

]

=
4Id

n𝜋
sin

n𝜋
3

cos n𝛼 for n = 1, 3, 5..

= 0, for n = even

We can write the Fourier series as

i =
∞∑

n=1,2,..

√
2In sin(n𝜔t + 𝜙n)

where i is the instantaneous current and

𝜙n = tan−1 an

bn
= −n𝛼

Rms value of nth harmonic is

In,rms =
1√
2
(a2

n + b2
n)1∕2

=
2
√

2Id

n𝜋
sin

n𝜋
3

The fundamental rms current is

I1 =
√

6
𝜋

Id = 0.7797Id

Example 2.3: A single-phase full bridge supplies a motor load. Assuming that the
motor DC current is ripple free, determine the input current (using Fourier analysis),
harmonic factor, distortion factor, and power factor for an ignition delay angle of 𝛼.
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Figure 2.5 Waveforms of fully controlled single-phase bridge (Example 2.3).

The waveform of full-wave single-phase bridge rectifier is shown in Fig. 2.5.
The average value of DC voltage is

VDC =
∫

𝜋+𝛼

𝛼

Vm sin𝜔t d(𝜔t)

=
2Vm

𝜋
cos 𝛼

It can be controlled by change of conduction angle 𝛼.
From Fig. 2.5, the instantaneous input current can be expressed in the Fourier

series as

Iinput = IDC +
∞∑

n=1,2,…
(an cos n𝜔t + bn sin n𝜔t)

IDC = 1
2𝜋∫

2𝜋+𝛼

𝛼

i(t)d(𝜔t) = 1
𝜋

[
∫

𝜋+𝛼

𝛼

Iad (𝜔t) +
∫

2𝜋+𝛼

𝜋+𝛼
Iad(𝜔t)

]
= 0
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Also

an = 1
𝜋∫

2𝜋+𝛼

𝛼

i(t) cos n𝜔t d(𝜔t)

= −
4Ia

n𝜋
sin n𝛼 for n = 1, 3, 5

= 0 for n = 2, 4, ...

bn = 1
𝜋∫

2𝜋+𝛼

𝛼

i(t) sin n𝜔t d(𝜔t)

=
4Ia

n𝜋
cos n𝛼 for n = 1, 3, 5

= 0 for n = 2, 4, ...

We can write the instantaneous input current as

iinput =
∞∑

n=1,2,. . .

√
2In sin(𝜔t + 𝜙n)

where

𝜙n = tan−1

(
an

bn

)
= −n𝛼

𝜙n = −n𝛼 is the displacement angle of the nth harmonic current. The rms value of
the nth harmonic input current is

In = 1√
2
(a2

n + b2
n)1∕2 =

2
√

2
n𝜋

Ia

The rms value of the fundamental current is

I1 =
2
√

2
𝜋

Id

Thus, the rms value of the input current is

Irms =

( ∞∑
n=1

I2
n

)1∕2

The harmonic factor is

HF =

[(
Irms

I1

)2

− 1

]1∕2

= 0.4834
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The displacement factor is

DF = cos𝜙1 = cos(−𝛼)

The power factor is

PF =
VrmsI1

VrmsIrms
cos𝜙1 =

2
√

2
𝜋

cos 𝛼

2.7 HARMONIC SPECTRUM

The Fourier series of a square-wave function is

f (t) = 4k
𝜋

( sin𝜔t
1

+ sin 3𝜔t
3

+ sin 5𝜔t
5

+ · · ·
)

(2.26)

where k is the amplitude of the function. The magnitude of the nth harmonic is 1∕n,
when the fundamental is expressed as one per unit.

The construction of a square wave from the component harmonics is shown
in Fig. 2.6(a), and the plotting of harmonics as a percentage of the magnitude of
the fundamental gives the harmonic spectrum of Fig. 2.6(b). A harmonic spectrum
indicates the relative magnitude of the harmonics with respect to the fundamental
and is not indicative of the sign (positive or negative) of the harmonic nor its phase
angle.

2.8 COMPLEX FORM OF FOURIER SERIES

A vector with amplitude A and phase angle 𝜃 with respect to a reference can be
resolved into two oppositely rotating vectors of half the magnitude so that

|A| cos 𝜃 = |A∕2|ej𝜃 + |A∕2|e−j𝜃 (2.27)

Thus,
an cos n𝜔t + bn sin n𝜔t (2.28)

can be substituted by

cos(n𝜔t) = ejn𝜔t + e−jn𝜔t

2
(2.29)

sin(n𝜔t) = ejn𝜔t − e−jn𝜔t

2j
(2.30)

Thus,

x(t) =
a0

2
+ 1

2

n=∞∑
n=1

(an − jbn)ejn𝜔t + 1
2

n=∞∑
n=1

(an − jbn)e−jn𝜔t (2.31)
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Figure 2.6 (a) Construction of a square wave from its harmonic components and
(b) harmonic spectrum.

We introduce negative values of n in the coefficients, that is,

a−n = 2
T ∫

T∕2

−T∕2
x(t) cos(−n𝜔t)dt = 2

T ∫

T∕2

−T∕2
x(t) cos(n𝜔t)dt = an n = 1, 2, 3, …

(2.32)

b−n = 2
T ∫

T∕2

−T∕2
x(t) sin(−n𝜔t)dt = − 2

T ∫

T∕2

−T∕2
x(t) sin(n𝜔t)dt = −bn n = 1, 2, 3, …

(2.33)



2.9 FOURIER TRANSFORM 43

Hence,
∞∑

n=1

ane−jn𝜔t =
∞∑

n=−1

anejn𝜔t (2.34)

and
∞∑

n=1

jbne−jn𝜔t =
∞∑

n=−1

jbnejn𝜔t (2.35)

Therefore, substituting in Eq. (2.31), we obtain

x(t) =
a0

2
+ 1

2

∞∑
n=−∞

(an − jbn)ejn𝜔t =
∞∑

n=−∞
cnejn𝜔t (2.36)

This is the expression for a Fourier series expressed in exponential form, which is the
preferred approach for analysis. The coefficient cn is complex and is given by

cn = 1
2
(an − jbn) =

1
T ∫

T∕2

−T∕2
x(t)e−jn𝜔tdt n = 0,±1,±2, … (2.37)

2.9 FOURIER TRANSFORM

Fourier analysis of a continuous periodic signal in the time domain gives a series
of discrete frequency components in the frequency domain. The Fourier integral is
defined by the expression:

X(f ) =
∫

−∞

∞
x(t)e−j2𝜋ftdt (2.38)

If the integral exists for every value of parameter f (frequency), then this equation
describes the Fourier transform. The Fourier transform is a complex quantity:

X(f ) = R(f ) + jI(f ) = |X(f )|ej𝜙(f ) (2.39)

where R(f ) is the real part of the Fourier transform and I(f ) is the imaginary part of
the Fourier transform. The amplitude or Fourier spectrum of x(t) is given by

|X(f )| = √
R2(f ) + I2(f ) (2.40)

The phase angle of the Fourier transform is given by

𝜙(f ) = tan−1 I(f )
R(f )

(2.41)
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The inverse Fourier transform or the backward Fourier transform is defined as

x(t) =
∫

∞

−∞
X(f )ej2𝜋 ftdf (2.42)

Inverse transformation allows determination of a function in time domain from
its Fourier transform. Equations (2.38) and (2.42) are a Fourier transform pair, and
the relationship can be indicated by

x(t) ↔ X(f ) (2.43)

Fourier transform pair is also written as

X(w) = a1∫

∞

−∞
x(t)e−j𝜔tdt

x(t) = a2∫

∞

−∞
X(𝜔)ej𝜔td𝜔

where a1 and a2 can take different values depending on the user, some take a1 = 1
and a2 = 1∕2𝜋, or set a1 = 1∕2𝜋 and a2 = 1 or a1 = a2 = 1∕

√
2𝜋. The requirement

is that a1 × a2 = 1∕2𝜋. In most texts, it is defined as

X(w) =
∫

∞

−∞
x(t)e−j𝜔tdt

x(t) = 1
2𝜋∫

∞

−∞
X(𝜔)ej𝜔td𝜔

However, definitions in equations (2.38) and (2.42) are consistent with Laplace trans-
form.

Example 2.4: Consider a function defined as

x(t) = 𝛽e−𝛼tt > 0

= 0 t < 0 (2.44)

It is required to write its forward Fourier transform.
From Eq. (2.38),

X(f ) =
∫

∞

0
𝛽e−𝛼te−j2𝜋ftdt

= −𝛽
𝛼 + j2𝜋f

e−(𝛼+j2𝜋f )t||||
∞

0

= 𝛽

𝛼 + j2𝜋f
= 𝛽𝛼

𝛼2 + (2𝜋f )2
− j

2𝜋f𝛽

𝛼2 + (2𝜋f )2
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X(f )

f

θ (f)

I(f ) R(f )

f

Figure 2.7 Real, imaginary, magnitude, and phase angle representations of the Fourier
transform (Example 2.5).

R(f ) = 𝛽𝛼

𝛼2 + (2𝜋f )2

I(f ) = −j
2𝜋f𝛽

𝛼2 + (2𝜋f )2

Thus, X(f ) is
𝛽√

𝛼2 + (2𝜋f )2
ej tan−1[−2𝜋f∕𝛼] (2.45)

This is plotted in Fig. 2.7.

Example 2.5: Convert the function arrived at in Example 2.4 to x(t).
The inverse Fourier transform is

x(t) =
∫

∞

−∞
X(f )ej2𝜋ftdf

=
∫

∞

−∞

[
𝛽𝛼

𝛼2 + (2𝜋f )2
− j

2𝜋f𝛽

𝛼2 + (2𝜋f )2

]
ej2𝜋ftdf



46 CHAPTER 2 FOURIER ANALYSIS

=
∫

∞

−∞

[
𝛽𝛼 cos (2𝜋ft)
𝛼2 + (2𝜋f )2

+
2𝜋f𝛽 sin(2𝜋ft)
𝛼2 + (2𝜋f )2

]
df

+ j
∫

∞

−∞

[
𝛽𝛼 sin (2𝜋ft)
𝛼2 + (2𝜋f )2

+
2𝜋f𝛽 cos(2𝜋ft)
𝛼2 + (2𝜋f )2

]
df

The imaginary term is zero, as it is an odd function.
This can be written as

x(t) = 𝛽𝛼

(2𝜋)2 ∫

∞

−∞

cos(2𝜋tf )
(𝛼∕2𝜋)2 + f 2

df + 2𝜋𝛽

(2𝜋)2 ∫

∞

−∞

f sin(2𝜋tf )
(𝛼∕2𝜋)2 + f 2

df

As

∫

∞

−∞

cos 𝛼x
b2 + x2

dx = 𝜋

b
e−ab

and

∫

∞

−∞

x sin ax
b2 + x2

dx = 𝜋e−ab

x(t) becomes

x(t) = 𝛽𝛼

(2𝜋)2

[
𝜋

𝛼∕2𝜋
e−(2𝜋t)(𝛼∕2𝜋)

]
+ 2𝜋𝛽

(2𝜋)2
[𝜋e−(2𝜋t)(𝛼∕2𝜋)]

= 𝛽

2
e−𝛼t + 𝛽

2
e−𝛼t = 𝛽e−𝛼t t > 0

that is,

𝛽e−𝛼tt > 0 ↔
𝛽

𝛼 + j2𝜋f
(2.46)

Example 2.6: Consider a function defined by

x(t) = K; for |t| ≤ T∕2

= 0; for |t| > T∕2 (2.47)

It is a bandwidth limited rectangular function (Fig. 2.8(a)); the Fourier transform
is

X(f ) =
∫

T∕2

−T∕2
Ke−j2𝜋fTdt = KT

[
sin (𝜋fT)

𝜋fT

]
(2.48)

The term in parentheses in Eq. (2.48) is called the sinc function. The function has
zero value at points f = n∕T. Figure 2.8(b) shows zeros and side lobes.
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k

−t
−T/2 T/2

t

Rectangular function

x(f) = KT sin (π f t)
π f t

−t
−4/T −3/T −2/T −1/T 4/T3/T2/T1/T

t

(b)

(a)

1.665a

(d)

(c)

0.53/a
Figure 2.8 (a) Bandwidth
limited rectangular function,
(b) the sinc function showing
side lobes, and (c) and (d) a
Gaussian function with its
transform.

2.9.1 Fourier Transform of Some Common Functions

Gaussian Function Consider the function:

x(t) = e−x2∕a2
(2.49)
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where a is the width parameter. The value of x(t) = 1∕2 when (x∕a)2 = loge2 or
x = ±0.9325a, so that the full width at half maximum (FWHM) = 1.655a. It is shown
in Fig. 2.8(c).

X(f ) =
∫

∞

−∞
e−x2∕a2

e−j2𝜋ftdx

= a
√
𝜋e−𝜋

2a2f 2

The Fourier transform is another Gaussian function with width 1∕(𝜋a).
Note that the original function has a width of 1.665a at half maximum. The

Fourier transform has a narrower width (Fig. 2.8(d)).

Some Common Transforms Figure 2.9 (a– j) shows graphically the Fourier
transforms of some common functions.

The following transforms exist:

(a) Fourier transformer of an impulse function:

x(t) = K𝛿(t)

X(f ) = K (2.50)

This means that the Fourier transform of a delta function is unity.

𝛿(t) ↔ 1 (2.51)

For a pair of delta functions, equally placed on either side of the origin, the
Fourier transform is a cosine wave:

𝛿(t − a)𝛿(t − a) = ej2𝜋fa + e−j2𝜋fa

= 2 cos(2𝜋fa) (2.52)

(b) Fourier transform of a constant amplitude waveform:

x(t) = K

X(f ) = K𝛿(f ) (2.53)

(c) Fourier transform of a pulse waveform:

x(t) = A |t| < T0

= (A∕2) |t| = T0

= 0 |t| > T0

X(f ) = 2AT0
sin(2𝜋T0f )

2𝜋T0f
(2.54)
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Figure 2.9 (a–j) Fourier transforms of some common functions.
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Figure 2.9 (Continued)

(d) This represents situation in reverse.

(e) The Fourier transform of sequence of equal distance pulses is another
sequence of equal distance pulses.

x(t) =
∞∑

n=−∞
𝛿(t − nT)

X(f ) = 1
T

∞∑
n=−∞

𝛿

(
f − n

T

)
(2.55)

(f), (g) Fourier transform of periodic functions

x(t) = A cos(2𝜋f0t)

X(f ) = A
2
𝛿(f − f0) +

A
2
𝛿(f + f0)

x(t) = A sin(2𝜋f0t)
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X(f ) = −j
A
2
𝛿(f − f0) + j

A
2
𝛿(f + f0) (2.56)

(h) Fourier transform of triangular function:

x(t) = A2 − A2

2T0

= 0 |t| < 2T0

= 0 |t| > 2T0

X(f ) = A2 sin2(2𝜋T0f )
(𝜋f )2

(2.57)

(i) Fourier transform of

x(t) = A cos(2𝜋f0t) |t| < T0

= 0 |t| > T0

X(f ) = A2T0

[
sin(2𝜋T0f

2𝜋T0f

(
f + f0

)
+

sin(2𝜋T0f

2𝜋T0f
(f − f0)

]
(2.58)

(j) Fourier transform of

x(t) = 1
2

q(t) + 1
4

q

(
t + 1

2fc

)
+ 1

4
q

(
t − 1

2fc

)
where

q(t) =
sin(2𝜋fct)

𝜋t

X(f ) = 1
2
+ 1

2
cos

(
𝜋f

fc

) |f | ≤ fc

= 0 |f | > fc (2.59)

(k) Fourier transform of Dirac comb. A Dirac comb is a set of equally spaced 𝛿

functions, usually denoted by Cyrillic letter III

IIIa(t) =
∞∑

n=−∞
𝛿(t − na) (2.60)

The Fourier transform is another Dirac comb:

IIIa(t) ⇔
1
a

III1∕a(f ) (2.61)
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2.10 DIRICHLET CONDITIONS

Fourier transforms cannot be applied to all functions. The Dirichlet conditions are

• Functions X(f ) and f (t) are square integrable:

∫

∞

−∞
[X(f )]2dx X(f ) → 0 as |X| → ∞ (2.62)

This implies that the function is finite. A function shown in Fig. 2.10(a) or (b)
does not meet this criterion

• X(f ) and x(t) are single valued. The function shown in Fig. 2.10(a) does not
meet this criterion. There are three values at point A.

• X(f ) and x(t) are piecewise continuous. The functions can be broken into sep-
arate pieces, so that these can be isolated discontinuous, any number of times.

• Functions X(f ) and x(t) have upper and lower bonds. This is the condition that
is sufficient but not proved to be necessary.

Mostly the functions do behave so that Dirichlet conditions are fulfilled.
Consider the so-called “sign” function shown in Fig. 2.11(a) and defined as

sgn(t) = −1 −∞ < t < 0

= +1 0 < t < ∞ (2.63)

Divide by 2 and add 1/2 to give a Heavyside step of unit height.

f(t)

f(t)

A

(a) (b)

Figure 2.10 (a) A multiple valued function and (b) a discontinuous function.
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0.1
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0,1/2

0,−1/2

−1/a,0

1/a,0

(b)(a)

Figure 2.11 (a) A sgn function and (b) representation of a Heavyside step function by two
functions that obey Dirichlet constraints.

The function sign(t)∕2 does not obey Dirichlet conditions but can be approxi-
mated by considering it as a limiting case of a pair of ramp functions (Fig. 2.11(b))

x(t) = lim
a→0

−(at + 1)
2

− 1∕a < x < 0

= lim
a→0

(1 − at)
2

0 < x < 1∕a (2.64)

A unit step function u(t) can be written in terms of sign function:

u(t) = 1
2
+ 1

2
sgn(t)

Its Fourier transform is

𝜋𝛿(𝜔) + 1
j𝜔

Some relations where Dirichlet conditions are applicable are

X1(f ) + X2(f ) ↔ x1(t) + x2(t)

X(f + a) ↔ x(t)ej2𝜋fa

X(f − a) ↔ x(t)e−j2𝜋fa (2.65)

Note that if X(f ) is a delta function, then

𝛿(X + a) ↔ x(t)ej2𝜋fa

𝛿(X − a) ↔ x(t)e−j2𝜋fa (2.66)
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2.11 POWER SPECTRUM OF A FUNCTION

The notion of power spectrum is important in electrical engineering. Consider that the
voltage at a point varies with time denoted by V(t). Let X(f ) be the Fourier transform
of V(t), which can even be negative. Then the power per unit frequency interval being
transmitted is proportional to

X(f )X(f )∗ (2.67)

The superscript “*” describes a conjugate. The constant of proportionality depends
on load impedance. The function

X(f )X(f )∗ = |X(f )|2 (2.68)

is called the power spectrum or the spectral power density (SPD) of V(t).
Using equation (2.32), P can be written as

P = 1
T ∫

T∕2

−T∕2
x2(t)dt = 1

T ∫

T∕2

−T∕2
x(t)(cnejn𝜔t)dt (2.69)

Interchanging operation of summation and integration:

P = 1
T

ejn𝜔tcn∫

T∕2

−T∕2
x(t)(ejn𝜔t)dt

=
∞∑

n=−∞
cnc−n

As
c∗n = c−n

P =
∞∑

n=−∞
|cn|2 = |c0|2 + 2

∞∑
n=1

|Fn|2 (2.70)

This is Parseval’s theorem as applied to exponential Fourier series. Power in a peri-
odic signal is sum of component powers in exponential Fourier series.|cn|2 plotted as a function of n𝜔 is called power spectrum of x(t)

Example 2.7: Fourier series is required for a function of periodic pulse train shown
in Fig. 2.12. This can be called a Dirac comb.

From Eq. (2.32),

cn = 1
T ∫

T∕2

−T∕2
x(t)e−jn𝜔tdt = Ad

T
sin c

(n𝜋d
T

)
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x(t)

d

−2T −T 0 T 2T t

A

Figure 2.12 A periodic pulse train, Dirac comb.

If A = 1, d = 1∕16, and T = 1∕4, then

cn = 1
4

sin c
(n𝜋

4

)
Thus, Fourier series is given by

∞∑
n=−∞

cnejn𝜔t

The Fourier transform of x(t) is

2𝜋Ad
T

∞∑
n=−∞

sin c
(n𝜋d

T

)
𝛿(𝜔 − n𝜔0) 𝜔0 = 2𝜋

T

The spectrum has first zero crossing at n = 4. The power within first zero crossing is

Pn=4 = |c0|2 + 2{|c1|2 + |c2|2 + |c3|2}
=
(1

4

)2
+ 2

42

[
sin c2

(
𝜋

4

)
+ sin c2

(
𝜋

2

)
+ sin c2

(3𝜋
4

)]
= 1

16
+ 1

8
(0.811 + 0.405 + 0.090) = 0.226

The total power of the x(t) is

P = 1
T ∫

T∕2

−T∕2
x2(t)dt = 1

4∫

1∕32

−1∕32
1dt = 0.25
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2.12 CONVOLUTION

2.12.1 Time Convolution

If

x1(t) ↔ X1(𝜔)

x2(t) ↔ X2(𝜔) (2.71)

then
x1(t) ∗ x2(t) ↔ X1(𝜔)X2(𝜔) (2.72)

This signifies that convolution in the time domain is multiplication in the frequency
domain. Convolution is generally carried out in the frequency domain.

2.12.2 Frequency Convolution

x1(t)x2(t) ↔
1

2𝜋
X1(𝜔) ∗ X2(𝜔) (2.73)

Thus, the convolution operation in one domain is transformed to a product oper-
ation in the other domain. This has led to the use of transform method, though the
time domain is becoming more attractive, for dealing with large dimensional systems.
The use of block diagrams and signal flow graphs in the transform domain treats the
convolution as an algebraic operator.

The distributive rule:

X1(f ) ∗ [X2(f ) + X3(f )] = X1(f ) ∗ X2(f ) + X1(f ) ∗ X3(f ) (2.74)

The commutative rule:

X1(f ) ∗ X2(f ) = X2(f ) ∗ X1(f ) (2.75)

The associative rule

X1(f ) ∗ [X2(f ) ∗ X3(f )] = [X1(f ) ∗ X2(f )] ∗ X3(f ) (2.76)

Convolution of three functions:

X1(f ) ∗ X2(f ) ∗ X3(f ) = ∫

∞

−∞ ∫

∞

−∞
X1(f − f ′)X2(f ′ − f ′′)df ′df ′′ (2.77)

The shift theorem is

X(f − a) = X(f ) ∗ 𝛿(t − a) ↔ x(t)e−j2𝜋fa (2.78)
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Convolution of a pair of 𝛿 functions with another function:

[𝛿(t − a) + 𝛿(t + a)] ∗ F(X) ↔ 2 cos(2𝜋fa) ⋅ x(t) (2.79)

The convolution of two Gaussian functions is

e−x2∕a ∗ e−x2∕b ↔ ab𝜋e−𝜋
2f 2(a2+b2) (2.80)

Some relations that can be applied to convolution are

[A(f ) ∗ B(f )] ⋅ [C(f ) ∗ D(f )] ↔ [a(t) ⋅ b(t)] ∗ [c(t) ⋅ d(t)] (2.81)

Note that
[A(f ) ∗ B(f )] ⋅ C(f ) ≠ A(f ) ∗ [B(f ) ⋅ C(f )] (2.82)

[A(f ) ∗ B(f ) + C(f ) ⋅ D(f )] ⋅ E(f ) ↔ [a(t) ⋅ b(t) + c(t) ∗ d(t)] ∗ e(t) (2.83)

2.12.3 The Convolution Derivative Theorem

The derivative theorem is
dX
df

↔ −j2𝜋fx(t) (2.84)

Therefore,

d
df

[X1(f ) ∗ X2(f )] ↔ X1(f ) ∗
dX2(f )

df
=

dX1(f )
df

∗ X2(f ) (2.85)

Table 2.1 summarizes some properties of Fourier transform, and Table 2.2 gives some
useful transform pairs.

2.12.4 Parseval’s Theorem

We defined Parseval’s theorem in connection with exponential Fourier series. This is
also called Rayleigh theorem or simply the power theorem.

∫

∞

−∞
X1(f )X∗

2 (f )df =
∫

∞

−∞
f1(t)f ∗2 (t)dt (2.86)

2.13 SAMPLED WAVEFORM: DISCRETE FOURIER
TRANSFORM

The sampling theorem states that if the Fourier transform of a function x(t) is zero for
all frequencies greater than a certain frequency fc, then the continuous function x(t)
can be uniquely determined by a knowledge of the sampled values. The constraint is
that x(t) is zero for frequencies greater than fc, that is, the function is band limited at
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TABLE 2.1 Properties of Fourier Transform

Property Formulation

Linearity a1x1(t) + a2x2(t) ⇔ a1X1(𝜔) + a2X2(𝜔)

Transformation x(t) ⇔ X(𝜔)

Symmetry X(t) ⇔ 2𝜋x(−𝜔)

Scaling x(at) ⇔ (1∕|a|)X(𝜔∕a)

Delay x(t − t0) ⇔ e−j2𝜋f t0 X(𝜔)

Modulation e−j2𝜋f0tx(t) ⇔ −X(𝜔 − 𝜔0)

Time convolution x1(t) ∗ x2(t) ⇔ X1(𝜔)X2(𝜔)

Frequency convolution x1(t)x2(t) ⇔ (1∕2𝜋)X1(𝜔) ∗ X2(𝜔)

Time differentiation
dn

dtn
x(t) ⇔ (j𝜔)nX(𝜔)

Time integration
∫

t

−∞
x(t)dt ⇔

X(𝜔)
j𝜔

+ 𝜋X(0)𝛿(𝜔)

Frequency differentiation −jtx(t) ⇔ dX(𝜔)
d𝜔

Frequency integration
x(t)
−jt

⇔
∫

X(𝜔)d𝜔

TABLE 2.2 Some Useful Transforms

x(t) X(𝜔)

e−atu(t) 1
a + j𝜔

te−atu(t) 1
(a + j𝜔)2

tn−1

(n − 1)!
e−atu(t) 1

(a + j𝜔)n

𝜔0

2𝜋
sin c

(
𝜔0t

2

)
1, |𝜔 <| 𝜔0∕2

= 0 otherwise

e−a|t| 2a
a2 + 𝜔2

1
a2 + t2

𝜋

2
e−a|𝜔|

e−at sin𝜔0tu(t)
𝜔0

(a + j𝜔)2 + 𝜔2
0

e−at cos𝜔0tu(t)
a + j𝜔

(a + j𝜔)2 + 𝜔2
0

sin𝜔0t j𝜋[𝛿(𝜔 + 𝜔0) − 𝛿(𝜔 − 𝜔0)]

cos𝜔0t 𝜋[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 − 𝜔0)]
∞∑

n=−∞
cnejn𝜔0t 2𝜋

∞∑
n=−∞

cn𝛿(𝜔 − n𝜔0)



2.13 SAMPLED WAVEFORM: DISCRETE FOURIER TRANSFORM 59

Figure 2.13 High frequency impersonating a low frequency to illustrate aliasing.

frequency fc. The second constraint is that the sampling spacing must be chosen so
that

T = 1∕(2fc) (2.87)

The frequency 1∕T = 2fc is known as the Nyquist sampling rate.
Aliasing means that the high-frequency components of a time function can

impersonate a low frequency if the sampling rate is low. Figure 2.13 shows a high
frequency as well as a low frequency that share identical sampling points. Here, a
high frequency is impersonating a low frequency for the same sampling points.

The sampling rate must be high enough for the highest frequency to be sampled
at least twice per cycle, T = 1∕(2fc). An input signal x(t) will be represented correctly
if this condition is met. The Nyquist frequency is also called folding frequency.

Often the functions are recorded as sampled data in the time domain, the sam-
pling being done at a certain frequency. The Fourier transform is represented by the
summation of discrete signals where each sample is multiplied by

e−j2𝜋fnt1 (2.88)

that is,

X(f ) =
∞∑

n=−∞
x(nt1)e−j2𝜋fnt1 (2.89)

Figure 2.14 illustrates sampled time domain function and frequency spectrum for a
discrete time domain function.

When the frequency domain spectrums as well as the time domain function are
sampled functions, the Fourier transform pair is made of discrete components:

X(fk) =
1
N

N−1∑
n=0

x(tn)e−j2𝜋kn∕N (2.90)

X(tn) =
N−1∑
k=0

X(fk)ej2𝜋kn∕N (2.91)

Figure 2.15(a) and (b) shows discrete time and frequency functions. The discrete
Fourier transform approximates the continuous Fourier transform.

However, errors can occur in the approximations involved. Consider a cosine
function x(t) and its continuous Fourier transform X(f ), which consists of two impulse
functions that are symmetric about zero frequency (Fig. 2.16(a)).
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t0 t1 2t1
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Figure 2.14 (a) Sampled time domain function and (b) frequency spectrum for the time
domain function.
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−t
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t
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Figure 2.15 (a) and (b) discrete time and frequency domain functions.

The finite portion of x(t), which can be viewed through a unity amplitude
window w(t), and its Fourier transform W(f ), which has side lobes, are shown in
Fig. 2.16(b).

Figure 2.16(c) shows that the corresponding convolution of two frequency sig-
nals results in blurring of X(f ) into two sin x∕x = sin c(x) shaped pulses. Thus, the
estimate of X(f ) is fairly corrupted.

The sampling of x(t) is performed by multiplying with c(t) (Fig. 2.16(d)); the
resulting frequency domain function is shown in Fig. 2.16(e).
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Figure 2.16 Fourier coefficients of the discrete transform viewed as corrupted estimate for
the continuous Fourier transform: (a) x(t) and Fourier transform X(f ), (b) unit amplitude
window w(t) and W(f ), (c) convolution of x(t) and w(f ), (d) discrete sampling function,
(e) convolution x(t), w(t), and c(t), and (f) discrete bandwidth limited function based on (e).
Source: Ref. [1].

The continuous frequency domain function shown in Fig. 2.16(e) can be made
discrete if the time function is treated as one period of a periodic function. This forces
both the time domain and frequency domain functions to be infinite in extent, periodic
and discrete (Fig. 2.16(f)). The discrete Fourier transform is reversible mapping of
N terms of the time function into N terms of the frequency function. Some problems
are outlined later.

2.13.1 Leakage

Leakage is inherent in the Fourier analysis of any finite record of data. The record of
the data is obtained by looking at the function for a period T and neglecting everything
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Figure 2.17 An extended data
window. Source: [B1].

that happens before and after this period. The function may not be localized on
the frequency axis and has side lobes (Fig. 2.8(b)). The objective is to localize the
contribution of a given frequency by reducing the leakage through these side lobes.
The usual approach is to apply a data window in the time domain, which has lower
side lobes in the frequency domain, as compared to a rectangular data window. An
extended cosine bell data window, called Tukey’s interim data window, is shown in
Fig. 2.17. A raised cosine wave is applied to the first and last 10% of the data, and a
weight of unity is applied for the middle 90% of the data. A number of other types
of windows that give more rapidly decreasing side lobes have been described in the
literature. Some of the window types are as follows:

• Rectangular

• Triangular

• Cosine squared (hanning)

• Hamming

• Gaussian

• Dolph–Chebyshev

For periodic functions, the rectangular window results in zero spectral leakage
and high spectral resolution. The rectangular window spans exactly one period, the
zeros in the spectrum of the window coincide with all harmonics except one. This
results in no spectral leakage under ideal conditions.

A window function often incorporated in spectrum analyzers is Hanning win-
dow.

W(t) = 0.5 − 0.5 cos
2𝜋t
T

, for − 0.5T < t < 0.5T (2.92)

The function is easily generated from sinusoidal signals. The main lobe noise band-
width is greater than that in a rectangular window. The highest side lobe is at –32 dB
and side fall-off rate is –60 dB (see Fig. 2.18(a) and (b) for comparison of rectangular
and Hanning windows).

The Hamming window function is

W(t) = 0.54 − 0.46 cos
2𝜋t
T

, for − 0.5T < t < 0.5T (2.93)
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Figure 2.18 (a) Rectangular window and (b) hanning window.

2.13.2 Picket Fence Effect

An analogy between the output of fast Fourier transform (FFT) algorithm and a bank
of band-pass filters is shown in Fig. 2.19. Each Fourier coefficient ideally acts as a
filter having a rectangular response in the frequency domain. In practice, the response
is of the type with side lobes. In Fig. 2.19, main lobes only have been plotted to
represent output of FFT. The width of each lobe is proportional to the original record
length.

When the signal being viewed is not one of these orthogonal frequencies, the
picket pence effect becomes evident. The picket fence effect can reduce the amplitude
of the signal in the spectral windows, when the signal being analyzed falls in between
the orthogonal frequencies, say between the third and fourth harmonics. The signal
will be experienced by both the third and fourth harmonic spectral windows, and in the
worst case halfway between the computed harmonics. The signal is then reduced to
0.637 in both the spectral windows. Squaring this number, the peak power is reduced
to 0.406.

By analyzing the data with a set of samples that are identically zero, the FFT
algorithm can compute a set of coefficients with terms lying in between the original
harmonics. As the width of the window is related solely to the record length, the
width of these new spectral windows remains unchanged: that means a considerable
overlap.


