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Preface

Nonlinear Polymer Rheology explores the rich phenomenology of the mechanical behavior of
polymer melts and concentrated polymer solutions. My main purpose is to expose the reader to
the latest knowledge and understanding of the subject, developed in the past decade. This book
explores and establishes a microscopic foundation that provides a coherent molecular-level
interpretation for various nonlinear rheological behaviors. In absence of such a foundation, the
book would not and could not have been written.

Covering nearly every aspect of the nonlinear rheological responses of entangled polymers,
this book may be used as a textbook to introduce essential phenomenological information. The
reader does not need to be an experienced researcher in the field of rheology. The book presents
the subject in a self-contained manner, although familiarity with the literature on nonlinear
polymer rheology would allow the reader to contrast different standpoints.

My approach to nonlinear polymer rheology places a great emphasis on understanding
transient viscoelastic responses. While steady-flow behavior is also of interest, Nonlinear
Polymer Rheology differs from other works in that it treats nonlinear responses as primary and
linear responses as secondary. We aim to collect sufficient first-hand phenomenology before
proposing theoretical concepts, although key concepts including yielding and disentanglement
are utilized in as early as Chapters 6 and 7 without elaborative discussion. Since fresh view-
points are required, the reader will recognize sharp contrasts with conventional knowledge
and methodology.

Many excellent books have treated the subject of polymer rheology in a traditional way. The
most classical literature is cited and discussed in books including those by Ferry,! Doi and
Edwards,? Bird et al.,> Dealy and Larson,* Graessley,® and Phillies.® In general, these books do
not have a sufficient discussion of nonlinear rheology that is based on a coherent gathering of
key phenomenology. Limited by the available space, the present book omits discussion of the
older literature before 2000 and only includes a few pertinent references since 2000.

Scientific inquiries develop in three stages: A. “Empirical,” where we find out what happens;
B. “Phenomenological,” where we learn how it happens; C. “Theoretical,” where we explain why
it happens. For a complicated subject such as polymer rheology;, it is not feasible to formulate
a theory without first having sufficient and coherent phenomenological knowledge. Nonlinear
Polymer Rheology acknowledges this logical sequence and strives to collect and establish the
phenomenology before developing any theoretical treatment and formulation. However, these
three types of research can and do often proceed interactively and interchangeably. For example,
a particular theoretical idea or picture can prompt one to organize phenomenological informa-
tion in a more coherent manner and to design additional experiments using hypothetical and
unproven concepts.

The responses of polymeric liquids to large and rapid external deformations are challenging
to depict and understand in molecular terms. The task is difficult because molecular behavior
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Preface

on nanometer scales dictates rheological properties characterized on macroscopic (millimeter)
scales: There exists a gap of six orders of magnitude in length scales. Thus, we should begin by
“listening to” what the experiments tell us, and first build a sound phenomenological base. Until
we have a sense of the full picture, which could stem from an adequate analysis of the available
phenomenology, it is challenging and risky to make theoretical simplifications, for example,
in modeling such complex behavior as the response of polymer entanglement to sudden, fast,
large external deformations.

Our goal is to arrive at a realistic physical picture for nonlinear polymer rheology. Having
collected the essential phenomenology, the process of rational thinking must take us beyond
empirical knowledge. To illustrate the merit of reason-guided thinking, let us consider,
for example, the phenomenon of viscoelasticity. By definition, all viscoelastic materials are
mechanically solid-like (elastic) when probed on short time scales. Viscoelastic liquids become
completely viscous only on long time (relative to the material relaxation time) scales. Where
does the “elasticity” come from in such a liquid? What is the structure of the material that
produces the elasticity? How should we think about the microscopic origin of viscoelasticity?

Upon external deformation, it is clear from the established phenomenology that an initial
elastic response must end, and a transition to flow must begin. In other words, all viscoelastic
liquids undergo yielding when subjected to fast deformation. The transition to flow suggests
that there exists some kind of a potential barrier on short time scales. The next question is what
creates such a potential barrier. As soon as we ask questions like this, we can make progress
toward an instructive understanding of viscoelasticity, instead of stopping at the level of phe-
nomenological models including the Maxwell model and the Oldroyd” model.

This idea to associate the “elasticity” with a potential barrier for any viscoelastic materi-
als is useful even for an external deformation rate & that is lower than the reciprocal of the
dominant relaxation time 7, that is, when the Weissenberg number Wi < 1. In other words,
a transition from elastic deformation to flow must occur even when the product Wi=% 7 is
below unity. For Wi>> 1, the initial elastic deformation can be rather remarkable, persisting up
to many strain units in the case of entangled polymers. The termination of the elastic-dominant
response apparently stems from a breakdown of some microscopic structure. It is an essential
task of polymer rheology to identify and delineate the nature of potential barriers, in terms of
intermolecular interactions, and show how the structural breakdown takes place.

Figuring out the nature of intermolecular interactions in entangled polymeric liquids under
large deformation is a daunting task. Historically, the task has challenged the brightest minds
in polymer science. An entangled polymer can be regarded as a physical network of Gaussian
chains. Its stress response to startup shear reveals a finite cohesive strength of the network
junctions. Maxwell was right®: Entangled polymer melts yield, just like ductile polymeric solids
(e.g., glasses) do, under continuous external deformation. The rate dependence of the yielding
response indicates that chain entanglements are dynamic and have finite lifetimes.

In 1979, Maxwell and Nguyen® described the stress overshoot of polystyrene melts upon
startup shear by stating “the yielding behavior indicates that, as straining progresses, the
structure of the melt is broken down, thereby permitting flow.” In the same year, Doi and
Edwards published Paper 4, completing their treatment of nonlinear response aspects in
the tube model,!%!® building on the appealing idea of reptation from de Gennes.!* The tube
model had a very different molecular interpretation of shear stress overshoot. Perhaps the
tube model made the Maxwell and Nguyen’s idea of yielding unnecessary and obsolete. Ever
since 1979, theory, experiment, and interpretation of polymer rheology have developed on
the presumption that the Doi—Edwards tube model encompasses the right physical picture
and tells us how to understand the nonlinear rheological behavior of entangled polymers. The
tube model paradigm provides a huge backdrop, against which this book discusses the same
subject, polymer rheology, especially nonlinear rheology of entangled polymers.
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It seems that modern scientific inquiries rarely follow the preaching of Karl Popper
(1902-1994) concerning the objective of doing science, that is, (i) to develop falsifiable theories
and (ii) to falsify existing theories with experiment. On the contrary, we prefer to work within
an existing paradigm as described by Kuhn (1922-1996).!> There is a tendency for one to
do anything and everything to validate and defend a given theory instead of performing
experiments aimed at falsifying it. The notion of scientific truth is often not established
by objective criteria and logical rationalization in the Popperian sense but instead by the
consensus of a scientific community. Consequently, for two reasons it may be difficult to carry
out unconventional research: (i) We are predisposed to accept textbooks and literature results.
(ii) Unconventional ideas can be inharmonious. Transformative knowledge find it hard to
gain acceptance by the community, especially by people who are accustomed to the standard
knowledge and approach. Fortunately, science is ultimately not an affair of democracy, dictated
by popular vote. The state of our knowledge is not defined by the status quo.

Doing science often amounts to sorting out relationships between causes and effects.
Depending on the level of description, causality can be confused or even reversed. Something
taken as the cause at a coarser level may actually be an effect at a finer, deeper, or higher level.
For polymer rheology, it is unnecessary to go to the quantum-mechanical level; but it is unac-
ceptable to stay at the continuum mechanical level as the Maxwell model does when it is feasible
to probe molecular origins. A short presentation has been posted at www.youtube.com/watch?
v=2HDD51Mxu8U to discuss this matter of causality in nonlinear polymer rheology.

Our objective as well as the ultimate goal of Nonlinear Polymer Rheology is to raise and
answer the following two questions to the best of our abilities: (i) Under macroscopic defor-
mation, how and why do polymer chains deform in an entangled polymer solution or melt?
(if) When does chain deformation cease to increase and flow begins? In short, for entangled
polymers, how does chain entanglement respond to external deformation? Intellectual inde-
pendence is key to the search for answers. We are going to the places not because they were
well lit; we are going to where the truth will be found.

This book (containing ca. 300 data-based figures) was motivated by and based on experi-
ment, written to provide the reader with the comprehensive experimental information and
conceptual discussions needed to develop a new, reliable, and realistic understanding of the
nonlinear rheology of entangled polymers. As a fundamental step, one must accept that the
interchain interactions in an entangled polymer system must be adequately treated to reflect
the many-body nature. Intermolecular interactions due to chain uncrossability provide the ini-
tial potential barrier for elastic deformation during startup deformation. These interactions
are of finite strength and are overcome when intrachain forces grow to a comparable mag-
nitude, leading to force imbalance and yielding of the entanglement network, that is, chain
disentanglement. As orientation, we include an introductory chapter to briefly summarize the
characteristics of polymer rheology, including its definition and objectives, its history, tradition,
culture, philosophy, and emergent new trends.

When I joined the faculty of Macromolecular Science and Engineering at Case Western
Reserve University in the fall of 1989, I decided to work on polymer rheology although I was
not trained in rheology during my doctoral study and did not know whether or not there
would be any remaining important problems. From the early 1990s to 2006, before I developed
my own systematic understanding of polymer rheology, I taught graduate courses at Case on
polymer rheology based on the books of Ferry,! Bird,®> and Macosko.!® While teaching the
subject according to these books, I actually had a lot of trouble in presenting the arguments
and the discussions. Viscoelasticity seems rather abstract while shear thinning of polymeric
liquids appears obvious. In my formative years, that is, the first 5 years at Case, I was lucky
to work on an industrial project concerning extrusion of polyethylenes sponsored by BP
Chemicals and thus had a chance to work on the incredibly important problem of polymer wall
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slip, into which P. G. de Gennes and F. Brochard had just developed some molecular insights.
This research activity truly launched my career to work on polymer rheology. After 11 years at
Case, I was recruited in 2000 to the graduate program on Polymer Science and Engineering at
the University of Akron. Most of the contents in this book were developed at Akron over the
past dozen years.

I have been very lucky to attract many talented students to come to Akron and join my lab.
My graduate students (Prashant Tapadia, Pouyan E. Boukany, Sham Ravindranath, Yangyang
Wang, Xin Li, Xiangyang Zhu, Shiwang Cheng, Gengxin Liu, Hao Sun, Panpan Lin, Xiaoxiao
Li, Mengchen Wang, Jianning Liu, Xianggang Li and Zhichen Zhao) have kept me company.
Consequently, I had never been alone on my journey to acquire new knowledge and a new
fundamental understanding of polymer rheology. Without their coming to my research group,
my scientific world would have been a rather empty place. Without their dedication to carry out
all the essential experiments that led to the new worldview on polymer rheology, this book could
not have been written. My understanding of nonlinear polymer rheology has changed because
of their work. My knowledge about the subject has also increased because of Ed Laughlin who
helped us construct many experimental apparatuses including the sliding-plate rheometer.
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Introduction

In materials science and engineering, rheology is an important subject with a long and rich
history. The first professional society on rheology and the first journal devoted to rheology both
appeared in the United States of America in 1929. A comprehensive discourse of the history of
rheology can be found in Tanner and Walters.! The specific subject of this book, nonlinear poly-
mer rheology, also has an extensive history, and a brief description of its early history can be
found in Chapter 1 of Rohn.? Polymer rheology can be regarded as one of the three major topics
in polymer physics; the other two subjects concern with physics of polymers in crystalline and
glassy states, respectively. In general, rheology is founded on the basis of macroscopic measure-
ments. Challenges arise when we desire to figure out what microscopic physics is responsible
for rheological behavior on macroscopic scales. Somehow polymer chains, with dimensions
on the order of 10nm, act either alone (dilute solutions) or collectively (concentrated solu-
tions and melts) to produce many remarkable macroscopic phenomena. In this chapter, we will
provide a brief summary of polymer rheology by highlighting its main ingredients and charac-
teristics. We emphasize at the outset that identification of the molecular origin of mechanical
stress during and after deformation is a leading task for polymer rheology. In the following dis-
cussions, some technical terms are inevitably used without a complete explanation, and some
ideas are brought up without a complete background. The reader can use the Subject Index to
obtain more rigorous elaborations in subsequent chapters.

1. Rheology: The Definition

Rheology is a study of how materials undergo deformation. This is a most common description
of the task for rheology. By definition, solids have a finite limit of elastic deformability. Within
the limit, that is, below a threshold of external deformation, a solid can return to its original
state when the load (i.e., force) is removed. In other words, elastic deformation is essentially
recoverable. Continuous external strain will ultimately cause a ductile solid to deform plastically
without fracturing. When plastic deformation occurs, the sample cannot return its original
shape or dimensions. Such irrecoverable or irreversible deformation is also known as flow.

In this book, we avoid using the two phrases deformation and flow interchangeably. While
the meaning of flow is unambiguous, by “deformation” we imply strain that is not necessarily
flow. In other words, “deformation” is clearly not synonymous with “flow”. In fact, E.C. Bing-
ham (1878-1945) also distinguished deformation from flow by stating “Rheology is the study
of deformation and flow of matter”’? We are discussing the careful usage of these two most fre-
quently used words at this very beginning because there has been considerable confusion about
the difference between the two. Often, flow is a heavily misused word in the rheology literature.
Flow actually means something really explicit: irreversible deformation. Startup deformation of
viscoelastic materials never starts with flow. Thus, we should not use the phrase “flow” to cat-
egorically refer to, for example, startup deformation as startup flow. This essential point will
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become clearer, hopefully, by the end of this introduction. Our more detailed evidence and
reasoning will be presented later throughout the rest of the book.

Polymeric liquids are fluids of chain-like macromolecules that are not cross-linked to each
other so that they may flow at long times by having their chains slide past one another. Experi-
mental characterization indicates that polymeric liquids may respond like a solid when subject
to sudden external deformation. At short times, they may be quite incapable of flowing. This
simple observation turns out to provide some essential insights leading to a proper understand-
ing of rheological behavior in viscoelastic liquids, particularly the entangled polymer solutions
and melts that are the main objects of study in this book. It may be noteworthy that entangled
polymeric liquids are uniquely capable of undergoing large elastic deformation in contrast to
many other viscoelastic materials such as polymer glasses and colloidal dispersions.

In the past, the emphasis of experiment and theory was often placed on delineating the con-
stitutive behavior in steady state. Shear thinning is one such characteristic, relating the steady
shear stress to the shear rate. Moreover, rheometric measurements are frequently simplified to
assume that the deformation field can be experimentally prescribed a priori. In this tradition,
students of rheology rarely realize that the task of rheology is to separately and independently
determine both the deformation field and the corresponding stress state.

2. Molecular Approach of Tube Model and Continuum-Mechanical
Constitutive Modeling Versus a Phenomenology-Based Treatment

Polymeric materials are a unique class of matter in the sense that many of their physical
properties depend explicitly on the chain length, which in the case of linear polymer chains is
proportional to the total molecular weight M. Dynamic and rheological properties are partic-
ularly sensitive to M. Such experimental facts motivated scientists to build molecular models.
Molecular modeling began as early as the 1940s, climaxing in the celebrated bead-spring
theories of Rouse* and Zimm®. The long-awaited groundbreaking explanation of the scaling
law 5, ~ M2 for melt viscosity came much later in 1971,° where we note that experimental data
usually indicate a notably higher exponent than three. Doi and Edwards’ took some significant
steps to advance de Gennes’ model of reptation. They asserted with sound reasoning that in
an entangled polymer melt or solution, the emergent stress during either external shear or
extension can be evaluated in terms of the intrachain retraction forces of a coarse-grained (test)
chain confined to a fictitious tube. This Doi—Edwards (DE) model satisfactorily describes linear
viscoelasticity of entangled polymer melts and solutions.?~1° It also claims to describe and
explain nonlinear rheological properties.!* The subsequent three decades witnessed extensive
efforts to improve the original de Gennes—Doi—Edwards model.}>"2° Experiments, too many
to cite them here, seem to support the theoretical description.! However, it is actually not

1 The validation of the tube model usually adopts the following logic: Since the constitutive continuum description,
extracted from the tube model, can describe such instabilities as shear banding, non-quiescent relaxation and necking
instability in uniaxial extension it must have captured the correct molecular physics. Such reasoning overlooks the
model degeneracy in science: Different models can produce similar data. A recent continuum-mechanics-level
theoretical study on extensional necking most strikingly revealed such a degeneracy when Hoyle and Fielding showed
in J. Rheol. 2016;60(6):1347-1375 that uniaxial extension is unstable against necking in several constitutive models,
including a variant of the tube model and models that have no microscopic basis for chain entanglement. Thus, to
declare that it could describe the macroscopic world of nonlinear polymer rheology, the tube model needs not
incorporate the molecular physics that has to answer the question of whether an entangled polymer liquid should be
treated as a junction-forming entanglement network and whether fast external deformation could weaken or destroy
the network. This book suggests that we must move behind such a modest goal, collect more phenomenology, and
search for a more useful and predictive theoretical framework by identifying the molecular origins for the key
emergent phenomena including various macroscopic instabilities.
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obvious that interchain interactions can be treated in such a smoothed-out manner. Moreover,
admittedly, the tube model is inherently self-inconsistent.!

Treatments based on the tube description include the slip-link models.?>?® These models
aim to relate macroscopic rheological phenomena to molecular dynamics on nanometer
scales, contrasting sharply with the constitutive continuum approach that preceded the tube
model. James Clerk Maxwell (1831-1879) and Ludwig Boltzmann (1844-1906) explored
phenomenological linear viscoelasticity at the continuum level. James Gardner Oldroyd®*
(1921-1982), among others, made well-known contributions to the field of constitutive
modeling for nonlinear continuum behavior of viscoelastic fluids. Many textbooks present
various constitutive descriptions without sufficient molecular ingredients.?>~3! According to
these books, constitutive models contain physical parameters that may be determined from
linear viscoelastic measurements. These parameters, such as the shear viscosity, are usually
assumed to be constant, that is, fixed everywhere in space and time. The validity of assumptions
of spatial and temporal uniformity has not been tested adequately in the past.

Separate from the continuum description and tube model for polymer rheology, there was
a period of several decades in which the transient network models (TNMs) were the stan-
dard description, developed by Green and Tobolsky,*?> Lodge,® and Yamamoto.* To make
the transient network models quantitative, for example, to describe shear thinning, the net-
work junctions were assumed in an ad hoc manner to have a stress- or rate-dependent lifetime.
Although both the tube model and the transient network model are phenomenological, there
was an impression that the tube model is anything but ad hoc and thus far superior to the
transient network model. In fact the tube model is also ad hoc.

There are two ways to explore what happens in experiment. In the first way, experiments are
carried out because of an existing theory. For example, in the past decades, countless exper-
imental studies have been made to vindicate the tube theory. Here the theory dictates how
the phenomenology should be collected. The danger is that such an approach could be highly
biased and lack basic objectivity. For example, up to 2004, nearly all rheological experiments
had been analyzed on the basis of shear homogeneity because none of the extant theoretical
approaches insisted a priori that the deformation field should be determined independently.
In the second way, phenomenology is established without theoretical prejudice or favoritism.
In this approach, the rheological behavior of entangled polymers is investigated in experiment
without any presumptions about how the polymeric liquids should respond to various modes of
external deformation. Instead of assuming homogeneous shear in rheometric measurements,
experiments are performed to determine the state of deformation and stress field simultane-
ously and independently in real time. Such objective phenomenology must be collected first.
Any reliable theoretical description of nonlinear rheology of entangled polymers only comes
after the phenomenology. In this work, we follow the second approach. Neither the tube model
nor the latest formulation of nonlinear rheology (presented in this book) has received explicit
molecular-level confirmation. Thus, it would be unreasonable to only say that there is not yet
any molecular-level substantiation of the new picture discussed in this book. The future molec-
ular dynamics simulation and small angle neutron scattering measurements will tell which one
is more realistic and useful.

3. Linear Versus Nonlinear Responses: Characterization Tool
Versus Science of Rheology

The linear responses of viscoelastic liquids, such as entangled polymer solutions and melts,
reflect and manifest the microstructure, which remains nearly intact during small exter-
nal deformations. Through adequate molecular modeling, linear rheology thus becomes a
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characterization tool. Linear responses form one aspect of the subject. However, the core
objective of polymer rheology has to do with something else, namely, studying nonlinear
responses of entangled polymers to large fast deformation of different types. This book is
devoted to exploring the physics behind the nonlinear rheological behavior of entangled
polymeric liquids.

4. Shear Thinning, Stress Plateau, and Yielding

Nonassociating polymers, for example, most of the commodity polymers, including
polyethylenes, polypropylenes, polystyrene, polybutadiene, and polyisoprene, with a global
production rate of several hundred billion pounds per year, exhibit shear thinning as shown
in Fig. 1(a). If steady shear can be reached, then the shear viscosity is found to decrease with
increasing shear rate y. For monodisperse linear polymers, the shear thinning is steep: the
shear viscosity n scales nearly reciprocally with the rate, that is, 7"~ with 7 < 1. When we
represent this steady-state behavior in terms of the shear rate as a function of the shear stress,
we see a transition at a threshold stress level 6, as shown in Fig. 1(b), where the nominal shear
rate sharply rises. Beyond the terminal flow regime (where ¢ is linearly proportional to ),
the stress level saturates with respect to increasing shear rate, a phenomenon that is known
as stress plateau behavior. This stress plateau character is reminiscent of the yield-stress in
materials such as ketchup, toothpaste, and yogurt that exhibit much higher fluidity only when
a critical level of shear stress is exerted. The plateau width can span many orders of magnitude
in the shear rate for well-entangled polymers and other yield-stress materials. Equivalently,
the shear viscosity of these materials can drop by many decades within a narrow range of
stress. Thus, the state of matter at low shear rates, in the terminal flow regime, must be rather
different from the state of matter after yielding around o,. In other words, when the quasi-solid
(i-e., the liquid with an enormous viscosity due to chain entanglement) turns into an inviscous
state, the structure has undergone significant alternation. The change in viscosity must reflect
a massive loss of entanglement.

5. Is There Always Homogeneous Deformation?

Let us consider simple shear generated by displacing two parallel plates in opposite directions.
This is a standard protocol adopted in most studies of the shear rheology of entangled polymers.
We have taken it for granted that homogeneous shear can be produced with such a boundary
displacement, as depicted by Fig. 1.1(a), where the plates are taken to be separated by a dis-
tance H. The shear deformation is taken to be uniformly the same at all positions along the
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Figure 1 (a) Steady shear viscosity as a function of shear rate. (b) Steady shear rate as a function of shear stress
o, showing a stress plateau around 6.
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gap. This assumption of homogeneous shear is not only out of convenience but also out of
necessity. We could not perform any conventional rheometric measurements if a uniform shear
field could not be prescribed by the imposition of a velocity V on one plate while holding the
other plate stationary. Misleadingly, one could make a seemingly reasonable argument to assert
that homogeneous shear should prevail since the steady shear stress should be constant along
the gap direction, as discussed in Section 4.1.1. Traditionally, we tend to first think about the
steady shear behavior, paying less attention to the fact that strongly viscoelastic liquids including
entangled polymers are anything but a liquid when responding to sudden startup deforma-
tions. At times much shorter than the reptation time, they are transient solids and may expe-
rience solid-like breakup, for example, they undergo strain localization in spite of molecular
diffusion. Thus, during any rheometric investigation of rheological behavior of entangled poly-
mers, including startup shear and large stepwise shear, we should make efforts to verify the basic
assumption that the shear rate is independent of position. Sound rheological measurements
should involve experimental techniques that make in situ determination of the shear field.

The era of performing rheological studies based on an untested premise of homogeneous
shear has come and gone. Since 2006, numerous studies from Akron®>37 and other parts3$-4°
of the world have recommended that the experimenters must determine the deformation field
explicitly. In particular, particle-tracking velocimetry (PTV) has been applied in conjunction
with commercial rheometric instruments to quantify shear banding during startup shear*!' and
nonquiescent relaxation after stepwise shear both for well-entangled polymer solutions®”42 and
for melts.*® It is found that localized yielding can lead to shear strain localization. Similarly,
strain localization is a common feature in startup uniaxial extension of entangled melts. It is
important to realize that the concepts of yielding and chain disentanglement remain valid even
when there is no shear strain localization. The PTV observations of strain localization nonethe-
less most evidently demonstrate the nature of nonlinear rheological responses, leading to the
new perspective that the entanglement network can yield and break up.

To reiterate, yielding can result in severe strain localization in well-entangled polymer solu-
tions and melts. Thus, there is a breakdown in conventional rheometric analyses that are based
on the textbook assumption of homogeneous shear. The demonstration of shear and tensile
strain localization spells the end of conventional rheometry. In traditional rheology, the defor-
mation field is chosen by the experimentalist and is assumed to be known a priori. In reality, in
simple shear rheometry we can only control the speeds (0 and V) at the two parallel surfaces.
We cannot dictate whether or not the velocity field is given by v(y) = V(y/H), that is, we cannot
assume that the strain field is homogeneous along the velocity gradient direction.

6. Rheology Versus Fluid Mechanics

The mission of rheology is entirely different from that of fluid mechanics. The aim of polymer
rheology is to explore and plausibly derive constitutive relations from the principles of micro-
scopic molecular physics. In contrast, fluid mechanics of polymeric liquids describes the state of
deformation and field of stress by applying a given set of macroscopic constitutive relationships.

A detailed description of polymer processing requires fluid mechanical calculations based
on constitutive equations. Such practice is reliable and realistic only when the constitutive
behavior of polymeric liquids has been adequately captured in terms of molecular mecha-
nisms. The subject of fluid mechanics generally requires us to formulate the stress and strain
fields using tensorial representation. But the subject of rheology does not require tensor
representations of stress and strain because we always specify the mode of deformation (e.g.,
shear or extension).
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For two reasons this book does not include tensor analyses. First, many who would like to
learn about the subject of polymer rheology often turn away upon opening the first two chapters
of a typical book on rheology because they mistakenly think that the subject is highly mathe-
matical and beyond their level of preparation. Second, no tensors are needed anywhere because
we discuss simple shear and uniaxial extension separately. Once the mode of deformation is
specified, all the mathematical treatments actually involve only scalar quantities. The present
book thus departs from the tradition that invokes tensor analyses and matrix representations
to introduce the subject of polymer rheology.

7. Emerging Trends

It is at least challenging if not risky to infer microscopic processes from macroscopic nonlinear
responses of polymeric liquids to fast large deformation. We have arrived at a coherent
molecular picture after a careful examination of the accumulated phenomenology. In the
end, we are forced to suggest existence of an entropic barrier in Chapter 16 that provides
the cohesion of the entanglement network against finite external deformation. Because of
this cohesion barrier, after a sudden stepwise deformation of moderate magnitude chain
deformation remains pinned down until reptative relaxation restores the chain conformation.
This conclusion may be regarded as deductive and therefore speculative. To bridge the gap of
six orders of magnitude in length scale we need to resort to microscopic observations such
as neutron scattering measurements and computer simulations. As this book approached the
finish line, we learned that new small-angle neutron scattering (SANS) measurements had
recently been performed along with innovative model-independent analysis* that directly
compares the SANS spectrum with the tube model prediction. During stress relaxation from
stepwise extension of moderate magnitude, chains remain stretched on length scales larger
than the averaged equilibrium tube segment according to the SANS spectrum even after 20
times Rouse time. Such measurements prompt us to suggest that chain deformation and stress
arising from molecular deformation should be described at different length scales instead of a
single scale of the equilibrium tube segment. The tube model assumed or made approximation
that chain deformation and accompanying stress only needs to be characterized using a single
length scale given by the equilibrium tube segment (or equilibrium entanglement strand).
Consequently, the tube model may be highly unrealistic for nonlinear polymer rheology, as
much of the experimental evidence presented in this book seems to indicate.

8. Summary

This book presents the subject in the order of phenomenology first and theory second. In con-
trast to other treatments in the literature that collect phenomenology based on the assumption
that the deformation field could be prescribed a priori, this book shows new phenomenology
obtained from the independent and separate characterization of the deformation field and
the state of stress. To accomplish such a task, many inherent experimental limitations have
been overcome. The emergent phenomenology motivates a physical picture of the nonlinear
rheology of entangled polymers that is rather different from pictures associated with the tube
theory. This phenomenology allows us to refocus on the two central questions in nonlinear
rheology of entangled polymers: (a) Why do polymer chains deform elastically at the beginning
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in response to a macroscopic strain? (b) When do polymers cease to undergo further elastic
deformation so that flow can commence. In the search for the answers, some new questions
arise that are equally important to address: (c) What happens to chain entanglement when the
elastic deformation is terminated at a considerable strain, for example, after a few strain units?
(d) What is the role of melt elasticity in polymer rheology? This book describes the approaches
taken to answer these foundational questions.

The book is divided into four parts: (a) Linear viscoelasticity and experimental methods;
(b) Yielding — primary nonlinear response to ongoing deformation; (c) Decohesion and elastic
yielding after large deformation; and (d) Emerging conceptual framework and beyond. The sub-
ject is discussed with minimal mathematical equations and without tensor analysis. The bulk
of the book is a description of phenomenology, collected from state-of-the-art macroscopic
rheometric measurements and particle-tracking velocimetric observations. The reader can find
this phenomenological component in Parts 2 and 3 of the book. Part 4 explores the molecular
foundation for nonlinear rheology of entangled polymers, based on the available phenomeno-
logical information described in Parts 2 and 3. Although the materials in Chapters 1-3 are not
new, perhaps even too lengthy and simple for many readers, Chapters 1 and 2 provide the def-
initions and information needed for the developments in the subsequent Parts 2 through 4.
Readers familiar with standard linear rheology may simply start reading from Chapter 4 or 6
and use Part 1 as a reference as needed. Conversely, for readers less fluent with the theoretical
background, Chapters 1 and 2 are just a compilation of classical results from the established
theories of polymer dynamics. Instead of going through the "derivations" in these chapters, the
readers only need to go to these chapters for definitions of relevant concepts and quantities that
appear in the reminder of the book. In short, the key chapters of the book are 6,7, 9, 11, 12, 16,
and 18, respectively, on wall slip, yielding behavior, particle-tracking velocimetric observations
of shear banding, various forms of strain localization in startup melt extension, elastic yielding
phenomenon, the theoretical foundation, and troubles with existing frameworks (a summary of
different worldviews). To have a complete overview of the subject, it is better not to skip any
chapter. For a short review of the new worldview described in this book, the reader may go to
listen to a research seminar posted at https://www.youtube.com/watch?v=ffbhZYIkWcA.

In closing, a very specific comment needs to be made about how the content of this book
is presented and discussed. To establish a correct and reliable conceptual foundation for the
nonlinear rheology of entangled polymers, we must first describe the key phenomenology.
This phenomenology will motivate the discussions of the theoretical concepts, leading to our
molecular-network paradigm. To verify such a theoretical framework, we need to discuss fur-
ther supporting phenomenology, including phenomenology that was uncovered as predictions
of the new paradigm. In the chapters prior to Chapter 16 some phenomenology is presented
and discussed using concepts that are only rigorously described in Chapters 15 and 16. These
concepts include yielding, chain disentanglement, entropic barrier, and finite cohesion. These
central phrases form the new language in which we discuss nonlinear polymer rheology.
A reader may simply follow the discussion of the phenomenology, using the literal meanings
of these terms. A reader may alternatively go to Chapter 16 to find more precise definitions
and associated discussions for these terms as he or she reads through Parts 2 and 3.

Although this book focused on phenomenology derived from entangled polymers, many
characteristics are expected to appear in other chain-like systems such as associative polymer
solutions and melts as well as self-assembled aggregating systems including wormlike micelles.
These systems must also yield upon large conformation. They could also undergo stress over-
shoot and various formations of strain location in either shear or extension or more complex
configurations.
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Partl

Linear Viscoelasticity and Experimental Methods

Part of the physics on Earth is remarkably simple: There exists a subworld of linear response.
The best-known example is Newton’s second law: F=Ma. In the field of mechanics, there are
other famous examples of linear response, that is, Hooke’s law for the deformation of elastic
solids and Newton’s law for the flow of viscous liquids. Here, the output, such as the degree of
deformation or rate of deformation, is linearly proportional to the input, such as the imposed
force, and vice versa.

It is conceptually interesting to note that viscoelastic materials including entangled polymeric
liquids undergo yielding even in the limit of linear response. Since yielding implies removal of a
constraining barrier, the structural state after yielding is different from the equilibrium state. In
the linear response regime, the structural change is apparently insignificant. Indeed, all current
theories that depict linear response assume that the structures of the liquids responsible for the
linear viscoelasticity remain intact during a weak external deformation.

In this part of the book, we describe linear viscoelasticity of polymeric liquids, experi-
mental characterization methods, and rheometric setups. Specifically, Chapter 1 provides
a phenomenological discussion of linear viscoelasticity in terms of basic concepts and
elementary models such as the Maxwell model, as well as a simple account of the rubber
elasticity theory. Chapter 2 focuses on a theoretical description of various molecular models
for polymer dynamics, for example, Rouse, Zimm, and reptation models as well as the packing
and percolation models for polymer entanglements. Chapter 3 is devoted to a brief account of
the various rheometric apparatuses and related methods that are applicable when deformation
is homogeneous. Chapter 4 extends Chapter 3 by emphasizing that the objective of rheology is
to characterize the mechanical responses and determine the deformation field. It introduces
the particle-tracking velocimetric method that enables a comprehensive characterization of
rheological behavior. Chapter 5 describes additional rheometric devices as well as apparatuses
that involve more complicated geometries.
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Phenomenological Description of Linear Viscoelasticity

It has been known since James Clerk Maxwell’s period that deformation and flow behavior of
materials may not fall into two simple categories: ideally elastic solid and purely viscous liquid.
Elastic solids were extensively studied by Robert Hooke (1635-1703). As a contemporary of
Hooke, Isaac Newton (1643-1727) discovered the basic law for the motion of viscous liquids.
Many materials are neither elastic solids nor viscous liquids. Their mechanical behavior exhibits
time-dependent properties; that is, they appear solid-like on short time scales and liquid-like
on long time scales. Such materials are clearly non-Newtonian. This viscoelastic behavior is
actually a property of a wide range of structured materials, including colloids, liquid crystals,
micelles, foams, gels, granular matter, emulsions and membranes, and, of course, polymers.
Viscoelasticity arises from the existence of slow relaxation associated with material’s structural
change.

Linear viscoelasticity, by definition, depicts behavior that is phenomenologically simple: the
mechanical resistance is linearly proportional to the degree of external perturbation. A linear
response is possible when the external world does not cause the material to deviate so much
away from its equilibrium state as to display obvious nonequilibrium properties. In the linear
regime, the perturbation is so weak that the material response is uniform and homogeneous,
making the phenomenology straightforward to interpret.

In the reminder of this chapter, we first discuss three protocols commonly used to probe the
viscoelastic behavior of structured materials including polymers. Then we describe how the
Boltzmann superposition principle and Maxwell model can be applied to describe the linear
response behavior of viscoelastic materials. This chapter ends with a section on the classical
network picture of rubber elasticity, showing the entropic origin of polymer viscoelasticity.

1.1 Basic Modes of Deformation

External deformation occurs in various forms such as simple shear, uniaxial extension, and com-
pression. For each of these three types, there are at least three different ways to impose the
deformation: (a) startup deformation where the boundaries of the body under deformation are
suddenly displaced at some specified speed at ¢t =0; (b) stepwise deformation where a startup
deformation is abruptly terminated at a specified magnitude of strain; and (c) oscillatory defor-
mation where the moving boundary is made to undergo sinusoidal linear displacement. Only
simple shear and uniaxial extension are extensively discussed in the book. Compression leading
to squeezing or planar extension will first be discussed in Sections 5.3.2 and 5.3.3 and consid-
ered again in Sections 10.3 and 10.4 as well as in Section 13.5. In this chapter, we use simple
shear to illustrate the three modes (a) to (c).
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1 Phenomenological Description of Linear Viscoelasticity

1.1.1 Startup shear

Let us consider a sample of interest sandwiched between two parallel plates, as depicted in
Fig. 1.1(a). To produce startup shear, the lower plate is held stationary, while the upper plate is
made to suddenly displace in the X direction. We assume that the sample’s upper boundary of
area X will move by X =Vt at time ¢ when the upper plate is given a velocity V at time £ =0, as
characterized in Fig. 1.1(b,c). Specifically, we consider no slip at the interfaces between the sam-
ple and two confining plates. During each time interval At, the upper plate moves by Ax = VA¢,
producing an elemental shear strain of

Ay = Ax/H (L.1)
so that the shear rate is
7= Ay/At — V/H, (1.2)

where Ax/At|,,_o—V by definition. This introduction of shear strain and shear rate rests on
an important premise: The shear deformation is uniform along the thickness direction (Y axis)
as depicted in Fig. 1.1(a). Assuming that the shear deformation is imposed at ¢t =0, with sur-
face velocity V, then the accumulative external shear strain at time ¢ is y(¢) = y¢. As shown in
Fig. 1.1(a), in response to shear deformation, a shear stress emerges — a force F is required to
maintain shearing (Eq. (1.6)). In steady state, which is achieved when the stress responses no
longer vary in time, we also need to argue about the validity to assume homogeneous shear. The
illustration in Fig. 1.1(d) assumes a constant shear rate in every layer along the Y axis. We will
defer a detailed discussion of the shear homogeneity assumption in Chapter 4.

From the onset, let us introduce a key yet elementary concept in rheology associated with the
startup shear depicted in Fig. 1.1(a,b). Let us figure out how long it takes to produce a sizable
deformation, for example, a shear strain of y; =1.0. At a displacement velocity V as shown in
Fig. 1.1(d), the time £,,,,, it takes for the moving plate to travel a distance of H is given by

tlexp = H/V = l/yf (13)

where the second equality follows from Eq. (1.2). This experimental time scale, £, is the time
required to impose 100% shear deformation at given shear rate 7. It is worth noting that Eq.
(1.3) provides useful information only if homogeneous shear prevails. Two questions naturally
arise: (a) When is shear deformation regarded slow enough to ensure linear response? (b) When
does the assumption of shear homogeneity break down? We will answer (a) in Section 1.2.7 and
defer (b) to Part 2.

(c) (e)

y
: S x
Hié% ;L
o t s 0 1 7
)

Figure 1.1 (a) Depiction of simple shear in three dimensions, showing two parallel surfaces at y = 0 (fixed) and
H (displaced by X over time t). The force F required to hold the bottom surface stationary can be measured to
define shear stress in Eq. (1.6) where X is the total area of the shearing surface. (b) Displacement X of the upper
surface as a function of time at a constant shear rate V/H. (c) Startup shear shown by the step function of V
versus time t. (d) Homogeneous continuous simple shear, produced by either the moving plate at speed V or a
force F on the plate. (e) Step strain realized by the displacement of the moving surface by X over a period of t,
for a gap distance of H, so that y = X/H.



1.2 Linear Responses

1.1.2 Step Strain and Shear Cessation from Steady State

Step strain is the simplest rheological experiment. As shown in Fig. 1.1(e), step strain is a
variation of startup deformation, achieved by terminating the displacement in Fig. 1.1(a) after
a certain amount of strain, y = X/H. This protocol is commonly applied to characterize stress
relaxation behavior after shear cessation of viscoelastic materials, including entangled poly-
meric liquids. Ideally, the step strain should be made to take place instantly. In the experimental
reality, it always takes a finite period given by ¢, = X/V =y/(V/H). How short does ¢, need to be
to avoid molecular relaxation during step strain? How small does y need to be to ensure linear
response? These questions are discussed in more detail in Section 1.2.7. Relaxation from steady
shear is also a valuable protocol, which can be depicted in Fig. 1.1(e) by having X/H>> 1 until
steady state is reached. In summary, step strain tests are most often carried out to learn how
stress relaxation takes place through molecular diffusion (in linear response regime) and how
viscoelastic materials undergo structural changes due to large deformation, to which the entire
Part 3 is devoted.

1.1.3 Dynamic or Oscillatory Shear

Oscillatory shear, also known as dynamic shear, is the most frequently applied method to probe
viscoelasticity, particularly linear viscoelasticity. Instead of displacing the upper plate with a
constant velocity, the top boundary moves according to a sine wave

x(¢) = X, sinwt (1.4a)

with a velocity of v(£) =V, cos wt, where V, = X, w. In other words, the imposed strain y(¢) is a
sinusoidal function of time

Y(t) = vy, sinwt, (1.4b)

where w is the oscillation frequency so that the period T is 2n/w, and vy, is the amplitude of the
oscillatory deformation: y, = X,/H. Assuming homogeneous shear, the time-dependent shear
rate y(t) is simply the time derivative of the right-hand side of Eq. (1.4b):

1(t) = y,w cos wt = 7, cos wt, (1.5)

where the amplitude ¥, is given by the product of v, and w, that is, y, = V,,/H. Here, y, and @
can be varied independently to explore viscoelastic responses.

1.2 Linear Responses

Both ideal elastic solids and viscous liquids are known to exhibit linear response as reviewed in
the following paragraphs. Viscoelastic materials can also show linear responses, which may be
characterized by the Maxwell and Voigt models. While a low magnitude of strain in stepwise
deformation and oscillatory shear ensures linear response, sufficiently low rate of deformation
or oscillation frequency is another way to make sure that the elastic structures remain intact
during continuous or sinusoidal deformation.

Figure 1.1(a—d) explicitly depicts startup deformation in the displacement-controlled mode
of simple shear. A liquid or solid resists the shear so that a finite horizontal force arises along the
X axis. In the present case of simple shear, shear stress o can be defined as the total resistance
force on the bottom surface divided by the surface area

o, = F/%, (1.6)

5
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1 Phenomenological Description of Linear Viscoelasticity

where o, includes the conventional tensorial subscript “xy” to indicate that the force along the
direction of shear, that is, along the X axis, is exerted on a plane whose normal is along the Y
axis. Throughout this book, we will drop the subscript in 6. The unit of stress is force per unit
area, in SI units, N/m?, which is Pascal (Pa), named after French mathematician Blaise Pascal

(1623-1662).

1.2.1 Elastic Hookean Solids

Ideal “perfectly elastic” solids can undergo a finite amount of deformation instantaneously when
a stress ¢ is suddenly applied. At small enough deformations, a linear relationship often exists
between the elastic deformation and the stress o, as studied by Hooke. Let us consider the case
of simple shear as illustrated in Fig. 1.1(a). Hookean solids obey a linear relationship

o(t) = Gy(2), (17)

where G is the elastic modulus. In Fig. 1.2, G is the slope of the inclined straight line. Since
the shear strain y is dimensionless, G has the same dimension as that of stress. Thus, G may be
expressed as energy per unit volume as well as force per unit area.

1.2.2 Viscous Newtonian Liquids

Liquids differ from solids in that deformation can proceed indefinitely. A viscous liquid under-
goes flow instantly, whereas the flow of viscoelastic liquids (polymeric liquids being the primary
example and focus of this book) is preceded by elastic deformation during startup deforma-
tion. Thus, it should be clear at the onset about the difference between flow and deformation.
Throughout this book, deformation means something general, while flow has a very specific
meaning, namely, irrecoverable deformation. In contrast to flow, elastic deformation is recov-
erable: an elastically deformed sample may return to its nondeformed state upon removing the
external stress from the sample.

We begin by considering the simplest case of simple shear in viscous liquids. In terms of
Fig. 1.1(d), Newton discovered for certain liquids such as water and milk that the force F
required to make the upper plate move with velocity V is proportional to V. Since the total F is
also proportional to the total area X of the top surface in Fig. 1.1(a), it is convenient to use the
definition for shear stress given by Eq. (1.6). Newton’s law for viscous liquids relates the shear
stress o to the shear rate y = V/H depicted in Fig. 1.1(d) as

6 =17y (1.8)

Equation (1.8) also gives the basic definition for the viscosity n of liquids. For viscous Newtonian
liquids, n is a constant, and Eq. (1.8) holds true at all times, as shown by the horizontal line in
Fig. 1.2, starting at the moment when the shear is first applied. Newtonian liquids show linear
response, as shown in Eq. (1.8), just as elastic solids show linear response, as shown by Eq. (1.7).

c Viscous liquid Figure 1.2 Sketches of various stress responses (liquid, solid, or
viscoelastic liquid) during startup deformation in the linear response
regime, that is, in the limit of Wi < 1, where the Weissenberg number Wi
Elastoviscous s defined in Section 1.2.7.
= (viscoelastic)
q‘\@\é QO - so\.\d
e




1.2 Linear Responses

Equation (1.8) also explicitly indicates the unit of viscosity: Pa.s. In presenting Eq. (1.8), we
assumed that the velocity field is uniform with a constant gradient as depicted in Fig. 1.1(d).
While true for Newtonian liquids by definition, the assumption that the velocity gradient is a
constant may be wrong for entangled polymeric liquids, except at very low shear rates, which
are conditions to be treated in Section 1.2.7. Part 2 will consider whether the linear velocity
profile of Fig. 1.1(d) remains true under all different shearing conditions in all systems. Section
4.1.1 discusses the assumption of homogeneous shear as a working principle for rheometric
measurements. Chapter 9 shows when this assumption fails.

1.2.3 Viscoelastic Responses

1.2.3.1 Boltzmann Superposition Principle for Linear Response

Equations (1.7) and (1.8) are simplest examples of laws for linear response behavior, where
the stress scales linearly with either strain or strain rate, respectively. By analogy with these
equations, linear viscoelastic behavior can be generically described by applying the Boltzmann
superposition principle, which generalizes the special cases of ideal viscous liquids and elastic
solids. The specific phenomenological model for linear viscoelasticity was developed by James
Clark Maxwell.

For viscoelastic materials, the concept of elastic modulus, for example, G in Eq. (1.7), is gen-
eralized to be time dependent: G() is typically a decreasing function of time ¢. To illustrate
viscoelasticity, let us consider a sudden step strain Ay(z;) made over a vanishingly short period
of At at time ¢,. The sample may deform elastically and resist with a stress increment given by

Ao(t) = G(t — t))Ay(4), for t>t,. (1.9)

Here, the relaxation modulus G(¢) replaces the elastic modulus G that appears in Eq. (1.7). Let
us imagine imposing a series of small step strains Ay(¢;) at times ¢, i=1, 2, ... , n, where £,
can be taken to be the infinite past (—o0) and ¢, defines the present time ¢. Ludwig Boltzmann
(1844-1906) recognized that for linear response the stress o(t) produced by these consecutive
steps of deformation should be additive, leading to'

n t
o(t) = Z G(t — [AY(E)/At)AE = f G(t —t)yyt")dr . (1.10a)
i=1 -0

This formula, known as the Boltzmann superposition principle, offers a general relationship
between the strain history and stress, in the linear response regime, for all viscoelastic materials.
For startup shear at £ =0 with a constant rate ¥, Eq. (1.10a) can be rewritten to show the stress
growth as

GG):Y{CK@dSEYn@) (1.10b)

This stress increase is related to the relaxation modulus through the integration. The curve
labeled “elastoviscous” in Fig. 1.2 illustrates the transition from the initial elastic deformation
to the eventual flow state, a transition that we may call “voluntary yielding.” In the steady state,
the zero-shear viscosity is given by

_ o(o0

o= ——— = | G(s)ds. (1.10¢)
Y 0

It can be noted from Eq. (1.10c) that a viscosity can be given as a product of modulus and time.

7
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1.2.3.2 General Material Functions in Oscillatory Shear

When an oscillatory external deformation, as described by Egs. (1.4b) (1.5), is imposed onto a
viscoelastic material, we can be certain in the linear response regime that the stress should also
be oscillatory, given by

o(t) = oy(w) sin[wt + &(w)] = 7,(G' sinwt + G” cos wi) = G'(w)y(®) + 0 (@)y(@®). (1.11)

Here the introduction of storage and loss moduli G’ = (6,/y,)cos & and G” = (6, /y,)sin 8 arises
naturally. By definition,

tand = G" /G, (1.12a)
and
N'(w) =G (w)/w. (1.12b)

By inserting Eq. (1.6) into Eq. (1.10a), we arrive at generic formulas relating the storage and
loss moduli to the relaxation modulus G(¢):

G () = | G(s) sin(ws)ds (1.13a)
0
and
G'(w) = a)f G(s) cos(ws)ds. (1.13b)
0

These formal relationships imply that G’ and G” provide the same information on the linear vis-
coelastic characteristics of the system that the relaxation modulus G(t) does. According to Eq.
(1.11), the linear stress response to small-amplitude oscillatory shear (SAOS) is a combination
of elastic deformation (the first term) and viscous flow (the second term).

1.2.3.3 Stress Relaxation from Step Strain or Steady-State Shear

Stress relaxation after step strain is one of few elementary experiments to probe viscoelastic
behavior. Upon sudden imposition of a strain y that occurs instantaneously at ¢t =0, that is, as
t, in Fig. 1.1(e) approaches zero, we measure the residual stress o(t) for ¢ > ¢, ~0. When vy is
sufficiently small, linear response behavior is observed, so that for t > 0

o(t) = G(b)y. (1.14)

The magnitude o(¢) of the relaxing stress is linearly proportional to the imposed strain y. The
materials function G(£) is known as the relaxation modulus that first appeared in Eq. (1.10a). In
an ideal experiment, the step strain takes place infinitely quickly. A realistic experiment can only
impose a finite rate of deformation, that is, X/t in Fig. 1.1(e) is finite rather than infinite. If there
is a wide spectrum of relaxation times, then Eq. (1.14) may not hold true because fast relaxation
modes may not contribute to G(¢). Consequently, if there is a broad spectrum of relaxation
times, different (nonideal) relaxation functions Gy (¢) can be found, as though linear response
were lost despite small step strains that do not alter the internal structure of the system. We
will pick up this subtle issue in 1.2.5.2 after the introduction of the generalized Maxwell model
in the following section.

1.2.4 Maxwell Model for Viscoelastic Liquids

Long before synthetic polymeric materials have been around, various natural materials were
known to possess the duality of viscoelasticity. Molten cheese and chocolate can be viscoelastic.
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Figure 1.3 (a) An abstract representation of the Maxwell element, XJ x X
made of a dashpot of viscosity n and spring of modulus G in series. s %
(b) A shear setup made a layer of solid (or liquid) over a layer of n Solid IHS
liquid (or solid) with thickness H,_ and H,, which mimics the .

Maxwell model. A top surface displacement of X is a sum of the G Liquid IH’
displacements x, and x; associated with the liquid and solid layers, (b)

respectively.

(a)

Maxwell (1831-1879) is the first to propose a phenomenological treatment of viscoelastic
phenomena, famously known in the field as Maxwell model. Indeed, a piece of viscoelastic
material can be modeled as an assembly of alternating solid and liquid layers. Conventionally,
we simply assign a spring with Hookean elastic constant G and a dashpot with viscosity n to
depict the Maxwell model,? as shown in Fig. 1.3(a).

Instead of considering a set of spring and dashpot, let us imagine placing a layer of elastic
solid of modulus G on top of a liquid layer of viscosity 1, as shown in Fig. 1.3(b), or vice versa.
Suppose that the upper boundary is displaced with velocity V. Then, the solid layer elastically
deforms according to

o = G(x,/H,), (1.15)
and the liquid layer flows as
o =n(;/H)), (1.16)

because the shear stresses are the same in the two layers. The time derivative of the total dis-
placement X of the upper plate

X() =x,+x (1.17a)

is related to the overall shear rate ¥ as X/H = V/H. Upon differentiating both sides of Egs.
(1.15) and (1.17a), we find by adding both sides of the resulting Egs. (1.15) and (1.16)

6+ 16 =217, (1.18)
where the Maxwell relaxation time 7 is given by
t=1/G, (1.19)

which follows upon setting H, = H, = H/2 so that y = (y, + y,)/2. In a standard exposition of the
Maxwell model, the strain is linearly additive.

Y=Y,+Vp (1.17b)

thatis, X =yH =x,(H/H,) + x,(H/H,) instead of Eq. (1.17a). In this case, the extra factor H/H, =2
would not appear on the right-hand side of Eq. (1.18). A construct analogous to Fig. 1.3(b) can
be made for uniaxial extension. The same extra factor of 2 also shows up. Apart from this numer-
ical discrepancy, construction of Fig. 1.3(b) offers a concrete way to contemplate viscoelasticity
using a combination of purely viscous and purely elastic materials. Here in the Maxwell model,
a relaxation time t naturally emerges from a ratio of viscosity  to modulus G. The Maxwell
model of Eq. (1.18) allows us to depict each of the three tests reviewed in Section 1.1.

1.2.4.1 Stress Relaxation from Step Strain

The Maxwell model allows us to depict the essence of a step strain test of magnitude y = X/H,
which is to evaluate stress relaxation. Since shear ceases at time ¢, as shown in Fig. 1.1(e) in such
a test, we can set the right-hand side of Eq. (1.18) to zero for ¢ > ¢, and solve this most common

9



10

1 Phenomenological Description of Linear Viscoelasticity

differential equation for the initial condition given by

o(0) = Gy(H/H,). (1.20)
The solution is an exponential function:

o(t) = 6(0) exp(—t/t), for ¢>¢,. (1.21a)

The “instantaneous” strain y is imposed on the solid layer during a time scale ¢, < t; for the
liquid layer to suffer the strain y would correspond to emergence of a stress level larger than
6(0) in Eq. (1.20) by a factor of (t/¢,) > 1, which could not feasibly occur. The condition of £, < ©
translates to y/ Wi <« 1, where the dimensionless parameter Wi = yt is the Weissenberg number
(to be formally introduced in Section 1.2.7). As long as y <« 1, the condition for instantaneous
strain can be met for Wi> 1. During the step strain, the liquid layer experiences little flow: the
amount of strain taking place in the liquid layer can be estimated to be y, ~ £, ~y(¢,/T) <,
where use is made of ny, ~ Gy. Defining the relaxation modulus G(t) as shown in Eq. (1.14), we
have, according to Egs. (1.20) and (1.21a),

G(t) = Gexp(—t/7), (1.21b)

whereas the factor of (H/H,) was omitted if we adopt the familiar convention, that is, using Eq.
(1.17b) instead of Eq. (1.17a). Because according to Eq. (1.21a) the stress decreases to zero expo-
nentially, the Maxwell model cannot describe viscoelastic solids. This should also be obvious
from the construction of the model depicted in Fig. 1.3.

1.2.4.2 Startup Deformation

Taking the case of simple shear, according to the Maxwell model, viscoelastic materials must
always initially undergo elastic deformation upon a startup shear for any values of Wi. This can
be demonstrated by equating Eqgs. (1.15) with (1.16) and expressing x, in terms of x; through
Eq. (1.17a) to obtain the following equation for x;:

X, + %, = X(b), (1.22)

which is similar in the form to Eq. (1.18) for o. It is straightforward to solve this elementary
differential equation, given the initial condition x,(¢ =0) =0, which states that the liquid layer
suffers no deformation at t =0. We have

x(t) = X(O{1 + [exp(~t/7) - 11/(t/7)}, (1.23a)

where X(¢) = V¢ as shown in Fig. 1.1(b). It is clear that as long as ¢/t < 1 we have, upon Taylor
expansion, x,;(t) ~ X(£)(¢/27), that is, x;/X ~ £/t < 1, independent of Wi = yt. Numerically, we
see from Fig. 1.4(a) that x, is only 10% of the total displacement x(¢) at £ =0.27. The condition
of x,/x <« 1 implies the lack of flow and dominance of elastic deformation.

Accompanying the initial elastic deformation, stress rises from zero instead of having a finite
value from the onset. It is easy to integrate Eq. (1.18) or to insert Eq. (1.21b) into Eq. (1.10a) and
show both stress growth upon startup and stress relaxation after shear cessation, by setting y(¢)
as y for t <¢, and O for ¢ > ¢;, respectively. Specifically, we have the stress growth given by

6 =0,[1—exp(—t/7)] for t < ¢, (1.23b)
and the stress relaxation given by
o = o {[lexp[—(t — t;)/7] — exp(—t/7)]} for t > ¢, (1.23¢)

where 6, = ny is the steady shear stress. Experiment reveals that many types of viscoelastic liq-
uids, including entangled polymer melts and solutions, show initial elastic response to startup
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Figure 1.4 (a) lllustration of Eq. (1.23a). (b) Maxwell model’s depiction of stress growth and relaxation (dashed
curve) according to Egs. (1.23b) and (1.23c), respectively.

shear, followed by flow at long times. This initial elastic strain y grows with Wi. In the Maxwell
model, the stress ¢ also initially grows with strain as shown by Eq. (1.23b) in Fig. 1.4(b). Thus, the
Maxwell model qualitatively captures the initial rheological response of entangled polymers.
On the other hand, being a model for linear response, the Maxwell model cannot anticipate and
depict how the relation between stress and strain depends on Wi. According to Fig. 1.4(b), the
initial stress growth associated with elastic deformation persists for a strain that is proportional
to Wi. Viscoelastic fluids such as entangled polymers cannot remain elastic for a strain that lin-
early increases with Wi. Thus, the Maxwell model cannot describe fast deformation behavior
at high strains.

The Maxwell model prescribes a smooth transition from elastic deformation to flow for any
value of Wi. Thus, even Maxwell-like materials should show a sign of (voluntary) yielding.
In the steady-shear limit, that is, t/T> 1, the solid component in the Maxwell element of
Fig. 1.3(b) suffers a fixed amount of deformation x,(c0) = X(00) — x;(c0) = V7, corresponding to
6., = G(x,/H,) = (H/H,)G(t}) ~ ny. This depiction is reasonably close to reality for Wi < 1.
But for Wi> 1, there is something missing in the Maxwell model: Rewriting Eq. (1.23b) as
o =GWi[l - exp(—t/7)], we see 6/G becoming Wi at ¢/t >1, that is, o getting much larger
than G for Wi>> 1. This unphysical situation occurs because for Wi>>1 the Maxwell model
is incapable of describing when and how elastic deformation is replaced by irrecoverable
deformation, which is flow. To delineate the nature of the transition from elastic deformation
to flow is the main focal point of this book. In solid mechanics, yielding refers to a material
transitioning from elastic deformation to plastic deformation. If we do not distinguish between
plastic deformation and flow and simply label them as irrecoverable deformation and if we can
extend the concept of yielding to refer to a transition from elastic deformation to irrecoverable
deformation, then we can legitimately use the phrase yielding to speak about the rheological
behavior of any viscoelastic liquids, including entangled polymeric liquids.

1.2.4.3 Oscillatory (Dynamic) Shear

The stress response of an elastic solid to a strain sine wave is also a sine wave, while the stress
response of a viscous liquid to a strain sine wave is a cosine wave. Viscoelastic materials will dis-
play a sinusoidal stress in steady state as indicated in Eq. (1.11), provided that y, is low enough
so that o, is linearly proportional to y,. When the “phase lag” angle § is vanishingly small, we
see a solid-like response. Conversely, when 8 is almost /2, 6(¢) is nearly a cosine function and
therefore in phase with the shear rate of Eq. (1.5), so the sample behaves like a liquid.

11
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The Maxwell model has a specific quantification of how 8(w) and 6,(w) in Eq. (1.11) depend
on . As shown in a standard textbook on viscoelasticity,® Eq. (1.18) can be readily solved using
complex variable notation to obtain the functional forms of 8 and c,,. We may also perform the
analysis in real variables. Inserting Eqgs. (1.5) and (1.11) into Eq. (1.18), we have

oy(w)[sin(wt + 8) + wt cos(wt + 8)] = v,Gwr cos wt, (1.24)

where we ignore the extra factor of H/H, from Eq. (1.18) to conform to the conventions used in
the Maxwell model. Since there cannot be a term proportional to sin w¢ on the left-hand side
of Eq. (1.24), we immediately find, by expanding the sine and cosine functions,

tand = 1/wrt. (1.25)

This equation implies 1 = sin84/1 + (@wt)? and wt = cos d4/1 + (wt)?, which can be, respec-
tively, substituted into the left-hand side of Eq. (1.24) in front of each of the two terms giv-
ing a summation of [sin & sin(wt +3) + cos & cos(wt + d)] = cos wt. This substitution allows us to
determine o as

YoGwt

V1 + (w1)?

where G* = G’ +iG" is known as the complex modulus. According to the second equality of Eq.
(1.11), the storage and loss moduli G’ and G” are simply related to 6, as

G’ = [6,(®)/Y,] cosd = G(wt)*/[1 + (wT)?] (1.27a)

oy(w) = = v,1G", (1.26)

and
G = [64(®)/Y,]sin & = G(wt)/[1 + (w7)*]. (1.27b)

Here, the first equality holds true in general. The second two equalities represent a specific
prediction of the Maxwell model. The specific predictions can also be derived by inserting Eq.
(1.21Db) into the generic expressions Egs. (1.13a) and (1.13b).

Figure 1.5 depicts G’ and G” from Egs. (1.27a) and (1.27b) as functions of w. Depending on
the imposed frequency w, a Maxwellian material may behave like a solid displaying a rubbery
plateau or a liquid showing a negligible G’. Such a material may be truly regarded as a solid
as long as it is being mechanically examined on time scales much shorter than 7. Note that
Eq. (1.11) gives the time-dependent stress in steady state. The initial transient response is not
depicted by Eq. (1.11).

1.2.5 General Features of Viscoelastic Liquids

1.2.5.1 Generalized Maxwell Model

The Maxwell model offers a most useful and simplest phenomenological continuum-level
description of viscoelastic liquids that possess a dominant relaxation time. In reality, a vis-
coelastic liquid may possess more than one elementary relaxation time. A generalized Maxwell

Elastic plateau Figure 1.5 Schematic illustration on double-log of the Maxwell model
description of the storage and loss moduli G’" and G” as a function of the
oscillation frequency w. Forot < 1,G’ ~w? and G ~wand G’ =G" at wt=1.
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model? can be useful to describe linear viscoelastic processes in real systems. In particular, the
storage and loss moduli G’, G” in the generalized Maxwell model have the following forms:

& G (wt,)?

Gw) = 1.28
(@) qZ{ T (wr ) (1.28)
and
" B had annq
G"(w) = Z{ TH o) (1.29)

where {t } gives a spectrum of relaxation times. Conventionally, =1 represents the longest
relaxation time, with shorter time 7, involving a larger number g > 1. Moreover, the relaxation
modulus G(¢) is a summation of exponential functions

G(t) = ) G, exp(~t/1,). (1.30)

q=1

Finally, the Newtonian viscosity n, of a generalized Maxwellian liquid is given by
o= 2. G,T, (1.31)

which can be obtained by inserting Eq. (1.30) into the Boltzmann formula Eq. (1.10a). As we
will see, most molecular models for polymer dynamics also share the same mathematical forms
as given in Egs. (1.28)—(1.31). Since the generalized Maxwell model is a phenomenological
account, it cannot explain the molecular origin of the viscoelastic behavior, for example, it can-
not determine how t, may depend on the chain length or molecular weight and how it varies
with the mode index g and where the elasticity arises from.

1.2.5.2 Lack of Linear Response in Small Step Strain: A Dilemma

In realistic experiments, it takes a finite time to produce a step strain of magnitude y,. During £,
fast relaxation modes compete with the imposed straining. The shorter the duration ¢, the less
relaxation of the fast modes can take place. Step strain in real experiments amounts to shearing
a sample for a very short time ¢, at high rate ¥ to a magnitude of y = ¢, before shear cessation
at t =0. Inserting this step strain condition and Eq. (1.30) into Eq. (1.10a), we have

o(t) = yz Gz, 1 - exp(—to/'cq)] exp(—t/’cq), for t > 0. (1.32)
g=1

Thus, the relaxation modulus Gy; under the nonideal but realistic step strain condition follows
from Eq. (1.32)

Gi(t,79) = o()/7t, = 2 G, exp(=t/7t,)f (/T (1.33)
gq=1

where the function f(x) = (1 — e™)/x decreases monotonically from unity at x =0 toward zero.
Equation (1.33) differs from the ideal relaxation modulus G(¢) of Eq. (1.30) and is an explicit
function of £y/t,. When t,/7, is not vanishingly small, the higher relaxation mode g makes
a smaller contribution to the overall stress relaxation because f is unity only in the limit of
ty/t; =1/(7,) < 1. In other words, Gy, approaches Eq. (1.30) only when ¢,/t, <1 for all
the contributing modes indexed by g. Thus, when the relaxation dynamics are dictated by a
series of time scales, Gy, obtained from small step-strain with y < 1, is explicitly dependent on
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