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Foreword

My book review on “ICME for Metals by Mark F. Horstemeyer” was published
in the Journal of Materials and Manufacturing Processes. In this review, I had
critiqued on two gaps seen in this first book on ICME; first, the inability to clear
confusion on what exactly ICME is and second, lack of direction for industrial
application of ICME. Soon after the publication of this review, I received an
email from Professor Horstemeyer on accepting these gaps. He also committed
to close these gaps through a second book on ICME that would majorly focus on
industrial applications. Considering that Professor Mark F. Horstemeyer is one
of the most prolific authors of our generation in the area of multiscale modeling
in materials engineering, this email was one of the most humbling experiences
for me along with a role-model behavior witnessed in handling critique toward
our technical contributions.

True to his commitment, the second book on “ICME: Industrial Applica-
tions” focuses entirely on removing the mist from the fuzzy area of ICME and
provides step-by-step guidance on its industrial application. The first chapter
intriguingly starts from “What ICME is Not” to stop any modeling and simula-
tion work in the broad area of materials engineering being presented in the garb
of ICME. Furthermore, it provides necessary conditions to qualify a work as
ICME along with its current industrial status. In the initial chapters, the frame-
work for vertical bridging between electronic and atomic length scales have
been revisited with example from one of the most significant industrial mate-
rials, that is, iron–carbon alloys. However, the real intent of making this book
a ready reckoner on ICME for industrial users is evident in chapters on heat
treatment and powder metallurgy. For example, the chapter on heat treatment
and fatigue of a carburized and quench hardened steel part not only provides a
modeling framework but also gives prescriptive step-by-step guidance on the
experiments needed for validation of the modeling framework. The importance
of experimental validation for a successful industrial realization of any mod-
eling framework is well highlighted in this chapter. Likewise, the nuances of
horizontal bridging between compaction and sintering simulations have been
well described in the powder metallurgy chapter along with a very detailed
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flow chart for construction on master sintering curve. These details make this
book a one-stop source for thoroughly understanding and implementing the
ICME approach in an industrial scenario. The chapter on internal state variable
approach with use case on cast magnesium cradle for automotive application
was another good refresher on the core concept of ICME having simultane-
ous optimization of design, manufacturing, and material considerations. This
chapter also provides practical example of how prediction of failure location
can be misleading without simultaneous consideration of defect location as well
as peak stress location.

I strongly recommend this book to industry practitioners in order to get an
illustrative but deeper insight in the exciting and evolving field of ICME. This
book is intended for industrial realization and value creation through optimal
design, accelerated product development, and reduced cost. Furthermore, this
book also provides a good example of much needed graduate level books with
industrial perspective, which would bridge the ever-growing gap between aca-
demic research and industrial realization.

Satyam Sahay, PhD
John Deere Fellow – Materials Engineering
Fellow of ASM International and Indian Institute of Metals
John Deere Technology Center India, Pune, India
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Preface

In the first book on Integrated Computational Materials Engineering
(ICME) (Horstemeyer, 2012), I covered the basic fundamentals of multiscale
modeling and history modeling that included the integration of process–
structure–property–performance. I also covered the different perspectives
and necessary interdisciplinary requirements for ICME to work in industry or
research institutions, including those from solid mechanics, materials science,
numerical methods, physics, mathematics, and design. In this book, several
authors present examples of employing ICME in real engineering problems,
demonstrating the bridging of information between different length scales
and between different materials processing and/or in-service performance
environments. In another book Data Intensive Science (2013), I wrote about
“Materials of the Future: From Business Suits to Space Suits,” basically how
ICME could affect the future of materials generation in the context of President
Obama’s Material Genome Initiative announced on June 24, 2011, but in the
context of so-called “Big Data.”

After the first book on ICME (Horstemeyer, 2012), different documents came
out that helped to bring momentum to the community. The Minerals, Met-
als, and Materials Society (TMS) sponsored a report (Allison et al., 2012) that
very nicely laid out practical steps for industry to employ ICME methodologies.
The encouragement is to change the paradigm in industry to embrace ICME
methodologies in order to make parts optimized by reducing time, reducing
cost, saving weight, and increasing in-service life cycle performance. As such,
this book is an endeavor to illustrate some ICME methodologies for practi-
cal engineering case studies. The community has a long way to go, but hope-
fully these cases presented herein will demonstrate to the reader that the risk
involved in moving toward an ICME paradigm is not really that large. In fact,
the benefits will typically outweigh the risk.

These case studies will also help clarify what ICME really is. In the community
there are some misunderstandings that need clarification as ICME continues to
grow in influence. In the first ICME book (Horstemeyer, 2012), I gave a history
of the different disciplines (materials science, applied mechanics, numerical
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methods, physics, mathematics, and design) that have come together to form
the notion of ICME. There have been two independent ICME conferences to
date and several symposia sponsored by TMS recently. These events indicate
that ICME is growing in momentum; however, since practical examples have
not been forthcoming in rampant numbers, this book is warranted.

Besides the introduction, there are three main sections in the book. The first
section addresses what is called “Horizontal ICME” addressing case studies
that connected the process–structure–property–performance sequence.
The materials processing examples here are related to casting, rolling, com-
paction/sintering of powder metals, heat treating, and tube processing. The
second section addresses what is called “Vertical ICME,” which is related to
multiscale materials modeling. Although there is a bit of multiscale modeling
in the first section examples, the case studies in the second section still
quantify structure–property relationships but are focused on different length
scale bridging. The third section is related to Education. The ICME course
has been taught three times at Mississippi State University (MSU) for in class
students and for distance learning students. The last course taught in 2014
was taught to not only MSU students and random distance students but also
to graduate students at Louisiana State University (LSU) with a co-instructor
being Dr. Bill Shelton. For the reader, the course is available to anyone via
a distance learning venue, and the book on for the course is the first ICME
(Horstemeyer, 2012) book.

I want to thank the different authors and colleagues who have contributed
to this particular book. These authors are at the forefront of ICME today, so
their insights and examples can help the community at-large to understand and
appreciate much more the different aspects of ICME. Also, I certainly do not
want to offend some who have used ICME concepts in either Vertical ICME or
Horizontal ICME projects and are not mentioned in this book. If you keep using
the ICME concepts, your reward will be much greater than having a chapter in
this book, for sure.

I would also like to thank by dear wife, Barbara, who has been supporting
me so much in all of my work endeavors. My administrative assistant at work
is Rose Mary Dill who, if you have met, will always be remembered by her
smile and her encouraging words. If you have not met Rose Mary, it is too bad,
because she is someone special. She has covered my errors, softened my harsh-
ness, and has added excellence to all my work. I must also recognize all of my
students, post-doctoral researchers, and research staff at CAVS at MSU. In par-
ticular, I wanted to thank Justin Hughes, Shane Brauer, and Kyle Johnson for
their helping with editing of the text. Without these folks all buying into the
ICME message and doing the work, my success would be minimized. I have
truly stood on the shoulders of giants as Isaac Newton once stated. The giants
in my life are those I just mentioned.



Preface xxxi

Finally, I would like to challenge the community at-large to be willing to try
ICME concepts in their businesses. The ICME return-on-investment (ROI) is
usually between three and seven times in my experiences, when these ROI
numbers were determined from immediate returns. The longer term returns
are not included in the numbers that I have shared, so they are probably larger.
I suspect that others have ICME examples that have a greater ROI than seven
times. Regardless, the diffusion of this technology will grow as more successes
are realized as demonstrated in this book.

Mark F. Horstemeyer, PhD
Giles Distinguished Professor and CAVS Chair Professor
Fellows in ASME, ASM, SAE, and AAAS
Mechanical Engineering
Mississippi State University
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What is ICME? As some confusion exists regarding its definition in the
scientific community, deliberating on this topic is worthwhile. In fact, litigating
on some of the terms needs attention so that redundancies related to other
fields, pedagogical lapses in education, misunderstandings of researchers who
are trying to garner funding, and minimal use of integrated computational
materials engineering (ICME) in industry can be decreased. First, let us
consider what is not ICME.

1.1 What ICME Is NOT

1.1.1 Adding Defects into a Mechanical Theory

ICME is not just adding material defects into a mechanical theoretical model.
Nabarro (1952) placed the notion of dislocations into mechanics equations just
to name a few. Hall (1951) and Petch (1953) added grain size effects to the stress
state relationship. Eshelby (1957, 1959) described how to analytically place
inclusions into a medium to determine the aggregate response, which was the
basis for most, if not all, of the microscale and mesoscale homogenization
theories that have been used today for metals, composites, and ceramics. This
list is not exhaustive by any means but illustrates that adding defects into a
continuum theory has been around quite a long time. As such, if ICME is
“new,” then adding different scales of defects into a mechanical theory is not
ICME. It is necessary for ICME but not sufficient within itself.

Integrated Computational Materials Engineering (ICME) for Metals: Concepts and Case Studies, First Edition.
Edited by Mark F. Horstemeyer.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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1.1.2 Adding Microstructures to Finite Element Analysis (FEA)

Dawson (1987) and Beaudoin et al. (1994) included crystalline texture into
FEA under large deformations. Later, Ghosh et al. (1995) put different length
scale microstructures into finite element meshes and solved large deformation
problems. At the same time, Fish and Belsky (1995) allowed heterogeneous
microstructures into a finite element formalism. Again, this list is not exhaus-
tive just illustrative that adding microstructures into finite element analysis
(FEA) existed before ICME. Hence, just adding microstructural heterogeneities
is not ICME per se, but can be a part of ICME if other simulations are included
beyond those of the particular microstructure sensitive FEA.

1.1.3 Comparing Modeling Results to Structure–Property
Experimental Results

Frankly speaking, this topic should not be included in here because it is so
clear to many; however, I have observed in symposia and large conferences on
ICME, this issue arises from different researchers’ presentations. Although the
essence of the scientific method started before Bacon (1605), it was formalized
into the fundamental steps that we all know today: (1) Make an observation;
(2) form a hypothesis; (3) design and conduct an experiment to falsify the
hypothesis; if the hypothesis is not falsified, it becomes a theory; and (4) design
more experiments to validate the theory after which the theory becomes
a law when not invalidated. The most basic form of the scientific method
is what is presented when a researcher compares modeling (hypothesis) to
structure–property relationships (experiments), not ICME. Applying the
scientific method to ICME is indeed important and is a necessary requirement
for ICME to be realized; however, the scientific method is not ICME just a
necessary part of it.

1.1.4 Computational Materials

Researchers in computational materials started much earlier than ICME.
With the advent of large-scale computers (Cray for example) in the 1980s,
atomistic simulations were tractable in trying to understand mechanisms
related to mechanical properties. Daw and Baskes (1984) embedded atom
method (EAM) and Baskes (1992) modified embedded atom method (MEAM)
potentials allowed for the burgeoning of computational materials to proliferate
at the time. At the same time, electronics structures calculations (a length scale
lower than that in Baskes et al. work) were employing large-scale computing
environments to provide understanding of energies and some defects in
materials. Yip’s (2005) fairly recent Handbook of Materials Modeling is an
excellent resource in the state-of-the-art computational materials methods.
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Yip and his coauthors (2005) broke down the computational materials aspects
into electronic-scale calculations, atomistic-scale calculations, mesoscale
calculations, and continuum-scale calculations focusing on areas such as rate
effects, crystal defects, microstructures, fluids, and polymers. This book rep-
resents the truest sense of computational materials, but it is not ICME. Why?
Because nothing is integrated and no engineering exists in computational
materials; computational materials is typically limited to science (the discovery
of what exists). As such, computational materials is a necessary ingredient to
ICME but not sufficient to represent ICME.

1.1.5 Design Materials for Manufacturing
(Process–Structure–Property Relationships)

ICME is not just designing materials using process–structure–property
relationships. Designing materials for manufacturing and in-service life
initiated in the 1980s when computer aided design (CAD) and computer
aided manufacturing (CAM) were first exploded on the scene. Terms
such as “Virtual Manufacturing,” “Simulation-Based Design,” “Virtual
Prototyping” have become common vernacular now in the design industry.
Granted, most of these emphases did not focus on the “structure” part of the
process–structure–property relationships, but the notion and the attempt were
made mainly from the mechanical engineering discipline. Mathur and Dawson
(1987) correlated the process–structure–property relations of drawing with
the porosity evolution, which, in turn, gave mechanical properties. Shortly
after, Mathur and Dawson (1989) embedded a crystal plasticity theory into
finite element simulations to capture the texture evolution in forming pro-
cesses, which, in turn, yielded different mechanical properties than when the
material was initialized. These examples typify process–structure–property
computing and certainly could be considered computational materials but not
really ICME.

1.1.6 Simulation through the Process Chain

In many of the ICME workshops and conferences, simulation across the process
chain has been presented as an ICME example. For example, simulations of
several unit processing of a steel mill (e.g., LD furnace, ladle refining, tundish,
continuous casting) are simulated by linking the output of the preceding step to
the input of next step. These modeling studies are extremely complex and very
important in understanding the interactions and impact of different stages on
the final product quality. Nevertheless, these are not valid ICME examples as
such cases have limited focus and integration on the design aspect of ICME
as well as misses on the life-cycle analysis. Furthermore, these examples have
existed in literature before the ICME framework was created.
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1.2 What ICME Is

1.2.1 Background

Olson (1998, 2000) was one of the first from the materials science
community who articulated what researchers were trying to realize in
the process–structure–property relationships. The National Academy of
Engineering (NAE) (2008) and The Minerals, Metals, and Materials Society
(TMS) reports (2012), although very helpful and useful, picked up on the
process–structure–property relationships from that of Olson (1998, 2000). The
two reports did indeed pick up the “Integration,” “Computational Materials,”
and “Engineering” aspects, but they left out the associated mechanics
aspects of the life-cycle performance. Hence, the process–structure–property
relationships need to be really process–structure–property–performance
relationships as delineated in Horstemeyer (2012, 2013). Including
“performance” in the paradigm is not something new and has been the
focal point of the mechanics communities for years, long before ICME came
into vogue. Even Olson (1998, 2000) and the NAE and TMS reports make a
mention of the mechanics aspects, but they leave it out of the “inner circle”
of information. However, to realize the goals mentioned in the NAE and TMS
reports, the performance evaluation along with multiobjective optimization
that includes uncertainty analysis is required in true ICME fashion. Figure 1.1
illustrates the fact that the performance requirements need to be thought of
first, before starting the ICME simulations (i.e., the notion of starting with the
end in mind).

All of these aforementioned ideas by themselves are just necessary conditions
but not sufficient for ICME. It is the “Integration” and the “Engineering” of all
of the previous points that make ICME true ICME. Some have claimed that
ICME is a misnomer:

1. It could be called ICMSE, because “science” needs to be included.
Science is the discovery of what exists, and certainly discovery of new
structure–property relations at different length scales will be crucial to
engineer new materials and structures.

2. It could also be called ICMME, because “mechanics” needs to be in the name
just as much as the other terms. Again, this is true to an extent.

3. It could also be called ICM3E, because “mechanics” and “manufacturing”
should be included. Again, this is true.

One could unquestionably argue that ICME is probably not the best acronym
to describe what is really going on; in any case, we will stick to it since any term
that is used would include imperfections. However, we will more clearly define
ICME through a series of case studies focused on bridging between length
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Constraints

Temperatures 

Strain rates Stress states

Chemical
environments

Performance Design variables

Yield strength Corrosion resistance

Ductility

Hardness

Fracture toughness

Ultimate strength

Stiffness Impact resistance
Mass/volume of material Fatigue

Creep
Manufacturability Aging Deflections

Cost Energy absorption Plasticity

Internal microstructures

Multiscale materials modeling (ICME)

Creation of novel materials

Materials processing method

Figure 1.1 Schematic illustration of solving the inverse problem where the performance
requirements are examined first and then the creation of new materials is backed out at the
end (Horstemeyer, 2012).

scales (Vertical ICME) or bridging between steps in processing or the in-service
performance life cycle (Horizontal ICME).

1.2.2 ICME Definition

ICME is the bridging of information from two or more experimentally validated
models or simulation codes in which structure–property information passes
from one code to another: (1) for “Horizontal ICME” the simulation codes
connect the sequential materials processes with their associated multiscale
structures to their mechanical properties that can be used in the performance
life-cycle evaluation so the heterogeneities of the multiscale structures and
history are embedded into the simulation codes; (2) “Vertical ICME” the
simulation codes connect the multiple length scale cause-effect relationships
that are heterogeneous in nature and embedded into the simulation codes,
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or (3) for a “Hybrid ICME” in which both Horizontal ICME and Vertical ICME
are integrated.

With this definition, one can allow discrete defects in a mechanical theory,
include microstructures into a finite element code, compare modeling results
to structure–property experimental results, require computational materials
approaches, admit applied mechanics into the heart of the modeling, and
include the process–structure–property relationships.

The case studies in this book have two different types of information passing
in which bridging is required so that information can be passed with necessary
and sufficient conditions. Figure 1.2 illustrates the connection of information
passage via multiple length scales and via the processing and performance life
cycle. The horizontal information passage (Horizontal ICME) is different than
the vertical multiscale modeling information passage (Vertical ICME). Hence,
the figure shows both the “Vertical ICME” and “Horizontal ICME” for one case
study that was discussed in Horstemeyer and Wang (2003).

Although Figure 1.2 shows five different length scales from the nanoscale
to the structural scale, ICME does not need to have that many length

Cradle-to-Grave modeling: stamping example

Material history

Cast Hot

roll
Anneal Cold

roll

Heat

treat

Macroscale

Mesoscale

Microscale

Nanoscale

Stamp Paint Fatigue Age CrashStress 1

Stress 2

Grain 1

Damage 1

Stress 3

Grain 2

Damage 2

Stress 4

Grain 3

Damage 3

Stress 5

Grain 4

Damage 4

Strain 1

Stress 6

Grain 5

Damage 5

Strain 2

Stress 7

Grain 6

Damage 6

Strain 3

Stress 8

Grain 7

Damage 7

Strain 4

Stress 9

Grain 8

Damage 8

Figure 1.2 In order to capture the Cradle-to-Grave history, robust models must be able to
capture various manufacturing and in-service design scenarios (Horstemeyer and Wang,
2003). This example shows that integration of information passage is required for both the
“Horizontal ICME” sequence and the “Vertical ICME” sequence. (See color plate section for the
color representation of this figure.)
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Vertical bridging

effect + uncertainty (defined by higher length scale requirement)

cause + uncertainties (determined by simulations at lower length scale)

Step 4: Simulation at higher length scale

Step 2: Simulation at lower length scale

Step 1: Step 3:

Downscaling

requirements

Upscaling

results

Figure 1.3 “Vertical ICME” bridging between two different length scales of simulations
showing the sequential steps of the ICME methodology.

scales involved. In fact, only two different length scale simulations in which
information is passed can be considered “Vertical ICME.” Figure 1.3 shows the
steps involved in the vertical integration of two different length scales.

Step 1: Downscaling occurs first in which the “effects” or the information that
is needed at the higher length scale is defined.

Step 2: Once the effects are defined, lower length scale modeling and
simulations are conducted in order to garner those effects as simulation
results. At this point, experiments can be used to calibrate and validate the
lower length scale simulation results to ensure that “good” information is
passed back up to the higher length scale simulation.

Step 3: Upscaling the results from the lower length scale simulations can be
straightforward if the foreordained downscaling requirements demanded
specific data for the higher length scale model. If the lower length scale
results are more general and do not directly fit into the higher length
scale model, then engineering judgment is needed to help use the lower
length scale results to calibrate the higher length scale model. Calibrating the
higher length scale model is the goal of upscaling. Sometimes, experimental
data can be used to calibrate a model but if the experimental data is missing,
then the lower length scale simulation results can help calibrate the model.

Step 4: Once model calibration is completed, the higher length scale can then be
validated with an experiment or set of experiments performed at that length
scale. Once validated, the model can be used to predict the behavior for the
next length scale higher or for the final results, whichever is needed.
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Horizontal bridging

Step 1: Downscaling
requirements

Step 3: Upscaling
results

Step 2: 
Process

simulation

Step 4: 
Performance

simulation

effect + uncertainty
(defined by

performance
requirement)

cause + uncertainties
(determined by

processing
simulations)

Figure 1.4 “Horizontal ICME” bridging between two different steps in the
process–performance sequence of simulations showing the sequential steps of the ICME
methodology.

The “Horizontal ICME” case studies in this book did not focus on
the vertical bridging of information but on the horizontal bridging. The
downscaling (downstream is used in manufacturing processing) and upscaling
methodologies are similar to the vertical methodology. Figure 1.4 shows the
example of the “Horizontal ICME.”
Step 1: Downscaling occurs first in which the “effects” or the engineering design

requirements are first defined and passed backward to the previous step in
the process (used as downscaling here).

Step 2: Once the engineering requirements are defined, modeling and simula-
tions in the previous step of the process–structure–property–performance
sequence are conducted. At this point, experiments can be used to calibrate
and validate the simulation results to ensure that “good” information is
passed through to the next sequential simulation.

Step 3: Upscaling the results from the previous simulations is simply to help
calibrate the model for the next simulation down either the processing steps
or the life-cycle performance steps. Initializing the simulations with the pre-
vious information is key to capturing the history effects.

Step 4: Once model calibration is completed, the next step in the simulation
sequence can then be used to predict the behavior either in the next step in
the process or for the final results, whichever is needed.

1.2.3 Uncertainty

Another notion that is presented in each of these case studies is the idea of
uncertainty. Different types of uncertainties can exist in an analysis. A simple
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Reality

Schematic of verification and validation of a simulation

Experiment Simulation

Validation Verification

Experimental data, D Simulation result, S
Comparison error:

E = D – S
Validation uncertainty:

UD = U2
DA + U2

DEXP UVAL = U2
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SN
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Figure 1.5 Uncertainty analysis is useful in bringing robustness to an industrial usage of
ICME. Here, the modeling and simulations need to be validated by examination of an
uncertainty analysis.

way to think about uncertainty is that if one can get 10,000 results from testing,
then the extent of the errors will encompass that of the uncertainty of the
results. Essentially, the errors are the uncertainty. However, we typically never
run 10,000 tensile tests to get one stress–strain curve; we may test 3–5 speci-
mens and sometimes 10 at most. In the case where we conduct just a few tests,
we need to conduct a formal uncertainty analysis in order to bound the results
to ensure the “goodness” of the data transferred to the next higher length scale
if vertical bridging is involved or to the next processing or performance step in
horizontal bridging is involved. Figure 1.5 illustrates that when the uncertainty
of the simulation results are less than those of the experimental results around
a mean value, then “validation” is said to have occurred. Inherent within the
uncertainty analysis is including experiments in which the structure–property
relationships are quantified and used in that particular simulation.

1.2.4 ICME Cyberinfrastructure

Before moving on to the ICME case studies, one more notion needs to be dis-
cussed. A cyberinfrastructure has been started at http://icme.hpc.msstate.edu,
and is described in Chapter 17 of this book in which anyone can learn the mod-
eling and simulation codes at different length scales and garner experimental
data. Furthermore, case studies can be included on the website. Figure 1.6

http://icme.hpc.msstate.edu
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Figure 1.6 The ICME cyberinfrastructure houses repositories for models and codes,
materials characterization data, experimental stress–strain data, and different calibration
tools. Examples of running different codes are also included in a tutorial fashion. (See color
plate section for the color representation of this figure.)

illustrates the different relationships of information that can be placed or
used on the ICME cyberinfrastructure website. One final comment is that the
website is WIKI-based, so anyone who requests an account from the author
can use the site and add their own information, knowledge, and wisdom
as well.

1.3 Industrial Perspective

There are three open questions around ICME, which puzzles most of the
materials engineering leadership in industry:

a. In simple terms, what really is ICME? Hopefully, we have answered it earlier.
If not, we ask the reader to be patient and maybe the case studies will help
clarify it.

b. Can ICME mature to be transitioned to industry and deliver value? We hope
to answer this question for the reader next.

c. In the context of a specific organization, how do we identify opportunities
for ICME? We hope to answer this question next as well.
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Figure 1.7 ICME as the
value creation at the
junction point of design,
materials, and
manufacturing through a
computational
framework.

Materials Design

Manufacturing

ICME – computational, virtual
environment, approach, framework

Value creation
at the junction

point

Outcome – accelerated product
engineering and lower cost

ICME is a computational framework, which integrates design, materials,
and manufacturing during product development and creates value at their
junction point (Figure 1.7). The value creation is an engineering realization
through accelerated development cycle and/or reduced product cost.

The maturity curve of a computational technique is illustrated in Figure 1.8,
where any new method evolves from a research project to a special tool,
framework, design process, and hardware integration. In this progression,
the ease of usage and scalability increase along with the probability of usage
and value creation. A matured framework is an inflection point where the
method transitions from a technology push to a business pull. In the business
pull regime, the technology is matured and its ROI has been established. For
example, FEA software has become an integral part of the product engineering
life cycle and practically every component of a product gets virtually validated
through a commercial FEA code. The method is scalable to every component
of the enterprise and the value is derived from significant reduction in
prototyping and physical testing of individual components. A matured frame-
work, like six-sigma, is at the inflection point, which is scalable, yet needs
special focus for their enhanced usage.

In the technology-push regime, for a special research initiative or special
tool, the onus is on the researchers and technical leadership to identify
appropriate use-cases and demonstrate the effectiveness and value of the
methodology. Currently, ICME is in this technology-push regime, where the
focus should be on maturity of methodology and creation of portfolio of
use-cases demonstrating its effectiveness and value.
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Figure 1.8 Methodology adoption curve in an industry.

During the last seven to eight years, significant enthusiasm has been
centered around ICME, including several symposia and a few conferences.
However, very few specific industrial case-studies have been reported in the
literature. For the long term, several solutions have been envisaged, including
(1) development of an integrated computational platform, which automates
and enables ICME and (2) coupled simulation tools for product development,
which enables design for performance, manufacturing, alloy design, cost, and
sustainability. Although these long-term solutions will provide transforma-
tional platform for product engineering, several near-term opportunities are
available in the ICME space.

The near-term ICME solution invariably includes bootstrapping of existing
methods, tools, and techniques. The key consideration for these opportunities
is to forget the legacy designs, materials, or manufacturing considerations and
relook at the current product engineering cycle as a white-space opportunity.
For example, consider an electronic cooling system (Figure 1.9), which is
conventionally created by machining cylindrical holes as cooling pipes. Newer
techniques of design optimization would enable placement of holes and
their shapes for efficiency improvements. If a new manufacturing technique
like additive manufacturing is adapted for making this cooling system, with
current design considerations, it would primarily result in rapid prototyping.
This would lead to reduction in tools and fixtures, without any significant
disruption in the design. However, in order to realize the full potential of
additive manufacturing, the constraint-free design should be adapted. In
this paradigm, the shape of cylindrical holes can be changed to star-shaped,
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Figure 1.9 (a) Significant value creation by co-adoption of new design, materials and
manufacturing techniques resulting in breakthrough products. (b) For this specific
opportunity, the technology readiness level is higher and the gap is to identify business
opportunities.

which are not feasible through conventional methods. Furthermore, the pipes
can be interconnected for higher efficiency. Finally, the microstructure and
phases can be spatially tailored, which could provide unprecedented efficiency
and thereby significant reduction in the cooling system size. Recently, a few
examples have been created for production of highly complex parts or part
assembly providing unprecedented design simplification or high performance
through additive manufacturing. The technology of additive manufacturing
is mature for such specific engineering realizations of ICME, although the
history modeling of the thermomechanical couplings could still use some
progress. There is need for improving the business readiness (Figure 1.9) and
identifying specific component usage of this particular technology.

Additive manufacturing provides significant opportunities for high-
performance components having complex design, such as hydraulics valves
or nozzles, which are hitherto unconceivable through traditional design and
manufacturing methods. Similarly, any new technology adaption, such as
lightweighting or newer joining techniques such as adhesive bonding have to
be leveraged through simultaneous co-adoption of newer materials, newer
manufacturing methods, and a newer design philosophy. In turn, they provide
significant opportunity for the ICME framework to be leveraged in the
industry.

ICME can be leveraged at multiple scales and multiple processing steps
into the performance regime to efficiently design specific components and
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Figure 1.10 Schematic illustrating the co-adoption of multiscale models that were
experimentally validated within a finite element method (FEM) coupled with a cost analysis,
uncertainty analysis, and multiobjective design optimization analysis can help design new
materials, new structures, and new manufacturing processes.

systems. An integrated framework for traditional materials and manufacturing
has been proposed in Figure 1.10 garnered from Horstemeyer (2012), where
design, processing, and product verification phases are coupled for realizing
an optimal and robust component (Sahay and El-Zein, 2011; Sahay, 2014),
while including uncertainties. In this framework, the design and FEA steps are
coupled along with tooling and process considerations for the optimization
purpose. This coupling significantly reduces the design-FEA iteration cycle
as well as enables the optimal product design. Furthermore, in the ICME
framework, cost and performance have been incorporated for a holistic
design, and the design can be on a new material, or a new shape or even a new
topology. This framework incorporates the multiscale structures (particles,
inclusions, grains, etc.) and associated residual stresses from the process
simulation into the product performance phase. This simple framework
provides opportunities for efficient design of castings, wrought materials,
powder metals, and heat-treated components.

Besides the technology readiness and business readiness, talent availability
in this niche domain is the most significant challenges for adaption of ICME
in industry. There is significant shortage of talent with required skill sets
for this area. The functional silos of design, manufacturing, and materials
engineers with their traditional experience-based expertise would be the major
bottleneck in the scale-up of this technology in the industry. It is imperative to
develop computational-skill-based expertise in the materials, manufacturing,
and design engineering competencies. Furthermore, multifunctional teams
need to be created for this special initiative, where interdisciplinary mindset
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should be nurtured through specific projects in the context of organization.
In general, the required competency levels as well as needed capacity for
the scale-up in most of the organizations are generally low. It would require
at least a decade to nurture this capability in any organization for making
meaningful business impact so patience is needed to justify the investment
and commitments. However, the significant pay-offs and value creation from
this capability would provide speed, differentiation, and significant efficiencies
in product engineering.

1.4 Summary

In summary, there are multiple near-term as well as long-term opportunities
for engineering realization of ICME in the industrial setup. In the long run,
co-adoption of new materials, new structures, new manufacturing techniques,
and new design philosophies is required for breakthrough designs. Further-
more, a formal tool or simulation methods can be developed for automation
and scale-up of ICME in the long term. In the short term, significant value
can be created by incorporating the manufacturing or performance simulation
prediction in the design phase along with cost modeling. This can be achieved
by bootstrapping the currently available tools and techniques. In both
short-term and long-term cases, the focus should be on identifying appropri-
ate use-cases relevant to the specific industry as well as organizational context.
It is imperative to develop this niche capability in an organization by putting a
significant focus on competency development as well as capacity enhancement
by creating a multifunctional team with interdisciplinary mindset. The high
ROI and business impact would justify the organizational investments made
in this emerging area.
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Section I

Body-Centered Cubic Materials

The next section includes Chapters 2–7 associated with just body-centered
cubic (BCC) materials. Most of the chapters here focus on steel alloys address-
ing both horizontal and vertical upscaling and downscaling in the context of
Integrated Computational Materials Engineering (ICME). The figure below
illustrates the atom positions for a BCC metal.

Schematic of a body-centered cubic (BCC) crystal.
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2.1 Introduction

This chapter presents the case study of bridging the two lowest length scales
within the Integrated Computational Materials Engineering (ICME) paradigm,
namely, the electronic and atomic scales, using the case of developing an
interatomic potential for Fe–C alloys. Several other chapters in this book will
use the bridging of information from the electronic to the atomic scale, but
they will not go into the details about the bridge as much as this chapter.

Steel alloys are the most widely used structural materials due to their
abundance, all-purpose applicability, and low cost. The main carbide in steel
alloys is cementite, which forms a precipitate. Cementite has a direct impact
on the mechanical, structural, and thermal properties of steel. Therefore, the
ability to describe and predict the properties of cementite at the nanoscale is
essential in the study and design of new steels. Atomistic simulation methods,
such as molecular dynamics (MD) or Monte Carlo simulations, offer an
efficient and reliable route to investigate nanoscale mechanics pertaining to
cementite in steel alloys. Each of these methods requires accurate interatomic
potentials to find the energy of the system under investigation. However,
first-principles calculations – albeit rigorous and accurate – are incapable
of simulating the large number of atoms required for realistic calculations
due to unreasonable memory and processing time requirements. Given this
limitation the best solution is to use a higher length scale simulation such as
classical MD simulations via interatomic potential models.

Integrated Computational Materials Engineering (ICME) for Metals: Concepts and Case Studies, First Edition.
Edited by Mark F. Horstemeyer.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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Among the spectrum of semiempirical formulations, the modified embedded
atom method (MEAM) originally proposed by Baskes (1992) has been shown
to accurately predict the properties of most crystal structures, such as bcc,
fcc, hcp, and even diatomic gases, in good agreement with experiments or
first-principles calculations. MEAM was extended from the embedded atom
method (EAM) (Daw and Baskes, 1984) to include the directionality of bonds.
In the original MEAM formalism, only the first-nearest neighbor (1NN)
interactions were considered (Baskes, 1992). Lee and Baskes later extended the
original formalism to include the screened second-nearest neighbor (2NN)
interactions (Lee et al., 2001). Further details of the MEAM formalism can be
found in Baskes (1992) and Lee et al. (2001).

One of the commonly used 2NN MEAM potentials for the Fe–C system
developed by Lee (2006) was designed to predict the interactions of interstitial
C atoms with defects, such as vacancies. According to Fang et al. (2012), Lee’s
potential predicts that cementite is stable only up to a temperature of 750 K
(Fang et al., 2012). Experimentally, however, cementite is metastable with a
positive heat of formation (Meschel and Kleppa, 1997) and only decomposes
between 1100 and 1200 K (Callister and Rethwisch, 2007; Henriksson and
Nordlund, 2009). Among recent interatomic potentials (Becquart et al., 2007;
Lau et al., 2007; Hepburn and Ackland, 2008; Ruda et al., 2009; Henriksson
and Nordlund, 2009) for the Fe–C system, EAM potentials by Lau et al. (2007)
and Ruda et al. (2009) and the short-ranged Tersoff–Brenner type analytical
bond order potential (ABOP) by Henriksson and Nordlund (2009) all promise
to predict the properties of cementite reasonably well. In the potentials by Lau
et al. (2007) and Ruda et al. (2009), however, the single-element potential for C
does not predict the properties of both graphite and diamond well. This is due
to the limited ability of EAM to describe the bare C–C interaction correctly
(Duff and Sluiter, 2010). We note that a successful interatomic potential for
an alloy system should not only predict the properties of the alloy correctly,
but it should also predict the properties of the individual alloying elements
in their natural crystal structures accurately. The ABOP by Henriksson and
Nordlund (2009) accurately predicts the properties of cementite as well as Fe
and C; however, ABOPs are not applicable to simulations involving interfaces
and surfaces (Erhart et al., 2006). Furthermore, ABOPs are restricted to 1NN
interactions only (Erhart et al., 2006; Albe et al., 2002).

In this chapter, we develop a 2NN MEAM potential model for the Fe–C
alloy system by optimizing the MEAM parameters to reproduce the structural
and elastic properties of cementite as predicted by density functional theory
(DFT), which is a method to calculate the electronic structures and their
attributes. Our Fe–C alloy potential is based on previously developed 2NN
MEAM potentials for Fe (Lee et al., 2012) and C (Uddin et al., 2010) in their
pure forms. The MEAM potential for C predicts both diamond and graphite



From Electrons to Atoms: Designing an Interatomic Potential for Fe–C Alloys 23

Vertical bridging

Step 4: Atomistic simulations (MEAM): melt and solidification

Step 2: Electronics simulations (DFT)

Step 1:
Downscaling
requirements:
Energy/volume
Elastic moduli

Lattice parameter
Heat of formation

Step 3:
Upscaling

results:
Energy/volume
Elastic moduli

Lattice parameter
Heat of formation

Figure 2.1 Schematic showing the sequence of steps in vertical bridging between the
smallest length scale (electrons) and the next higher length scale (atoms) for examining the
formation of cementite.

as stable structures with nearly degenerate energies. Using the Fe and C
single-element potentials, we obtained the most optimal parameterization
of the alloy potential of Fe–C for the purposes specified by the objective
function that takes into account various properties of Fe–C alloys. We validate
the final MEAM parameterization for cementite by predicting its melting
temperature through MD simulations within a few Kelvin of the experimental
value. Downscaling requires that the MEAM potential receive the following
information for calibration from the DFT results as shown in Figure 2.1: elastic
moduli, energy per unit volume, and the lattice parameter. See Horstemeyer
et al. (2015) for the formal procedure. Once these are calibrated, then one can
validate and optimize the parameters with other characteristics of importance,
that is, heat of formation, generalized stacking faulty energy curves, and so on.

2.2 Methods

In order to perform a MD simulation involving thousands to millions of
atoms, the interactions between atoms have to be described by an interatomic
potential model. In our case, that model is MEAM. In the MEAM formalism,
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the total energy of the system is given by

E =
∑

i
Fi

(∑
i≠j
𝜌i [rij]) + 1

2
∑

ij
𝜑ij [rij] (2.1)

where atom i has j neighboring atoms with rij separation and the pair potential
between atom i and atom j is 𝜑ij (Baskes, 1992). The functional form of MEAM
uses experimental or first-principles data such as cohesive energy and equi-
librium neighbor distance, as well as parameters that are determined through
fitting to the properties such as elastic constants and defect energies obtained
from experiments or first-principles calculations. Therefore, the downscaling
requirements from the atomic level are the material properties needed to
parameterize MEAM. The focus of the current study is cementite, which is a
metastable phase in the Fe–C phase diagram. In order to capture cementite’s
transition temperatures and structures, it is essential that the MEAM potential
can predict a few more phases other than cementite. Therefore, we start out
with Fe and C MEAM potentials that correctly predict their phase stabilities
(see Section 2.3). Then, we use a novel optimization method (described in
Section 2.4) to optimize the Fe–C alloy MEAM parameterization to reproduce
properties of cementite and other Fe–C structures, summarized in Table 2.4.
The properties are prioritized in the order they appear in Table 2.4. The first
receives the highest and the last receives the lowest priority in the form of
weighting factor.

2.2.1 MEAM Calculations

For all atomic-scale simulations described in this chapter, we use MEAM as
implemented in LAMMPS, the classical MD simulation code developed at
Sandia National Laboratories (Plimpton, 1995; Plimpton et al., 2011). Further-
more, we compare the results of our current potential with published potentials
of Ruda et al. (2009), Lee (2006), and Henriksson and Nordlund (2009).

2.2.2 DFT Calculations

Reference material properties needed in the fitting of the MEAM Fe–C poten-
tial such as of single-crystal cementite, hypothetical structures (Fe–C in B1,
L12), and C interstitials (octahedral and tetrahedral) in bcc Fe were calculated
using the first-principles method DFT as implemented in the Vienna Ab initio
Software Package (VASP) (Kresse and Hafner, 1993; Kresse and Furthmüller,
1996). DFT is a first-principles method that is derived from the quantum
mechanical description of materials, which requires no parameterization or
fitting. It is one of the most rigorous first-principles methods used to calculate
material properties. The interaction between valence electrons and positive
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ions shielded by core electrons are represented by Projector Augmented Wave
(PAW) pseudopotentials (Kresse and Joubert, 1999). Electron exchange and
correlation in DFT were treated within the generalized gradient approxima-
tion (Perdew et al., 1996). Brillouin zone sampling was performed using the
Monkhorst–Pack scheme (1976) with a Fermi-level smearing of 0.2 eV applied
using the Methfessel–Paxton method (1989). Geometric optimizations were
carried out using the conjugate gradient minimization method (Kresse and
Hafner, 1993).

2.3 Single-Element Potentials

The single-element MEAM potential parameters used in this work are pre-
sented in Table 2.1. The parameters for Fe are from the MEAM potential
developed by Lee et al. (2012) and the parameters for C are from Uddin
et al. (2010). The single-element MEAM calibration methodology is given in
Horstemeyer et al. (2015) and tutorials are given at http://icme.hpc.msstate
.edu under nanoscale.

2.3.1 Energy versus Volume Curves

Energy variation with respect to volume or nearest neighbor distance is
considered an important test of validity for interatomic potentials. Here, we
present the energy versus volume curves generated by the single-element
potential for Fe and energy versus nearest neighbor distance curves generated
by the single-element potential for C. Figure 2.2 shows the energy versus
volume curve for bcc Fe in comparison with curves generated by DFT cal-
culations as well as by using experimental data. It is well known that DFT
overestimates the cohesive energy (Philipsen and Baerends, 1996). Therefore,
the DFT curve is shifted vertically by a constant amount to the experimental
cohesive energy at the equilibrium volume to aid the comparison of the
curves. Due to overbinding, the DFT’s prediction for the equilibrium volume
is underestimated (Devey and de Leeuw, 2010). Therefore, the DFT curve sits
to the left of the experimental curve. The experimental curve was generated
through Rose’s equation of state (Rose et al., 1984) (Eq. (2.1)) using the exper-
imental bulk modulus, cohesive energy, and atomic volume at equilibrium
listed in Table 2.2. We also tested the stability of Fe in several different crystal
structures including body-centered cubic (bcc), face-centered cubic (fcc),
and hexagonal closed packed (hcp) structures as shown in Figure 2.2. The Fe
MEAM potential correctly predicts that bcc is the most stable structure, as
observed in experiment and by the first-principles methods. MEAM predicts
that fcc and hcp Fe are much closer in energy and have a larger volume than
that calculated from DFT.

http://icme.hpc.msstate.edu
http://icme.hpc.msstate.edu


Table 2.1 Set of the MEAM potential parameters for pure Fe (by Lee et al. (2012)) and C (by Uddin et al. (2010)).

Element Ec re rcut A 𝜶 a3 𝝆0 𝜷 (0) 𝜷 (1) 𝜷 (2) 𝜷 (3) t(0) t(1) t(2) t(3) Cmin Cmax

Fe 4.28 2.469 4.5 0.585 5.027 0.3 1.0 3.8 2.0 0.9 0.0 1.0 −0.8 12.3 2.0 0.68 1.9
C 7.37 1.545 4.5 1.49 4.38 0.0 1.0 4.26 5.0 3.2 3.98 1.0 7.5 1.04 1.01 2.0 2.8

The bcc and diamond lattices are chosen as the reference structures for Fe and C, respectively. See Ref. Baskes (1992); Lee et al. (2001)
for the meaning of each parameter.
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Figure 2.2 Energy versus volume curves for Fe in bcc, fcc, and hcp crystal structures. The
solid curve is constructed from experimental values in Table 2.2. For ease of comparison, the
DFT curves are shifted vertically by a constant amount equal to the difference between
experimental and DFT cohesive energies of Fe in bcc at equilibrium volumes.

The single-element MEAM potential for C predicts both diamond and
graphite to be stable structures. The energy versus nearest neighbor distance
curves for diamond and graphite are shown in Figure 2.3.

The experimental curves were constructed from Rose’s equation of state
(Rose et al., 1984) (Eq. (2.1)) using the experimental bulk modulus, cohesive
energy, and nearest neighbor distance at equilibrium, as listed in Table 2.2.
MEAM predictions for diamond are in good agreement with the experimental
results. MEAM predicts almost degenerate cohesive energies for graphite
and diamond, while DFT predicts graphite to be ∼0.1 eV more stable than
diamond. For graphite, DFT predicts a 1NN distance in good agreement
with experiment, while MEAM predicts a 1NN distance ∼3% greater than
the experimental value. The experimental ratio between lattice parameters
c and a in graphite (hereafter referred to as c/a ratio) is 2.725 (Yin and Cohen,
1984). MEAM optimized the c/a ratio of the graphite structure to 3.35. The
disagreement between experimental and MEAM values for c/a ratio is due
to the incorrect prediction of interlayer interaction of graphite, which is
dominated by van der Waals forces that are not described by the MEAM
potential. However, the dependence of cohesive energy on the c/a ratio is
small. Figure 2.4 shows the change in energy as c is varied while keeping
a at the MEAM optimized value. According to Figure 2.3, the difference
in cohesive energy of graphite between the experimental and MEAM c/a
ratio is ∼4 meV/atom. In constructing the energy versus nearest neighbor
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Table 2.2 Material properties predicted by the single-element MEAM potentials.

Property bcc Fe Diamond Graphite

Ec

B
−4.28(−4.28)a)

175(166−173)b)
−7.37(−7.37 )c)

443(443)c)
−7.369(−7.374)d)

176(286)d)

a 2.86(2.86)b) 3.567(3.567)c) 2.53(2.461)d)

c — — 2.476(6.709)d)

Ω0 11.64(11.70) 5.67(5.67) 11.75(2.80)

Ec is the cohesive energy (eV/atom); a and c are the equilibrium lattice constants (Å);
B is the bulk modulus (GPa); and Ω0 is the equilibrium atomic volume (Å3/atom).
Experimental data are given in parentheses. Experimental values for equilibrium
atomic volume were calculated from the experimental lattice parameter(s).
a) Kittel (1986) as reported by Lee et al. (2012).
b) As reported by Lee et al. (2012).
c) Donohue (1982); McSkimin et al. (1972) as reported by Fahy and Louie (1987).
d) Murnaghan (1944) as reported by Yin and Cohen (1984).
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Figure 2.3 Energy versus nearest neighbor distance curves for C in diamond and graphite.
The solid curve is constructed from experimental values in Table 2.2. For comparison, the
DFT curve is shifted vertically to the experimental cohesive energy at the equilibrium
nearest neighbor distance.

distance curves for graphite, the interplanar distance was scaled with the
lattice constant. The experimental ratio was used in the generation of the
DFT curve, while the MEAM curve was constructed with the predicted
c/a ratio.
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Figure 2.4 Cohesive energy of graphite as a function of the c/a ratio. Energy at zero is set to
the minimum energy predicted by the MEAM potential.

2.3.1.1 Single-Element Material Properties
The cohesive energy, equilibrium lattice constants, and bulk moduli for bcc
Fe, graphite, and diamond were determined by fitting Rose’s equation of state
(Rose et al., 1984) to the energy versus nearest neighbor distance/volume
curves generated by MEAM.

Eu
i = −E0

i

(
1 + a∗ + a3

a∗3

R
/

R0
i

)
e−a∗ (2.2)

a∗ = 𝛼i

(
R
R0

i
− 1

)
(2.3)

𝛼2
i = 9BiΩi

/
E0

i (2.4)

R0
i is the equilibrium nearest neighbor distance, E0

i is the cohesive energy, Bi is
the bulk modulus, Ωi is the equilibrium atomic volume, and a3 is the coefficient
of the cubic term. a3 is set to zero when fitting to energy versus nearest neighbor
distance/volume curves generated by MEAM. The single-element material
properties compared to experimental values are given in Table 2.2.

2.4 Construction of Fe–C Alloy Potential

Table 2.3 lists the parameters in the 2NN MEAM potential for Fe–C
alloy system optimized by following the general framework developed by
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Table 2.3 The optimized
parameters in the 2NN MEAM
potential for Fe–C alloy system.

Parameters Values

Δ 0.002
re 1.92
Rcut 4.5
𝛼 4.75
a3 0.125
𝜌0 (Fe) 1.0
𝜌0 (C) 5.49
Cmax (Fe,Fe,C) 2.8
Cmax (Fe,C,C) 2.8
Cmax (Fe,C,Fe) 2.8
Cmax (C,C,Fe) 2.8
Cmin (Fe,Fe,C) 0.06
Cmin (Fe,C,C) 2.0
Cmin (Fe,C,Fe) 2.0
Cmin (C,C,Fe) 0.5

The triplet (A,B,C) represents the
configuration with C atom in
between A and B atoms. The B1
lattice is chosen as the reference
structure.

Tschopp et al. (2012). The framework consists of two stages. The first stage,
called the global approach (GA), is a coarse refinement of the parameter space
of the MEAM potential, which initializes the MEAM potential parameters
and performs a sensitivity analysis for the parameters. The second stage, called
the local approach (LA), evaluates the sensitive parameters sampling the
parameter space with a stratified sampling method and generates analytical
models for design optimization of the potential.

In the GA stage, a coarse refinement of the parameter space is performed
using a partial set of the properties in the objective function including the heats
of formation of cementite, Fe3 C in L12 structure and FeC in B1 structure, and
the interstitial energies of C in the bcc Fe lattice at octahedral and tetrahedral
positions. The potential parameters were initialized as specified by the MEAM
formulation (Baskes, 1992; Lee et al., 2001). 𝛼 defined by Eq. (2.3) and re
(equilibrium nearest neighbor distance) are determined by the reference
structure properties. For the present case, FeC in the B1 structure is used as
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the reference structure, and the values predicted by DFT are used to set 𝛼 and
re since experimental values are not available for this hypothetical structure.
Parameters 𝛼 and re remain unchanged throughout the optimization process,
since they are defined by the MEAM formulation. Next, a sensitivity analysis
was performed to evaluate the influence of each parameter on the properties.
This step helps identify parameters with the most significant effect on the
selected target properties of the Fe–C system. By identifying the parameters
that have the most influence on the properties of the Fe–C system, we are
able to reduce the number of parameters to be included in the later stages.
For this case, the GA stage identified five parameters – Δ, a3, 𝜌0(C), Cmin(Fe,
Fe, C), and Cmin(C, C, Fe) – to be sufficiently sensitive to be further explored
in the LA stage of the optimization. Parameters that are deemed insensitive
are fixed at the default values recommended in the MEAM formulation. In
addition to identifying the sensitive parameters, the range of sensitivity of
these parameters was determined. The variation of the sensitive parameters
in their most sensitive range can be observed in Figure 2.5. From these plots,
additional information can be extracted. For instance, only the Δ parameter
has an effect on the heat of formation of Fe–C in B1, whereas the heat of
formation of Fe–C in L12 is not as sensitive to Cmin(C–C–Fe) as it is sensitive to
other parameters. The results of the sensitivity analysis suggest the existence
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Figure 2.5 Sensitivity (change in target versus range of sensitivity) of selected properties of
the Fe–C system: Heat of formation (HF) of Fe–C in the B1 (B1 HF) and L12 structure (L12 HF),
HF of cementite (Fe3C HF), interstitial energies of C in bcc Fe in tetrahedral (Eint-tet) and
octahedral positions (Eint-oct).
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of nonlinear correlations between potential parameters that are critical in
interatomic potential construction.

The LA stage of the potential optimization procedure involves sampling
the bounded potential parameter space, generating analytical models that
represent the nonlinear correlations between the potential parameters, and
using an objective function to converge on the required parameterization of
the potential.

A stratified random sampling method known as Latin Hypercube Sampling
(LHS) (McKay et al., 2000) was used to sample the potential parameter space
with 4000 different potential parameter combinations. The set of properties
chosen for the Fe–C system are calculated for each parameter combination.
This is the most computationally intensive step of the potential fitting process.
Figure 2.6 elaborates the relationship between the sensitive potential param-
eters and the target energies by illustrating the evolution of heat of formation
of cementite as a function of the sensitive potential parameters. Multiple data
points are generated for a single value of a specific potential parameter. This
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Figure 2.6 Heat of formation of cementite as a function of (a) density scaling factor 𝜌0,
(b) additional cubic term in the universal energy equation a3, (c) heat of formation of the
reference structure Δ (eV), and angular screening parameters, (d) Cmin(Fe–Fe–C) and
(e) Cmin(C–C–Fe).
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is due to LHS changing the other four parameters for a single value of the
parameter in consideration. According to Figure 2.6(c), the Δ parameter has
a much larger effect on the heat of formation of cementite compared to the
other four parameters. This is true for the other target energies as well. Since
Δ is the heat of formation of the alloy potential reference structure, its effect
on energies is much larger.

Using the data from the parameter space sampling step, analytical models
representing the relationship between potential parameters and the selected
target properties are generated. This is done by fitting higher-order polynomial
regression models to the sampled data. The analytical models represent a
response surface for the sensitive potential parameters. At this stage of the
optimization, an objective function representing all of the relevant properties
of the Fe–C system is introduced. The objective function is constructed by
combining the weighted differences between the MEAM predicted values
and the target values of the chosen properties. Target values are set to exper-
imental values when available or DFT values otherwise. Then, a constrained
nonlinear optimization procedure is used to evaluate the analytical models by
minimizing the objective function.

The properties included in the objective function are the properties of
cementite (equilibrium lattice parameters and volume, heat of formation,
elastic constants, and surface formation energies); properties of Fe3C in L12
structure (heat of formation and equilibrium volume); properties of FeC in
B1 structure (heat of formation, equilibrium volume and elastic constants),
and interstitial defect energies of C in the bcc Fe lattice at octahedral and
tetrahedral positions. The weighting factors of the objective function balance
the trade-offs in potential optimization. The purpose of this work is to model
the properties of cementite while reproducing the Fe–C alloy system properties
to an acceptable accuracy. This is realized by choosing weighting factors in
a way that cementite properties were prioritized first, then the interstitial
defect energies, and then the properties of hypothetical structures B1 and
L12. By varying the weighting factors, the objective function is changed and
the constrained nonlinear optimization procedure can traverse the response
surface represented by the analytical models to obtain a final set of potential
parameters. For each set of weighting factors, a potential is generated. By
using a matrix of weighting factors with the required prioritization of the
target properties, we were able to minimize the objective function and arrive
at the set of optimal potential parameters in Table 2.3. The optimized potential
is then validated by predicting material properties that were not used in the
optimization procedure. We used the melting temperature of cementite to
validate the potential and its prediction is described in Section 2.2. Table 2.4
shows the material properties predicted by the present MEAM potential
compared with DFT/experimental data and the values from other existing
potentials.
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Table 2.4 Comparison of the present MEAM potential with DFT/experimental data and
potentials by Lee (2006), Ruda et al. (2009) and Henriksson and Nordlund (2009).

Properties DFT/Expt MEAM Leea) Rudab) Henrikssonc)

Cementite
ΔH f (eV/atom) 0.01(0.05d)) 0.06 0.02e),−0.015f) 0.18 0.03
Ω0 (Å3/atom) 9.56g)(9.67e)) 9.49 9.5 9.11 9.33

Lattice parameters (Å)
A 5.06g)(5.08h)) 5.05 5.16 5.14 5.09
B 6.70g)(6.73h)) 6.69 6.32 6.52 6.52
C 4.51g)(4.52h)) 4.49 4.66 4.35 4.5

Elastic constants (GPa)
C11 388i) 322 263 363
C22 345i) 232 219 406
C33 322i) 326 247 388
C12 156i) 137 176 181
C23 162i) 118 143 130
C13 164i) 170 146 166
C44 15i) 17 77 91
C55 134i) 103 95 125
C66 134i) 64 123 134

Polycrystalline moduli
B (GPa) 224(174± 6j)) 188 183 234
G (GPa) 72(74k)) 56 69 114
Y (GPa) 194(177l), 196m), 200k)) 153 184 293
𝜈 0.36(0.36k)) 0.36 0.33 0.29

Surface energies (J/m2)
E[001] 2.05n) 2.05 1.96
E[010] 2.26n) 1.8 2
E[100] 2.47n) 2.01 2.34

Interstitial energies (eV) (C in bcc Fe)
ETetrahedral 2.14 1.76 2.08 1.5
Eoctahedral 1.25 1.55 1.81 1.18

Hypothetical structures
ΔH f B1 (eV/atom) 0.53 0.002
Ω0 B1 (Å3/atom) 7.97 7.08 2.49
ΔH f L12 (eV/atom) 0.72 0.66
Ω0 L12 (Å3/atom) 10.27 10.05
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Table 2.4 (Continued)

Properties DFT/Expt MEAM Leea) Rudab) Henrikssonc)

B1 elastic constants (GPa)
C11 601 566 550o)

C12 589 213 228o)

C44 83 145 33o)

ΔH f is the heat of formation, Ω0 is the equilibrium volume, B is polycrystalline bulk modulus, G is
polycrystalline shear modulus, Y is polycrystalline Young’s modulus, and 𝜈 is polycrystalline
Poisson’s ratio.
a) Lee (2006).
b) Ruda et al. (2009).
c) Henriksson and Nordlund (2009).
d) Meschel and Kleppa (1997).
e) Lee (2006).
f ) Fang et al. (2012).
g) Shein et al. (2006).
h) Wood et al. (2004) as cited by Shein et al. (2006).
i) Data of relaxed calculations Jiang et al. (2008).
j) Li et al. (2002).
k) Laszlo and Nolle (1959).
l) Mizubayashi et al. (1999).
m) Umemoto et al. (2001).
n) Chiou (2003).
o) Private communication with B.-J. Lee.

2.5 Structural and Elastic Properties of Cementite

Structural properties of cementite including the equilibrium lattice parameters,
the equilibrium volume per atom, and the heat of formation are presented
in Table 2.4 with comparison to DFT/experiment and other interatomic
potentials. Our prediction of the heat of formation of cementite is in good
agreement with DFT and experimental data. Lee’s and Henriksson’s potentials
also predict values in good agreement with DFT and experiment, while
Ruda’s potential predicts a much larger value. Lattice constants of the present
MEAM and literature potentials (Lee, 2006; Ruda et al., 2009; Henriksson and
Nordlund, 2009) agree well with experiment, while DFT predicts lower values.

To verify the results, the variation of cohesive energy with volume was
calculated. Figure 2.7 compares the energy versus volume curves for cementite
generated by the present MEAM potential with DFT and experimental
curves. During volume variation of cementite, the ratios among a, b, and c
lattice parameters were held constant. As noted before, DFT overestimates
the cohesive energy and underestimates the equilibrium volume. Therefore,
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Figure 2.7 Comparison of energy versus volume curves for cementite. The dashed-line
curve is constructed from experimental values of the cohesive energy, equilibrium volume
and polycrystalline bulk modulus, of cementite. For comparison, the DFT curve is shifted
vertically to the experimental cohesive energy at the equilibrium volume.

the DFT curve sits to the left of the experimental curve, and it is shifted
vertically to the experimental cohesive energy at the equilibrium volume to
aid the comparison. The experimental curve was generated by Murnaghan’s
equation of state (Murnaghan, 1944, 1967)

E(V ) = E(V0) +
B0V

B′
0(B

′
0 − 1)

×

[
B′

0

(
1 −

V0

V

)
+
(V0

B′
0

)B′
0

− 1

]
(2.5)

with the experimental bulk modulus B0 (Li et al., 2002), its derivative B′
0 (Li

et al., 2002), volume V 0 (Umemoto et al., 2001), and cohesive energy E(V 0)
(Meschel and Kleppa, 1997). The experimental single-crystal bulk modulus
of cementite has not yet been determined; therefore, the polycrystalline bulk
modulus of cementite was used to generate the experimental curve.

2.5.1 Single-Crystal Elastic Properties

The elastic moduli of cementite were calculated and compared to DFT and
the interatomic potentials by Ruda et al. (2009), and Henriksson and Nord-
lund (2009) as presented in Table 2.4. They were calculated using the defor-
mation matrix presented in Jiang et al. (2008). In linear elastic theory, defor-
mation energy is a function of strain. Distortion energies (ΔE) calculated for
strains (𝛿) equal to ±0.5% were fitted to ΔE = k2𝛿

2 + k3𝛿
3. DFT calculations
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were performed for 𝛿 =±2% (Jiang et al., 2008). The single-crystal elastic con-
stants were obtained using the relationships for the quadratic coefficient k2
listed in Jiang et al. (2008). These results show that the present MEAM poten-
tial for Fe–C alloy predicts cementite to be stable (positive elastic constants)
and their values are reasonably close to those predicted by DFT. Specifically,
the present MEAM potential reproduces the low value of C44 reported by DFT,
which none of the other interatomic potentials were able to do (MEAM C44 of
17 GPa versus DFT C44 15 GPa).

2.5.2 Polycrystalline Elastic Properties

The theoretical upper and lower bounds for the polycrystalline bulk modulus
(B) and shear modulus (G) were calculated using the single-crystal elastic
constants according to methods by Reuss and Voigt (Panda and Chandran,
2006; Jiang et al., 2008). The polycrystalline B and G were then estimated using
Hill’s average (Hill, 1952; Jiang et al., 2008). Young’s modulus (Y ) and Poisson’s
ratio (𝜈) were calculated by using (Jiang et al., 2008).

Y = 9BG
/
[3B + G] (2.6)

v = [3B
/

2 − G]
/
[3B + G] (2.7)

Polycrystalline elastic moduli predicted by the present MEAM potential are
presented in Table 2.4, in comparison with DFT, experiment, and interatomic
potentials by Ruda et al. (2009) and Henriksson and Nordlund (2009). The
elastic constants predicted by DFT are in good agreement with experiment.
The present MEAM potential gives the best agreement with experiment
among the three interatomic potentials for B and 𝜈; the present MEAM
predicts the 𝜈 value equal to the experimental value. Ruda’s potential predicts
the best agreement with experiment for G and Y .

2.5.3 Surface Energies

Calculations were performed on [001], [010], and [100] surfaces to determine
the surface formation energy. Table 2.4 compares the surface formation
energies of the present MEAM to DFT (Chiou, 2003) and the interatomic
potential by Ruda et al. (2009). The atoms near the surfaces are fully relaxed
to allow reconstruction if necessary. The predicted surface energies have the
same order of magnitude as DFT results. However, the present MEAM results
give a wrong order of stability among the three surfaces. Although this minor
shortcoming could cause the present MEAM potential to predict incorrect
distributions of surface orientations for cementite clusters, it would not affect
the efficacy of the present MEAM potential as its main purpose is to predict
the correct bulk properties of Fe–C alloys.
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2.5.4 Interstitial Energies

The interstitial point defect formation energy Eint is given by

Eint
f = Etot[N + A] − Etot[N] − 𝜀A (2.8)

where the total energy of a system with N (Fe or C) atoms is Etot[N] and
Etot[N + A] is the total energy of a system with N atoms plus the inserted atom
A (Fe or C), and 𝜀A is the total energy per atom of type A in its most stable
bulk structure. In this case, we considered interstitial defects of C atoms in
a Fe bcc lattice. Interstitial defect formation energies of C at the octahedral
and tetrahedral positions of the Fe bcc lattice were calculated. The results
are presented in Table 2.4 with comparison to DFT results, and to other
interatomic potentials. The present MEAM potential predicts the octahedral
defect to be the most stable in agreement with DFT results. However, the
difference between two defect energies is smaller compared to that of DFT.

2.6 Properties of Hypothetical Crystal Structures

The heat of formation of Fe–C in B1 crystal structure and L12 crystal structure
as well as their equilibrium volumes are also presented in Table 2.4. The heat of
formation of B1 is unusually low compared to DFT results. B1 is the reference
structure of the Fe–C alloy potential and its heat of formation is defined by
the Δ parameter of the potential. The Δ parameter also has a large effect on
the heat of formation of cementite and thereby to its structural and elastic
properties. Heats of formation of B1 and L12 are used as target properties
in the GA stage of the potential construction process. However the heats of
formation of these two structures are weighted far less in the construction of
the objective function for obtaining the final potential parameters as compared
to properties of cementite. This caused the Δ parameter to have a low value to
reproduce overall cementite properties with greater accuracy. This should not
pose a serious problem since B1 is a hypothetical structure for Fe–C and does
not naturally occur.

2.6.1 Energy versus Volume Curves for B1 and L12 Structures

The cohesive energy of Fe–C in the B1 and L12 crystal structures as a function
of the atomic volume is shown in Figures 2.8 and 2.9, respectively. For the
B1 structure, the present MEAM potential predicts an atomic volume ∼11%
less and a bulk modulus ∼0.3% less than DFT. The MEAM prediction for the
L12 structure gives an atomic volume ∼11% greater, and a bulk modulus 35%
less than DFT. As mentioned earlier, DFT overestimates the cohesive energy.
Therefore, to aid the comparison in these figures, the DFT curves are shifted


