METAL CHALCOGENIDE NANOSTRUCTURES FOR RENEWABLE

ENERGY APPLICATIONS

Edited by Ahsanulhaq Qurashi

Metal Chalcogenide Nanostructures for Renewable Energy Applications

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener(martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Metal Chalcogenide Nanostructures for Renewable Energy Applications

Edited by
Ahsanulhaq Qurashi

Copyright © 2015 by Scrivener Publishing LLC. All rights reserved.

Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

For more information about Scrivener products please visit www.scrivenerpublishing.com.

Cover design by Russell Richardson

Library of Congress Cataloging-in-Publication Data:

ISBN 978-1-118-23791-5

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Pı	reface		xi	
Pa	art 1:	RENEWABLE ENERGY CONVERSION SYS	TEMS	
1	1 Introduction: An Overview of Metal Chalcogenide Nanostructur			
	for R	enewable Energy Applications	3	
Ahsanulhaq Qurashi				
	1.1	Introduction	3	
	1.2	Metal Chalcogenide Nanostructures	7	
	1.3	Growth of Metal Chalcogenide Nanostructures	8	
	1.4	Applications of Metal Chalcogenide Nanostructures	16	
	1.5	Summary and Future Perspective	18	
	Refe	rences	18	
2	Rene	wable Energy and Materials	23	
	Mul	aammad Asif		
	2.1	Global Energy Scenario	23	
	2.2	Role of Renewable Energy in Sustainable		
		Energy Future	25	
	2.3	Importance of Materials Role in		
		Renewable Energy	27	
	Refe	rences	30	
3	Susta	inable Feed Stock and Energy Futures	33	
	H. Idriss			
	3.1	Introduction	33	
	3.2	Discussion	34	
		3.2.1 Nuclear Technology	35	
		3.2.2 Solar Energy	36	
		3.2.3 Hydrogen by Water Splitting	38	
	Refe	rences	41	

Part 2: SYNTHESIS OF METAL CHALCOGENIDE NANOSTRUCTURES

4	Meta	l-Selenide Nanostructures: Growth and Properties	45		
	Ran	ıin Yousefi			
	4.1	Introduction	45		
	4.2	Growth and Properties of Different Groups of			
		Metal-Selenide Nanostructures	48		
		4.2.1 Metal Selenides from II–VI Semiconductors	48		
		4.2.2 ZnSe	48		
		4.2.3 CdSe	54		
		4.2.4 HgSe	57		
	4.3	Metal Selenides from III-VI Semiconductors	57		
		4.3.1 In_2Se_3	58		
	4.4	Metal Selenides from IV-VI Semiconductors	61		
		4.4.1 SnSe	61		
		4.4.1 PbSe	62		
	4.5	Metal Selenides from V–VI Semiconductors	66		
		4.5.1 Sb_2Se_3	66		
		4.5.2 Bi_2Se_3	68		
	4.6	Metal Selenides from Transition Metal (TM)	69		
		4.6.1 Copper Selenide (CuSe, Cu_3Se_2)	70		
		4.6.2 Iron Selenide ($FeSe_2$, $FeSe$)	71		
		4.6.3 $MoSe_2$	72		
		4.6.3 WSe ₂	74		
	4.7	Ternary Metal-Selenide Compounds	75		
		4.7.1 CuInSe ₂ (Copper Indium Diselenide)	75		
		4.7.2 CdSSe	76		
		4.7.3 CdZnSe	77		
	4.8	Summary and Future Outlook	78		
Acknowledgment			79		
	Refe	rences	79		
5	Grov	th Mechanism and Surface Functionalization			
	of M	etal Chalcogenides Nanostructures	83		
	Muhammad Nawaz Tahir, Jugal Kishore Sahoo, Faegheh				
	Hoshyargar, Wolfgang Tremel				
	5.1	5.1 Introduction			
		5.1.2 Structure of Layered Transition Metal			
		Chalcogenides (LTMCs)	87		

5.2	Synthetic Methods for Layered Metal Chalcogenides			
	5.2.1	Laser Ablation	89	
	5.2.2	Arc Discharge	90	
	5.2.3	Microwave-Induced Plasma	90	
	5.2.4	Electron Beam Irradiation	90	
	5.2.5	Spray Pyrolysis	91	
	5.2.6	Sulfidization with H ₂ S	91	
	5.2.7	Hydrothermal	91	
	5.2.8	Metal Organic Chemical Vapor Deposition		
		(MOCVD) Technique	91	
	5.2.9	Vapor–Liquid–Solid (VLS) Growth	94	
	5.2.10	Oxide-to-Sulfide Conversion	95	
	5.2.11	Hot-Injection Solution Synthesis	98	
	5.2.12	Liquid Exfoliation	99	
5.3	Surfac	e Functionalization of Layered Metal		
	Dichal	cogenide Nanostructures	102	
	5.3.1	Surface Functionalization Based on		
		Polymeric Ligands	102	
	5.3.2	Surface Functionalization Based on		
		Pearson Hardness	107	
	5.3.3	Surface Functionalization of Metal		
		Chalcogenides by Silane	110	
5.4	Applic	ations of Inorganic Nanotubes and Fullerenes	110	
	5.4.1	Energy	111	
Refe	rences		113	
Opti	cal and	Structural Properties of Metal Chalcogenide		
Semi	conduc	tor Nanostructures	123	
Ihsa	n-ul-H	aa Toor and Shafiaue Khan		
6.1	Optica	l Properties of Metal Chalcogenides Semiconductor		
0.1	Nanos	tructures	124	
	6.1.2	Metal Chalcogenide Nanocrystals	126	
6.2	Structu	ural Properties and Defects of Metal Chalcogenide		
0.2	Semico	onductor Nanostructures	133	
Refe	rences		142	
Struc	tural ar	nd Optical Properties of CdS Nanostructures	147	
Y. A	l-Douri			
7.1	Introd	uction	147	
7.2	Nanomaterials 1			

6

7

7.3 II–VI Semiconductors	152
7.4 Sol-Gel Process	155
7.5 Structural and Surface Characterization of	
Nanostructured CdS	156
7.6 Optical Properties	159
7.7 Conclusion	161
Acknowledgments	
References	

Part 3: APPLICATIONS OF METAL CHALCOGENIDES NANOSTRUCTURES

8	Metal Sulfide Photocatalysts for Hydrogen Generation				
	by W	by Water Splitting under Illumination of Solar Light			
	Zho	nghai Zhang			
	8.1 Introduction				
	8.2	Photocatalytic Water Splitting on Single Metal Sulfide			
		8.2.1 CdS	169		
		8.2.2 ZnS	170		
		8.2.2 SnS ₂	172		
	8.3	Photocatalytic Water Splitting on			
		Multi-metal Sulfide	173		
		8.3.1 $\operatorname{ZnIn}_{2}S_{4}$	173		
		8.3.2 CuS/ZnS	175		
		8.3.4 $CuGa_3S_5$	176		
		8.3.5 CdS-MoS ₂	177		
		8.3.6 NiS-CdS	178		
		8.3.7 Mn–Cd–S	179		
		8.3.8 PbS/CdS	180		
		8.3.9 $AGa_{2}In_{3}S_{8}$ (A = Cu or Ag)	180		
	8.4	Metal Sulfides Solid-Solution Photocatalysts	180		
	8.5 Summary and Future Outlook		184		
	Refe	rences	184		
9	Meta	l Chalcogenide Hierarchical Nanostructures for			
	Energy Conversion Devices				
	Ramin Yousefi, Farid Jamali-Sheini, Ali Khorsand Zak				
	9.1	Introduction	190		
		9.1.1 Why Metal Chalcogenide Semiconductors Matter			
		for Energy Conversion	191		
	9.2	Main Characteristics of Cd-Chalcogenide Nanocrystals			
		(CdE; E = S, Se, Te)	192		

	9.3	Differe	ent Methods to Grow Cd-Chalcogenide		
		Nanoc	rystals	192	
		9.3.1	Thermal Evaporation Method to Grow		
			Cd-Chalcogenide Nanocrystals	192	
		9.3.2	Chemical Bath Deposition Method to Grow		
			Cd-Chalcogenide Nanocrystals	205	
		9.3.3	Electrochemical Deposition Method to Grow		
			Cd-Chalcogenide Nanocrystals	210	
		9.3.4	Pulsed Laser Deposition (PLD) Method to Grow		
			Cd-Chalcogenide Nanocrystals	212	
	9.4	Solar E	Energy Conversion	212	
		9.4.1	Modeling of Solar Energy Conversion	213	
		9.4.2	Semiconductor Solar Cells	216	
		9.4.3	Hierarchical Branching Nanostructures as		
			Better Solar Energy Harvesting	218	
	9.5	Cd-Ch	alcogenide Nanocrystals as Solar Energy		
		Conve	rsion	219	
		9.5.1	CdS Nanostructures Solar Cells	219	
		9.5.2	CdSe Nanostructures Solar Cells	223	
		9.5.3	CdTe Nanostructures Solar Cells	226	
	9.6	Summ	ary and Future Outlook	230	
	Refe	rences		230	
10	Meta	l Chalco	ogenide Quantum Dots for Hybrid Solar		
	Cell A	Applicat	tions	233	
	Mir	Waqas	Alam and Ahsanulhaq Qurashi		
	10.1	Intro	duction	233	
	10.2 Chemical Synthesis of Quantum Dots			235	
		10.2.1	Single-Step Synthesis of Highly Luminescent		
			Quantum Dots	235	
		10.2.2	Electrochemical Deposition Method	235	
		10.2.3	Chemical Aerosol Flow Method	236	
		10.2.4	Chemical Bath Deposition (CBD)	237	
	10.3	Quan	tum Dots Solar cell	238	
	10.4	Summ	nary and Future Prospects	243	
	Refe	rences		243	
11	Solar	Cell Ap	oplication of Metal Chalcogenide		
	Semi	conduct	tor Nanostructures	247	
	Hongjun Wu				
	11.1	Intro	duction	247	
	11.2	Chalo	cogenide-Based Thin-Film Solar Cells	248	

x Contents

11	.3 CdTe-Based Solar Cells	249
11	.4 Cu(In,Ga)(S,Se), (CIGS)-Based Solar Cells	251
11	.5 Metal Chalcogenides-Based Quantum-Dots-Sensitized	
	Solar Cells (QDSSCs)	253
11	.6 Hybrid Metal Chalcogenides Nanostructure-Conductive	
	Polymer Composite Solar Cells	257
11	.7 Conclusions	261
Re	ferences	262
12 Ch	alcogenide-Based Nanodevices for Renewable Energy	269
<i>Y</i> .	Al-Douri	
12	.1 Introduction	269
12	.2 Renewable Energy	272
12	.3 Nanodevices	274
12	.4 Density Functional Theory	277
12	.5 Analytical Studies	278
12	.6 Conclusion	284
Re	ferences	285
13 Me	tal Tellurides Nanostructures for Thermoelectric	
Ap	plications	289
Sa	lman B. Inavat	
13	.1 Introduction	290
13	.2 Thermoelectric Microdevice Fabricated by a MEMS-Like	
	Electrochemical Process	290
13	.3 Bi, Te, -Based Flexible Micro Thermoelectric	
	Generator	292
13	.4 High-Thermoelectric Performance of Nanostructured	
	Bismuth Antimony Telluride Bulk Alloys	293
13	.5 Nano-manufactured Thermoelectric Glass Windows	
	for Energy Efficient Building Technologies	294
13	.6 Conclusion	296
Re	ferences	297
Index		299

Preface

Meeting impending energy requirements by an ecologically benign approach entails scientific innovations to proficiently produce, store, transfer, and utilize enormous amounts of energy. The critical requirement to attain this goal demands to develop cost-effective materials by imparting novel intriguing features to convert maximum energy from sun and other renewable means.

Metal chalcogenide semiconductor nanostructures present the most important class of nanomaterial that provides highly anisotropic diverse morphologies, described by the efficient transport of electrons and excitons, and has been regarded as the most promising building block for nanoscale renewable energy nanodevices and nanosystems. The growth, characterization, and applications of nanostructures entreat various disciplines of science and engineering. The objective of this book is to illuminate the essentials, underlying science related to semiconductor metal chalcogenide nanostructures fabrication for potential renewable energy applications. The effect is an illustrative snapshot of the latest developments from diverse perspectives in a series of chapters based on synthesis, properties, characterization, and applications of metal sulfide, selenide, and telluride nanostructures from distinguished betrothed researchers.

This book contents are divided into three main sections.

Chapters 1–3 present an overview of increasing greenhouse emissions, recent research and substantial progress reported in the literature, covering formation of 0, 1, 2, and 3 dimensional metal sulfide, selenide, and telluride nanostructures. The application of chalcogenide materials for renewable energy conversion, which includes photovoltaics, hydrogen production, thermoelectrics, fuel cell, supercapacitors, and lithium-ion batteries and their future projections are covered in Chapter 1. The potential impact of materials for alternative energy conversion systems and various important renewable energy alternatives is anticipated in Chapters 2 and 3.

Chapters 4–7 are devoted to comprehensive synthesis of metal chalcogenide (sulfide, selenide, and telluride) nanostructures including inorganic graphenes (layered structures) by various important methods, their characterization and growth mechanism for the formation of enthralling morphologies, and various important protocols for surface functionalization of chalcogenides to improve the processability in technological applications are included in Chapters 4 and 5. The potential to engineer semiconductor nanostructures properties during and after fabrication presents an exciting realms and extensive prospect to simply improve the performance of renewable energy conversion systems. Chapters 6 and 7 provide detailed account of structural and optical properties of semiconductor chalcogenides.

Chapters 8–13 are typically covering applications of metal chalcogenides nanostructures in diverse renewable energy conversion devices. Chapter 8 presents updated works metal sulfide nanostructures for solardriven hydrogen production through water splitting. Chapter 9 gives brief account on *hierarchical* chalcogenide nanostructures, their properties and applications in energy conversion devices. Chapters 10 and 11 are based on metal chalcogenides in photovoltaic applications. Chapter 12 focuses on theoretical work including indirect band gap calculations results and density functional theory. Chapter 13 focuses on metal telluride nanostructures for thermoelectric devices operating around room temperature.

> Ahsanulhaq Qurashi Dhahran, Saudi Arabia August 2014

Part 1 RENEWABLE ENERGY CONVERSION SYSTEMS