Computation of Nonlinear Structures Extremely Large Elements for Frames, Plates and Shells

Debabrata Ray

COMPUTATION OF NONLINEAR STRUCTURES

COMPUTATION OF NONLINEAR STRUCTURES EXTREMELY LARGE ELEMENTS FOR FRAMES, PLATES AND SHELLS

Debabrata Ray

PhD (Univ. of California, Berkeley) ME, BE (Bengal Engineering College, Shibpur) Principal, Institute for Dynamic Response

WILEY

This edition first published 2016 © 2016 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data applied for.

A catalogue record for this book is available from the British Library.

ISBN: 9781118996959

Set in 10/12pt Times by Aptara Inc., New Delhi, India

1 2016

To the memory of my dad & mom, Provanshu and Sushila Roy, with whose altruistic love it was nurtured

&

the best thing ever happened to me, my wife, Anjana Ray, M.D., with whose infinite patience and eternal support it blossomed

&

the budding analysts and researchers like my sons, Dipanjan Ray, PhD and Shonket Ray, PhD, to whom it is offered

Contents

Acknowledgements		xi
1	Introduction: Background and Motivation	1
1.1	What This Book Is All About	1
1.2	A Brief Historical Perspective	2
1.3	Symbiotic Structural Analysis	9
1.4	Linear Curved Beams and Arches	9
1.5	Geometrically Nonlinear Curved Beams and Arches	10
1.6	Geometrically Nonlinear Plates and Shells	11
1.7	Symmetry of the Tangent Operator: Nonlinear Beams and Shells	12
1.8	Road Map of the Book	14
	References	15
Part I	ESSENTIAL MATHEMATICS	19
2	Mathematical Preliminaries	21
2.1	Essential Preliminaries	21
2.2	Affine Space, Vectors and Barycentric Combination	33
2.3	Generalization: Euclidean to Riemannian Space	36
2.4	Where We Would Like to Go	40
3	Tensors	41
3.1	Introduction	41
3.2	Tensors as Linear Transformation	44
3.3	General Tensor Space	46
3.4	Tensor by Component Transformation Property	50
3.5	Special Tensors	57
3.6	Second-order Tensors	62
3.7	Calculus Tensor	74
3.8	Partial Derivatives of Tensors	74
3.9	Covariant or Absolute Derivative	75
3.10	Riemann–Christoffel Tensor: Ordered Differentiation	78
3.11	Partial (PD) and Covariant (C.D.) Derivatives of Tensors	79
3.12	Partial Derivatives of Scalar Functions of Tensors	80
3.13	Partial Derivatives of Tensor Functions of Tensors	81
3.14	Partial Derivatives of Parametric Functions of Tensors	81
3.15	Differential Operators	82

3.16	Gradient Operator: $GRAD(\bullet)$ or $\nabla(\bullet)$	82
3.17	Divergence Operator: DIV or $\nabla \bullet$	84
3.18	Integral Transforms: Green–Gauss Theorems	87
3.19	Where We Would Like to Go	90
4	Rotation Tensor	91
4.1	Introduction	91
4.2	Cayley's Representation	100
4.3	Rodrigues Parameters	107
4.4	Euler – Rodrigues Parameters	112
4.5	Hamilton's Quaternions	115
4.6	Hamilton–Rodrigues Quaternion	119
4.7	Derivatives, Angular Velocity and Variations	125
Part]	II ESSENTIAL MESH GENERATION	133
5	Curves: Theory and Computation	135
5.1	Introduction	135
5.2	Affine Transformation and Ratios	136
5.3	Real Parametric Curves: Differential Geometry	139
5.4	Frenet–Serret Derivatives	145
5.5	Bernstein Polynomials	148
5.6	Non-rational Curves Bezier–Bernstein–de Casteljau	154
5.7	Composite Bezier–Bernstein Curves	181
5.8	Splines: Schoenberg B-spline Curves	185
5.9	Recursive Algorithm: de Boor–Cox Spline	195
5.10	Rational Bezier Curves: Conics and Splines	198
5.11	Composite Bezier Form: Quadratic and Cubic B-spline Curves	215
5.12	Curve Fitting: Interpolations	229
5.13	Where We Would Like to Go	245
6	Surfaces: Theory and Computation	247
6.1	Introduction	247
6.2	Real Parametric Surface: Differential Geometry	248
6.3	Gauss-Weingarten Formulas: Optimal Coordinate System	272
6.4	Cartesian Product Bernstein–Bezier Surfaces	280
6.5	Control Net Generation: Cartesian Product Surfaces	296
6.6	Composite Bezier Form: Quadratic and Cubic B-splines	300
6.7	Triangular Bezier–Bernstein Surfaces	306
Part]	III ESSENTIAL MECHANICS	323
7	Nonlinear Mechanics: A Lagrangian Approach	325
7.1	Introduction	325
7.2	Deformation Geometry: Strain Tensors	326
7.3	Balance Principles: Stress Tensors	337
7.4	Constitutive Theory: Hyperelastic Stress–Strain Relation	351

Part IV A NEW FINITE ELEMENT METHOD		
8	C-type Finite Element Method	367
8.1	Introduction	367
8.2	Variational Formulations	369
8.3	Energy Precursor to Finite Element Method	386
8.4	c-type FEM: Linear Elasticity and Heat Conduction	402
8.5	Newton Iteration and Arc Length Constraint	438
8.6	Gauss–Legendre Quadrature Formulas	446
Part V	APPLICATIONS: LINEAR AND NONLINEAR	457
9	Application to Linear Problems and Locking Solutions	459
9.1	Introduction	459
9.2	c-type Truss and Bar Element	460
9.3	c-type Straight Beam Element	465
9.4	c-type Curved Beam Element	484
9.5	c-type Deep Beam: Plane Stress Element	498
9.6	c-type Solutions: Locking Problems	509
10	Nonlinear Beams	523
10.1	Introduction	523
10.2	Beam Geometry: Definition and Assumptions	530
10.3	Static and Dynamic Equations: Engineering Approach	534
10.4	Static and Dynamic Equations: Continuum Approach – 3D to 1D	539
10.5	Weak Form: Kinematic and Configuration Space	555
10.6	Admissible Virtual Space: Curvature, Velocity and Variation	560
10.7	Real Strain and Strain Rates from Weak Form	570
10.8	Component or Operational Vector Form	580
10.9	Covariant Derivatives of Component Vectors	587
10.10	Computational Equations of Motion: Component Vector Form	590
10.11	Computational Derivatives and Variations	596
10.12	Computational Virtual Work Equations	607
10.13	Computational Virtual Work Equations and Virtual Strains: Revisited	614
10.14	Computational Real Strains	627
10.15	Hyperelastic Material Property	630
10.16	Covariant Linearization of Virtual Work	639
10.17	Comparing Stiffness Matrix and Symmetry	033
10.18	a time EE Formulation Dunamic Loading	038
10.19	c-type FE Formulation. Dynamic Loading	695
10.20	c-type FE implementation and Examples: Quasi-static Loading	083
11	Nonlinear Shell	721
11.1	Introduction	721
11.2	Shell Geometry: Definition and Assumptions	727
11.3	Static and Dynamic Equations: Continuum Approach – 3D to 2D	746
11.4	Static and Dynamic Equations: Continuum Approach – Revisited	763
11.5	Static and Dynamic Equations: Engineering Approach	771

11.6	Weak Form: Kinematic and Configuration Space	783
11.7	Admissible Virtual Space: Curvature, Velocity and Variation	788
11.8	Real Strain and Strain Rates from Weak Form	799
11.9	Component or Operational Vector Form	810
11.10	Covariant Derivatives of Component Vectors	817
11.11	Computational Equations of Motion: Component Vector Form	820
11.12	Computational Derivatives and Variations	830
11.13	Computational Virtual Work Equations	841
11.14	Computational Virtual Work Equations and Virtual Strains: Revisited	851
11.15	Computational Real Strains	861
11.16	Hyperelastic Material Property	864
11.17	Covariant Linearization of Virtual Work	877
11.18	c-type FE Formulation: Dynamic Loading	891
11.19	c-type FE Formulation: Quasi-static Loading	914
11.20	c-type FE Implementation and Examples: Quasi-static Loading	930
Index		967

Acknowledgements

I would like to sincerely thank my friend, **Anil K. Chopra**, Johnson Professor of Structural Engineering, Department of Civil and Environmental Engineering, University of California, Berkeley, who introduced me to structural dynamics, for his encouragement and generous support in presenting my work to **Eric Willner**, Executive Commissioning Editor of John Wiley & Sons Ltd, who graciously agreed to publish the book, for which I am deeply appreciative. I must also thank **Anne Hunt**, Associate Commissioning Editor, Mechanical Engineering, for her unstinting support, and, **Clive Lawson**, Project Editor, Content Capture, Natural Sciences, Engineering & Stats, Professional Practice and Learning, Wiley. My special thanks for meticulous scrutiny of the manuscript to copy editor, Paul Beverley, LCGI, and Baljinder Kaur, Project Manager, Professional Publishing, Aptara.

During the writing of the manuscript for the book, I was paralysed as a result of a botched surgical procedure; however, from the initial period of rehabilitation to the date of this writing, I have been extremely fortunate to be surrounded by innumerable friends and well-wishers. I would like to thank them all; especially, my deep appreciation goes to my friend, Prof. Amitabha Basu of Dept. of South Asian Studies, University of California, Berkeley, and, to my care-givers, Levi Soler and John Viray.

Finally, however, the faults and mistakes, if any, are entirely mine.

DR August 31, 2014

1

Introduction: Background and Motivation

1.1 What This Book Is All About

The book introduces linear and nonlinear structural analysis through a combination of of mesh generation, solid mechanics and a new finite element methodology called *c-type finite element* method (Ray, 1999, 2003, 2004, 2005, 2007, 2008). The ultimate objective is to present the largest possible (curved) beam, plate and shell elements undergoing extremely large displacement and rotation, and to apply these to solve standard industrial problems. Any finite element method is only as strong as its weakest link. In other words, the book is not just about unification of mesh generation and finite element methodology but it strives to serve as a reference for budding researchers, engineers, analysts, upper division and graduate students and teachers by demonstrating what various interdisciplinary machinery has to be accurately harnessed to devise a solid and conducive theoretical framework upon which to build a robust, reliable and efficient numerical methodology for linear and nonlinear static and dynamic analysis of beams, plates and shells. As indicated, the principal goal of the book is to produce the largest possible arbitrary shaped elements (a) defined and restricted solely by the requirements of geometry, material, loading and support conditions, (b) avoiding computational problems such as locking in the conventional finite element methods and (c) presenting new, accurate and explicit expressions for resolution of the symmetry issue of the tangent operator for beams, plates and shells in areas of extreme nonlinearity. The 'mega-sized' elements may result in substantial cost saving and reduced bookkeeping for the subsequent finite element analysis, and a reduced engineering manpower requirement for the final quality assurance. For example, the explicit algebraic and symmetric expressions of the tangent operator, as presented in the book, are an absolute necessity for computational cost efficiency, especially in repetitive calculations that are commonly associated with nonlinear problems. It must be recognized that the requirements for numerical convergence should be purely adaptive and subservient to the main delineating factors already mentioned. However, this strategy of computer generation of mega-elements of arbitrary shape, as it turns out, takes its toll on the analyst. Firstly, only accurate theoretical formulation can be used for the underlying continuum or solid mechanics principles without unnecessary 'short-circuiting' by proliferation of ad hoc numerical manipulations. Secondly, it demands that the applicable finite element method be devised to successfully accept computer generated elements with arbitrarily distorted shapes, with edges (or faces) consisting of up to truly 3D curved boundaries (or surfaces)

Computation of Nonlinear Structures: Extremely Large Elements for Frames, Plates and Shells, First Edition. Debabrata Ray. © 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.