AUTOMOTIVE SERIES

VEHICLE DYNAMICS

MARTIN MEYWERK

VEHICLE DYNAMICS

Automotive Series

Series Editor: Thomas Kurfess

Vehicle Dynamics	Meywerk	May 2015
Vehicle Gearbox Noise and Vibration: Measurement, Signal Analysis, Signal Processing and Noise Reduction Measures	Tůma	April 2014
Modeling and Control of Engines and Drivelines	Eriksson and Nielsen	April 2014
Modelling, Simulation and Control of Two-Wheeled Vehicles	Tanelli, Corno and Savaresi	March 2014
Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness	Elmarakbi	December 2013
Guide to Load Analysis for Durability in Vehicle Engineering and Speckert	Johannesson	November 2013

VEHICLE DYNAMICS

Martin Meywerk

Helmut-Schmidt-University (University of the Federal Armed Forces Hamburg), Germany

WILEY

This edition first published 2015 © 2015 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising here from. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data Applied for.

ISBN: 9781118971352

A catalogue record for this book is available from the British Library.

Set in 11/13pt Times by Laserwords Private Limited, Chennai, India

For my wife Annette and my children Sophia, Aljoscha, Indira and Felicia

Contents

Foreword		xi
Seri	es Preface	xiii
Pref	face	XV
List	of Abbreviations and Symbols	xvii
1	Introduction	1
1.1	Introductory Remarks	3
1.2	Motion of the Vehicle	4
1.3	Questions and Exercises	8
2	The Wheel	11
2.1	Equations of Motion of the Wheel	11
2.2	Wheel Resistances	14
	2.2.1 Rolling Resistance	14
	2.2.2 Aquaplaning	18
	2.2.3 Bearing Resistance	19
	2.2.4 Toe-In/Toe-Out Resistance	19
2.3		20
2.4	Questions and Exercises	24
3	Driving Resistances, Power Requirement	27
3.1	Aerodynamic Drag	27
3.2	Gradient Resistance	29
3.3	Acceleration Resistance	29
3.4	Equation of Motion for the Entire Vehicle	32
3.5	Performance	34
3.6	Questions and Exercises	39

4	Converters	43
4.1	Clutch, Rotational Speed Converter	45
4.2	Transmission, Torque Converter	48
4.3	Questions and Exercises	54
5	Driving Performance Diagrams, Fuel Consumption	57
5.1	Maximum Speed without Gradient	60
5.2	Gradeability	61
5.3	Acceleration Capability	61
5.4	Fuel Consumption	63
5.5	Fuel Consumption Test Procedures	68
5.6	Questions and Exercises	70
6	Driving Limits	73
6.1	Equations of Motion	74
6.2	Braking Process	79
6.3	Braking Rate	84
6.4	Questions and Exercises	91
7	Hybrid Powertrains	93
7.1	Principal Functionalities	93
7.2	Topologies of Hybrid Powertrains	99
7.3	Regenerative Braking and Charging	101
7.4	Questions and Exercises	106
8	Adaptive Cruise Control	107
8.1	Components and Control Algorithm	107
8.2	Measurement of Distances and Relative Velocities	112
8.3	Approach Ability	117
8.4	Questions and Exercises	118
9	Ride Dynamics	121
9.1	Vibration Caused by Uneven Roads	124
	9.1.1 Damped Harmonic Oscillator	124
	9.1.2 Assessment Criteria	128
	9.1.3 Stochastic Irregularities	130
	9.1.4 Conflict between Safety and Comfort	132
9.2	Oscillations of Powertrains	144
	9.2.1 Torsional Oscillators	144
	9.2.2 Centrifugal Pendulum Vibration Absorbers	147
9.3	Examples	151
9.4	Questions and Exercises	152

10	Vehicle Substitute Models	155
10.1	Two-mass Substitute System	155
10.2	Two-axle Vehicle, Single-track Excitation	158
10.3	Non-linear Characteristic Curves	165
10.4	Questions and Exercises	167
11	Single-track Model, Tyre Slip Angle, Steering	169
11.1		169
	Slip Angle	177
	Steering	181
	Linearized Equations of Motion of the Single-track Model	185
11.5	Relationship between Longitudinal Forces and Lateral Forces in the	100
11 (Contact Patch	188
	Effect of Differentials when Cornering	189
11.7	Questions and Exercises	191
12	Circular Driving at a Constant Speed	193
	Equations	193
	Solution of the Equations	195
	Geometric Aspects	197
	Oversteering and Understeering	201
12.5	Questions and Exercises	205
13	Dynamic Behaviour	207
13.1	-	207
13.2	Steering Behaviour	210
13.3	Crosswind Behaviour	213
13.4	Questions and Exercises	216
14	Influence of Wheel Load Transfer	217
14.1	Wheel Load Transfer without Considering Vehicle Roll	217
14.2	Wheel Load Transfer Considering Vehicle Roll	221
14.3	Questions and Exercises	228
15	Toe-in/Toe-out, Camber and Self-steering Coefficient	229
15.1	Toe-in/Toe-out, Camber	229
15.2	Questions and Exercises	233
16	Suspension Systems	235
16.1	Questions and Exercises	245
17	Torque and Speed Converters	247
17.1	Speed Converters, Clutches	247
		<i>2</i> . /

17.2	Transmission	252
17.3	Questions and Exercises	258
18	Shock Absorbers, Springs and Brakes	259
18.1		259
	Ideal Active Suspension and Skyhook Damping	264
	18.2.1 Ideal Active Suspension	264
	18.2.2 Skyhook Dampers	267
18.3	Suspension Springs	269
	Brake Systems	277
	Questions and Exercises	281
19	Active Longitudinal and Lateral Systems	283
19.1	Main Components of ABS	283
19.2	ABS Operations	287
19.3	Build-up Delay of Yaw Moment	290
19.4		293
19.5	Lateral Stability Systems	294
19.6	Hydraulic Units for ABS and ESP	296
19.7	Active Steering System	297
19.8	Questions and Exercises	298
20	Multi-body Systems	301
20.1	Kinematics of Rigid Bodies	302
20.2	Kinetic Energy of a Rigid Body	305
20.3	Components of Multi-body Systems	309
20.4	Orientation of Rigid Bodies	312
20.5	Derivation and Solution of the Equations	315
	20.5.1 Derivation of the Equations	315
	20.5.2 Solution of Equations	316
20.6	Applications of MBS	317
20.7	Questions and Exercises	322
Glossary		323
Refe	rences	329
Inde	x	331

Foreword

This book is an extract of lectures on vehicle dynamics and mechatronic systems in vehicles held at the Helmut-Schmidt-University, University of the Federal Armed Forces, Hamburg, Germany. The lectures have been held since 2002 (Vehicle Dynamics) and 2009 (Vehicle Mechatronics). The book is an introduction to the field of vehicle dynamics and most parts of the book should be comprehensible to undergraduate students with a knowledge of basic mathematics and engineering mechanics at the end of their Bachelor studies in mechanical engineering. However, some parts require advanced methods which are taught in graduate studies (Master programme in mechanical engineering).

I wish to thank Mrs Martina Gerds for converting the pictures to Corel Draw with LaTeX labels and for typing Chapter 9. My thanks go to Mr Darrel Fernandes, B.Sc., for the pre-translation of my German scripts. I especially wish to thank Mr Colin Hawkins for checking and correcting the final version of the book with respect to the English language. My scientific assistants, especially Dr Winfried Tomaske and Dipl.-Ing. Tobias Hellberg, I thank for proofreading, especially with regard to the technical aspects. Special thanks for assistance in preparing a number of Solid Works constructions for pictures of suspensions and transmissions as well for help in preparing some MATLAB diagrams go to Mr Hellberg. Last but not the least, my thanks go to my family, my wife, Dr Annette Nicolay, and my children, Sophia, Aljoscha, Indira and Felicia, for their patience and for giving me a lot of time to prepare this book.

Series Preface

The automobile is a critical element of any society, and the dynamic performance of the vehicle is a key aspect regarding its value proposition. Furthermore, vehicle dynamics have been studied for many years, and provide a plethora of opportunities for the instructor to teach her students a wide variety of concepts. Not only are these dynamics fundamental to the transportation sector, they are quite elegant in nature linking various aspects of kinematics, dynamics and physics, and form the basis of some of the most impressive machines that have ever been engineered.

Vehicle Dynamics is a comprehensive text of the dynamics, modeling and control of not only the entire vehicle system, but also key elements of the vehicle such as transmissions, and hybrid systems integration. The text provides a comprehensive overview of key classical elements of the vehicle, as well as modern twenty-first century concepts that have only recently been implemented on the most modern commercial vehicles. The topics covered in this text range from basic vehicle rigid body kinematics and wheel dynamic analysis, to advanced concepts in cruise control, hybrid power-train design and analysis and multi-body systems. This text is part of the *Automotive Series* whose primary goal is to publish practical and topical books for researchers and practitioners in industry, and post-graduate/advanced undergraduates in automotive engineering. The series addresses new and emerging technologies in automotive engineering supporting the development of next generation transportation systems. The series covers a wide range of topics, including design, modelling and manufacturing, and it provides a source of relevant information that will be of interest and benefit to people working in the field of automotive engineering.

Vehicle Dynamics presents a number of different designs, analysis and implementation considerations related to automobiles including power requirements, converters, performance, fuel consumption and vehicle dynamic models. The text is written from a very pragmatic perspective, based on the author's extensive experience. The book is written such that it is useful for both undergraduate and post-graduate courses, and