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1.1  Evolution of Cellular Systems through the Generations

The first large‐scale commercial cellular communications systems were deployed in the 
1980s and these became known as first‐generation (1G) systems. 1G systems were built on 
narrowband analog technology, and provided a basic voice service. These were replaced by 
second‐generation (2G) cellular telecom networks by the early 1990s. 2G networks marked 
the start of the digital voice communication era, and provided a secure and reliable commu-
nication channel. 2G systems use either time division multiple access (TDMA) or code divi-
sion multiple access (CDMA) technologies, and provided higher rates. The European Global 
System for Mobile Communications system is based on TDMA technology while IS‐95 (also 
known as CDMA One) is based on CDMA technology. These 2G digital technologies provide 
expanded capacity, improved sound quality, better security and unique services such as caller 
ID, call forwarding, and short messaging. A critical feature was seamless roaming, which let 
subscribers move across provider boundaries.

The third‐generation (3G) – International Mobile Telecommunications‐2000 (IMT‐2000) – is 
a set of standards for mobile phones and mobile telecommunications services fulfilling the 
recommendations of the International Telecommunication Union‐Radio (ITU‐R). 3G mobile 
networks became popular due to ability of users to access the Internet over mobile devices and 
laptops. The speed of data transmission on a 3G network is up to 2 Mbps, and therefore the 
network enables voice and video calling, file transmission, internet surfing, online TV, playing 
of games and much more. 3G uses CDMA technology in various forms. Wideband CDMA 
and High Speed Packet Access technologies were developed as part of the Third Generation 
Partnership Project (3GPP) organization, and CDMA2000 was developed as part of the 3GPP2 
organization.
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Fourth‐generation (4G) requirements  –  the International Mobile Telecommunications 
Advanced (IMT‐Advanced) specification – were specified by ITU‐R in March 2008. The key 
requirements specified 4G peak service speeds of 100 Mbps for high‐mobility communication 
(such as from trains and cars) and 1 Gbps for low‐mobility communication (such as pedes-
trians and stationary users). A 4G system not only provides voice and other 3G services but 
also provides ultra‐broadband network access to mobile devices. Applications vary from IP 
telephony, HD mobile television, video conferencing to gaming services and cloud computing. 
There are two 4G technologies: Long‐Term Evolution (LTE) and Worldwide Interoperability 
for Microwave Access (WiMAX). LTE was developed as part of 3GPP and WiMAX was 
developed as part of IEEE. LTE uses orthogonal frequency division multiple access (OFDMA) 
in the downlink and single carrier frequency division multiple access in the uplink whereas 
WiMAX uses OFDMA in both uplink and downlink.

1.2  Moving Towards 5G

4G standards were completed in 2011 and networks are currently being deployed. The 
attention of the mobile research community is now shifting towards what will be the next set 
of innovations in wireless communication technologies, which we will refer to collectively as 
5G (fifth‐generation technologies). Given a historical 10‐year cycle for every generation of 
cellular advancement, it is expected that networks with 5G technologies will be deployed 
around 2020. Similar to 3G/4G, where ITU‐R issued a recommendation for IMT‐2000/IMT‐
Advanced [1], ITU‐R has recently released a recommendation for the framework and overall 
objectives of the future development of systems for 2020 and beyond [2]. This highlights the 
emerging consensus on the use cases and requirements that systems deployed in 2020 must 
address. These include requirements for new services such as smart grids, e‐health, autono-
mous transport, augmented reality, wireless industry automation, remote tactile control and so 
on, which cannot be met by IMT‐2000 systems.

The usage scenarios envisioned for IMT for 2020 and beyond can be broadly classified as 
follows:

Enhanced Mobile Broadband  The dramatic growth in the number of smartphones, tablets, 
wearables, and other data‐consuming devices, coupled with the advent of enhanced multimedia 
applications, has resulted in a tremendous increase in the volume of mobile data traffic. 
According to industry estimates, this increase in data traffic is expected to continue in the 
coming years and around 2020 cellular networks might need to deliver as much as 100–1000 
times the capacity of current commercial cellular systems [3, 4]. While the roll‐out of 4G 
technologies with their expected enhancements will address some of capacity demands of 
future mobile broadband users, a mobile broadband user in 2020 will expect to be seamlessly 
connected all the time, at any location, to any device. This poses stringent requirements on the 
5G network, which must provide users with a uniform and seamless connectivity experience 
regardless of where they are and what device/network they connect to.

Massive Machine‐type Communications  This use case refers to the growing interest in 
the area of machine‐to‐machine (M2M) communications and the Internet‐of‐Things (IoT). 
Together, these represent a future in which billions of everyday objects are connected and 
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managed through wireless networks and management servers [5]. One can envisage creating 
an immensely rich set of applications by connecting the thousands of objects surrounding us. 
Examples include:

•• smart homes, in which intelligent appliances autonomously minimize energy use and cost
•• remote monitoring of expensive industrial or medical equipment
•• remote sensing of environmental metrics such as water pressure, air pollution and so on.

These applications and services demand communication architectures and protocols that 
are different from traditional human‐based networks. The integration of human and machine‐
type traffic in a single 5G network is therefore a challenge. In addition, IoT traffic can be quite 
diverse, from low to high bandwidth, from delay‐sensitive to delay‐tolerant, from error‐tol-
erant to high reliability, which poses additional complexity. This use case focuses on applica-
tions where a very large number of connected devices transmit relatively low volumes of 
non‐delay‐sensitive data. The devices are typically low‐cost and low‐complexity, and require 
a very long battery life.

Ultra‐reliable and Low‐latency Communications.  This use case addresses IoT applications 
that have stringent requirements for reliability, latency, and network availability. Examples 
include:

•• connected cars, which react in real time to prevent accidents
•• body area networks, which track vital signs and trigger an emergency response when life is 
at risk

•• wireless control of industrial manufacturing or production processes.

As evidenced by diverse set of usages anticipated by 2020, the 5G system will require 
enhancements to performance metrics beyond the “hard” metrics of 3G/4G, which included 
peak rate, coverage, spectral efficiency, and latency. The 5G system will see expanded 
performance metrics centered on the user’s quality of experience (QoE), including factors 
such as ease of connectivity with nearby devices, connection density, area traffic capacity, and 
improved energy efficiency. The eight parameters in Table 1.1 are considered to be key capa-
bilities of IMT‐2020 systems. Their target values are also summarized. These are currently 
recommendations, and subject to further research and technological development [2].

1.3  5G Networks and Devices

As it can be seen from the description above, 5G networks will have to accommodate 
diverse types of traffic, spectrum, and devices. The network itself is anticipated to consist 
of hierarchical nodes of various characteristics and capacities. The 5G network will support 
multiple radio access technologies (RATs), such as 3G/4G/5G, WiFi, and WiGig, and also 
multiple modes ranging from ultradense small cells, device‐to‐device (D2D) communica-
tions, and new sub‐networks oriented toward wearable devices. Inevitably, the user experi-
ence and quality will need to be maintained as users move along various networks and get 
connected to the various types of node. 5G networks will likely use a multi‐layer network 
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architecture, where the macro layer provides coverage to users moving at high speeds or for 
secure control channels, while a lower layer comprising network nodes with smaller capabil-
ities provides high data rates and connectivity to other RATS (say, WiFi or new mmWave 
RATs). Moreover, a 5G device may have simultaneous active connections to more than one 
network node, with the same or different RATs, each connection serving a specific purpose, 
for example one connection to a given node for data and a second connection to another node 
for control. In addition, the use of remote radio heads connected to central processing nodes 
with the aid of ultra‐high‐speed backhaul is expected to be extended to more areas. Fast and 
high‐capacity backhaul will enable tighter coordination between network nodes in a larger 
area. All of these changes will require a high level of integration of different nodes in the 
network and of technologies located even within the same node. In short, the 5G system will 

Table 1.1  Key parameters of IMT‐2020 systems.

Parameter Details Target

Peak data 
rate

Maximum achievable data rate 
under ideal conditions per user/
device

10–20 Gbps

User‐
experienced 
data rate

Achievable data rate that is available 
ubiquitously across the coverage 
area to a mobile user/device

100 Mbps–1 Gbps, depending on 
wide‐area or hotspot coverage

Latency Time contribution by the radio 
network from the time from when 
the source sends a packet to when 
the destination receives it

1 ms over‐the‐air latency

Mobility Maximum speed at which a defined 
QoS and seamless transfer between 
radio nodes which may belong to 
different layers and/or radio access 
technologies (multi‐layer/‐RAT) can 
be achieved

To provide high mobility up to 500 km/h 
with acceptable QoS

Connection 
density

Total number of connected and/or 
accessible devices per unit area

To support a connection density of up to 
106/km2, for example in massive 
machine‐type communication scenarios

Energy efficiency
(a) Network 
side

Quantity of information bits 
transmitted to/received from users, 
per unit of energy consumption of 
the radio access network (RAN) (in 
bit/Joule)

Target is at least 10x on network energy 
efficiency
The 5G network must not consume more 
energy, while providing enhanced 
features

(b) Device 
side

Quantity of information bits per unit 
of energy consumption of the 
communication module (in bit/
Joule)

Spectrum 
efficiency

Average data throughput per unit of 
spectrum resource and per cell 
(bit/s/Hz)

3–5× increase in spectrum efficiency

Area traffic 
capacity

Total traffic throughput served per 
geographic area

10 Mbit/s/m2 in hotspot scenarios
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need to provide a flexible technological framework in which networks, devices, and applications 
can be co‐optimized to meet the great diversity of requirements anticipated by 2020.

As the 5G usage models and networks evolve, 5G device architectures will also be more 
complex than in 4G. Devices will be capable of operating in multiple spectrum bands, ranging 
from RF to mmWave, while being compatible with existing technologies such as 3G and 4G. 
The need to support several RATs with multiple RF‐chains will impose tremendous challenges 
for 5G device chipset and front‐end module suppliers, as well as system and platform integrators. 
Another key feature of 5G devices will be their advanced interference suppression capabilities. 
The dense deployment of network nodes and increasing sources of interference will require that 
the devices deployed autonomously detect, characterize, and suppress interference from any 
source: intra‐cell, inter‐cell, or D2D. The task of interference cancellation will be exacerbated by 
the existence of strong self‐interference in the case of simultaneous transmission and reception. 
In addition, devices will be required to actively manage all the available network connections, 
including D2D links, as well as to share contextual information with network layers so that 
network resources can be efficiently utilized. All of these enhanced features will need to be imple-
mented in such a way that energy consumption is optimized for a small wireless device platform.

1.4  Outline of the Book

In this book we bring together a group of visionaries and technical experts from academia and 
industry to discuss the applications and technologies that will comprise the 5G system. It is 
expected that some of the new technologies comprising 5G will be evolutionary, covering 
gaps and enhancements from 4G systems, while some of the technologies will be disruptive, 
covering fundamentally new waveforms, duplexing methods, and new spectrum. These tech-
nologies will encompass the end‐to‐end wireless system: from wireless network infrastructure 
to spectrum availability to device innovations.

The book is organized into three parts. Part I has four chapters. In Part I, we provide an 
overview of 5G, address trends in applications and services, and summarize 5G requirements 
that will be need to be addressed in next‐generation technologies and system architectures. We 
also provide an overview of some 5G research programs around the world: Horizon 2020 in 
Europe and Intel’s 5G University Research Program in USA.

Part II has nine chapters. In Part II, we address evolutionary technologies that will be needed 
to meet 5G requirements, including:

•• co‐operative radio access architectures to enable greater energy efficiency and network 
performance

•• small‐cell networks with in‐built caching
•• multiple RAT integration, which is inevitable to provide a seamless user experience
•• distributed resource allocation
•• advances in device‐to‐device communications
•• energy‐efficient network design
•• multi‐antenna processing and interference co‐ordination techniques
•• design for M2M communications
•• design for ultra‐low latency.

These technologies are already being developed in 3GPP Release 11 and beyond as part of 
the evolution of 4G systems.
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Part III has five chapters. In Part III, we discuss “revolutionary” candidate technologies: 
those that are essentially disruptive and different from 4G. These include:

•• new physical layer waveforms that offer enhanced flexibility and performance
•• massive MIMO technologies that enable large numbers of simultaneous users
•• mmWave technologies to harness new spectrum for access and backhaul
•• simultaneous transmit and receive on the same time/frequency resource
•• software defined networking and network function virtualization to enable software‐based 
flexible infrastructures.
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2.1  Introduction

Over the last few decades, mobile communications have significantly contributed to the 
economic and social development of both developed and developing countries. Today, mobile 
communications form an indispensable part of the daily lives of billions of people in the 
world, a situation that is expected to continue and become even more widespread in the future. 
Currently, the 4G radio access system using Long‐Term Evolution (LTE) is being deployed 
by many operators worldwide in order to offer faster access with lower latency and more 
efficiency than 3G/3.5G. In the future, however, it is foreseen that demand for higher volumes of 
traffic, many more connected devices with diverse service requirements, and better and uniform 
quality of user experience will bring a need for evolved systems with extended capabilities.

In order to meet these evolving needs for mobile communications, discussions on visions, 
requirements, and technologies for the 5G mobile communications system have been initiated 
by many organizations. 5G‐related discussions are ongoing in the ITU‐R Study Group 5 
Working Party 5D (WP5D), which issued a new recommendation, “IMT Vision – Framework 
and overall objectives of the future development of IMT for 2020 and beyond”. Also, technical 
studies on 5G have gained attention worldwide as evidenced by the acceleration of efforts by 
governmental entities and research bodies from both academia and industry. Many special 
sessions are also being held on the topic of 5G in international conferences. Several govern-
ments and groups of commercial companies and academic institutions have established pro-
jects and fora to study and promote 5G mobile technology. Examples of projects and initiatives 
with focus on 5G include the METIS project in Europe, the ARIB 2020 and Beyond Ad‐hoc 
(20B AH) group, and the 5G Mobile Communications Promotion Forum (5GMF) in Japan, 
the operators’ alliance Next Generation Mobile Networks (NGMN), IMT‐2020 in China, and 
the 5G Forum in Korea.

2



10	 Towards 5G

2.2  Emerging Trends in Mobile Applications and Services

More and more customers are expecting to have the same quality of experience from Internet 
applications anytime, anywhere, and through any means of connectivity. This expectation is 
now being better fulfilled as the gap of user experience between mobile and fixed environ-
ments becomes narrower and higher data rates are offered by mobile networks. In the future 
we can therefore expect a further shift of services from the fixed to the mobile network, with 
users making use of the added value of mobility and location/context awareness. Furthermore, 
the emergence of new applications and needs are constantly changing user behavior. The 
younger generation now uses the Internet for gaming, social networking, and online educa-
tion, among other things. At the same time, the introduction of IMT‐Advanced networks, 
which substantially reduce network latency, will in the future provide better user experiences 
and make possible more advanced real‐time services. Technological developments, such as 
faster radio interfaces, advanced graphical processing, and multiprocessing units at the 
device, will also contribute to the increase in user demand for mobile data. Growth will 
also be accelerated by new types of communications and devices, such as device‐to‐device 
communications between mobile users in proximity (user‐to‐user), and machine‐type com-
munications such as user‐controlled mobile devices (user‐to‐machine) and inter‐machine 
communications (machine‐to‐machine). The future trends in services and applications will 
generally be shaped by the evolution of the needs of the new generation of users and progress 
in technology and services.

In the following sections, we explain the main market trends and new services that have 
been observed in recent years and have the potential to drive and change the landscape of the 
future mobile market. Note that future services include, but are not limited to, the mere inter-
polation of current trends.

2.2.1  New Types of Mobile Device

The transition to the Internet era has significantly contributed to the rapid rise of data services 
as a significant revenue source for businesses. This trend has been accelerated by the introduc-
tion of always‐on smartphones and new types of conversation via social networks. In recent 
years, a wide range of new smart devices – smartphones, dongles, and tablets – have emerged 
and have been key drivers of increased mobile broadband traffic. With rapid advances in 
display technologies, these devices offer larger screen sizes and high resolution, and hence 
increase data consumption and encourage the use of traffic‐intensive applications such as 
video streaming. This type of Internet access via mobile terminals is spreading very rapidly. 
As a result, the volume of smartphone data carried by cellular networks is growing rapidly, 
driven predominantly by increases in device penetration, but also by increases in average 
usage. In developed markets, a typical smartphone generates about 50 times more data per 
month than a typical feature phone [1]. In the future, one notable development will be full high 
definition (FHD) and ultra‐high definition (UHD) displays, which are anticipated to become 
well established on smartphones; it is estimated that these future smartphones could generate 
many times more traffic than established user applications. In addition, open operating sys-
tems (OSs), such as Android, iOS, and HTML5, have been another key force in the mobile 
internet ecosystem. With open OSs, the development and commercialization of new applica-
tions has become much easier than before. Users are able to access a wide variety of new 
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applications on diverse smart devices, resulting in increased opportunities, as well as chal-
lenges, for all players in the mobile Internet ecosystem. Operators are making great efforts to 
embrace these changes and challenges, although they represent a double‐edged sword. On the 
one hand, the majority of mobile applications on smart devices are planned with the assump-
tion that users are online and connected, consequently increasing both control signaling and 
user mobile broadband traffic: video, music, games, and so on. On the other hand, memory as 
well as processor technologies are expected to improve according to Moore’s law, and with 
reduced energy consumption. This will bring huge potential for information storage and 
processing on mobile devices and increased user‐generated content. Furthermore, new types 
of user‐to‐device interaction can be expected to be triggered by novel user interfaces such as 
3D cameras, and movement and gesture recognition. These will increase the generation and 
flow of information and beyond that of traditional human audio and visual capabilities.

2.2.2  Video Streaming and Download Services

Video streaming and download are among the most dominant traffic generators in mobile 
networks. Currently, the majority of streaming services are based on progressive downloading 
technologies utilizing the HTTP protocol. Video streaming services can be classified into 
server‐client unidirectional applications and bidirectional streaming services.

Bidirectional streaming services with high quality of service demands are expected to 
become a dominant source of traffic in the near future. One example is the virtual classroom, 
with video streamed between a remote teacher and students in a classroom. Moreover, video 
consumption for many users is no longer limited to streaming but also involves sharing it with 
the community. Uploading of videos on social networking sites is becoming a way to share 
them. This contributes to increasing video consumption, as community networks are also 
becoming video viewing sites. In the future, video streaming or downloading will be respon-
sible for most mobile data traffic growth, with a cumulative average growth rate (CAGR) of 
69% expected between 2013 and 2018. Furthermore, it is predicted that video will account for 
more than 69% of mobile data traffic by 2018 [1]. In the future, the introduction of advanced 
graphical processing units will enhance the performance of video applications and thus 
promote mobile video consumption. In addition, mobile services that require 3D video and 
higher‐definition video will proliferate and thus create significantly increased traffic over 
mobile networks.

2.2.3  Machine‐to‐machine Services

One big wave that will to contribute to the increase in mobile data demand is machine‐to‐
machine (M2M) applications and devices. M2M is rapidly growing and is expected to con-
tinue to be one of the fastest growing segments in the future [1]. The growth of the M2M 
market has been driven by sectors such as fleet management, industrial asset management, 
point of sales, security, and healthcare. The number of M2M connections could be several 
orders of magnitude larger than the world population. The market for M2M systems is 
expected to grow by 30–40% per year. Cisco IBSG predicts there will be 25 billion devices 
connected to the Internet by 2015 and 50 billion by 2020 [2]. In terms of traffic, M2M’s share 
will depend on the related applications. For instance, smart utility meters in homes consume 
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some hundreds of kilobytes per second while surveillance video monitoring consume tens of 
megabytes per second. In the future, agricultural science will also benefit from the ability to 
communicate information remotely. Another potential service is smart energy‐distribution 
grid systems. For example, the European commission mandated that 80% of consumers in its 
member countries should be equipped with smart meters by the year 2020 [3].

Another set of applications for M2M is for communications in the transport sector:

•• car‐to‐car (C2C)/vehicle‐to‐vehicle (V2V)
•• car‐to‐road/vehicle‐to‐road infrastructure (V2I)
•• car‐to‐pedestrian (C2P)/vehicle‐to‐device (V2D).

These are collectively referred to as C2X or V2X communications. They will improve 
traffic safety, both for drivers and pedestrians, provide in‐car infotainment services, and bring 
new business opportunities, such as highly automated driving and augmented‐reality head‐up 
displays.

M2M services will be a big trend in 2020 and beyond. One issue, however, is the very wide 
range of requirements this trend will bring with it. For example, sensor‐type applications will 
require the support of massive machine communications, while other safety and remote‐
control‐related M2M applications will require ultra‐low latency and/or ultra‐reliable machine com-
munication. In order to facilitate the study of such a wide variety of requirements, the principal 
market segments and categories of M2M services will need to be identified and defined.

2.2.4  Cloud Services

The demand for mobile cloud services is also expected to grow exponentially as users adopt 
services that must be ubiquitous. In particular, the rapid development of ICT technologies and 
mobile network capabilities will enable a wide range of cloud services to be available on mo-
bile devices, for example cloud speech services, such as speech recognition and synthesis. 
Mobile cloud traffic will grow 12‐fold from 2013 to 2018, a compound annual growth rate of 
64%. Cloud applications will account for 90% of total mobile data traffic by 2018, compared 
to 82% at the end of 2013 [1]. It is expected that in the future health, education, and other 
government services will be accessible by mobile devices, which will contribute to improve-
ments in social welfare. These services will require guaranteed reliability and security of data 
communications between the clients and the cloud data centers.

However, harnessing and extracting value from the “big data” stored in the cloud is seen by 
many operators as a route to enhance the customer experience and to generate new revenues 
from them. Via user data collection and mining, operators can enhance the user experience. 
They can also compile this data, selling it on in anonymized or aggregated form as business 
and marketing reports. For instance, data on customer footfall patterns could be sold to 
retailers, helping them target promotions according to store location and the buying patterns 
of consumers in that area. It will also help them decide where to open new shops, and in what 
format. Another recent trend for cloud services is termed “bring your own device”, which 
enables employees to bring personally owned mobile devices (laptops, tablets, and smart 
phones) to their workplace, and use them to access company information and applications 
stored in the cloud.
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2.2.5  Context‐based and Location‐based Services

Context/location awareness will be an important enabler for providing user‐centered services 
in the future. With such capabilities, mobile devices will not only act as personal communica-
tion devices but also as gateways to services in diverse environments that support personalized 
interactions and proactive assistance tailored to the user preferences and behaviors. Context/
location‐aware applications and devices capture context information from multiple sources 
and learn the associations between context cues and personal preferences and behaviors in 
order to adapt the configuration of devices and the behavior of interfaces, or to offer personal-
ized access to services. Learning the user’s important locations, known as their semantic loca-
tions, will be one of the most important tasks involved. Examples of semantic locations are 
“Main campus, Kyoto University” or “City center of Tokyo”.

Several location‐aware applications for mobile devices have been developed recently. These 
applications make use of colloquial places and paths rather than just geographical coordinates, 
for example by accessing personal applications such as geo‐reminders and location diaries. 
The combination of the cloud and location information will also create what is called the 
personal cloud, which will gradually replace the PC as the location where individuals keep 
their personal content and personal preferences, access services, and center their digital lives 
[4]. The personal cloud will shift the focus from the services delivered on client devices to 
cloud‐based services delivered across devices. Examples of context‐based and location‐based 
services (LBS) include:

Augmented Reality.  Augmented reality is a live – direct or indirect – view of a physical, 
real‐world environment whose elements are augmented by computer‐generated sensory input 
such as sound, video, graphics, or GPS data [5]. With the help of technologies such as computer 
vision and object recognition, information about the real world surrounding the user becomes 
interactive and digitally manipulable. Artificial information about the environment and its 
objects can be overlaid on the real world. Services based on these technologies are expected 
to expand in the future.

Proximity‐based Services.  As the number of mobile devices continues to increase, it 
becomes important to take advantage of the physical proximity of communicating devices and 
provide proximity services, such as social networking and proximity‐based multiplayer games. 
To this end, peer‐to‐peer discovery and communication becomes an important enabler of such 
services. Such features will also enable new services, for example allowing direct communication 
between devices when the network is damaged in the aftermath of a natural disaster.

SoLoMo.  Social local mobile (SoLoMo) is a new marketing concept that refers to the 
convergence of social, local, and mobile technologies. SoLoMo aims to “hyper‐target”, that is, 
to reach the right consumer, at the right time, in the right place. For example, retailers can 
utilize the mobile experience to their advantage, using location targeting, in‐store mobile 
marketing, gamification, and so on. With SoLoMo, a specific retailer can broadcast offers – retail 
deals, coupons, consumer events, and shopping and dining opportunities –  to a mobile user 
based on their geographic proximity, brand/retailer allegiance, and shopping/check‐in history. 
In addition, the integration of location‐based functions with social networks can lead to new 
applications on mobile networks that are expected to generate more mobile data traffic.


