Applications, Requirements & Candidate Technologies

NI IN

Edited by Rath Vannithamby • Shilpa Talwar

Towards

С

TOWARDS 5G

TOWARDS 5G APPLICATIONS, REQUIREMENTS AND CANDIDATE TECHNOLOGIES

Edited by

Rath Vannithamby and Shilpa Talwar Intel Corporation, USA

WILEY

This edition first published 2017 © 2017 John Wiley & Sons, Ltd

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Names: Vannithamby, Rath, editor. | Talwar, Shilpa, editor.
Title: Towards 5G : applications, requirements & candidate technologies / edited by Rath Vannithamby and Shilpa Talwar.
Description: Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2017. | Includes bibliographical references and index.
Identifiers: LCCN 2016019944| ISBN 9781118979839 (cloth) | ISBN 9781118979914 (epub)
Subjects: LCSH: Mobile communication systems–Research.
Classification: LCC TK5103.2. T6835 2017 | DDC 621.3845/6–dc23
LC record available at https://lccn.loc.gov/2016019944

A catalogue record for this book is available from the British Library.

Cover Image: Gettyimages/Prykhodov Gettyimages/Robert Mandel Gettyimages/BsWei Gettyimages/cybrain Gettyimages/d_arth

Set in 10/12pt Times by SPi Global, Pondicherry, India

10 9 8 7 6 5 4 3 2 1

Contents

Li	List of Contributors List of Acronyms About the Companion Website				
Pa	rt I	Overv	view of 5G	1	
1		o ductio pa Talwa	on ar and Rath Vannithamby	3	
	1.1		tion of Cellular Systems through the Generations	3	
	1.2		ng Towards 5G	4	
	1.3		etworks and Devices	5	
	1.4		ne of the Book	7	
	Refe	erences		8	
2		-	r ements bbour, Yoshihisa Kishiyama, and Takehiro Nakamura	9	
	2.1	Introd	luction	9	
	2.2	Emerg	ging Trends in Mobile Applications and Services	10	
		2.2.1	New Types of Mobile Device	10	
		2.2.2	Video Streaming and Download Services	11	
		2.2.3	Machine-to-machine Services	11	
		2.2.4	Cloud Services	12	
		2.2.5	Context-based and Location-based Services	13	
		2.2.6	Broadcast Services	14	
		2.2.7	Summary	14	
	2.3	Gener	ral Requirements	15	
		2.3.1	Capacity Requirements	15	
		2.3.2	User Data-rate Requirements	17	
		2.3.3	Latency Requirements	17	

	Refe		 2.3.3.1 User-plane Latency 2.3.3.2 Control-plane Latency Massive Device Connectivity Energy Saving and Robustness against Emergencies Summary 	18 18 19 20 21 21		
3		aborati ael Faer	ive 5G Research within the EU Framework of Funded Research	23		
	3.1 3.2 Refe	EU Re 3.2.1 3.2.2 3.2.3 3.2.4	EU Bodies, Structure, Roles, and Project Creation Project Creation and Operation 3.2.3.1 Project Creation 3.2.3.2 Project Operation Details of the FP8 Program European Technology Platforms and Public–Private Partnerships	23 25 25 27 28 29 30 30 30 31 32 33		
4	5G: Transforming the User Wireless Experience David Ott, Nageen Himayat, and Shilpa Talwar					
	4.1 4.2	4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	uction Vision of 5G Technologies Enabling New Spectrum Increasing Spectrum Efficiency Exploiting Multiple Radio Access Technologies Awareness of Application-specific Service Quality Exploiting Context Awareness Improving Device Power Efficiency	34 34 35 36 37 38 38 38		
	4.3 4.4	Intel S ISRA	Strategic Research Alliance on 5G 5G Technical Objectives and Goals Goal 1: Network Capacity Goal 2: Uniform Connectivity Experience	40 40 41 41 42		
	4.5	ISRA 4.5.1	5G Project Summaries Higher, Denser, Wilder: Massively Broadband and Adaptive Wireless for 5th Generation Wireless Communications	42 42		
		4.5.2	Fundamental Limits, Self-organization, and Context Awareness for Integrated Cellular and D2D Architectures	44		
		4.5.3 4.5.4	LAWS: Large Arrays and Wide Spectrum A System View of Interference Management: Radio Circuits, PHY Mechanisms, and Protocol Designs	45 46		

		4.5.5	Dynamic Cloud Services Spectrum Sharing Algorithms and	
			Mechanisms for B4G Networks	47
		4.5.6	Fundamentals of Spectrum Sharing in Device-to-Device and	
			Heterogeneous Communication Networks	48
		4.5.7	Structured Sharing of Network and Compute Resources in a	
			Community of Devices	48
		4.5.8	A Unified Framework for Enabling Energy-efficient Mobile	
			Internet Apps and Energy-efficient Cloud Offloading	49
	Refe	erences		50
Pa	rt II	Cand	idate Technologies – Evolutionary	53
5	Tow	ards G	reen and Soft	55
-			nd Shuangfeng Han	
	5.1	-	er Overview	55
			s on Green and Soft 5G Networks	56
	5.3		k Shannon: EE and SE Co-design for a Green Network	57
			EE and SE Co-design Fundamentals	57
		5.3.2	5G Candidate Technologies with EE–SE Co-design	61
			5.3.2.1 Hybrid BF for LSAS	61
			5.3.2.2 NOMA with EE–SE Co-design	65
	5.4		Iore Cell" for a Green and Soft Network	67
			C-RAN: An Enabling Element for 5G	67
			Rethink Signaling and Control for "No More Cell"	70
		5.4.3	Service Aggregator: to Accommodate Trillions of Nodes in 5G	73
			5.4.3.1 Aggregation of Packet Data from Multiple MTC Devices	74
		_	5.4.3.2 Two Relay Modes of the Aggregators	75
	5.5	Summ	•	75
		nowled	gments	76
	Refe	erences		76
6			Caching in 5G Small Cell Networks , Mehdi Bennis, and Mérouane Debbah	78
	6.1		Cell Networks: Past, Present and Future Trends	78
	6.2		-enabled Proactive Small Cell Networks	80
	6.3		n Model	81
		•	tive Caching at Base Stations	82
	0.4		Numerical Results and Discussions	83
	6.5		tive Caching at User Terminals	85
	0.5	6.5.1	Numerical Results and Discussions	88
	6.6		ed Work and Research Directions	90
	0.0		Proactive Caching and Content Popularity Estimation	92
		6.6.2	Approximation Algorithms	92 92
		6.6.3	Coded Caching Gains	93
		6.6.4	Joint Designs	94
			Mobility	94
		0.0.5	1100000	77

		6.6.6	Energy Consumption	94
		6.6.7	Deployment Aspects	94
	6.7	Conclu	isions	95
	Ack	nowledg	gments	95
	Refe	erences		95
7	Mod	leling M	Iulti-Radio Coordination and Integration in Converged	
	Hete	erogene	ous Networks	99
			a, Sergey Andreev, Alexander Pyattaev, Mikhail Gerasimenko, heryavy, Nageen Himayat, Kerstin Johnsson, and Shu-ping Yeh	
	7.1	Enabli	ng Technologies for Multi-Radio Heterogeneous Networks	99
		7.1.1	Understanding Challenges in Mobile Wireless Networking	99
		7.1.2	5G Technology Trends: Heterogeneous Networks	101
		7.1.3	5G Technology Trends: Direct Communications	103
		7.1.4	Focus and Contributions of our 5G Research	104
	7.2	Compr	ehensive Methodology for Space-Time Network Analysis	105
			Capabilities of the Proposed Mathematical Approach	105
			Proposed Taxonomy for HetNets	106
			General Assumptions of the Model	108
		7.2.4	1 A A A A A A A A A A A A A A A A A A A	112
	7.3	•	sis of Random Dynamic HetNets	114
		7.3.1	Core Stochastic Model	114
			7.3.1.1 Tier Types I and II Analysis	115
			7.3.1.2 Tier Type III Analysis	115
		7.3.2	0	116
		7.3.3	Characterizing Transitions for Important HetNet Examples	118
			7.3.3.1 Tier Type I Transitions	118
			7.3.3.2 Tier Type II Transitions	119
		• • •	7.3.3.3 Tier Type III Transitions	120
	7.4	-	fying Performance with System-level Evaluations	121
			Features of our 5G System-level Simulator	121
			0 F	123
	7.5		ary and Conclusions	126
		nowledg	gments	126
	Refe	erences		126
8			Resource Allocation in 5G Cellular Networks san and Ekram Hossain	129
	8.1	Introdu	action	129
	8.2	Multi-	tier 5G Cellular: Overview and Challenges	132
		8.2.1	Overview	132
		8.2.2	Challenges in Radio Resource Management for	
			Multi-tier Cellular Systems	132
	8.3	System	n Model	135
		8.3.1	Network Model and Assumptions	135
		8.3.2	Achievable Data Rate	136
		8.3.3	Formulation of the Resource Allocation Problem	137

	8.4	Resou	rce Allocation using Stable Matching	139			
		8.4.1	Concept of Matching	139			
		8.4.2	Utility Function and Preference Profile	140			
		8.4.3	Algorithm Development	140			
		8.4.4	Stability, Optimality, and Complexity of the Solution	142			
			8.4.4.1 Stability	142			
			8.4.4.2 Optimality	142			
			8.4.4.3 Complexity	143			
	8.5	Messa	age-passing Approach for Resource Allocation	143			
			Overview of the MP Scheme	144			
		8.5.2	Reformulation of the Resource Allocation Problem Utilizing				
			the MP Approach	144			
		8.5.3	55 I 5				
			Heterogeneous Network	146			
			Algorithm Development	148			
		8.5.5	Convergence, Optimality, and Complexity of the Solution	149			
			8.5.5.1 Convergence and Optimality	149			
	0.6		8.5.5.2 Complexity	151			
	8.6		on-based Resource Allocation	151			
			Overview of the Auction Approach	151			
		8.6.2	5	152			
			8.6.2.1 Cost Function	153			
		862	8.6.2.2 Update of Cost and Bidder Information Algorithm Development	153 154			
		8.6.4		134			
		0.0.4	of the Auction Approach	155			
			8.6.4.1 Convergence and Complexity	155			
			8.6.4.2 Optimality	155			
	8.7	Ouali	tative Comparison of the Resource Allocation Schemes	150			
	8.8		nary and Conclusion	157			
		rences		159			
			Reading	160			
			C				
9	Devi	ice-to-l	Device Communications	162			
		Andreas F. Molisch, Mingyue Ji, Joongheon Kim,					
	Daoı	ıd Burgi	hal, and Arash Saber Tehrani				
	9.1	Introd	luction and Motivation	162			
	9.2		gation Channels	163			
		9.2.1	-	164			
		9.2.2	Delay Dispersion	165			
		9.2.3	Temporal Variations	165			
	9.3	Neigh	bor Discovery and Channel Estimation	166			
		9.3.1	Neighbor Discovery	166			
		9.3.2	Channel Estimation	168			
	9.4	Mode	Selection and Resource Allocation	170			
		9.4.1	Mode Selection	170			
		9.4.2	Resource Allocation	172			

	9.5	Schedu	aling	175
		9.5.1	In-band D2D	175
		9.5.2	Out-of-band D2D	176
		9.5.3	FlashLinQ and ITLinQ	177
	9.6	Multi-	hop D2D	180
	9.7	Standa	rdization	183
	9.8	Applic	ations	184
		9.8.1	Content Distribution in Social Networks	184
		9.8.2	Video Distribution	184
		9.8. <i>3</i>	Roadside Infostations	185
		9.8.4	Emergency Communications	185
		9.8.5	Distributed Storage Systems	186
		9.8.6	Smart Grids	186
	9.9	D2D fe	or Video	186
		9.9.1	Random Caching and Unicasting	187
		9.9.2	Coded Caching and Multicasting	188
		9.9.3	Simulation Results	189
	9.10	Conclu	isions	191
	Ackn	owledgr	nents	191
	Refe	rences		191
10			ent Wireless OFDMA Networks d Geoffrey Ye Li	199
	10.1	Overvi	ew	199
	10.2		/ Efficiency and Energy-efficient Wireless Networks	200
	10.3		Efficiency and Spectral Efficiency Tradeoff in OFDMA	201
		10.3.1	• • •	203
		10.3.2	Impacts of System Parameters on the EE–SE Tradeoff	205
	10.4	Energy	/ Efficiency, Power, and Delay Tradeoff in OFDMA	208
		10.4.1	Relationship between EE and Transmit Power	211
		10.4.2	EE and Delay Tradeoff	212
	10.5	Energy	-efficient Resource Allocation for Downlink OFDMA	212
		10.5.1	Optimal Energy-efficient Resource Allocation	214
		10.5.2	Low-complexity Suboptimal Energy-efficient Resource Allocation	214
	10.6	Energy	-efficient Resource Allocation for Uplink OFDMA	217
		10.6.1	Optimal Energy-efficient Resource Allocation	218
		10.6.2	Low-complexity Suboptimal Energy-efficient	
			Resource Allocation	218
	10.7	Conclu	iding Remarks	219
	Refer	rences		220
11			ultiple-access and MIMO Techniques	222
			s: Anass Benjebbour, Anxin Li, Kazuaki Takeda,	
			iyama, and Takehiro Nakamura SV-MIMO sections: Yuki Inoue, Yoshihisa	
	Kishiy	vama, and	l Takehiro Nakamura	
	11.1	Introdu		222
	11.2	Non-or	rthogonal Multiple Access	225

		11.2.1 Concept	225
		11.2.1.1 Comparison with Orthogonal User Multiplexing	226
		11.2.1.2 Motivations and Benefits of NOMA	227
		11.2.2 Link-level Considerations	228
		11.2.3 System-level Considerations	231
		11.2.3.1 NOMA Signaling Overhead	233
		11.2.3.2 Performance in Low- and High-Mobility Scenarios	235
		11.2.3.3 Combination of NOMA and MIMO	235
	11.3	Smart Vertical MIMO	238
		11.3.1 Grouping of Antenna Elements for 3D MIMO	238
		11.3.2 Adaptive Grouping of Antenna Elements using SV-MIMO	240
		11.3.3 Performance Evaluation and Field Experiments	242
	11.4	Conclusion	247
	Refer	ences	248
12	M2M	I Communications	250
	Rapee	pat Ratasuk, Amitava Ghosh, and Benny Vejlgaard	
	12.1	Chapter Overview	250
	12.2	M2M Communications	250
	12.3	LTE Evolution for M2M	253
		12.3.1 LTE Features for M2M	254
		12.3.1.1 eMTC	258
		12.3.1.2 Narrowband Internet of Things	267
		12.3.2 Further Enhancements	268
	12.4	5G for M2M Communications	270
		12.4.1 Coverage	272
		12.4.2 Latency	273
		12.4.3 Capacity	273
	12.5	Conclusion	273
	Refer	ences	274
13		latency Radio-interface Perspectives for Small-cell 5G Networks evanen, Juho Pirskanen, and Mikko Valkama	275
	13.1	Introduction to Low-latency Radio-interface Design	275
	13.2	Small-cell Channel Environment Considerations and Expected Traffic	277
		13.2.1 Centimeter-wave Channel Models	278
		13.2.2 Millimeter-wave Channel Models	280
		13.2.3 Comments on Expected Traffic and Traffic Modeling	282
	13.3	New Radio-interface Design for Low-latency 5G Wireless Access	283
		13.3.1 Achieving Ultra-low Latency with Strict Timing Requirements	290
		13.3.2 Reference-symbol Layout Design for Spectrally Efficient MIMO	_> 0
		Communications in 5GETLA	292
	13.4	Extending the 5GETLA Reference Design to Millimeter-Wave	
		Communications	296
		13.4.1 High Mobility Support in mm-Wave Communications	298
	13.5	Conclusions and Open Research Topics	299
	Refer	ences	300

Part	t III	Candida	te Technol	logies – Revolutionary	303
14	Gerha Yejian Luciai	urd Wunder Chen, Ge no Mendes	r, Martin Ka rhard Fettw r, Dimitri Ka	veforms for 5G asparick, Peter Jung, Thorsten Wild, Frank Schaich, veis, Ivan Gaspar, Nicola Michailow, Maximilian Matthé, ténas, Jean-Baptiste Doré, Vincent Berg, Nicolas Cassiau, teusz Buczkowski	305
	14.1	Why Ol	FDM Fails	3	305
		-	Sporadic		306
				and Temporal Fragmentation	306
		14.1.3	Real-time	e Constraints	307
	14.2		Frame Str		308
	14.3	Wavefo	rm Candid	lates and Multiple-access Approaches	310
		14.3.1	Universa	l Filtered Multicarrier	310
				Frequency- and Time-domain Properties	311
			14.3.1.2		
				Timing Advance	313
			14.3.1.3	Supporting Multiple Signal Layers with Interleave	
		1420	<i>a v</i>	Division Multiple Access	314
		14.3.2		zed Frequency Division Multiplexing	316
			14.3.2.1	1	316
				GFDM in a Gabor Transform Setting	318 319
			14.3.2.3	<i>Time-reversal Space–Time Coding for GFDM Access</i> <i>Reducing Latency in LTE Time–Frequency Grid</i>	319
		14.3.3		nk Multicarrier	320
		14.5.5		Principles	321
				Multi-user Receiver Architecture	321
			14.3.3.3		324
			14.3.3.4	· · ·	325
	14.4	One-sho	ot Random	· · ·	328
		14.4.1	Bi-orthog	gonal Frequency Division Multiplexing	329
				Transmitter	330
			14.4.1.2	Receiver	331
			14.4.1.3	Pulse Design	331
			14.4.1.4	Numerical Results	333
		14.4.2	•	evel Performance	334
	14.5	Conclus	sions		339
	Refer	rences			339
15				unications Ghosh, and Timothy A. Thomas	342
	15.1	Introduc	ction		342
	15.2			i-Antenna Techniques in LTE	343
	15.3			llular with Large-scale Antenna Arrays	345
	15.4	-		chitectures for 5G Cellular	348
	15.5			or Evolved LTE Systems (Below 6 GHz)	349

16

	15.5.1	3D Channel Models	350
	15.5.2	Antenna-array Configurations	351
	15.5.3	Uplink Transmission Techniques	351
	15.5.4	Downlink Transmission Techniques	352
		15.5.4.1 Reciprocity-based Transmission Methods	353
		15.5.4.2 Codebook Feedback-based Methods	353
		15.5.4.3 Product Codebook Feedback-based Methods	354
		15.5.4.4 Direct Feedback Methods	355
	15.5.5	Massive Subsectoring with Large-scale Arrays	355
15.6	Massive	e MIMO for cmWave and mmWave Systems (Above 6 GHz)	358
	15.6.1	Channel Modeling Above 6 GHz	358
		Hardware Implementation Issues Above 6 GHz	359
	15.6.3		360
	15.6.4	Transmission Strategies Above 6 GHz	361
	15.6.5	SU-MIMO Transmission	361
	15.6.6	MU-MIMO Transmission	362
15.7	Conclus	sion	362
Refer	ences		363
	luplex R		365
Dinesi	i Bharaau	a and Sachin Katti	
16.1	The Pro	blem	367
	16.1.1	Requirements for Full Duplex Designs	369
	16.1.2	Do Prior Full-duplex Techniques Satisfy these Requirements?	371
16.2	Our De	sign	372
	16.2.1	Analog Cancelation	372
	16.2.2	Digital Cancelation	375
		16.2.2.1 Canceling Linear Components	375
		16.2.2.2 Canceling Non-linear Components	376
		16.2.2.3 Complexity	378
	16.2.3	Dynamic Adaptation of Analog Cancelation	378
		16.2.3.1 Modeling the Frequency Response of Delay Lines $H_i^{a_i}(f)$) 380
		16.2.3.2 Optimization Algorithm	380
16.3	Implem	entation	381
16.4	Evaluat	ion	383
	16.4.1	Can We Cancel all of the Self-interference?	384
		16.4.1.1 Does Our Design Work with Commodity Radios?	385
		16.4.1.2 SNR Loss of the Received Signal in Full-duplex Mode	385
	16.4.2	Digging Deeper	387
		16.4.2.1 Impact of Constellation and Bandwidth	387
		16.4.2.2 Deconstructing Analog Cancelation	388
		16.4.2.3 Deconstructing Digital Cancelation	389
		16.4.2.4 Dynamic Adaptation	390
	16.4.3	Does Full Duplex Double Throughput?	392
16.5		ion and Conclusion	393
Refer	ences		393

17		to Multi-point, In-band mmWave Backhaul for 5G Networks h Taori and Arun Sridharan	395
	17.1	Introduction	395
	17.2	Feasibility of In-band Backhaul	397
	17.3		400
	17.4	In-band Backhaul Design Considerations	402
	17.5	TDM-based Scheduling Scheme for In-band Backhauling	403
	17.6	Concluding Remarks	407
	Ackn	owledgments	407
		rences	407
18		ication of NFV and SDN to 5G Infrastructure Sunder Rajan and Kannan Babu Ramia	408
	18.1	Chapter Overview	408
	18.2	Background	408
	18.3	NFV and SDN	409
	18.4	Network Planning and Engineering	410
		18.4.1 Cellular Network Design and Traffic Engineering	412
		18.4.1.1 Market Design	412
		18.4.1.2 Call Model	412
		18.4.1.3 Traffic Model	413
	18.5	Cellular Wireless Network Infrastructure	414
		18.5.1 Reference Points, Interfaces, and Protocol Stacks	414
		18.5.2 Description of the EPC Main Element Interactions	414
	18.6	Network Workloads and Capacity Factors	417
		18.6.1 EPC Workload Stress Vectors	418
	18.7	Conclusion	419
	Refer	rences	420

Index

421

List of Contributors

Sergey Andreev Tampere University of Technology, Finland

Ejder Baştuğ CentraleSupélec, France

Anass Benjebbour NTT DoCoMo, Inc., Japan

Mehdi Bennis Centre for Wireless Communications, University of Oulu, Finland

Vincent Berg CEA, LETI, France

Dinesh Bharadia Stanford University, USA

Mateusz Buczkowski IS-Wireless, Poland

Daoud Burghal University of Southern California, USA

Nicolas Cassiau CEA, LETI, France

Yejian Chen Alcatel Lucent Bell Labs, Germany

Mérouane Debbah CentraleSupélec, France

Jean-Baptiste Doré CEA, LETI, France Michael Faerber Intel Corporation, USA

Gerhard Fettweis Technische Universität Dresden, Germany

Olga Galinina Tampere University of Technology, Finland

Ivan Gaspar Technische Universität Dresden, Germany

Mikhail Gerasimenko Tampere University of Technology, Finland

Amitava Ghosh Nokia Networks, USA

Shuangfeng Han Green Communication Research Center, China Mobile Research Institute, China

Monowar Hasan University of Manitoba, Canada

Nageen Himayat Intel Corporation, USA

Ekram Hossain University of Manitoba, Canada

Chih-Lin I Green Communication Research Center, China Mobile Research Institute, China

Yuki Inoue NTT DoCoMo Inc., Japan

Mingyue Ji University of Utah, USA

Kerstin Johnsson Intel Corporation, USA

Peter Jung Fraunhofer Heinrich Hertz Institute, Germany

Martin Kasparick Fraunhofer Heinrich Hertz Institute, Germany

Sachin Katti Stanford University, USA

Joongheon Kim Chung-Ang University, Korea **Yoshihisa Kishiyama** NTT DoCoMo, Inc., Japan

Yevgeni Koucheryavy Tampere University of Technology, Finland

Dimitri Kténas CEA, LETI, France

Toni Levanen Tampere University of Technology, Finland

Anxin Li DoCoMo Beijing Communications Laboratories Co., Ltd, China

Geoffrey Ye Li Georgia Institute of Technology, USA

Maximilian Matthé Technische Universität Dresden, Germany

Luciano Mendes Technische Universität Dresden, Germany

Nicola Michailow Technische Universität Dresden, Germany

Andreas F. Molisch University of Southern California, USA

Takehiro Nakamura NTT DoCoMo, Inc., Japan

David Ott Intel Corporation, USA

Slawomir Pietrzyk IS-Wireless, Poland

Juho Pirskanen Nokia Networks, Finland

Alexander Pyattaev Tampere University of Technology, Finland

Ashok Sunder Rajan Intel Corporation, USA

Kannan Babu Ramia Intel Corporation, USA

Rapeepat Ratasuk Nokia Bell Labs, USA Frank Schaich Alcatel Lucent Bell Labs, Germany

Arun Sridharan Samsung Research America, USA

Kazuaki Takeda NTT DoCoMo Inc., Japan

Shilpa Talwar Intel Corporation, USA

Rakesh Taori Samsung Research America, USA

Arash Saber Tehrani University of Southern California, USA

Timothy A. Thomas Nokia Networks, USA

Mikko Valkama Tampere University of Technology, Finland

Rath Vannithamby Intel Corporation, USA

Benny Vejlgaard Nokia Networks, Denmark

Frederick W. Vook Nokia Networks, USA

Thorsten Wild Alcatel Lucent Bell Labs, Germany

Gerhard Wunder Fraunhofer Heinrich Hertz Institute, Germany

Cong Xiong Georgia Institute of Technology, USA

Shu-ping Yeh Intel Corporation, USA

List of Acronyms

1G	First Generation
2G	Second Generation
3G	Third Generation
4G	Fourth Generation
5G	Fifth Generation
CDMA	Code Division Multiple Access
TDMA	Time Division Multiple Access
OFDMA	Orthogonal Frequency Division Multiple Access
GSM	Global System for Mobile communications
IMT	International Mobile Telecommunications
ITU-R	International Telecommunication Union-Radio
WCDMA	Wideband CDMA
3GPP	Third Generation Partnership Project
HSPA	High Speed Packet Access
LTE	Long-Term Evolution
FDMA	Frequency Division Multiple Access
SC-FDMA	Single Career Frequency Division Multiple Access
M2M	Machine to Machine communications
IoT	Internet of Things
QoE	Quality of Experience
RAT	Radio Access Technology
MIMO	Multiple Input Multiple Output
SDN	Software Defined Network
NFV	Network Function Virtualization

5GMF	5G Mobile Communications Promotion Forum
NGMN	Next Generation Mobile Networks
D2D	Device to Device
FHD	Full High Definition
UHD	Ultra High Definition
V2V	Vehicle-to-Vehicle
C2C	Car-to-Car
V2I	Vehicle-to-Road Infrastructure
C2P	Car-to-Pedestrian
V2D	Vehicle-to-Device
BYOD	Bring Your Own Device
SoLoMo	Social Local Mobile
HMI	Human-Machine Interface
CAGR	Compound Annual Growth Rate
WRC	World Radio Conference
AR	Augmented Reality
RTT	Round Trip Time
TTI	Transmission Time Interval
HARQ	Hybrid Automatic Repeat reQuest

3GPP	3rd Generation Partnership Project
BS	Base Station
D2D	Device to Device
DL	Downlink
EE	Energy Efficiency
EEC	European Economic Union
EFTA	European Free Trade Association
EP	European Parliament
ETP	European Technology Platform
ETSI	European Telecommunications Standards Institute
EU	European Union
HetNet	Heterogeneous network
ICT	Information and Communication Technology
IST	Information Society Technology
LTE	Long-Term Evolution
LTE-A	Long-Term Evolution-Advanced
LSA	Licensed Shared Access
MIMO	Multiple Input Multiple Output
MTC	Machine Type Communication
PPP	Public Private Partnership
QoS	Quality of Service

RAT	Radio Access Technology
TDMA	Time-Division Multiple Access
UE	User Equipment
UL	Uplink
UMTS	Universal Mobile Telecommunications System

ISRA	Intel Strategic Research Alliance
NTIA	National Telecommunications and Information Association
GHz	Gigahertz
THz	Terahertz
Gbps	Gigabits per second
MIMO	Multi Input Multi Output
MU-MIMO	Multi-User MIMO
VLM	Very Large MIMO
CP	Cyclic Prefix
OFDM	Orthogonal Frequency Division Multiplexing
RAN	Radio Access Network
RAT	Radio Access Technology
WAN	Wide Area Network
LAN	Local Area Network
PAN	Personal Area Network
IoT	Internet of Things
QoE	Quality of Experience
QoS	Quality of Service
RFP	Request For Proposals
OTT	Over-The-Top
ARQ	Automatic Repeat reQuest
PHY	Physical Layer
FFR	Fractional Frequency Reuse
LSA	Licensed Shared Access
REM	Radio Environment Map
PC	Personal Computer
GNU	GNUs Not Unix

SE	Spectral Efficiency
EE	Energy Efficiency
LSAS	Large Scale Antenna System
NOMA	Non Orthogonal Multiple Access
C-RAN	Cloud Radio Access Network
ICT	Information and Communications Technologies

MTC	Machine Type Communications
QoS	Quality of Service
MAC	Medium Access Control
PA	Power Amplifier
CSI	Channel State Information
TDD	Time Division Duplex
FDD	Frequency Division Duplex
UDN	Ultra Dense Network
DAS	Distributed Antenna System
CoMP	Coordinated Multi-Point
IM	Instant Messaging
LAPI	Low Access Priority Indication
RRC	Radio Resource Control

SCN	Small Cell Network
UT	User Terminal
ICIC	Inter-Cell Interference Coordination
TTT	Time to Trigger
SINR	Signal-to-Interference-plus-Noise Ratio
OPEX	Operational Expenditures
CF	Collaborative Filtering
SVD	Singular Value Decomposition
CDN	Content Delivery Network
ICN	Information Centric Networks
MAB	Multi-Armed Bandit
ADMM	Alternating Direction Method of Multipliers
DMT	Diversity-Multiplexing Tradeoff
SNR	Signal-to-Noise Ratio
PPP	Poisson Point Process

D2D	Device-to-Device
QoS	Quality of Service
RAT	Radio Access Technology
UE	User Equipment
HetNets	Heterogeneous Networks
WLAN	Wireless Local Area Network
3GPP	Third Generation Partnership Project
UMTS	Universal Mobile Telecommunication

- UMTS Universal Mobile Telecommunications System
- LTE Long-Term Evolution
- RAN Radio Access Network
- ANDSF Access Network Discovery and Selection Function

SINR	Signal-to-Interference-plus-Noise Ratio
DL	Downlink
UL	Uplink
MIMO	Multiple Input Multiple Output
PPP	Poisson Point Process
AP	Access Point
BS	Base Station
MP	Maximum Power
FU	Full Utilization
SNR	Signal-to-Noise Ratio
SLS	System Level Simulator

LTE-A	Long-Term Evolution-Advanced
ABS	Almost Blank Subframe
RB	Resource Block
CSI	Channel State Information

FCCFederal Communications CommissionV2VVehicle to VehicleD2IDevice-to-InfrastructureRMSRoot Mean SquareGSCMGeometry-based Stochastic Channel ModelBSBase StationMACMedium Access ControlDVCSDirectional Virtual Carrier SensingDCFDistributed Coordinated FunctionCSCompressed SensingZCZhadoff-ChuCSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSNRSignal-to-Noise RatioSIRSignal-to-Interference ratioINRInterference-to-Noise Ratio
D2IDevice-to-InfrastructureRMSRoot Mean SquareGSCMGeometry-based Stochastic Channel ModelBSBase StationMACMedium Access ControlDVCSDirectional Virtual Carrier SensingDCFDistributed Coordinated FunctionCSCompressed SensingZCZhadoff-ChuCSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSIRSignal-to-Interference ratio
RMSRoot Mean SquareGSCMGeometry-based Stochastic Channel ModelBSBase StationMACMedium Access ControlDVCSDirectional Virtual Carrier SensingDCFDistributed Coordinated FunctionCSCompressed SensingZCZhadoff-ChuCSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSIRSignal-to-Interference ratio
GSCMGeometry-based Stochastic Channel ModelBSBase StationMACMedium Access ControlDVCSDirectional Virtual Carrier SensingDCFDistributed Coordinated FunctionCSCompressed SensingZCZhadoff-ChuCSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSIRSignal-to-Interference ratio
BSBase StationMACMedium Access ControlDVCSDirectional Virtual Carrier SensingDCFDistributed Coordinated FunctionCSCompressed SensingZCZhadoff-ChuCSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSIRSignal-to-Interference ratio
MACMedium Access ControlDVCSDirectional Virtual Carrier SensingDCFDistributed Coordinated FunctionCSCompressed SensingZCZhadoff-ChuCSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSIRSignal-to-Interference ratio
DVCSDirectional Virtual Carrier SensingDCFDistributed Coordinated FunctionCSCompressed SensingZCZhadoff-ChuCSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSIRSignal-to-Interference ratio
DCFDistributed Coordinated FunctionCSCompressed SensingZCZhadoff-ChuCSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSIRSignal-to-Interference ratio
CSCompressed SensingZCZhadoff-ChuCSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSNRSignal-to-Interference ratioSIRSignal-to-Interference ratio
ZCZhadoff-ChuCSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSNRSignal-to-Interference ratio
CSIChannel State InformationTDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSNRSignal-to-Noise RatioSIRSignal-to-Interference ratio
TDMATime Division Multiple AccessCSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSNRSignal-to-Noise RatioSIRSignal-to-Interference ratio
CSMA/CSCarrier Sense Multiple Access with Collision SensingLATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSNRSignal-to-Noise RatioSIRSignal-to-Interference ratio
LATSLocation Aware Training SchemeNMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSNRSignal-to-Noise RatioSIRSignal-to-Interference ratio
NMSENormalized Mean Square ErrorQoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSNRSignal-to-Noise RatioSIRSignal-to-Interference ratio
QoSQuality of ServiceSINRSignal-to-Interference-plus-Noise RatioSNRSignal-to-Noise RatioSIRSignal-to-Interference ratio
SINRSignal-to-Interference-plus-Noise RatioSNRSignal-to-Noise RatioSIRSignal-to-Interference ratio
SNRSignal-to-Noise RatioSIRSignal-to-Interference ratio
SIR Signal-to-Interference ratio
•
IND Interference to Noise Patie
INK Interference-to-inoise Katio
PPP Poisson Point Processes
MINLP Mixed-Integer Nonlinear Programming

NE	Nash Equilibrium
PSO	Particle Swarm Optimization
OFDMA	Orthogonal Frequency Division Multiple Access
FDMA	Frequency Division Multiple Access
ITIS	Information-Theoretic Independent Sets
CU	Cellular User
ZF	Zero-Forcing
MC	Mobile Cloud
PCH	Primary Cluster Head
SCH	Secondary Cluster Head
MR-D	Maximum Rate towards Destination
RTS	Request To Send
CTS	Clear To Send
SIB	System Information Block
QoE	Quality of Experience

OFDM	Orthogonal Frequency Division Multiplexing
OFDMA	Orthogonal Frequency Division Multiple Access
EE	Energy Efficiency
QoS	Quality of Service
AWGN	Additive White Gaussian Noise
DOF	Degree(s) of Freedom
SE	Spectral Efficiency
CSI	Channel State Information
CNR	Channel gain to Noise Ratio
LDD	Lagrange Dual Decomposition
MDSA	Maximum Downlink Subcarrier Assignment
MUSA	Maximizing Uplink Subcarrier Assignment
BPA	Bisection Power search Algorithm
LT	Luby Transform
MIMO	Multiple Input Multiple Output
PA	Power Amplifier

MIMO	Multiple Input Multiple Output	
SV-MIMO	Smart Vertical MIMO	
SIMO	Single Input Multiple Output	
NOMA	Non-Orthogonal Multiple Access	
FDMA	Frequency Division Multiple Access	
TDMA	Time Division Multiple Access	
CDMA	Code Division Multiple Access	
OFDMA	Orthogonal Frequency Division Multiple Access	

SDMA	Spatial Division Multiple Access	
OMA	Orthogonal Multiple Access	
LTE	Long-Term Evolution	
SU-MIMO	Single User MIMO	
MU-MIMO		
RAT	Radio Access Technology	
ICIC	Inter-Cell Interference Coordination	
CoMP	Coordinated Multi-Point	
IRC	Interference Rejection Combining	
MMSE	Minimum Mean Squared Error	
NAICS	Network-Assisted Interference Cancellation and Suppression	
MLD	Maximum Likelihood Detection	
SIC	Successive Interference Cancellation	
AAS	Active Antenna System	
FD-MIMO	Full Dimensional MIMO	
LOS	Line-Of-Sight	
NLOS	Non Line-Of-Sight	
SINR	Signal to Interference plus Noise Ratio	
BS	Base Station	
UE	User Equipment	
AWGN	Additive White Gaussian Noise	
CSI	Channel State Information	
CQI	Channel Quality Indicator	
SLIC	Symbol-Level Interference Cancellation	
CWIC	Codeword Level Interference Cancellation	
LLR	Log-Likelihood Ratio	
MRC	Maximal Ratio Combining	
BLER	Block Error Rate	
RS	Reference Signal	
C-RS	Common Reference Signal	
UE-RS	UE-specific Reference Signal	
SCM	Spatial Channel Model	
HARQ	Hybrid Automatic Repeat reQuest	
MCS	Modulation and Coding Scheme	
MCPS	Modulation, Coding, and Power Set	
TPA	Transmit Power Allocation	
FSPA	Full Search Power Allocation	
SFBC	Space Frequency Block Coding	
CDD	Cyclic Delay Diversity	
CRS	Cell Specific Reference Signal	
BF	Beamforming	
BB	Base-Band	
PSS	Primary Synchronization Signal	
SSS	Secondary Synchronization Signal	
PDCCH	Physical Downlink Control Channel	
EPDCCH	Enhanced PDCCH	

PBCH	Physical Broadcast Channel	
PDSCH	Physical Downlink Shared Channel	
DM-RS	Demodulation Reference Signal	
MS	Mobile Station	

DEID	Dadia Fraguancy Idantification	
RFID EDGE	Radio Frequency Identification	
RAN	Enhanced Data rates for GSM Evolution	
1411	Radio Access Network	
UE	User Equipment	
BS	Base Station	
MME	Mobility Management Entity	
PLMN	Public Land Mobile Network	
EAB	Extended Access Barring	
ACB	Access Class Barring	
eNB	Evolved Node B (base station)	
RF	Radio Frequency	
PMU	Power Management Unit	
BOM	Bill of Material	
FFT	Fast Fourier Transform	
TBS	Transport Block Size	
PRACH	Physical Random Access Channel	
PUSCH	Physical Uplink Shared Channel	
PUCCH	Physical Uplink Control Channel	
PDSCH	Physical Downlink Shared Channel	
PBCH	Physical Broadcast Channel	
EPDCCH	Enhanced Physical Downlink Control Channel	
PSS	Primary Synchronization Signal	
SSS	Secondary Synchronization Signal	
MIB	Master Information Block	
SIB	System Information Blocks	
MCL	Maximum Coupling Loss	
PRB	Physical Resource Block	
NB	Narrow-Band	
NB-IoT	Narrow-Band Internet of Things	
TDM	Time Division Multiplexing	

Physical layer	
Hybrid Automatic Repeat reQuest	
Advanced Interference Cancellation	
Line Of Sight	
Non Line Of Sight	

СР	Cyclic Prefix		
GP	Guard Period		
ТА	Timing Alignment		
Tx	Transmission		
Rx	Reception		
WLAN	Wireless Local Area Network		
FCC	Federal Communications Commission		
BF	Beam-Forming		
CRS	Common Reference Symbol		
DLCRS	Downlink Common Reference Symbol		
DLCCH	Downlink Control Channels		
ACK	Acknowledgement		
DLSCH	Downlink Shared Channel		
DMRS	Demodulation Reference Symbols		
ULCRS	Uplink Common Reference Symbols		
ULSCH	Uplink Shared Channel		
ULDCH	Uplink Data Channel		
RACH	Random Access Channel		
ULCCH	Uplink Control Channel		
MCS	Modulation and Coding Scheme		

DUN	Dhuning Llaure	
PHY	Physical layer	
DFT	Discrete Fourier Transform	
MTC	Machine-Type Communication	
IoT	Internet of Things	
RACH	Random Access Channel	
CoMP	Coordinated Multi-Point	
СР	Cyclic Prefix	
CS	Cyclic Suffix	
FBMC	Filter Bank Multi-Carrier	
TTI	Transmission Time Interval	
ICI	Inter-Carrier Interference	
GI	Guard Interval	
ISI	Inter-Symbol Interference	
IDMA	Interleave-Division Multiple Access	
PRACH	Physical Layer Random Access Channel	
D-PRACH	Data PRACH	
ATA	Autonomous Timing Advance	
OFDM	Orthogonal Frequency Division Multiplexing	
UFMC	Universal Filtered Multi-Carrier (also UF-OFDM)	
FFT	Fast Fourier Transform	
IFFT	Inverse Fast Fourier Transform	
QAM	Quadrature Amplitude Modulation	

MUDMulti-User DetectionMPRMulti Packet ReceptionMMCMassive Machine CommunicationGFDMGeneralized Frequency Division MultiplexingAWGNAdditive White Gaussian NoiseMFMatched FilterZFZero-ForcingMMSEMinimum Mean Square Error
MMCMassive Machine CommunicationGFDMGeneralized Frequency Division MultiplexingAWGNAdditive White Gaussian NoiseMFMatched FilterZFZero-Forcing
GFDMGeneralized Frequency Division MultiplexingAWGNAdditive White Gaussian NoiseMFMatched FilterZFZero-Forcing
AWGNAdditive White Gaussian NoiseMFMatched FilterZFZero-Forcing
MFMatched FilterZFZero-Forcing
ZF Zero-Forcing
MMSE Minimum Mean Square Error
DZT Discrete Zak Transform
STC Space Time Coding
TR-STC Time-Reversal Space Time Coding
GFDM Generalized Frequency Division Multiple Access
BER Bit Error Rate
OQAM Offset Quadrature Amplitude Modulation
FS-FBMC Frequency Spreading FBMC
PPN-FBMC Poly-Phase Network FBMC
SINR Signal to Interference plus Noise Ratio
MQAM M-ary Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
BFDM Bi-orthogonal Frequency Division Multiplexing
PUSCH Physical Uplink Shared Channel
ACK/NACK Acknowledgment/Negative Acknowledgment

MIMO	Multiple Input Multiple Output		
CoMP	Coordinated Multi-Point		
FD-MIMO	Full Dimension MIMO		
SU-MIMO	Single-User MIMO		
MU-MIMO	Multi-User MIMO		
CRS	Common Reference Signals		
CSI-RS	Channel State Information Reference Signals		
DMRS	Dedicated Modulation Reference Signals		
UE	User Equipment		
CS	Coordinated Scheduling		
CB	Coordinated Beamforming		
DPS	Dynamic Point Selection		
JP	Joint Processing		
JT	Joint Transmission		
NIB	Non-Ideal Backhaul		
FDD	Frequency Division Duplexing		
TDD	Time Division Duplexing		
LOS	Line-of-Sight		
NLOS	Non-Line-of-Sight		

- SNR Signal-to-Noise Ratio
- PMI Precoder Matrix Indicator
- AP Access Point
- RFIC RF Integrated Circuit
- MMIC Monolithic Microwave Integrated Circuit
- LTCC Low Temperature Co-fired Ceramic
- LCP Liquid Crystal Polymer
- QAM Quadrature Amplitude Modulation

LTE	Long-Term Evolution
SNR	Signal-to-Noise Ratio
MIMO	Multiple Input Multiple Output
PHY	Physical Layer
OFDM	Orthogonal Frequency Division Multiplexing
PCB	Printed Circuit Board
WARP	Wireless Open Access Research Platform
LO	Local Oscillator
ADC	Analog to Digital Converter
PAPR	Peak to Average Power Ratio
QAM	Quadrature Amplitude Modulation
AGC	Automatic Gain Control
LNA	Low Noise Amplifier
IQ	Inphase/Quadrature
USRP	Universal Software Radio Peripheral
RS	Rohde–Schwarz
QPSK	Quadrature Phase Shift Keying
FD	Full Duplex
HD	Half Duplex

- BS Base Station MS Mobile Station
- CoMP Coordinated Multi-Point
- PMP Point-to-Multipoint
- AGW Access Gateway
- BL Backhaul Link
- AL Access Link
- UL Uplink
- DL Downlink
- ISD Inter-Site Distance
- LOS Line-of-Sight
- NLOS Non-Line-of-Sight

- SDM Spatial Division Multiplexing
- TDM Time Division Multiplexing
- SDMA Space Division Multiple Access
- SIR Signal to Interference Ratio
- W-BS Wired BS
- U-BS Unwired BS
- TDD Time Division Duplex

- SDN Software Defined Networking
- NFV Network Function Virtualization
- EPC Evolved Packet Core
- CSP Communication Service Provider
- KPI Key Performance Indicator
- BGR Border Gateway Router
- TOC Total Cost of Ownership
- SEGW Service Edge Gateway
- PCRF Policy Rules Charging Function
- PGW Packet Gateway
- UP User Plane
- NAS Non-Access Stratum
- HSS Home Subscription Server
- TEID Tunnel End Point Identifier
- VoIP Voice over IP

About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/vannithamby/towards5g

There you will find valuable material designed to enhance your learning, including:

- Abstract and Keywords
- List of Contributors

Scan this QR code to visit the companion website

Part I Overview of 5G

1

Introduction

Shilpa Talwar and Rath Vannithamby Intel Corporation, USA

1.1 Evolution of Cellular Systems through the Generations

The first large-scale commercial cellular communications systems were deployed in the 1980s and these became known as first-generation (1G) systems. 1G systems were built on narrowband analog technology, and provided a basic voice service. These were replaced by second-generation (2G) cellular telecom networks by the early 1990s. 2G networks marked the start of the digital voice communication era, and provided a secure and reliable communication channel. 2G systems use either time division multiple access (TDMA) or code division multiple access (CDMA) technologies, and provided higher rates. The European Global System for Mobile Communications system is based on TDMA technology while IS-95 (also known as CDMA One) is based on CDMA technology. These 2G digital technologies provide expanded capacity, improved sound quality, better security and unique services such as caller ID, call forwarding, and short messaging. A critical feature was seamless roaming, which let subscribers move across provider boundaries.

The third-generation (3G) – International Mobile Telecommunications-2000 (IMT-2000) – is a set of standards for mobile phones and mobile telecommunications services fulfilling the recommendations of the International Telecommunication Union-Radio (ITU-R). 3G mobile networks became popular due to ability of users to access the Internet over mobile devices and laptops. The speed of data transmission on a 3G network is up to 2 Mbps, and therefore the network enables voice and video calling, file transmission, internet surfing, online TV, playing of games and much more. 3G uses CDMA technology in various forms. Wideband CDMA and High Speed Packet Access technologies were developed as part of the Third Generation Partnership Project (3GPP) organization, and CDMA2000 was developed as part of the 3GPP2 organization.

Companion website: www.wiley.com/go/vannithamby/towards5g

Towards 5G: Applications, Requirements and Candidate Technologies, First Edition. Edited by Rath Vannithamby and Shilpa Talwar.

^{© 2017} John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

Fourth-generation (4G) requirements – the International Mobile Telecommunications Advanced (IMT-Advanced) specification – were specified by ITU-R in March 2008. The key requirements specified 4G peak service speeds of 100 Mbps for high-mobility communication (such as from trains and cars) and 1 Gbps for low-mobility communication (such as pedestrians and stationary users). A 4G system not only provides voice and other 3G services but also provides ultra-broadband network access to mobile devices. Applications vary from IP telephony, HD mobile television, video conferencing to gaming services and cloud computing. There are two 4G technologies: Long-Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX). LTE was developed as part of 3GPP and WiMAX was developed as part of IEEE. LTE uses orthogonal frequency division multiple access (OFDMA) in the downlink and single carrier frequency division multiple access in the uplink whereas WiMAX uses OFDMA in both uplink and downlink.

1.2 Moving Towards 5G

4G standards were completed in 2011 and networks are currently being deployed. The attention of the mobile research community is now shifting towards what will be the next set of innovations in wireless communication technologies, which we will refer to collectively as 5G (fifth-generation technologies). Given a historical 10-year cycle for every generation of cellular advancement, it is expected that networks with 5G technologies will be deployed around 2020. Similar to 3G/4G, where ITU-R issued a recommendation for IMT-2000/IMT-Advanced [1], ITU-R has recently released a recommendation for the framework and overall objectives of the future development of systems for 2020 and beyond [2]. This highlights the emerging consensus on the use cases and requirements that systems deployed in 2020 must address. These include requirements for new services such as smart grids, e-health, autonomous transport, augmented reality, wireless industry automation, remote tactile control and so on, which cannot be met by IMT-2000 systems.

The usage scenarios envisioned for IMT for 2020 and beyond can be broadly classified as follows:

Enhanced Mobile Broadband The dramatic growth in the number of smartphones, tablets, wearables, and other data-consuming devices, coupled with the advent of enhanced multimedia applications, has resulted in a tremendous increase in the volume of mobile data traffic. According to industry estimates, this increase in data traffic is expected to continue in the coming years and around 2020 cellular networks might need to deliver as much as 100–1000 times the capacity of current commercial cellular systems [3, 4]. While the roll-out of 4G technologies with their expected enhancements will address some of capacity demands of future mobile broadband users, a mobile broadband user in 2020 will expect to be seamlessly connected all the time, at any location, to any device. This poses stringent requirements on the 5G network, which must provide users with a uniform and seamless connectivity experience regardless of where they are and what device/network they connect to.

Massive Machine-type Communications This use case refers to the growing interest in the area of machine-to-machine (M2M) communications and the Internet-of-Things (IoT). Together, these represent a future in which billions of everyday objects are connected and

managed through wireless networks and management servers [5]. One can envisage creating an immensely rich set of applications by connecting the thousands of objects surrounding us. Examples include:

- smart homes, in which intelligent appliances autonomously minimize energy use and cost
- · remote monitoring of expensive industrial or medical equipment
- remote sensing of environmental metrics such as water pressure, air pollution and so on.

These applications and services demand communication architectures and protocols that are different from traditional human-based networks. The integration of human and machinetype traffic in a single 5G network is therefore a challenge. In addition, IoT traffic can be quite diverse, from low to high bandwidth, from delay-sensitive to delay-tolerant, from error-tolerant to high reliability, which poses additional complexity. This use case focuses on applications where a very large number of connected devices transmit relatively low volumes of non-delay-sensitive data. The devices are typically low-cost and low-complexity, and require a very long battery life.

Ultra-reliable and Low-latency Communications. This use case addresses IoT applications that have stringent requirements for reliability, latency, and network availability. Examples include:

- · connected cars, which react in real time to prevent accidents
- body area networks, which track vital signs and trigger an emergency response when life is at risk
- wireless control of industrial manufacturing or production processes.

As evidenced by diverse set of usages anticipated by 2020, the 5G system will require enhancements to performance metrics beyond the "hard" metrics of 3G/4G, which included peak rate, coverage, spectral efficiency, and latency. The 5G system will see expanded performance metrics centered on the user's quality of experience (QoE), including factors such as ease of connectivity with nearby devices, connection density, area traffic capacity, and improved energy efficiency. The eight parameters in Table 1.1 are considered to be key capabilities of IMT-2020 systems. Their target values are also summarized. These are currently recommendations, and subject to further research and technological development [2].

1.3 5G Networks and Devices

As it can be seen from the description above, 5G networks will have to accommodate diverse types of traffic, spectrum, and devices. The network itself is anticipated to consist of hierarchical nodes of various characteristics and capacities. The 5G network will support multiple radio access technologies (RATs), such as 3G/4G/5G, WiFi, and WiGig, and also multiple modes ranging from ultradense small cells, device-to-device (D2D) communications, and new sub-networks oriented toward wearable devices. Inevitably, the user experience and quality will need to be maintained as users move along various networks and get connected to the various types of node. 5G networks will likely use a multi-layer network

	parameters of mil-2020 systems.	
Parameter	Details	Target
Peak data rate	Maximum achievable data rate under ideal conditions per user/ device	10–20 Gbps
User-	Achievable data rate that is available	100 Mbps-1 Gbps, depending on
experienced	ubiquitously across the coverage	wide-area or hotspot coverage
data rate	area to a mobile user/device	
Latency	Time contribution by the radio network from the time from when the source sends a packet to when the destination receives it	1 ms over-the-air latency
Mobility	Maximum speed at which a defined QoS and seamless transfer between radio nodes which may belong to different layers and/or radio access technologies (multi-layer/-RAT) can be achieved	To provide high mobility up to 500 km/h with acceptable QoS
Connection	Total number of connected and/or	To support a connection density of up to
density	accessible devices per unit area	10 ⁶ /km ² , for example in massive machine-type communication scenarios
Energy efficienc	у	
(a) Network side	Quantity of information bits transmitted to/received from users,	Target is at least 10x on network energy efficiency
	per unit of energy consumption of the radio access network (RAN) (in bit/Joule)	The 5G network must not consume more energy, while providing enhanced features
(b) Device side	Quantity of information bits per unit of energy consumption of the communication module (in bit/ Joule)	
Spectrum efficiency	Average data throughput per unit of spectrum resource and per cell (bit/s/Hz)	$3-5\times$ increase in spectrum efficiency
Area traffic capacity	Total traffic throughput served per geographic area	10 Mbit/s/m ² in hotspot scenarios

Table 1.1Key parameters of IMT-2020 systems.

architecture, where the macro layer provides coverage to users moving at high speeds or for secure control channels, while a lower layer comprising network nodes with smaller capabilities provides high data rates and connectivity to other RATS (say, WiFi or new mmWave RATs). Moreover, a 5G device may have simultaneous active connections to more than one network node, with the same or different RATs, each connection serving a specific purpose, for example one connection to a given node for data and a second connection to another node for control. In addition, the use of remote radio heads connected to central processing nodes with the aid of ultra-high-speed backhaul is expected to be extended to more areas. Fast and high-capacity backhaul will enable tighter coordination between network nodes in a larger area. All of these changes will require a high level of integration of different nodes in the network and of technologies located even within the same node. In short, the 5G system will need to provide a flexible technological framework in which networks, devices, and applications can be co-optimized to meet the great diversity of requirements anticipated by 2020.

As the 5G usage models and networks evolve, 5G device architectures will also be more complex than in 4G. Devices will be capable of operating in multiple spectrum bands, ranging from RF to mmWave, while being compatible with existing technologies such as 3G and 4G. The need to support several RATs with multiple RF-chains will impose tremendous challenges for 5G device chipset and front-end module suppliers, as well as system and platform integrators. Another key feature of 5G devices will be their advanced interference suppression capabilities. The dense deployment of network nodes and increasing sources of interference will require that the devices deployed autonomously detect, characterize, and suppress interference from any source: intra-cell, inter-cell, or D2D. The task of interference cancellation will be exacerbated by the existence of strong self-interference in the case of simultaneous transmission and reception. In addition, devices will be required to actively manage all the available network connections, including D2D links, as well as to share contextual information with network layers so that network resources can be efficiently utilized. All of these enhanced features will need to be implemented in such a way that energy consumption is optimized for a small wireless device platform.

1.4 Outline of the Book

In this book we bring together a group of visionaries and technical experts from academia and industry to discuss the applications and technologies that will comprise the 5G system. It is expected that some of the new technologies comprising 5G will be evolutionary, covering gaps and enhancements from 4G systems, while some of the technologies will be disruptive, covering fundamentally new waveforms, duplexing methods, and new spectrum. These technologies will encompass the end-to-end wireless system: from wireless network infrastructure to spectrum availability to device innovations.

The book is organized into three parts. Part I has four chapters. In Part I, we provide an overview of 5G, address trends in applications and services, and summarize 5G requirements that will be need to be addressed in next-generation technologies and system architectures. We also provide an overview of some 5G research programs around the world: Horizon 2020 in Europe and Intel's 5G University Research Program in USA.

Part II has nine chapters. In Part II, we address evolutionary technologies that will be needed to meet 5G requirements, including:

- co-operative radio access architectures to enable greater energy efficiency and network performance
- small-cell networks with in-built caching
- multiple RAT integration, which is inevitable to provide a seamless user experience
- distributed resource allocation
- · advances in device-to-device communications
- · energy-efficient network design
- · multi-antenna processing and interference co-ordination techniques
- design for M2M communications
- design for ultra-low latency.

These technologies are already being developed in 3GPP Release 11 and beyond as part of the evolution of 4G systems.

Part III has five chapters. In Part III, we discuss "revolutionary" candidate technologies: those that are essentially disruptive and different from 4G. These include:

- new physical layer waveforms that offer enhanced flexibility and performance
- massive MIMO technologies that enable large numbers of simultaneous users
- mmWave technologies to harness new spectrum for access and backhaul
- simultaneous transmit and receive on the same time/frequency resource
- software defined networking and network function virtualization to enable software-based flexible infrastructures.

References

- ITU-R, Recommendation M.1645: "Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000", June 2003.
- [2] ITU-R, Document 5D/TEMP/625-E: "IMT Vision Framework and overall objectives of the future development of IMT for 2020 and beyond", 17 June 2015.
- [3] Cisco, "Cisco Visual Network Index: Global mobile traffic forecast update", 2013.
- [4] Ericsson, "Traffic and market data report," 2011.
- [5] Ericsson, White paper "More Than 50 billion connected devices", 2011. URL: http://www.ericsson.com/res/ docs/whitepapers/wp-50-billions.pdf.

2

5G Requirements

Anass Benjebbour, Yoshihisa Kishiyama, and Takehiro Nakamura NTT DoCoMo, Inc., Tokyo, Japan

2.1 Introduction

Over the last few decades, mobile communications have significantly contributed to the economic and social development of both developed and developing countries. Today, mobile communications form an indispensable part of the daily lives of billions of people in the world, a situation that is expected to continue and become even more widespread in the future. Currently, the 4G radio access system using Long-Term Evolution (LTE) is being deployed by many operators worldwide in order to offer faster access with lower latency and more efficiency than 3G/3.5G. In the future, however, it is foreseen that demand for higher volumes of traffic, many more connected devices with diverse service requirements, and better and uniform quality of user experience will bring a need for evolved systems with extended capabilities.

In order to meet these evolving needs for mobile communications, discussions on visions, requirements, and technologies for the 5G mobile communications system have been initiated by many organizations. 5G-related discussions are ongoing in the ITU-R Study Group 5 Working Party 5D (WP5D), which issued a new recommendation, "IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond". Also, technical studies on 5G have gained attention worldwide as evidenced by the acceleration of efforts by governmental entities and research bodies from both academia and industry. Many special sessions are also being held on the topic of 5G in international conferences. Several governments and groups of commercial companies and academic institutions have established projects and fora to study and promote 5G mobile technology. Examples of projects and initiatives with focus on 5G include the METIS project in Europe, the ARIB 2020 and Beyond Ad-hoc (20B AH) group, and the 5G Mobile Communications Promotion Forum (5GMF) in Japan, the operators' alliance Next Generation Mobile Networks (NGMN), IMT-2020 in China, and the 5G Forum in Korea.

Towards 5G: Applications, Requirements and Candidate Technologies, First Edition. Edited by Rath Vannithamby and Shilpa Talwar.

^{© 2017} John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.

Companion website: www.wiley.com/go/vannithamby/towards5g

2.2 Emerging Trends in Mobile Applications and Services

More and more customers are expecting to have the same quality of experience from Internet applications anytime, anywhere, and through any means of connectivity. This expectation is now being better fulfilled as the gap of user experience between mobile and fixed environments becomes narrower and higher data rates are offered by mobile networks. In the future we can therefore expect a further shift of services from the fixed to the mobile network, with users making use of the added value of mobility and location/context awareness. Furthermore, the emergence of new applications and needs are constantly changing user behavior. The younger generation now uses the Internet for gaming, social networking, and online education, among other things. At the same time, the introduction of IMT-Advanced networks, which substantially reduce network latency, will in the future provide better user experiences and make possible more advanced real-time services. Technological developments, such as faster radio interfaces, advanced graphical processing, and multiprocessing units at the device, will also contribute to the increase in user demand for mobile data. Growth will also be accelerated by new types of communications and devices, such as device-to-device communications between mobile users in proximity (user-to-user), and machine-type communications such as user-controlled mobile devices (user-to-machine) and inter-machine communications (machine-to-machine). The future trends in services and applications will generally be shaped by the evolution of the needs of the new generation of users and progress in technology and services.

In the following sections, we explain the main market trends and new services that have been observed in recent years and have the potential to drive and change the landscape of the future mobile market. Note that future services include, but are not limited to, the mere interpolation of current trends.

2.2.1 New Types of Mobile Device

The transition to the Internet era has significantly contributed to the rapid rise of data services as a significant revenue source for businesses. This trend has been accelerated by the introduction of always-on smartphones and new types of conversation via social networks. In recent years, a wide range of new smart devices - smartphones, dongles, and tablets - have emerged and have been key drivers of increased mobile broadband traffic. With rapid advances in display technologies, these devices offer larger screen sizes and high resolution, and hence increase data consumption and encourage the use of traffic-intensive applications such as video streaming. This type of Internet access via mobile terminals is spreading very rapidly. As a result, the volume of smartphone data carried by cellular networks is growing rapidly, driven predominantly by increases in device penetration, but also by increases in average usage. In developed markets, a typical smartphone generates about 50 times more data per month than a typical feature phone [1]. In the future, one notable development will be full high definition (FHD) and ultra-high definition (UHD) displays, which are anticipated to become well established on smartphones; it is estimated that these future smartphones could generate many times more traffic than established user applications. In addition, open operating systems (OSs), such as Android, iOS, and HTML5, have been another key force in the mobile internet ecosystem. With open OSs, the development and commercialization of new applications has become much easier than before. Users are able to access a wide variety of new applications on diverse smart devices, resulting in increased opportunities, as well as challenges, for all players in the mobile Internet ecosystem. Operators are making great efforts to embrace these changes and challenges, although they represent a double-edged sword. On the one hand, the majority of mobile applications on smart devices are planned with the assumption that users are online and connected, consequently increasing both control signaling and user mobile broadband traffic: video, music, games, and so on. On the other hand, memory as well as processor technologies are expected to improve according to Moore's law, and with reduced energy consumption. This will bring huge potential for information storage and processing on mobile devices and increased user-generated content. Furthermore, new types of user-to-device interaction can be expected to be triggered by novel user interfaces such as 3D cameras, and movement and gesture recognition. These will increase the generation and flow of information and beyond that of traditional human audio and visual capabilities.

2.2.2 Video Streaming and Download Services

Video streaming and download are among the most dominant traffic generators in mobile networks. Currently, the majority of streaming services are based on progressive downloading technologies utilizing the HTTP protocol. Video streaming services can be classified into server-client unidirectional applications and bidirectional streaming services.

Bidirectional streaming services with high quality of service demands are expected to become a dominant source of traffic in the near future. One example is the virtual classroom, with video streamed between a remote teacher and students in a classroom. Moreover, video consumption for many users is no longer limited to streaming but also involves sharing it with the community. Uploading of videos on social networking sites is becoming a way to share them. This contributes to increasing video consumption, as community networks are also becoming video viewing sites. In the future, video streaming or downloading will be responsible for most mobile data traffic growth, with a cumulative average growth rate (CAGR) of 69% expected between 2013 and 2018. Furthermore, it is predicted that video will account for more than 69% of mobile data traffic by 2018 [1]. In the future, the introduction of advanced graphical processing units will enhance the performance of video applications and thus promote mobile video consumption. In addition, mobile services that require 3D video and higher-definition video will proliferate and thus create significantly increased traffic over mobile networks.

2.2.3 Machine-to-machine Services

One big wave that will to contribute to the increase in mobile data demand is machine-tomachine (M2M) applications and devices. M2M is rapidly growing and is expected to continue to be one of the fastest growing segments in the future [1]. The growth of the M2M market has been driven by sectors such as fleet management, industrial asset management, point of sales, security, and healthcare. The number of M2M connections could be several orders of magnitude larger than the world population. The market for M2M systems is expected to grow by 30–40% per year. Cisco IBSG predicts there will be 25 billion devices connected to the Internet by 2015 and 50 billion by 2020 [2]. In terms of traffic, M2M's share will depend on the related applications. For instance, smart utility meters in homes consume some hundreds of kilobytes per second while surveillance video monitoring consume tens of megabytes per second. In the future, agricultural science will also benefit from the ability to communicate information remotely. Another potential service is smart energy-distribution grid systems. For example, the European commission mandated that 80% of consumers in its member countries should be equipped with smart meters by the year 2020 [3].

Another set of applications for M2M is for communications in the transport sector:

- car-to-car (C2C)/vehicle-to-vehicle (V2V)
- car-to-road/vehicle-to-road infrastructure (V2I)
- car-to-pedestrian (C2P)/vehicle-to-device (V2D).

These are collectively referred to as C2X or V2X communications. They will improve traffic safety, both for drivers and pedestrians, provide in-car infotainment services, and bring new business opportunities, such as highly automated driving and augmented-reality head-up displays.

M2M services will be a big trend in 2020 and beyond. One issue, however, is the very wide range of requirements this trend will bring with it. For example, sensor-type applications will require the support of massive machine communications, while other safety and remote-control-related M2M applications will require ultra-low latency and/or ultra-reliable machine communication. In order to facilitate the study of such a wide variety of requirements, the principal market segments and categories of M2M services will need to be identified and defined.

2.2.4 Cloud Services

The demand for mobile cloud services is also expected to grow exponentially as users adopt services that must be ubiquitous. In particular, the rapid development of ICT technologies and mobile network capabilities will enable a wide range of cloud services to be available on mobile devices, for example cloud speech services, such as speech recognition and synthesis. Mobile cloud traffic will grow 12-fold from 2013 to 2018, a compound annual growth rate of 64%. Cloud applications will account for 90% of total mobile data traffic by 2018, compared to 82% at the end of 2013 [1]. It is expected that in the future health, education, and other government services will be accessible by mobile devices, which will contribute to improvements in social welfare. These services will require guaranteed reliability and security of data communications between the clients and the cloud data centers.

However, harnessing and extracting value from the "big data" stored in the cloud is seen by many operators as a route to enhance the customer experience and to generate new revenues from them. Via user data collection and mining, operators can enhance the user experience. They can also compile this data, selling it on in anonymized or aggregated form as business and marketing reports. For instance, data on customer footfall patterns could be sold to retailers, helping them target promotions according to store location and the buying patterns of consumers in that area. It will also help them decide where to open new shops, and in what format. Another recent trend for cloud services is termed "bring your own device", which enables employees to bring personally owned mobile devices (laptops, tablets, and smart phones) to their workplace, and use them to access company information and applications stored in the cloud.

2.2.5 Context-based and Location-based Services

Context/location awareness will be an important enabler for providing user-centered services in the future. With such capabilities, mobile devices will not only act as personal communication devices but also as gateways to services in diverse environments that support personalized interactions and proactive assistance tailored to the user preferences and behaviors. Context/ location-aware applications and devices capture context information from multiple sources and learn the associations between context cues and personal preferences and behaviors in order to adapt the configuration of devices and the behavior of interfaces, or to offer personalized access to services. Learning the user's important locations, known as their semantic locations, will be one of the most important tasks involved. Examples of semantic locations are "Main campus, Kyoto University" or "City center of Tokyo".

Several location-aware applications for mobile devices have been developed recently. These applications make use of colloquial places and paths rather than just geographical coordinates, for example by accessing personal applications such as geo-reminders and location diaries. The combination of the cloud and location information will also create what is called the personal cloud, which will gradually replace the PC as the location where individuals keep their personal cloud will shift the focus from the services, and center their digital lives [4]. The personal cloud will shift the focus from the services delivered on client devices to cloud-based services delivered *across* devices. Examples of context-based and location-based services (LBS) include:

Augmented Reality. Augmented reality is a live – direct or indirect – view of a physical, real-world environment whose elements are augmented by computer-generated sensory input such as sound, video, graphics, or GPS data [5]. With the help of technologies such as computer vision and object recognition, information about the real world surrounding the user becomes interactive and digitally manipulable. Artificial information about the environment and its objects can be overlaid on the real world. Services based on these technologies are expected to expand in the future.

Proximity-based Services. As the number of mobile devices continues to increase, it becomes important to take advantage of the physical proximity of communicating devices and provide proximity services, such as social networking and proximity-based multiplayer games. To this end, peer-to-peer discovery and communication becomes an important enabler of such services. Such features will also enable new services, for example allowing direct communication between devices when the network is damaged in the aftermath of a natural disaster.

SoLoMo. Social local mobile (SoLoMo) is a new marketing concept that refers to the convergence of social, local, and mobile technologies. SoLoMo aims to "hyper-target", that is, to reach the right consumer, at the right time, in the right place. For example, retailers can utilize the mobile experience to their advantage, using location targeting, in-store mobile marketing, gamification, and so on. With SoLoMo, a specific retailer can broadcast offers – retail deals, coupons, consumer events, and shopping and dining opportunities – to a mobile user based on their geographic proximity, brand/retailer allegiance, and shopping/check-in history. In addition, the integration of location-based functions with social networks can lead to new applications on mobile networks that are expected to generate more mobile data traffic.