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Preface

This book deals with both holonomic and non-holonomic constraints to study the
mechanics of the constrained rigid body. The approach is completely matrix and
we study all types of the general constraints that may appear at a rigid solid. The dis-
cussion is performed in the most general case, not in particular cases defined by certain
types of mechanisms. Our approach is a multibody type one and the obtaining of the
matrix of constraints is highlighted in each case discussed in the book. In addition,
algorithms for the numerical calculations are given for each type of constraint. The
theory is applied to numerical examples which are completely solved, the diagrams
resulted being also presented.
The book contains eight chapters as follows. The first chapter is an introduction

presenting the elements of mathematical calculation that will be used in the book.
The second chapter treats the kinematics of the rigid solid and in this chapter we obtain
the distribution of velocities and accelerations for a rigid body. The next chapter is
dedicated to the general theorem in the dynamics of the rigid solid, that is, the theorem
of momentum, the theorem of the moment of momentum, and the kinetic energy; all
these theorems are developed in matrix form. In the fourth chapter are presented the
matrix differential equations of motion in the general case of the rigid solid with con-
straints; the equations of motion are obtained using the general theorems and using the
Lagrange equations; a completely new proof is given for the equivalence of these two
approaches. In the fifth chapter we discuss the equilibrium of the rigid solid; we intro-
duce the generalized forces and their expressions; as a particular case we study the
equilibrium of a rigid solid hanged by springs. The next chapter deals with the motion
of the rigid solid having constraints at given proper points; we discuss the rigid body
with one fixed point, the rigid body in rotational motion, the rigid body with one or
several points situated on given surfaces or curves. In the seventh chapter we discuss
the motion of the rigid solid with constraints on given proper curves; the chapter is



dedicated to the study of the rigid body at which given curves support on given curves
or surfaces. The last chapter is dedicated to the motion of the rigid solid with con-
straints on the bounded surfaces; in this case the rigid body is supported at fixed points,
or it rolls on curves or surfaces.
The authors are grateful to Mrs. Eng. Ariadna–Carmen Stan for her valuable help in

the presentation of this book. The excellent cooperation with the team of JohnWiley &
Sons is gratefully acknowledged.
This book is addressed to a large audience, to all those interested in usingmodels and

methods with holonomic and non-holonomic constraints in various fields like:
mechanics, physics, civil and mechanical engineering, people involved in teaching,
research or design, as well as students.
The book can be also used either as a stand-alone course for the master or PhD

students, or as supplemental reading for the courses of computational mechanics,
analytical mechanics, multibody mechanics etc. The prerequisites are the courses of
elementary algebra and analysis, and mechanics.

Nicolae Pandrea and Nicolae-Doru Stănescu
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1
Elements of Mathematical
Calculation

This chapter is an introduction presenting the elements of mathematical calculation
that will be used in the book.

1.1 Vectors: Vector Operations

A vector (denoted by a) is defined by its numerical magnitude or modulus a , by the
directionΔ, and by sense. The vector is represented (Fig. 1.1) by an orientated segment
of straight line.
The sum of two vectors a, b is the vector c (Fig. 1.2) represented by the diagonal of

the parallelogram constructed on the two vectors; it reads

c= a+ b 1 1

The unit vector u of the vector a (or of the direction Δ) is defined by the relation

u=
a
a

1 2

If one denotes by i, j, k the unit vectors of the axes of dextrorsum orthogonal ref-
erence systemOxyz, and by ax, ay, az the projections of vector a onto the axes, then one
may write the analytical expression

a= axi+ ayj+ azk 1 3

Dynamics of the Rigid Solid with General Constraints by a Multibody Approach, First Edition.
Nicolae Pandrea and Nicolae-Doru Stănescu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/pandrea



The scalar (dot) product of two vectors is defined by the expression

a b= a b cosα, 1 4

where α is the angle between the two vectors.
We obtain the equalities

i j= j k =k i= 0, i2 = j2 =k2 = 1 1 5

and, consequently, one deduces the analytical expressions

a b = axbx + ayby + azbz, 1 6

a = a2x + a
2
y + a

2
z , b = b2x + b

2
y + b

2
z , 1 7

cosα=
axbx + ayby + azbz

a2x + a
2
y + a

2
z b2x + b

2
y + b

2
z

1 8

The vector (cross) product of two vectors, denoted by c,

c= a ×b, 1 9

is the vector perpendicular onto the plan of the vectors a and b, while the sense is given
by the rule of the right screw when the vector a rotates over the vector b (making the
smallest angle); the modulus has the expression

c = a b sinα, 1 10

Δ

u

a

a

Figure 1.1 Representation of a vector.

a

b

c

Figure 1.2 The sum of two vectors.
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α being the smallest angle between the vectors a and b.
One obtains the equalities

i× j= k, j×k = i, k× i= j, 1 11

and the analytical expression

a× b= aybz−azby i+ azbx−axbz j+ axby−aybx k 1 12

The mixed product of three vectors, defined by the relation a b × c and denoted by
(a, b, c), leads to the successive equalities

a,b,c = a b× c =b c × a = c a×b =
ax ay az
bx by bz
cx cy cz

1 13

The mixed product (a, b, c) is equal to the volume with sign of the parallelepiped
constructed having the three vectors as edges (Fig. 1.3). It is equal to zero if and only
if the three vectors are coplanar.
The double vector product a× b× c satisfies the equality

a× b × c = a c b− a b c 1 14

The reciprocal vectors of the (non-coplanar) vectors a, b, c are defined by the
expressions

a∗ =
b× c
a,b,c

, b∗ =
c× a
a,b,c

, c∗ =
a×b
a,b,c

, 1 15

and satisfy the equality

a∗,b∗,c∗ =
1

a,b,c
1 16

a

b

c

Figure 1.3 The geometric interpretation of the mixed product of three vectors.
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An arbitrary vector v may be written in the form

v= v a∗ a + v b∗ b+ v c∗ c, 1 17

or as

v = v a a∗ + v b b∗ + v c c∗ 1 18

1.2 Real Rectangular Matrix

By real rectangular matrix we understand a table with m rows and n columns (m n)

A =

a11 a12 … a1n
a21 a22 … a2n
… … … …

am1 am2 … amn

, 1 19

where the elements aij are real numbers.
Sometimes, we use the abridged notation

A = aij or A = aij 1 ≤ i ≤m
1 ≤ j ≤ n

1 20

The multiplication between a matrix and a scalar λ R is defined by the relation

λ A = λaij , 1 21

while the sum of two matrices of the same type (with the same number of rows and the
same number of columns) is defined by

A + B = aij + bij 1 22

The zero matrix or the null matrix is the matrix denoted by [0], which has all its
elements equal to zero.
The zero matrix verifies the relations

A + 0 = 0 + A = A 1 23

4 Dynamics of the Rigid Solid



The transpose matrix [A]T is the matrix obtained transforming the rows of the matrix
[A] into columns, that is

A T = aji 1 24

The transposing operation has the following properties

A T
T
= A , A + B T = A T + B T, 1 25

where we assumed that the sum can be performed.
The matrix with one column bears the name columnmatrix or column vector and it is

denoted by {A}, that is

A = a11 a21 … am1
T, 1 26

while the matrix with one row is called row matrix or row vector and is denoted as

A = a11 a12 … a1n , 1 27

or

A = A T, 1 28

where

A = a11 a12 … a1n
T 1 29

If the matrix [A] has m rows and n columns, and the matrix [B] has n rows and
p columns, then the two matrices can be multiplied and the result is a matrix [C] with
m rows and p columns

C = A B , 1 30

where the elements cij, 1 ≤ i ≤m, 1 ≤ j ≤ p, of the matrix [C] satisfy the equality

cij =
n

k = 1

aikbkj, 1 31

that is, the elements of the product matrix are obtained by multiplying the rows of
matrix [A] by the columns of matrix [B].

5Elements of Mathematical Calculation



The transpose of the product matrix is given by the relation

A B T = B T A T 1 32

In some cases, there may exist matrices of matrices and the multiplication is per-
formed as in the following example

A1 A2

A3 A4

A5 A6

B1 B2

B3 B4
=

A1 B1 + A2 B3 A1 B2 + A2 B4

A3 B1 + A4 B3 A3 B2 + A4 B4

A5 B1 + A6 B3 A5 B2 + A6 B4

, 1 33

where we assumed that the operations of multiplication and addition of matrices can be
performed for each separate case.

1.3 Square Matrix

The matrix [A] is a square matrix if the number of rows is equal to the number of
columns; hence

A =

a11 a12 … a1n
a21 a22 … a2n
… … … …

an1 an2 … ann

, 1 34

where the number n is the dimension or the order of the matrix.
The determinant associated to the matrix [A] is denoted by det[A].
If [Aij] is the matrix obtained from the matrix [A] by the suppression of the row i and

the column j, then the algebraic complement a∗ij is given by the expression

a∗ij = −1 i+ jdet Aij ,1 ≤ i, j ≤ n, 1 35

and the following relation holds true

n

k = 1

aika
∗
jk =

n

k = 1

akja
∗
ki =

0 for i j
det A for i= j

1 36

The determinants of the matrices satisfy the equalities

det A = det A T, 1 37

det A B = det A det B , 1 38
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where we assumed that the matrices [A] and [B] have the same order.
In general, the multiplication of matrices is not commutative,

A B B A , 1 39

but it is associative and distributive, that is

A B C = A B C = A B C , 1 40

A B + C = A B + A C , 1 41

where the matrices [A], [B] and [C] have the same order.
The trace of a matrix, denoted by Tr[A] is equal to the sum of the elements situated

on the principal diagonal

Tr A =
n

i = 1

aii 1 42

The diagonal matrix is the matrix with all the elements equal to zero, except some
elements situated on the principal diagonal.
The unity matrix, generally denoted by [I], is the diagonal matrix that has all the

elements of the principal diagonal equal to unity,

I =

1 0 0 … 0

0 1 0 … 0

… … … … …

0 0 0 … 1

1 43

The unity matrix verifies the relations

A I = I A = A 1 44

The adjunct matrix A∗ is defined by the relation

A∗ = a∗ij 1 45

The matrix [A] is called singular if det A = 0; it is called a non-singular one
if det A 0.
The non-singular matrices [A] admit inverse matrices A −1; the inverse matrices

fulfill the conditions

7Elements of Mathematical Calculation



A −1 =
1

det A
A∗ , 1 46

A A −1 = A −1 A = I , 1 47

A T
−1

= A −1
T

1 48

The matrix [A] is called symmetric if

A = A T; 1 49

it is called anti-symmetric or skew if

A = − A T 1 50

The matrix [A] is called orthogonal if it fulfills the condition

A A T = I 1 51

The orthogonal matrix [A] satisfies the equalities

A T = A −1, det A = ±1 1 52

The equation of nth degree

det λ I − A = 0 1 53

is the characteristic equation of the matrix [A]; its roots λ1, λ2, …, λn are called the
eigenvalues of the matrix [A].
The vectors v mi which are obtained from the equality

A v mi = λm v mi ,1 ≤m ≤ k, 1 54

are called eigenvectors and, if the matrix [A] is a symmetric one, then its eigenvectors
are orthogonal

v r
T

v s = 0, if s r 1 55

Using the notation

bj =Tr A j , 1 56
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one obtains the characteristic equation

n

j= 0

cn− jλ
j = 0, 1 57

where the coefficients cj are given by the iterative relations

c0 = 0, cj = −
1
j

j−1

k = 0

ckbj−k 1 58

Observation 1.3.1.

i. The eigenvalues of the matrix [A] of order n can be real or complex, distinct or not.
ii. One or more eigenvectors correspond to an eigenvalue λm, depending on the order

of multiplicity for that eigenvalue.
iii. No matter if the eigenvalue is real or not, keeping into account that the matrix [A]

has real components, the eigenvectors associated to that eigenvalue are matrices
with n rows and one column, with real elements.

Observation 1.3.2. Let us consider that the matrix [A] is a square one, of order 3.

i. If the eigenvalues are real and distinct λi R, λi λj, i, j 1, 2, 3 , i j, then the
eigenvalues are obtained by solving three matrix equations of the form

A vi = λi vi , i= 1, 2, 3 1 59

ii. If the eigenvalues are real, but two of them are equal, λi R, i= 1, 2, 3, λ1 = λ2,
λ3 λ1, then the eigenvalues result by solving the matrix equations

A v1 = λ1 v1 , A −λ1 I v2 = v1 , A v3 = λ3 v3 1 60

iii. If the eigenvalues are real and equal, λi = λ, i= 1, 2, 3, then the eigenvector are
obtained by solving the matrix equations

A v1 = λ v1 , A −λ I v2 = v1 , A −λ I v3 = v2 1 61

iv. If the eigenvalues are one real, λ1 R, and two complex conjugate, λ2 = α+ iβ,
λ3 = α− iβ, α, β R, i2 = −1, then the eigenvectors result by solving the matrix
equations

A v2 + i v3 = α+ iβ v2 + i v3 ; 1 62

9Elements of Mathematical Calculation



1.4 Skew Matrix of Third Order

Starting from the relation of definition (1.49), it results that a third order skew matrix
may be written in the form

B =

0 −b3 b2
b3 0 −b1
−b2 b1 0

1 63

One associates to the skew matrix [B] the column matrix (vector)

b = b1 b2 b3
T 1 64

and the vector

b= b1i+ b2j+ b3k 1 65

It results the equality

B b = 0 1 66

Being given the skew matrices [A], [B], and the eigenvectors associated to these
matrices, then the vector equality

a× b= −b× a 1 67

may be put in the matrix expression

A b = − B a 1 68

For the skew matrix [B] one may write the following relations (obtained by elemen-
tary calculation)

det B = 0, 1 69

B 2 = − b21 + b
2
2 + b

2
3 I + b b T, 1 70

B 3 = − b21 + b
2
2 + b

2
3 B 1 71

For the skew matrices [A], [B] and the associated vectors a, b, denoting the
vector product by c, c= a ×b, and by [C] the associated skew matrix, one obtains
the relations

A B = − a1b1 + a2b2 + a3b3 I + b a T, 1 72
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B A = − a1b1 + a2b2 + a3b3 I + a b T, 1 73

C = A B − B A = b a T− a b T, 1 74

C 2 = a1b1 + a2b2 + a3b3 a b T− b a T −

b21 + b
2
2 + b

2
3 a a T− a21 + a

2
2 + a

2
3 b b T

1 75

If the matrix [A] is an arbitrary third order one, and the matrices [B], [C] are skew
ones, then the matrix

D = A T B A 1 76

is a skew matrix, and the associated column matrices {b}, {c}, {d} satisfy the
equalities

d = A∗ b , 1 77

A T B A c = − C A∗ b , 1 78

where A∗ is the adjunct matrix of the matrix [A].
When the matrix [A] is orthogonal, one obtains the equalities

d = A T b , A T B A c = − C A T b 1 79

More general, if the matrix [A] has k rows and 3 columns, then it results that the kth
order square matrix

D = A T B A 1 80

is a skew matrix; moreover, it results that if k = 1, then the matrix [D] is the zero matrix
with only one element.
Sometimes, in the analytical calculations, it is useful to use the skew matrices

associated to the unit vectors i, j, k,

U1 =

0 0 0

0 0 −1

0 1 0

, U2 =

0 0 1

0 0 0

−1 0 0

, U3 =

0 −1 0

1 0 0

0 0 0

, 1 81
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and the column matrices

u1 =

1

0

0

, u2 =

0

1

0

, u3 =

0

0

1

, 1 82

respectively.
One obtains the expressions

B =
3

i= 1

bi Ui , b =
3

i = 1

bi ui , 1 83

Ui Uj Ui = 0 , i j, 1 84

U1 = U2 U3 − U3 U2 1 85

and the analogous,

U1 U2 U3 + U3 U2 U1 = 0 1 86

and the analogous.

Further Reading
Bloch AM, Baillieul J, Crouch P, Marsden J (2007). Nonholonomic Mechanics and Control

(Interdisciplinary Applied Mathematics). Berlin: Springer.
Blundell M, Harty D (2004). The Multibody Systems Approach to Vehicle Dynamics. Amsterdam:

Elsevier Butterworth-Heinemann.
Dankowicz HJ (2004). Multibody Mechanics and Visualization. London: Springer.
Den Hartog JP (1961). Mechanics. New York: Dover Publications Inc.
Douglas Gregory R (2006). Classical Mechanics. Cambridge: Cambridge University Press.
Eich-Soellner E, Führer C (2013). Numerical Methods in Multibody Dynamics. Wiesbaden:

Springer.
Fasano A, Marmi S, Pelloni B (2006). Analytical Mechanics: An Introduction. Oxford: Oxford

University Press.
Ginsberg JH (1998). Advanced Engineering Dynamics. 2nd ed. Cambridge: Cambridge

University Press.
Ginsberg J (2007). Engineering Dynamics. Cambridge: Cambridge University Press.
Goldstein H, Poole CP Jr, Safko JL (2001). Classical Mechanics. 3rd ed. Edinburg: Pearson.
Greenwood DT (2006). Advanced Dynamics. Cambridge: Cambridge University Press.
Greiner W (2009). Classical Mechanics: Systems of Particles and Hamiltonian Dynamics. 2nd ed.

Heidelberg: Springer.
Hand LN, Finch JD (1998). Analytical Mechanics. Cambridge: Cambridge University Press.

12 Dynamics of the Rigid Solid



Jazar RN (2010). Theory of Applied Robotics: Kinematics, Dynamics, and Control. 2nd ed.
New York: Springer.

Kibble TWB, Berkshire FH (2004). Classical Mechanics. 5th ed. London: Imperial College Press.
Kleppner D, Kolenkow R (2013). An Introduction to Mechanics. 2nd ed. Cambridge: Cambridge

University Press.
Lurie AI (2002). Analytical Mechanics. Berlin: Springer.
Meriam JL, Kraige LG (2012). Engineering Mechanics: Dynamics. Hoboken: John Wiley & Sons.
Moon FC (1998). Applied Dynamics: With Applications to Multibody and Mechatronic Systems.

New York: John Wiley & Sons, Inc.
Morin D (2008). Introduction to Classical Mechanics: With Problems and Solution. Cambridge:

Cambridge University Press.
Murray RM, Li Z, Shankar Sastry S (1994). A Mathematical Introduction to Robotic Manipulation.

Boca Raton: CRC Press.
Neimark IuI, Fufaev NA (1972). Dynamics of Nonholonomic Systems (Translations of Mathemat-

ical Monographs, V. 33). Providence, Rhode Island: American Mathematical Society.
O’Reilly OM (2008). Intermediate Dynamics for Engineers: A unified Treatment of Newton-Euler

and Lagrangian Mechanics. Cambridge: Cambridge University Press
Pandrea N, Stănescu ND (2002). Mecanica. Bucureşti: Editura Didactică şi Pedagogică (in

Romanian).
Papastavridis JG (2002). Analytical Mechanics: A Comprehensive Treatise on the Dynamics of

Constrained Systems; For Engineers, Physicists, and Mathematicians. Oxford: Oxford Univer-
sity Press.

Pfeiffer F (2008). Mechanical System Dynamics (Lecture Notes in Applied and Computational
Mechanics). Berlin: Springer.

Spong MW, Hutchinson S, Vidyasagar M (2005). Robot Modeling and Control. New York: John
Wiley & Sons.

Taylor JR (2005). Classical Mechanics. Sausalito: University Science Books.
Uicker JJ, Ravani B, Sheth PN (2013). Matrix Methods in the Design Analysis of Mechanisms and

Multibody Systems. Cambridge: Cambridge University Press.
Woodhouse N (2010). Introduction to Analytical Dynamics. London: Springer.

13Elements of Mathematical Calculation





2
Kinematics of the Rigid Solid

The chapter treats the kinematics of the rigid solid. Here we obtain the distribution of
velocities and accelerations for a rigid body.

2.1 Finite Displacements of the Points of Rigid Solid

The motion of a rigid solid relative to a tri-orthogonal dextrorsum reference system
O0XYZ is completely determined by the motion of a tri-orthogonal dextrorsum
reference system Oxyz jointed to the rigid solid, relative to the reference system
O0XYZ (Fig. 2.1).
One considers that at the initial moment the system Oxyz coincides to the system

O0XYZ. In these conditions, the finite displacement of the point O is O0O= sO, while
the finite displacement of an arbitrary point P (Fig. 2.1) is P0P = s.
We denote by i, j, k the unit vectors of the mobile axes, by i0, j0, k0 the unit vectors

of the fixed axes, by a1i, a2i, a3i, i= 1, 2, 3, the director cosines of the axes Ox, Oy, Oz,
by X, Y, Z, x, y, z the coordinates of the point P relative to the two reference systems,
and by XO, YO, ZO the coordinates of the pointO relative to the fixed reference system.
Keeping into account that the point P0 has the same position relative to the system
O0XYZ as the point P relative to the system Oxyz, one may write the vectors

r= xi+ yj+ zk, r0 = xi0 + yj0 + zk0, sO =XOi0 +YOj0 +ZOk0,R=Xi0 +Yj0 + Zk0,

2 1
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the column matrices

r = x y z T, r0 = x y z T, sO = XO YO ZO
T, R = X Y Z T, 2 2

the rotational matrix

A =
a11 a12 a13
a21 a22 a23
a31 a32 a33

, 2 3

and the matrix relation of transformation

R = sO + A r 2 4

At the initial moment, the point P being situated at the point P0 (Fig. 2.1), the dis-
placement s=P0P of this point may be written in the form s=R−r0; keeping into
account the notations (2.2), one obtains the matrix expression

s = sO + A r − r 2 5

or

s = sO + A r0 − r0 , 2 6

where {s} is the column matrix of the projection of vector s onto the axes of the fixed
system O0XYZ.

2.2 Matrix of Rotation: Properties

2.2.1 General Properties

From the vector relations i j= j k= k i= 0, i2 = j2 = k2 = 1 it results the scalar relations

3

i= 1

aijaik =
1 for j= k ,
0 for j k ,

j,k = 1, 2, 3, 2 7

s r
sOr0

0P
P

X

Y

Z

0O

,XO( ,O OY OZ )

x

yz

Figure 2.1 Finite displacements of the rigid solid.
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which show that the matrix [A] is and orthogonal one; hence

A −1 = A T 2 8

From the vector relation i= j× k one obtains the scalar relations

a11 = a22a33−a32a23, a21 = a23a31−a21a33, a31 = a21a32−a22a31; 2 9

developing det[A] after the first column, we get

det A = 1 2 10

Considering the vector defined by the elements of the column matrix [A]{r} and

denoting this vector by A r , from the conditions of distances and angles preserva-
tion, it results the expressions

A r = r , 2 11

A u A v =u v, 2 12

A u × A v = A q , where q=u × v 2 13

2.2.2 Successive Displacements

Let us consider two positions of the rigid solid and two jointed reference systems
O1x1y1z1 and O2x2y2z2, respectively. Denoting by [A10], [A20] the rotational matrices
relative to the fixed reference system O0XYZ, one obtains the following relations for
the column matrices {v(1)}, {v(2)}, {v(0)} of the projections of an arbitrary vector v in
the three reference systems

v 0 = A10 v 1 , v 0 = A20 v 2 2 14

It results

v 1 = A10
T A20 v 2 ; 2 15

hence, the matrix of rotation of the reference system O2x2y2z2 relative to the reference
system O1x1y1z1 reads

A21 = A10
T A20 2 16
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From the expression (2.16) it also results

A20 = A10 A21 , 2 17

and therefore, in general, for n positions of the solid rigid, one obtains the matrix
relation

An0 = A10 A21 … An,n−1 2 18

2.2.3 Eigenvalues: Eigenvectors

The eigenvalues λ1, λ2, λ3 of the matrix [A] are obtained by solving the equation

det A −λ I = 0, 2 19

where [I] is the unity matrix.
It results the equation

λ−1 λ2− δ−1 λ + 1 = 0, 2 20

where

δ=Tr A = a11 + a22 + a33 2 21

Keeping into account the relations (2.1), it results δ−1 2 ≤ 4 and, consequently, one
obtains a real solution

λ1 = 1 2 22

and two complex solutions

λ2,3 =
δ−1
2

± i 1−
δ−1
2

2

2 23

To determine the real unitary vector {u} it is necessary to solve the system of
equations

A u = u , 2 24

u T u = 1 2 25

18 Dynamics of the Rigid Solid



From the matrix equation (2.24) one obtains the scalar relations

ux a32 + a23 = uy a13 + a31 = uz a21 + a12 ; 2 26

keeping into account the equalities

a213−a
2
31 = a

2
21−a

2
12 = a

2
32−a

2
23, 2 27

the relations (2.26) become

ux
a32−a23

=
uy

a13−a31
=

uz
a21−a12

2 28

The relations (2.28) and (2.27) show that the vectors

w=
1
2

a32−a23 i0 + a13−a31 j0 + a21−a12 k0 , 2 29

w∗ =
1

a32 + a23
i0 +

1
a13 + a31

j0 +
1

a21 + a12
k0, 2 30

(which are not unitary ones) verify the matrix equation (2.24), that is, they are eigen-
vectors of the matrix [A].
If the vector w is not equal to zero, then the unitary eigenvector is calculated using

the relation

u =
w
w

; 2 31

if the vector w is a null one, then we have to use the relations (2.24) and (2.25).

Example 2.2.1 Determine the real unitary eigenvectors for the rotational matrices

A1 =
0 −1 0
0 0 −1
1 0 0

, A2 =
0 0 1
0 −1 0
1 0 0

, A3 =
1 0 0
0 −1 0
0 0 −1

2 32

Solution: Since

det A1 = det A2 = det A3 = 1, 2 33

it results that the given matrices correspond to dextrorsum tri-orthogonal systems.
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For the matrix [A1] we get

w1 =
1
2
i0− j0 + k0 , u1 =

w1

w1
=

1

3
i0− j0−k0 2 34

For the matrices [A2], [A3] one obtains the vectors

w2 =w3 = 0 2 35

and then, from the equations (2.24) and (2.25) it results

u2 =
1

2
i0 + k0 , u3 = i0 2 36

2.2.4 The Expression of the Matrix of Rotation with the Aid of the Unitary
Eigenvector and the Angle of Rotation

One considers the case in which a rigid solid rotates with the angle ξ (Fig. 2.2) about an
axis Δ of unit vector u.
By this motion, an arbitrary point P0 transforms in the point P, the vector O0P0

becomes the vector O0P, the vector CP0 (C being the projection of the point P0 onto
the axis Δ) transforms in the vector CP, while the reference system O0XYZ becomes
the system Oxyz, O≡O0.
It is obvious that the rotation angle ξ is the angle between the vectors CP0 and CP.
The Rodrigues relation reads

O0P=O0P0 + u×O0P0 sinξ+u × u ×O0P0 1−cosξ , 2 37

u

Δ ξ

O0 O

x

C

y

Y

Z

z

X

0P
P

Figure 2.2 The rotation about the axis Δ.
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