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I.1  Aims and Structure of the Book

Progress in life and earth sciences (including geoarchae
ology) is mainly carried out by collecting data, making 
comparisons and finally by interpreting differences 
and similarities. A systematic and synthetic overview of 
p ublished results is, therefore, very important. Up to 
now this has not been done for the application of soil 
micromorphology to archaeological research in general, 
although several excellent books were published focus
ing exclusively (e.g., Courty et al. 1989) or partially (e.g., 
Barham & Macphail 1995; French 2003; Goldberg & 
Macphail 2006) on archaeological soil micromorphology. 
These publications, however, are based predominantly 
on case studies and the personal experience of the 
author(s). None is based on an exhaustive literature 
review and its systematic exploration by a large number 
of authors of different backgrounds and nationalities. 
The present multiauthored book aims to give a compre
hensive state of the art, based on a combination of the 
authors’ own experiences, the most up‐to‐date research, 
and the existing literature.

The book is divided into three parts. The first part 
contains relatively short entries, dealing mainly with 
inclusions or components relevant to archaeological 
deposits such as charcoal, excrements, bones or metal 
slags. The second part is composed of larger entries dis
cussing complex combinations of features, such as those 
observed in ancient ploughsoils, animal gathering enclo
sures or urban dark earths. In the last part, short entries 
illustrate the use of (sub)microscopic analytical meth
ods, which are increasingly being used directly on thin 
sections or on closely related samples.

I.2  Definition and History of Soil 
Micromorphology

Soil micromorphology is the study of undisturbed, ori
ented samples with the aid of microscopic and / or ultrami
croscopic techniques, to determine the composition of the 
constituents and their spatial relationship, with the aim of 
deducing their genetic and chronological relationships.

The most widely used technique is petrographic 
microscopy of thin sections (20–30 μm thick) prepared 
from undisturbed samples impregnated with resin. The 
petrographic microscope allows examination of the 
materials in transmitted polarized light (PPL) and under 
crossed polarizers (XPL). Studies in oblique incident 
light (OIL) and autofluorescence in blue or UV light are 
also possible. Apart from observations with the optical 
microscope, studies of thin sections or undisturbed 
samples by ultramicroscopic techniques, such as scan
ning electron microscopy (SEM), energy or wavelength 
dispersive X‐ray analyses (EDXRA or WDXRA), micro 
X‐ray diffraction, and so forth, are possible.

The discipline was developed in the 1930s by the 
Austrian scientist W. L. Kubiëna (1938). He called it 
micropedology, but later the term soil micromorphology 
became more popular. After the Second World War, 
several European, Russian and North American soil 
research centres were applying micromorphology, and 
systems of new concepts and terms were developed by 
Brewer (1964), FitzPatrick (1984, 1993), Bullock et  al. 
(1985) and more recently by Stoops (2003) and Loaiza 
et al. (2015). Quantification of components and features 
started in the 1960s (Kubiëna 1967) but has been used 
only sporadically in archaeological studies.
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Interpretation of thin sections can be based, apart 
from literature studies, on deduction from known facts 
(e.g., the relationship between an increase in fine clay 
and the amount of fine clay coatings), or by experiments. 
In  pedological soil micromorphology, experimental 
work is rather limited, whereas in archaeological micro
morphology several interpretations rely on experimental 
work, especially regarding heating and combustion, 
activity areas, and land‐management practices. The 
microscopic study of ethnoarchaeological and ethno
graphic analogues has also played a significant role.

It is important to realize that the micromorphology of 
natural soils and sediments and of archaeological depos
its are strongly interrelated. Archaeologists need to 
understand the micromorphological features observed 
in natural soils in order to discern the influence of 
anthropic activities. On the other hand, several features 
are more strongly expressed in archaeological materials, 
and are well known by archaeologists but often over
looked by soil scientists in natural soils. This book has 
therefore been organized in such a way that soil scien
tists and Quaternary geologists will also be able to find 
information important for their research.

I.3  Micromorphology 
and Archaeology

The increasing number of micromorphological publica
tions in archaeology is related to the technique’s evolu
tion within archaeology, requiring a larger input from 
natural sciences, especially earth and material sciences. 
The first known record of the use of micromorphology 
in archaeology is found in Cornwall (1958). In his man
ual he explains how to take undisturbed soil samples, 
how to make thin sections, and the way micromorphol
ogy can help to characterize and classify surrounding or 
underlying soils, based on the systems of Kubiëna (1938 
and 1953 – for a concise description of these systems see 
Stoops 2009).

Earth scientists first made thin sections of isolated 
archaeological deposits and objects out of curiosity, often 
in the frame of geological or pedological surveys. Amongst 
such early works one can cite the papers of Dalrymple 
(1958) on archaeological sediments and associated palae
osoils, Zachariae (1967) discussing the presence of earth
worm excrements in Neolithic and Roman settlements, 
Masset & Van Vliet (1974) studying a white calcareous 
cover in graves, Mathieu & Stoops (1972) describing the 
heat‐transformed soil around a medieval lime kiln, and 
the pioneering study of Romans & Robertson (1975) 
focussing on old cultivation techniques.

Systematic use of micromorphological techniques in 
archaeology dates back to the end of the 1970s: in Israel 

and the United States by Goldberg (since 1979) and in 
the United Kingdom by Macphail (since 1981). Early 
examples also include the works of Stoops (1984a and 
b) on archaeological deposits and mortars and plasters 
in the frame of excavations (1969–1973) in Anatolia 
(Turkey), and Haesaerts et al. (1983), determining the 
palaeoevironment of hominids in the Omo Valley 
(Ethiopia). The work of Courty et al. (1989) can be con
sidered as a benchmark, illustrating the many uses of 
micromorphology in archaeology. A bibliometric study 
by Stoops (2014) shows an exponentially increasing 
number of micromorphological publications until the 
1990s, followed by stagnation and even a small decrease, 
parallel with the diminishing interest in soil genesis 
and classification. It also shows that the relative 
p roportion of archaeological publications using micro
morphology strongly increased since 1990 (see 
Figure I.1). Archaeologists can now be counted amongst 
the most frequent users of soil micromorphology. It is, 
however, very difficult to measure the real impact of 
micromorphology in this way; quantification of publi
cations in the field of archaeology is much more diffi
cult than in most other natural sciences, because many 
journals used by archaeologists are not included in the 
Web of Science or similar research tools. Moreover, 
archaeologists often publish their results in local 
j ournals, or, still more difficult to trace, in excavation 
reports. This means also that many of these papers 
have escaped peer review.

I.4  Use of Micromorphology 
in Geoarchaeology

Micromorphology is used currently to solve a variety of 
archaeological problems ranging from the identification 
of specific constituents to stratigraphy interpretation 
applied to the reconstruction of palaeoenvironments. 
Roughly, one can distinguish the following fields (i) 
archaeological materials (i.e., ‘artefacts’ and ‘ecofacts’); 
(ii) reconstruction of ancient technology; (iii) recon
struction of the archaeological context, microstratigra
phy, syn‐ and postdepositional changes; (iv) impact of 
man on the environment; (v) reconstruction of the 
palaeoenvironment by study of sediments and (palaeo)
soils. It is, however, not possible to make a strict division 
of application fields, as they often overlap or are inter
dependent. For instance, the identification of an animal 
gathering enclosure (archaeological context) is not 
p ossible without the recognition of different excrement 
types (material studies), and the latter is not possible 
without a knowledge of plant remains, phytoliths and / or 
bone fragments.
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In order to avoid repetition or overlapping with 
the  other chapters of this book, reference is generally 
restricted here to review papers in this and other books, 
containing relevant reference material.

I.4.1 Archaeological Materials

The study of archaeological materials deals with the 
 identification of constituents observed in thin sections. 
A difference with ‘classic’ soil micromorphology is that 
archaeological constituents are produced and often 
modified by human action, mainly by fire (see for instance 
Canti 2017a and b and Röpke & Dietl 2017, this book). 
Especially important are constituents of plant and animal 
origin. Plant remains (see Ismail‐Meyer 2017, this book) 
are rather similar in natural and archaeological contexts, 
unless they are charred (see Canti 2017b, this book). 
Phytoliths of silica, oxalates or carbonates do occur in 
natural soils (Gutiérrez‐Castorena & Effland 2010) but 
are often more concentrated in archaeological sediments 
(see Canti & Brochier 2017a and b, and Vrydaghs et al. 
2017, this book), and can be transformed by heat (Canti & 
Brochier 2017b, this book). Constituents of biological 
 origin are found in natural soils and are common in 
archaeological deposits. Examples are bones and teeth 
(see Villagran et al. 2017, this book), biospheroids (Canti 
2017c, this book) avian and mollusc shells (see Canti 
2017d and e). Shells are concentrated in middens and are 
often transformed by heat (see Canti 2017a, this book).

Other constituents are, in reality, almost exclusive to 
archaeological deposits, such as worked stone fragments 
(Angelucci 2017, this book), metal slags and metallurgy 
byproducts (Angelini et  al. 2017, this book), ceramic 
materials (Maritan 2017, this book) and coal (Canti 
2017f, this book).

More specific components, almost unknown in natural 
soils, are the excrements of herbivores, omnivores and 
carnivores (Brönnimann et  al. 2017a and b, this book) 
and the parasite ova found within them (Pümpin et al. 

2017, this book). Excrements can sometimes be  trans
formed by heat (Mallol et  al. 2017, this book; Canti & 
Brochier 2017a, this book). They yield information on 
the feeding habits of humans and their domestic animals. 
Guano is often related to archaeological sites in rock 
shelters and caves (Karkanas & Goldberg 2010; Karkanas 
2017, this book; Mallol & Goldberg 2017, this book).

Descriptions of coarse mineral and rock components 
of the groundmass are very important in the case of 
provenance studies, if soils and sediments in the envi
ronment were sampled and studied for comparison. 
A  petrographic study of the neighbouring geological 
resources is often needed to understand which raw 
materials were available for construction, ceramic 
m anufacturing, metallurgy, and so forth.

I.4.2 Ancient Technology

One of the aims of archaeological investigations is to 
gain an insight into ancient manufacturing techniques. 
This is especially important for periods and / or areas 
not covered by written documents. Examples of micro
morphological studies that contribute to our knowledge 
of ancient construction are the study of earth building 
materials (Friesem et  al. 2017, this book) or turf 
(Huisman & Milek 2017, this book). The study of calcar
eous and gypsic mortars and plasters (Stoops et  al. 
2017a and b, this book) contributes not only to our 
knowledge of building techniques but also to the way 
mortars and plasters were prepared, starting from lime
stone or gypsum rock. In the same way, the investiga
tion of metal slag yields information both on 
metallurgical processes and raw materials (Angelini 
et al. 2017, this book). The study of combustion features 
gives an insight into the use of fuel and fire (Mallol et al. 
2017, this book).

For many of these studies a good knowledge of the local 
natural resources (stones, clay, limestone, gypsum rock 
and ores) is necessary. A precise provenance of raw 
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 materials can often be determined from their micro
scopic study. This requires a morethanbasic knowledge 
of petrography.

I.4.3 Reconstruction of the Archaeological 
Context, Microstratigraphy, 
Syn‐ and Postdepositional Changes

In many cases this research is not possible without a 
good understanding of the nature of the fabric compo
nents (see section I.4.1). Examples of archaeological con
text studies are the investigation of animal enclosures 
(Shahack‐Gross 2017, this book) and caves and shelters 
(Mallol & Goldberg 2017, this book). Cave sediments, 
because of their protected location, generally contain, 
besides archaeological materials, a wealth of information 
on environmental and climatic changes, such as the 
occurrence of cold periods, illustrated by frost features 
(Van Vliet‐Lanoë 2010).

Well known examples of anthropogenic soils or depos
its are the plaggen soils, common in parts of Belgium, 
Germany and the Netherlands, and the Amazonian dark 
earths (Arroyo‐Kalin 2017, this book). Both occur gener
ally at the surface in rural areas and are still subject to 
pedological processes. European dark earths (Nicosia 
et al. 2017, this book) are found predominantly in urban 
environments. They show a large variety of characteris
tics depending upon period and location. Somewhat 
comparable are middens, heaps of shells, long since 
known in northern Europe (e.g. the so called køkken
mødding), but recently also studied in South America 
(Villagran et al. 2009; Correa et al. 2011).

I.4.4 Impact of Man on the Environment

Throughout history, mankind has had an ever‐increasing 
impact on the environment (Davidson et al. 1992). The 
most striking examples are without doubt forest clear
ance and agriculture (Deák et al. 2017, this book).

When studying archaeological sites, it is important to 
develop insight into the natural environment of the civi
lization, as there is always a clear relation between civi
lization, position in the landscape, natural resources 
and climate. An understanding of the surrounding soils 
can give information on the possible land use, land 
quality and possible output, often allowing estimation 
of the maximum size of the population or need for 
migration due to changing conditions. Such investiga
tions are not developed in this book, as they concern 
recent, subrecent soils and palaeosoils, whose micro
morphology is discussed in detail elsewhere (e.g., 
Stoops et al. 2010). Micromorphological studies of local 
sediments can, however, yield valuable information on 
alluvial dynamics, denudation and related erosion and 
colluvial processes.

I.5  Techniques

As with all types of analyses, the relevance of the results 
depends in the first place upon the quality of the sam
ples. This means that a clear sampling strategy has to be 
followed, as significant as correct sampling techniques. 
The latter is especially important in micromorphology, 
as samples should, by definition, be undisturbed and ori
ented (Stoops & Nicosia 2017, this book).

As mentioned in the second paragraph of this chapter, 
the most commonly used method in micromorphology 
is the study of thin sections with the help of a polarizing 
microscope (also called a petrographic microscope). 
These microscopes can also be equipped with a system 
for UV or blue light fluorescence (Stoops 2017, this 
book), a tool for the study of organic and phosphatic 
material (Karkanas & Goldberg 2010; Karkanas 2017, 
this book). Cathodoluminescence (Stoops 2017, this 
book) is especially helpful for investigations of calcare
ous materials. Reflected light microscopy, requiring pol
ished uncovered sections, is necessary for the study of 
coal, opaque constituents and organic particles (Ligouis 
2017, this book).

Optical microscopy, however, does not allow identifi
cation of all components, especially when they are 
microcrystalline, cryptocrystalline or amorphous. Then, 
additional techniques are needed, if possible on the 
(uncovered) thin section, or on corresponding impreg
nated samples (by microdrilling) or on spare parts of the 
monolith samples.

Several physical methods yield information on the 
chemical composition of the constituents. The most 
important are the different microprobe techniques 
(Wilson 2017, this book) and micro X‐ray fluorescence 
(Mentzer 2017a, this book), which can be applied directly 
to uncovered thin sections, and isotope mass spectrom
etry (Mentzer 2017b, this book) on microdrilled sam
ples. Other microtechniques focus on molecular or 
crystallographic structures, such as gas chromatography 
combined with mass spectrometry (Shillito 2017, this 
book), micro Fourier transformed IR spectrometry 
(Berna 2017, this book) and micro X‐ray diffraction 
(Berthold & Mentzer 2017, this book).

Finally, some other methods allow a more detailed 
insight into the fabric than is possible with the optical 
microscope. Scanning electron microscopy (SEM) on 
fresh fracture surfaces is the most commonly used 
method, applied in soil micromorphology since the end 
of the 1960s, to observe morphology, e.g. crystal shapes 
that can assist in identification, or the etching of grains, 
giving information on the environment. SEM‐EDXRA 
(Wilson 2017, this book) techniques can be used on 
uncovered thin sections to determine the elemental 
composition of components that cannot be identified by 
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transmitted light observation alone. A more sophisti
cated, new method is the micro CT scanning (see Ngan‐
Tillard & Huisman 2017, this book) of small fragments, 
showing in 3D their internal fabric, mainly the 
microstructure.

I.6  Concluding Remarks

As mentioned before, identification of constituents is 
mainly based on their optical properties. In recent 
research, Shahack‐Gross (2016) analysed a self‐evalua
tion exercise performed amongst micromorphologists 
working in archaeological contexts. She concluded that 
mineralogy and petrography are generally poorly under
stood by the participants, and encouraged students in 
micromorphology to study core geology courses. As a 
lecturer of many intensive training courses in Europe, 
and as a referee of several papers, the first author also 
experienced that many archaeologists have insufficient 
knowledge of earth sciences in general (especially of soil 
science, mineralogy and petrography). Such knowledge 
is not only necessary to identify materials and features 
of archaeological origin but also to distinguish natural 

features from those resulting from human action. A typi
cal example is the dusty clay coatings that are immedi
ately considered by many archaeologists as a proof of 
human activity, disregarding all possible natural origins 
(see Deák et al. 2017, this book). Sufficient knowledge of 
mineralogy and petrography is, moreover, necessary to 
understand the source of materials found in archaeologi
cal contexts and the possible alteration processes (weath
ering, diagenesis). Not only archaeologists, but also the 
younger generation of soil scientists is struggling with 
these general problems as their training in geology has 
been reduced very much in recent decades.

The interpretation of micromorphological features is, 
in the first place, based on comparing collected data with 
data from literature or those of colleagues. This requires 
a clear, unambiguous description of the observations, 
which can be realized using one of the existing systems 
mentioned in section I.2, or a personal terminology, pro
vided that all terms are clearly, unambiguously explained 
and defined. What should be avoided in particular, but 
has often been noticed in publications, is the use of a 
mixture of terminologies from different systems, without 
taking into consideration the different concepts on which 
they are based.
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1.1  Introduction

Bone, teeth and other hard tissues derived from animals 
are a major artefact class of many archaeological sites. 
Fragments of these biological components can often 
constitute a significant portion of the coarse fraction of 
archaeological deposits (e.g., Schiegl et al. 2003; Dibble 
et  al. 2009; Goldberg et  al. 2012; Mentzer et  al. 2015). 
The study of larger fragments of archaeological bone 
recovered during excavation is a central aspect of 
 zooarchaeological and anthropological analysis. 
Geoarchaeologists encounter bones and teeth when 
 conducting micromorphological analysis; however, the 
size of the bone fragments found during this type of 
study is often smaller than the size of those incorporated 
into more traditional zooarchaeological studies. Bones 
in thin sections of archaeological deposits therefore 
 provide a different, but complementary, perspective on 
the archaeological remains of animals (Estévez et  al. 
2014). By studying these small‐scale remains of bone 
in  a  thin section, micromorphologists can address a 
wide  range of archaeological issues related to human 
behaviour, site formation processes, taphonomy and 
chemical diagenesis.

1.2  Micromorphology

1.2.1 Composition and Structure of Bone 
and Related Materials

Bone is a biological material that is produced by verte
brate animals. In living bodies, bone functions as both an 
organ and as a rigid skeleton that supports and contains 

soft tissues. Fresh bone is composed of inorganic calcium 
phosphates precipitated in an organic collagen matrix. 
More specifically, bones are generally composed of 
20–30% collagen (protein) and 60–70% calcium phos
phates (bone mineral), with the remaining <10% compris
ing a combination of other components such as complex 
sugars, lipids, carbonates, Mg, Na, trace elements and 
metal ions (White & Hannus 1983; Posner et al. 1984; Pate & 
Hutton 1988; Linse 1992; McCutcheon 1992; Currey 
2002). The mineral component of bone is commonly 
referred to as: (i) hydroxylapatite or hydroxyapatite 
(Ca5(PO4)3(OH)); (ii) bioapatite (a poorly crystalized 
 calcium phosphate resembling hydroxylapatite); or (iii) 
carbonate hydroxylapatite (Ca5(PO4CO3)3(OH)) also 
known as dahllite (Pate & Hutton 1988; Linse 1992; 
McCutcheon 1992; White & Hannus, 1983; Stiner et al., 
1995; Karkanas et  al. 2000; Hedges, 2002; Berna et  al. 
2004; Trueman et al. 2004; Smith et al. 2007). In reality, 
bone mineral is difficult to characterize. Mineralogical 
analyses reveal that pure hydroxylapatite is never actually 
found in bone or teeth, thus Weiner (2010) argues that this 
term should be reserved for geogenic, noncarbonated 
forms of apatite. Furthermore, the mineral dahllite is no 
longer recognized by the International Mineralogical 
Association. Therefore, despite the general inconsisten
cies found in the literature regarding bone mineral, the 
terms bioapatite, carbonate hydroxylapatite, or carbonate 
apatite are most appropriate.

The same combination of collagen and bioapatite 
occurs in mammal, bird, reptile and fish bones. The only 
exceptions are fish of the elasmobranch type (sharks, 
skates and rays), whose skeletons consist of cartilage 
containing a different type of collagen (type II) and no 
bioapatite (Szpak 2011).
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Besides bone, other hard biological tissues that can 
appear in the archaeological record are antler, teeth and 
keratin structures like horn and hair (of the aforemen
tioned tissues, hair is the only nonskeletal one). Antler is 
a bony extension of the skulls of deer that has the same 
composition as bone (bioapatite, collagen, noncollagen
ous proteins and water – Currey 2002). Teeth are com
posed of three different hard biological materials: 
enamel, dentin and cementum. These materials have the 
same general composition as bone, but differ in the rela
tive proportions of mineral to other components; enamel, 
dentin and cementum contain >95%, 75%, and 45% car
bonate hydroxylapatite, respectively (Provenza & Seiber 
1986; Weiner & Wagner 1998; Francillion‐Viellot et al. 
1990; Weiner 2010). Horn exists on animals from the 
Bovidae family (cattle, sheep, goat, etc.). It differs from 
bone in that it contains keratin (alpha‐keratin, a fibrous 
protein also found in hair, nails, wool and claws) with 
minor amounts of bioapatite (Hashiguchi & Hashimoto 
1995; Salamon 1999; Hashiguchi et al. 2001; O’Connor 
et al. 2015) or no crystalline phase at all (Tombolato et al. 
2010). The hair fibre is made of hard keratin, water, 
lipids, pigment and trace elements (Wilson & Tobin 
2010). Horn, hair and other keratinous tissues rarely 
 survive in the archaeological record unless burial condi
tions impede biological activity (Wilson et  al. 2007; 
Wilson & Tobin 2010; O’Connor et al. 2015).

In addition to having different compositions, hard 
biological tissues differ in their macroscopic structure. 
Bones can be divided into two different structures 
according to their porosity. Compact or cortical bone 
has  low or null porosity. Spongy bone, also known as 
 trabecular or cancellous bone, has high porosity. The 
boundary between both types is diffuse since compact 
and spongy represent a continuum (Weiner & Wagner 
1998; Francillion‐Viellot et al. 1990; Currey 2002; Weiner 
2010). Spongy bone is frequently, though not exclusively, 
found in bone epiphysis or inside vertebrae, whereas 
dense compact bone is found in the shaft of long bones 
(bone diaphysis) or as part of flat bones (e.g., skull,  scapula). 
Antler is composed of a combination of exterior com
pact bone and interior spongy bone (Goss 1983). Teeth 
exhibit a specific structural arrangement of enamel, den
tin and cementum, from which only dentin is porous. 
The crown portion of the tooth is composed of enamel, 
which is thickest next to the crest of the cusp. The outer 
portion of the root is composed of cementum. The inner 
portions of the root and crown are composed of dentin 
(Carlson 1990). Horns contain fibrous keratinous tissue, 
and exhibit a gradient of porosity that is higher in the 
exterior and lower in the interior. They are attached to 
the skull by a short bony core made of spongy bone and 
covered with skin. Horns exhibit a hollow core when 
detached from the animal skull (Tombolato et al. 2010). 

The hair shaft is macroscopically smooth, but can have 
various shapes and thickness depending on the animal 
species and individual characteristics (Brunner & Coman 
1974; Tridico et al. 2014).

1.2.2 Optical and Microstructural Properties 
of Bone and Other Skeletal Tissues

The optical properties of bone, teeth (including ivory), 
antler and keratin tissues (horn, hoof and hair) are sum
marized in Table 1.1. Different types of bone structures 
are visible in thin section. Compact and spongy bone can 
be easily recognized, despite the angle of the cut, due to 
the massive appearance that characterizes the former, 
and the large, closed‐packed pores that characterize the 
latter (Figure 1.1a). At magnification, four fabric types of 
bone can be described. The basic component of bone 
material is the mineralized collagen fibril, which consti
tutes a combination of bioapatite crystals (5 × 25 × 2–4 nm3 
plate‐shaped crystals) and collagen fibrils (80–100 nm in 
diameter) (Lowenstam & Weiner 1989; Weiner 2010). 
The fibrils can be packed in four different ways (Currey 
2002): woven bone (fibrils are randomly arranged) 
(Figure 1.1b); parallel‐fibred bone (close‐packed, parallel 
fibrils that have the same orientation); lamellar bone 
(fibrils are arranged in thin lamellae or sheets, like ply
wood, where each sheet differs in orientation of the 
fibrils) (Figure 1.1c); and fibrolamellar bone, which is a 
combination of woven and lamellar and / or parallel‐
fibred bone (Figure  1.1d, f ). Different histological 
 structures may be characterized by one or more type of 
fibril packing. For example, Haversian systems, which 
house blood vessels or nerves, consist of longitudinal 
vascular canals surrounded by concentric lamellar bone 
(Figure  1.1e). The appearance of bone in thin section 
depends both on the macrostructure, the arrangement 
of  the fibrils and the angle at which the bone was cut 
 during the preparation of the slide. For example, lamellar 
zones of compact bone show a pattern of intercalating 
dark and light bands in XPL (Figure 1.1f ).

Both components of fibrils, the (quasicrystalline) col
lagen and the bioapatite, contribute to the appearance of 
bone under crossed polars. Both components, on their 
own, have low‐order white to grey interference colours 
(Courty et al. 1989; Bromage et al. 2003); however, bone 
exhibits form birefringence, in which the birefringence 
of two materials influence each other. Both collagen and 
bioapatite are uniaxial, and their optical axes lie parallel 
to the axes of the collagen fibrils (Watson 1975; Wolman 
1975; Stoops 2003). Collagen has a positive elongation 
sign, while bioapatite (and all apatite isomorphs), has a 
negative elongation sign (Bourne 1956; Watson 1975; 
Bromage et  al. 2003). Although Courty et  al. (1989) 
state that the mineral component is responsible for the 
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low‐order interference colours of bone, Karkanas & 
Goldberg (2010), based on the work of Watson (1975), 
indicate that the interference colour of fresh bone is 
mostly due to collagen. Watson’s conclusion is based on 
observations of bones that, after losing their collagen 
matrix, changed sign of elongation from positive (domi
nated by collagen) to negative (dominated by bioapatite). 
This change is also seen in the experimental heating of a 
fish vertebra at 100 °C and 500 °C (Figure 1.2).

In practice, the determination of elongation sign in 
bone must take into account the orientation and distri
bution of the collagen fibres, which may vary in different 
bones according to their biomechanical properties 
(Bromage et al. 2003). In the example given in Figure 1.2, 
if we consider the bioapatite and collagen fibres to be 
transversal to the medullary cavity, then there is a change 
from positive to negative elongation after heating. This 
fits Watson’s proposal that collagen interference colour 
is dominant in fresh bone. However, if the fibrils are radi
ally oriented, then the opposite situation is described 
(from negative to positive). Moreover, Bromage et  al. 
(2003) state that the different interference colours seen 
in fresh bone are also determined by the orientation of 

its collagen, with transversal collagen fibres appearing 
white, longitudinal fibres appearing black and fibres with 
intermediate orientation showing different levels of grey 
under crosspolarizers.

The autofluorescence of bone can be attributed to the 
bioapatite component, although there is also a small con
tribution from collagen (Altermüller & Van Vliet‐Lanoe 
1990). Autofluorescence may be partly or completely lost 
as a result of decay or heating (see below) and its pres
ence can be taken as indirect evidence of the degree of 
bone weathering (Hoke et al. 2011; Hollund 2013).

Antler has the same optical properties as bone with 
macrostructure comparable to that of long bones (an 
outer rim of compact bone and a core of spongy bone; 
Figure 1.3a–d; Table 1.1). Teeth can be identified by their 
overall morphology, as well as optical properties of the 
three components (dentin, enamel and cementum) 
(Table 1.1). In transversal cuts of the cusp, all vertebrate 
teeth show an outer layer of enamel, a core of dentin 
with radial orientation of fibrils, and polarization cross 
under XPL (see Figure  1.3e, f ). The hollow centre of 
the tooth (pulp cavity) may be expressed as a void. In fos
sil or archaeological teeth, the dentine may have weaker 

Table 1.1 Optical characteristics of bone, teeth, ivory, antler and keratin tissues (horn, hoof and hair). Note that pleochroism is absent 
in all the hard tissues.

Tissue Colour (PPL) Interference colour (XPL)
Autofluorescence 
(blue and UV light) Figure References

Bone Light yellow Low‐order white to grey Blue (UV), yellowish 
to green (blue light)

1.1a, 1.1f, 1.2a Courty et al. 1989; 
Stoops 2003; 
Karkanas & 
Goldberg 2010

Antler Light brown Low‐order white to grey Yes 1.3a, b, c, d Rolf & Enderle 1999; 
Skedros et al. 2014

Teeth
Enamel Light brown Low‐order white to grey Blue light: no

UV and red light: yes
1.3e, f Schmidt & Keil 1971

Dentin Pale brown 
and grey (with 
parallel fibers)

Grey and light orange 
(polarization cross visible in 
transversal sections of tooth)

Yes 1.3e, f,
1.4a, b, c, d

Schmidt & Keil 1971

Cementum Pale brown Low‐order white with 
varying brightness

No 1.4a, b, c, d Schmidt & Keil 1971

Ivory (fossil) Brown Low‐order grey Yes 1.4e, f Su & Cui 1999; Heckel 
2009; Virág 2012

Keratin 
tissues

Horn Light brown Low‐order grey Yes 1.5a, b, c, d, e, f Tombolato et al. 2010
Hoof Yellowish 

brown
Low‐order grey to high order Yes 1.6a, b Kasapi & Gosline 1997

Hair Colourless to 
pale yellow

High order Yes 1.6c, d, e, f Wilson 2010; Wilson 
et al. 2010; Dejmal et al. 
2014; Tridico et al. 2014
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birefringence or even appear completely isotropic 
(Schmidth & Keil 1971). Transverse cuts of the root 
exhibit outer layers of cementum and inner cores of den
tin (Figure  1.4a–d). Longitudinal cuts may contain all 
three components. Depending on the cut, cementum 
may exhibit a scalloped morphology where it attaches to 

bone. Ivory, a specific type of dentin found in tusks of the 
order proboscidea, has distinct internal structures with 
parallel ‘lines of Owen’ (found in any dentin), and char
acteristic chevron‐shaped ‘Schreger patterns’ that are 
only visible at low magnifications under PPL (see Su & 
Cui 1999; Heckel 2009; Virág 2012) (Figure  1.4e, f; 

(a) (b)

(c) (d)

(e) (f)

Figure 1.1 Examples of bone microstructures. (a) Fragments of spongy (S) and compact (C) bone fragments in a medieval deposit. PPL. 
(b) Microstructure of human bone (transversal cut) with osteons (circular canals with concentric lamellar bone) surrounded by woven 
bone. PPL. (c) Thin section of human bone (transversal cut) showing clear pattern of lamellar bone within and surrounding osteons. XPL. 
(d) Microstructure of fibrolamellar (plexiform) bone tissue (transversal cut) in deer bone section. PPL. (e) Haversian channel (H) formed in 
lamellar bone (L). (f ) Fibrolamellar (plexiform) bone microstructure (transversal cut) of unknown mammal, probably ungulate. XPL.
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Table 1.1). These structures produce preferred cracking 
and delamination patterns that yield rectangular to 
equant fragments. The optical properties of horn, hoof 
and hair are those of keratin; however, they differ in mor
phology and microstructure (Table 1.1). The microstruc
ture of horn is lamellar, with the lamellae extending 
along the length of the horn following the direction of 
growth (Tombolato et al. 2010). In transversal sections, 
the layering of the growth pattern is clearly visible, with 
darker banding parallel to the surface (PPL) and a speck
led pattern in XPL (Figure 1.5a, c). The stacked bundles 
of lamellae can be seen in longitudinal sections of horn 
under PPL. Differences in the orientation of the lamellae 
result in a banded pattern with first to second‐order 
interference colours (Figure 1.5b, d). The darker bands 
are autofluorescent under UV and blue light. However, 

longitudinal sections show little or no autofluorescence 
(Figure 1.5e, f ). The keratinous wall of the horse hoof in 
thin section (Figure 1.6a, b) has a characteristic woven 
or cross‐hatch fabric with regularly spaced channels vis
ible under XPL. Its matrix is similar to that of compact 
bone, with circular lamellae of keratin around a hollow 
tubule (the medullary cavity) (Bertram & Gosline 1986; 
Kasapi & Gosline 1997; Tombolato et  al. 2010). Hair 
(Figure 1.6c–f; see also Dejmal et al. 2014, Figure 10) has 
internal stratigraphy composed of an outer cuticle, an 
inner cortex and a central medulla (Brunner & Coman 
1974; Wilson & Tobin 2010). Depending on the orienta
tion of the hair, the rough morphology of the cortex 
may be visible. When affected by fungal tunnelling, the 
typical green fluorescence of hair turns red (Wilson et al. 
2007; Wilson & Tobin 2010).

(a) (b)

(c) (d)

Figure 1.2 Thin sections from the experimental heating of fish vertebrae under oxidising conditions. (a) Transversal cut of vertebra heated 
at 100 °C in XPL. (b) Same as Figure 1.2a after insertion of gypsum plate, note positive elongation of bone, characteristic of collagen, when 
collagen fibres are transversally arranged. (c) Transversal cut of a vertebra heated at 500 °C in XPL, note lowering in interference colours. 
(d) Same as (c) after insertion of gypsum plate, note negative elongation, characteristic of apatite (see also Figure 1.5).
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3 Microstructure of teeth, antler and ivory. (a) Longitudinal section of modern red deer antler, the spongy bone is seen as 
elongated structures (right of the image) next to the massive compact bone with vascular channels. PPL. (b), (c) and (d) Transversal section 
of red deer antler. Note transition from spongy (core) to compact bone (edges), as commonly seen in long bones. Spongy bone has 
stronger autofluorescence, possibly due to higher organic content. (b) PPL; (c) XPL; (d) BLF. (e) and (f ) Transversal cut of a rodent 
tooth – still embedded in bone (B) from the skull or a jaw fragment – showing radial dentin (D) in the core and outer layer of enamel 
(E). Medieval occupation deposit (Achlum, The Netherlands). (e) PPL; (f ) XPL.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.4 (a) and (b) Transversal cut through rodent molar, with dentin (D) and cementum (C). Note bone attached to the cementum: 
(a) PPL; (b) XPL. (c) and (d) Close‐up of cementum (C) and dentin (D). (c) PPL; (d) XPL. (e) and (f ) Fossil mammoth ivory: (e) PPL; (f ) XPL.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.5 Horn and other keratinous tissue. Parts (a), (c) and (e) are transversal sections of modern cow horn: (a) PPL; (c) XPL; (e) BLF. 
Parts (b), (d) and (f ) are longitudinal sections of the same horn: (b) PPL; (d): XPL; (f ) BLF. Note growth lines in the transversal section and 
lamellae extending parallel to the length of the horn in the longitudinal section.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.6 (a) and (b) Horse hoof. Inset in H shows BL image: (a) PPL; (b) XPL. (c), (d), (e) and (f ) Hair in coprolite: (c) PPL; (d) PPL; 
(e) XPL; (f ) BLF.



Archaeological Soil and Sediment Micromorphology20

1.2.3 Identification of Bone Element and Animal 
Species from Thin Sections

In micromorphological samples it is rare to be able to 
identify the skeletal element  –  let alone determine the 
animal group or species – due to the small size of most 
bone fragments in thin section. For fragments of large 
bones it may be possible to distinguish between spongy 
and compact tissue in thin section (Figure 1.1a). In other 
situations, fortuitous orientations or sections may aid in 
identification of the element, especially if the element is 
whole or characteristic features are visible (e.g., the man
dible pictured in Figure 1.3e, f ).

Bones from humans and nonhuman mammals can be 
differentiated by morphology, DNA, proteins, or histo
logical analysis. Plexiform bone is a specific type of com
pact / cortical fibrolamellar bone. Humans do not produce 
plexiform bone, so its presence in a large bone fragment 
may suggest that the source is nonhuman (Figure 1.1d). 
However, other primates and most small mammals also 
lack plexiform bone, which in the case of small fragments 
can prevent a straightforward identification. Furthermore, 
plexiform bone can be removed from the bones of large 
animals by weathering. In these ambiguous cases, meas
urements of certain histological structures (e.g., the 
diameters of Haversian systems) in oriented sections are 
necessary (Hillier & Bell 2007) (Figure 1.1c, d, f ).

Although identification of most animal groups or spe
cies is difficult in micromorphological samples, an 
exception is seen in certain bones that are clearly diag
nostic of fishes. Fish scales can be easily distinguished in 
thin section by their denticulate surface (Figure 1.7a, b) 
and fish vertebrae are unmistakably identified by their 
cross‐shaped or rounded morphology (Figure  1.7c, d). 
Different bones that comprise the fin rays also show par
ticular shapes that allow for their identification in thin 
section. The proximal portion of fin rays is made of thin, 
elongated bones with thicker and rounded extremities 
(Figure 1.7e), while the lepidotrichia (the distal portion 
of the fin) is made of successive paired small bones, 
which exhibit shapes similar to parenthesis (Figure 1.7f ) 
(Francillion‐Vielot et al. 1990). In addition, recent stud
ies demonstrate that micro CT (microcomputed tomog
raphy) scanning of micromorphological blocks provides 
three‐dimensional information about bone fragments and 
may facilitate species determination when samples  contain 
small bones (Huisman et  al. 2014b; Ngan‐Tillard & 
Huisman 2017, this book).

1.3  Taphonomy of Bone

Taphonomic processes that impact bones include 
 combustion and heating, biological activity, mechanical 
fracturing and chemical weathering. Identification of the 

traces of these processes in bones visible in thin section 
can aid in reconstructing site formation processes, 
including syndepositional human activities such as burn
ing and trampling and disturbance of sites by animals. 
Other processes can be indicative of past environments 
and burial settings. Micromorphology can also be inte
grated to the solution of taphonomic problems raised 
by zooarchaeological analyses (the microtaphonomic 
approach, sensu Estévez et al. 2014).

1.3.1 Combustion and Heating of Bone

Burning can occur incidentally, for example when bones 
are located underneath a hearth, or intentionally when 
they are burnt for fuel (Schiegl et al. 2003), used to man
age specific properties of the fire (Théry‐Parisot 2002), 
or subjects of site‐maintenance practices (Clark & 
Ligouis 2010). Only the organic constituents (i.e., fat and 
collagen) of bone truly burns; however, the mineral frac
tion of bone also becomes altered by heat, providing a 
means for identifying and tracking heating in the past. 
Other types of heating, such as roasting, baking and boil
ing, produce characteristic compositional and structural 
changes, including loss of collagen at low temperatures 
(Roberts et al. 2002).

According to Ellingham et al. (2015) bone can undergo 
four stages of transformation related to burning or 
incineration: (i) dehydration, (ii) decomposition, (iii) 
inversion and (iv) fusion. Several experimental studies 
have shown that bones progress through predictable 
stages of colour alteration corresponding to degree of 
heating (e.g., Shipman et  al. 1984; Stiner et  al. 1995; 
Bennett 1999; Hanson & Cain 2007). These stages 
include: fresh, unburnt bone, which appears ivory or 
tan  in colour; partially carbonized or charred bone, 
which can appear brown or reddish; fully carbonized or 
charred bone, which appears black; and white calcined 
bone, in  which all organic material and moisture is 
removed. Despite these numerous studies, some contro
versy remains as to what temperature corresponds to 
which colour change (Ellingham et  al. 2015). Some 
researchers note that the initiation of the different stages 
of colour change vary between bones derived from mam
mals, birds and fish (Nicholson 1993), whereas others 
point out the amount of flesh and fat covering a bone can 
also significantly influence the onset of colour changes 
due to heating (Symes et al. 2008).

Table  1.2 summarizes experimental data produced 
from modern bones burnt or heated at a variety of 
temperatures. Two sets of burning experiments were 
conducted on ungulate and fish bones, which were then 
processed into thin sections (see also Figures  1.8, 1.9, 
1.10). Petrographic observations of these bone samples 
are included; however, it is important to stress that many 
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(a) (b)

(c) (d)

(e) (f)

Figure 1.7 Fish bones. (a) Fish scale with typical denticulated edge. Caipora shell mound (c. 7440–6110 cal. yr BP, Santa Catarina, 
Brazil – see Estevez et al. 2014; Villagran 2014). PPL. (b) Small fragment of fish scale. Same site as Figure 1.5a. (c) Section of a fish vertebra, 
Santa Marta 8 fish mound (c. 1550 cal. yr BP, Santa Catarina, Brazil – see Villagran 2014. PPL. (d) Section of four articulated fish vertebrae, 
Cubatão shell mound (c. 3000 BP, Santa Catarina, Brazil). PPL. (e) Articulated bones from a fin ray (fr). Sernambetiba shell mound (c. 2000 
BP, Rio de Janeiro, Brazil). PPL. (f ) Dispersed bones from fin ray lepidotrichia (fr). Sernambetiba shell mound (Rio de Janeiro, Brazil). PPL.
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of the observed features, such as colour in PPL and inter
ference colours can be impacted by a variety of sample 
preparation parameters and taphonomic conditions. 
These include the angle at which the bone is cut, slide 
thickness, microscope light source and use of the 

 substage condenser, as well as chemical and biological 
alteration (see section 1.3.3).

The data presented in Table 1.2 are broadly consistent 
with published observations from archaeological sam
ples. Many researchers have noted the distinctive milky 

Table 1.2 Micromorphological characteristics of experimentally heated bone in thin section. n.d. = no data. Thin sections of pig and cow 
bones: the unburnt samples (bone and teeth) are from the personal reference collection of P. Goldberg; the sample heated at 100 °C is 
a boiled reindeer bone collected by L. Binford from an ethnographic context. Thin sections of fish bones courtesy of M. Canti.

Temperature in 
°C (heated to 
+/− 10 °C)

Micromorphological characteristics of pig and cow bones in thin section 
(temperatures held for 45 minutes)

Micromorphological characteristics of 
fish bones in thin section (temperatures 
held for 30 minutes)

Unburnt Colourless (transparent) in PPL. Strong low‐order interference colours 
(white, grey, black). Strong fluorescence under blue and UV light.

n.d.

100 Colourless (transparent) in PPL. Strong low‐order interference colours 
(white, grey, black), strongly contrasting. Weak to moderate fluorescence 
under blue light; moderate under UV light.

Colourless (transparent) to light grey 
in PPL. Strong birefringence in XPL. 
Low order interference colours.

200 Colourless (transparent) in PPL. Strong low‐order interference colours 
(white, grey, black), strongly contrasting. Moderate fluorescence under 
blue light; moderate to strong under UV light.

As above.

300 Light to medium yellow, ranging to dark reddish brown in PPL. Weak 
abnormal olive brown, to grey brown interference colours. Moderate to 
strong fluorescence under blue and UV light, except in areas with reddish 
brown colour in PPL.

Light to medium yellow in PPL. Weak 
to moderate grey to white interference 
colours.

400 Dark reddish brown to black (opaque) in PPL. Weak interference 
colours (reddish in areas that are reddish brown in PPL). Absent to very 
weak fluorescence under blue light; absent to weak fluorescence under 
UV light.

Reddish brown to black (opaque) in 
PPL. Weak abnormal interference 
colours, reddish in areas that are 
reddish brown in PPL.

500 Pale brown to black (opaque) in PPL. Weak abnormal olive brown to 
dark blue‐grey interference colours. Weak to moderate fluorescence 
under blue light in areas that are brown in PPL, absent to moderate 
fluorescence under UV light.

Pale brown in PPL. Moderate blue‐
grey interference colours.

600 As above. Colourless (transparent) to brown in 
PPL. Moderate blue interference 
colours.

700 Pale brown in PPL. Weak to moderate low order greys. Interference 
colours are with low contrast. Absent to very weak fluorescence in blue 
and UV light.

As above.

800 Brown to brownish grey in PPL, with visible internal fissures. Moderate 
to strong bluish grey interference colours with an overall milky cast 
(accentuated by the substage condenser). Small crystal aggregates with 
higher interference colours are visible within the bone tissue. Absent to 
weak fluorescence in blue and UV light.

As above.

900 Brown to brownish grey in PPL, with visible internal fissures. Strong 
white to grey interference colours with an overall milky cast (accentuated 
by the substage condenser). Absent to very weak fluorescence in blue and 
UV light.

Pale brown in PPL. Weak to moderate 
low order grey to blue‐grey 
interference colours.

1000 As above As above.
1100 n.d Opaque in PPL. Moderate low‐order 

grey interference colours with an 
overall milky cast.

1200 n.d. Translucent in PPL. Weak to moderate 
low order grey interference colours.



Figure 1.8 (a)–(h) Thin sections of herring bone heated from 100 °C to 500 °C under oxidising conditions. Images in PPL (left) and XPL 
(right). From 100 to 400 °C, the colour of bone changes from light grey to yellowish orange and reddish brown to black (PPL). 
Interference colours go from first‐order yellow and white between 100 and 300 °C. Second‐order reddish interference colours appear at 
400 °C (XPL). Thin sections courtesy of M. Canti.

(a) (b)

(c) (d)

(e) (f)

(g) (h)



Figure 1.9 (a)–(h) Thin sections of herring bone heated from 600 °C to 1200 °C under oxidising conditions. Between 500 °C (Figure 1.8) and 
900 °C bones turn pale brown with blue‐grey and blue interference colours (XPL). Bone heated to 1100 °C is opaque (PPL) with cloudy or 
milky appearance (XPL). At 1200 °C, the bone is again pale brown (PPL) and shows lower order white and grey interference colours (XPL). 
Thin sections courtesy of M. Canti.

(a) (b)

(c) (d)

(e) (f)

(g) (h)



Figure 1.10 Thin sections of ungulate bone heated from 100 °C to 1000 °C under oxidising conditions. At 100 °C sample corresponds to 
boiled reindeer bone, at 300–600 °C and 800–900 °C samples come from heated cow bones, and at 700 °C and 1000 °C samples are pig 
bones. No major difference is seen between bones heated at 100 °C and 200 °C. At 300 °C bones turn light to medium yellow (PPL) with 
olive brown to grey brown interference colours (XPL) and moderate to strong fluorescence (BLF). At 400 °C bones turn dark reddish 
brown (PPL) with red interference colours with opaque areas (XPL). Colour changes to pale brown (PPL) between 500 and 700 °C. 
Interference colours are olive brown to dark blue‐grey between 500 and 600 °C, turning to low order grey at 700 °C (XPL). Fluorescence is 
now weak to moderate (BLF). Between 800 and 1000 °C bones are brown to brownish grey (PPL) with strong birefringence (XPL) and low 
order interference colours from bluish grey to grey with milky cast typical of calcined bone. Fluorescence is weak to absent (BLF).
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cast to the birefringence of calcined bone under XPL 
(e.g., Schiegl et  al. 2003; Mentzer et  al. 2015). Schiegl 
et al. (2003), in a study of a burnt bone deposit, suggested 
that bones exhibiting darker, opaque colours of brown 
and black in PPL are likely carbonized. They also argue 
that bones that appear almost colourless in PPL, but with 
first‐order interference colours in XPL, suggest a lack of 
collagen and recrystallization of apatite or calcination.

Several studies have reported a decrease or loss of 
autofluorescence under UV light as a common sign of 
heating in bones due to loss of collagen (Courty et  al. 
1989; Schiegl et  al. 2003; Karkanas et  al. 2007) (see 
Figure  1.11a). The results from experimental heating of 
pig and cow bone described in Table 1.2 and Figure 1.10 
are broadly consistent with this observation. 
Autofluorescence under ultraviolet (UV) and blue light 
decreases significantly above 500 °C. In contrast, the 
heated fish bones described in Table 1.2 retained auto
fluorescence throughout the complete experimental 
temperature range. This difference may be due to the 
duration of heating (30 min). For instance, Thompson 
et  al. (2009) found that, although molecular changes 
began to occur in bones heated for 15 , they recom
mended 45 min of heating for future experiments.

When heating occurs in nonoxygenated environments 
(e.g., bones buried in the soil underneath a fire) bones 
turn black macroscopically (Stiner et  al. 1995). In thin 
sections, this may be seen as a coat of sootlike charred 
organic material on the surface of the heat‐altered bone 
(Figure  1.11b). In larger bones, lack of oxygen during 
heating may result in charring of fat or marrow or in the 
accumulation of soot inside the bone. This results in 
the formation of opaque black precipitates in the bone 
microstructure that mask the optical properties of the 
bone mass (Figure 1.11c).

Despite general trends in presence and absence of 
 certain optical properties with temperature, these prop
erties alone are not the best approach to identifying 
burned bone in thin section. Mineral staining can mimic 
colour change in PPL caused by low temperature heating. 
Similarly, small fragments of charred bone can resemble 
other charred organic remains, particularly a black amor
phous substance identified as ‘fat‐derived char’ (Berna & 
Goldberg 2008; Goldberg et al. 2009) (Figure 1.11d). This 
material is produced from burning of flesh, bone and / or 
animal fat and has been identified in diverse archaeologi
cal contexts (Goldberg et  al. 2012; Miller et  al. 2013; 
Villagran et  al. 2013). It exhibits numerous vesicles 
with small fissures or cracks radiating from the walls 
(Figure 31.6e in Mallol et al. 2017, this book) which, when 
the fragments are sufficiently large, should allow for 
distinction between it and charred bone, or ‘bone char’. 
The appearance of pale brown or orange fragments of 
bone that exhibit variations in the interference colour 

and  fluorescence can be due either to low temperature 
 heating or to collagen decay after microbial alteration or 
chemical dissolution (Schoeninger et al. 1989; Trueman & 
Martill 2002; Trueman et al. 2004). The lack of equifi
nality in the optical characteristics of burnt bone and 
bone modified by other processes requires the use of 
other microanalytical techniques to determine if bones 
found in thin section have been subjected to heating. The 
application of FTIR, FTIR microscopy, XRD, histomor
phometry, measurements of crystallite size and organic 
petrography to loose samples and thin sections has been 
shown to be helpful in distinguishing between bones sub
jected to heating and those subjected to other alteration 
processes (Shahack‐Gross et  al. 1997; Karkanas et  al. 
2007; Piga et al. 2008; Dibble et al. 2009; Thompson et al. 
2009; Clark & Ligouis 2010; Goldberg & Berna 2010; 
Lebon et al. 2010; Reiche 2010; Squires et al. 2011; Berna 
et al. 2012; Ellingham et al. 2015).

1.3.2 Mechanical Fracturing of Bone

There are numerous causes of bone fragmentation: 
intentional human practices, such as butchery and 
 burning; unintentional trampling; and syn‐ and post
depositional physical processes, including wetting and 
drying, freezing and thawing, formation of secondary 
salt crystals and overburden pressures. The effects of 
these processes have been widely investigated through 
taphonomic studies; however, most cannot be distin
guished using micromorphology alone. Some processes, 
described below, can be clearly recognized in thin sec
tion, whereas others can be identified from aspects of 
the sedimentary matrix. Therefore micromorphology of 
fragmented bone can provide a valuable data set that 
complements more traditional zooarchaeological studies.

Trampling of bones, whether by humans or animals, 
can cause distinctive fractures that are readily identi
fiable in thin section. Experimental work conducted 
by  Miller et  al. (2009) determined that trampling can 
cause in situ snapping of bone, leading to articulated, 
accommodating fragments of slightly displaced bone 
(Figure  1.11e). Bones with significant pore space, such 
as  spongy bone, will often exhibit lower degrees of 
accommodation and appear ‘crushed’. Fracture pattern
ing similar to that found in the experiments has been 
reported in archaeological thin sections and attributed 
to human trampling (Dibble et  al. 2009; Goldberg 
et al. 2009). Similar types of in situ fracturing could be 
caused by pressure related to sediment overburden, 
an  interpretation offered for fractured bone at the site 
of  Tönchesberg (Conard 1992). However, as far as we 
are  aware, no micromorphological studies of bones 
 fractured by  sediment overburden have been conducted. 
Trampling can also cause horizontal displacement of 
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Figure 1.11 Various effects of heating on bone (a–d). (a) Burnt and fresh bones from the Santa Marta 8 fish midden (c. 1550 cal. years BP, 
Santa Catarina State, Brazil). Note the auto‐fluorescence of fresh bone fragments compared to the weak to absent fluorescent burned 
fragments. BLF. (b) Herring bone experimentally heated to 700 °C in absence of oxygen. Note the dark edges due to the presence of 
soot. PPL. (c) Thin section scan showing a fragment of horse bone experimentally burnt for 8 hours in an open hearth with average 
temperatures below 300 °C. Note the dark colours on the inside of the bone due to charring. Image width 68 mm. Image courtesy: 
C. Mallol. (d) Fat‐derived char from a combustion feature at the seventeenth–eighteenth century site of Sealer 4, Livingston Island 
(Antarctica – see Villagran et al. 2013). Note its characteristic homogeneous black colour and vesicular shape that can easily be mistaken of 
charred spongeous bone (see Figure 1.8c). PPL. Bone cracking and fragmentation (e–h). (e) The breakage pattern, with accommodating 
fragments in articulated position or with little displacement indicates in situ breakage, probably due to trampling. Iron Age midden‐like 
deposit (Oosterbeintum, the Netherlands). PPL. (f ) Localized zone of cracking in surface of rodent skull (see Figure 1.3a, b). This pattern 
occurs only in the outer surface layers of the bone, and is probably due to preburial exposure. PPL. (g) and (h) Secondary minerals forming 
in‐between bone fragment and breaking it apart. Middle Stone Age deposits in Sibudu (South Africa): (g) PPL; (h) XPL.
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materials, including fragments of bone. In this case, the 
bone fragments do not exhibit articulation or accommo
dation but they appear subrounded and incorporated 
within deposits composed of a heterogenous mix of vari
ous components (Goldberg et al. 2009; Miller et al. 2013).

Bone exposed on the surface or subsurface for extended 
periods can be affected physically by repeated drying and 
wetting and / or freeze‐thaw cycles. Such cycles can result 
in physical damage characterized by patterns of fine fis
sures, as seen in Figure  1.11f. Schiegl et  al. (2003) and 
Miller (2015) report a deposit composed almost exclu
sively of sand‐sized fragments of bone at the cave site of 
Hohle Fels; the bone fragments appear subrounded and 
exhibited laminated coatings of calcareous silt, which the 
researchers interpret as having formed by cryoturbation.

Moisture containing dissolved ions within archaeo
logical deposits can collect within pre‐existing fissures 
and pores in bones where, upon evaporation, crystals 
can form. As the crystals grow they exert pressure on 
the  surrounding bone, which leads to fracturing and 
fragmentation (Figure  1.11g, h). This process is most 
common in sites that are relatively dry, and have alkaline 
burial conditions with sources for dissolved ions that 
preferentially form crystals (Behrensmeyer 1978). 
Crystal‐induced fragmentation of bone due to gypsum 
formation has been reported from the rockshelter sites 
of Sibudu (Goldberg et al. 2009) and Diepkloof (Miller 
et al. 2013) in South Africa. A similar process has been 
observed with secondary calcite at Qesem (Karkanas 
et al. 2007) and Obi‐Rakhmat (Mallol et al. 2009).

1.3.3 Alteration through Biological Processes

Biological activity can contribute to the mechanical and 
chemical transformation of bone in archaeological sites. 
The type and scale of impacts depend on the organism 
responsible. For example, fungi and plant roots produce 
characteristic chemical weathering patterns on bone 
surfaces (Behrensmeyer 1978). Aside from mechanical 
fragmentation due to root activity, the effects of 
plants  on bone are difficult to identify in thin section. 
In  contrast, other nonhuman biological taphonomic 
agents are more recognizable. These include macro
fauna, mesofauna and microbes.

1.3.3.1 Macro‐ and Mesofaunal Decay
Carnivores and omnivores scavenge and consume fresh 
and ancient bones from surface and subsurface deposits 
in archaeological sites. These activities are evidenced by 
macroscopic damage as well as bone fragments visible in 
coprolites (see Brönniman et  al. 2017, this book). 
Macphail & Goldberg (2010) note that leaching of bones 
during their passage through the digestive channels of 
dogs, humans and birds results in loss of both birefrin
gence and autofluorescence. However, this may not 

always happen. For example, bones in dog or human 
coprolites from the site of Swifterbant S4 (Huisman et al. 
2009) do not show evidence of dissolution. Alteration by 
soil mesofauna can sometimes be documented in thin 
section. For example, in temperate environments, earth
worms and insects may consume bone fragments and 
excrete them in their faecal pellets (see for example 
Figure 1.12a). In tropical settings, decay of bones by ter
mites is a well‐known phenomenon (e.g., Huchet et al. 
2011; Backwell et al. 2012).

1.3.3.2 Microbiological Decay
Bone collagen is rich in nitrogen, which makes it a desir
able potential resource for microflora and fauna. 
Furthermore, if bone is buried as part of a complete 
body, putrefaction and decay of soft tissue can promote 
decay of bone by bacteria. Microbiological decay of bone 
does not usually occur in environments that are water
logged, arid, or permanently frozen, as these setting 
impede bacterial activity. Microbial decay results in spe
cific decay patterns, known as microscopical focal 
destructions (MFDs). There are different types of MFDs, 
which, based on their morphology, are named linear lon
gitudinal, budded or lamellate tunnelling. Some of these 
types may be visible in thin section (Figure 1.12b). It can 
be unclear whether the different morphologies of altera
tion indicate different species, different circumstances or 
different stages in bacterial attack (Jans 2014; see also 
Hedges & Millard 1995), although some MFD morphol
ogies are characteristic of type or species of bone‐degrad
ing mechanisms (Trueman & Martill 2002; Jans 2005).

In noncalcareous environments with available mois
ture and oxygen, saprophytic fungi can colonize and 
degrade bone (see Forancelli et al. 2012). Fungal degra
dation can be recognized in thin section by visible fungal 
hyphae, or the occurrence of branching tunnels (‘Wedl 
tunnels’) that run through the bone tissue (Figure 1.12c) 
although some tunnelling (‘Wedl type 2’) may be of bac
terial origin (Trueman & Martill 2002). In waterlogged 
settings, fungal decay is not possible; however, traces of 
fungal decay in these environments can indicate that the 
decay occurred prior to saturation, providing evidence 
for a change in soil environment. Bone submerged in 
shallow, clear water may become colonized by cyanobac
teria. These microbes tend to tunnel into the outer bone 
layer (Figure 1.12d), sometimes leaving small spheres of 
hydroxylapatite behind in their cavities (Turner‐Walker & 
Jans 2008; Turner‐Walker 2012).

1.3.4 Chemical Weathering

The combination and special arrangement of collagen 
and carbonated hydroxylapatite in bones makes bone 
frequently more resistant to decay than other materials 
in the archaeological record (Collins et  al. 2002). 


