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1 ORGANIZATION OF THE ADVANCES VOLUME

The Handbook of Industrial Mixing (hereafter referred to as “the Handbook”) was
published in 2004 and has become a standard reference in the field. In design-
ing this volume on advances in the field, we decided to provide the full origi-
nal text of the Handbook in electronic form, and provide only the new and sub-
stantially revised material in print form. In this way, we hope to both reduce the
shelf space taken up by multiple editions of favorite reference texts and make the
key material in the Handbook fully portable for all readers—even when today’s
excellent virtual libraries are out of reach. This volume of Advances in Industrial
Mixing has brand new chapters for six areas of industrial application, additional
sections or examples for five chapters, updates for pipelines, turbulence, and com-
putational fluid dynamics (CFD), and five completely new fundamentals chapters.
The videos have been completely revamped and updated so that the user interface
is robust and portable across as many platforms as possible. The trouble-shooting
charts that were included in the Introduction to the Handbook are now placed
within individual chapters for easier reference. Copies are also provided on the
accompanying DVD.

In all, there are 21 new chapters or sections in this advances volume. To pro-
vide continuity in cross references and the strongest possible links between the
two volumes, the original chapter numbers have been retained for the present vol-
ume. Where the chapter is unchanged and not reprinted, the table of contents and

xliii
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Introduction from the Handbook are reprinted in this volume. The reader is referred
to the searchable pdf for the rest of the chapter contents.

Mixing as a discipline has evolved from early foundations that were laid in the
1950’s, culminating in the publication of works by Uhl and Gray (1967) and Nagata
(1975). Over the last 30 years, many engineering design principles have been devel-
oped and design of mixing equipment for a desired process objective has become
possible. Later books by Harnby et al. (1992) and by Baldyga and Bourne (1999),
stand as definitive landmarks in the field of industrial mixing. The present volume
is a compilation of the experience and findings of those who have been most active
in the development of the current state of mixing science and practice. Together, the
authors’ experiences extend over more than 1500 years of research, development,
and consulting work.

This book is written for the practicing engineer who needs to both identify and
solve mixing problems. In addition to a focus on industrial design and operation of
mixing equipment, it contains summaries of the foundations on which these applica-
tions are based. In order to accomplish this, most chapters have paired an industrialist
and an academic as co-authors. Discussions of theoretical background are neces-
sarily concise, and applications contain many illustrative examples. To complement
the discussions and enhance awareness of the complexity of mixing phenomena, a
DVD is included that contains 21 instructional videos compiled from 130 raw clips
of mixing processes.

The core mixing design topics include the following:

� Homogeneous blending in tanks and in-line mixers
� Suspension and distribution of solids in liquids
� Dispersion of gases in liquids with subsequent mass transfer
� Liquid–liquid dispersions
� Reactions: both homogeneous and heterogeneous
� Heat transfer
� Mixing of two or more solids

The following underlying principles are presented:

� Technical definition of mixing
� Residence time distribution and mean age
� Turbulence
� Laminar blending and dynamical systems
� Rheology

Additional information is provided on ways of investigating mixing
performance:

� Experimental measurement techniques
� Computational fluid dynamics
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These topics are augmented by chapters on specific industrial mixing topics:

� Mixing equipment: vessels, vessel heads, rotor-stators, micromixers, and
pipeline mixers

� Solid–solid blending
� Polymer processing
� Food mixing
� Fine chemical and pharmaceutical processes
� Pharmaceutical validation
� Crystallization
� Fermentation and cell culture
� Water treatment
� Petroleum
� Pulp and paper
� Mechanical aspects of mixing equipment
� Commissioning of mixing equipment
� Safety for mixing processes
� The vendor’s role

Topics in bold are entirely new or updated in this companion volume. The Hand-
book has been included for the readers’ reference as a searchable pdf file on the
accompanying DVD.

2 MIXING IN PERSPECTIVE

What is mixing? Since the publication of the Handbook, a technical definition of
mixing has been proposed that considers three constraints: the degree of homogeneity
in concentration, the scale of segregation (usually of a second phase), and the rate
of mixing or the mixing time. The most difficult mixing problems are those where
several constraints must be achieved at the same time. An example of this would
be dissolution of a solid reagent into a liquid–liquid system where a reaction occurs
at the interface of the two liquids. The reaction is mixing sensitive, so the product
distribution depends on rapidly achieving homogeneity of concentration.

What constitutes a mixing problem? Process objectives are critical to the suc-
cessful manufacturing of a product, but if the mixing scale-up fails to produce the
required product yield, quality, or physical attributes, the costs of manufacturing may
be increased significantly, and, perhaps more importantly, marketing of the product
may be delayed or even canceled in view of the cost and time required to correct the
mixing problem.

Some mixing problems cannot be solved without changes to either the process
steps or mixing equipment. Many batch operations, even formulation processes
without a chemical reaction, can involve multiple steps through process conditions
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with different fluid properties. A single type of mixing equipment will not work
equally well in all process conditions. Some compromises must be made between
mixing success and modifications to the process and equipment that create situations
that cannot be solved by mixing alone. Understanding what is possible is an impor-
tant part of mixing expertise, as represented by the diversity of information in this
handbook.

Although there are many industrial operations in which mixing requirements are
readily scaled-up from established correlations, many operations require a more
thorough evaluation. In addition to presenting the state of the art on the traditional
topics, this book presents methods for recognition of more complex problems and
alternative mixing designs for critical applications. The updated turbulence chapter
provides context for scale-up protocols, and an example of the Bourne protocol is
provided as an update to Chapter 13, Mixing and Chemical Reaction of the Handbook.
Many of the other chapters contain advice or additional protocols for specific process
objectives.

Failure to provide the necessary mixing may result in severe manufacturing prob-
lems on scale-up, ranging from costly corrections in the plant to complete failure
of a process. The costs associated with these problems are far greater than the cost
of adequately evaluating and solving the mixing issues during process development.
Conversely, the economic potential of improved mixing performance is substantial.
Consider the following numbers:

� Chemical Industry: In 1989, the cost of poor mixing was estimated at $1 to 10
billion in the U.S. chemical industry alone. In one large multinational chemical
company, lost value due to poor mixing was estimated at $100 million per year
in 1993. Yield losses of 5% due to poor mixing are typical.

� Pharmaceutical Industry: Three categories should be considered: costs due to
lower yield (costing on the order of $100 million, industrywide), costs due
to problems in scale-up and process development (costing on the order of
$500 million, industrywide), and costs due to lost opportunity, where mixing
problems prevent new products from ever reaching the market (a very large
number).

� Pulp and Paper Industry: Following the introduction of medium-consistency
mixer technology in the 1980’s, a CPPA survey documented chemical savings
averaging 10 to 15% (Berry, 1990). Mills that took advantage of the improved
mixing technology saw their capital investment returned in as little as three
months.

From these numbers, the motivation for this two volume handbook and for the
research efforts that it documents become clear. The reader will almost certainly
profit from the time invested in improved understanding of design of mixing
equipment. Mixing equipment design must go beyond mechanical and costing
considerations, with the primary consideration being how best to achieve the desired
process objectives.
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Mixing solutions seldom emphasize minimizing equipment costs or optimizing
power consumption: They are more likely to focus on critical issues in process
performance.

How much mixing is enough and when could overmixing be damaging to yield or
quality? These critical issues depend on the process and the sensitivity of selectivity,
physical attributes, separations, and/or product stability to mixing intensity and time.
The nonideality of residence time distribution (RTD) effects combined with local
mixing issues can have a profound effect on a continuous processes. A new tool for
assessing the local nonideality of RTD’s, the mean age, is described in Chapter 1b.

Useful methods for mixing process development effort have been evolving in
academic and industrial laboratories over the past several decades. They include
improvements to traditional correlations as well as increasingly effective methods
both for experiments and for simulation and modeling of complex operations. The
combination of these approaches is providing industry with greatly improved tools
for development of scalable operations. This handbook provides the reader with all of
the information required to evaluate and use these technologies effectively in process
development and scale-up.

How should new mixing problems be solved? Solutions for new mixing prob-
lems require answers to the question “Why?” as well as the very pressing question
of “How?” This question is best addressed with a good understanding of both the
process and the underlying fundamentals. This requires discussion with both oper-
ations and developmental chemists. It is often well served by reposing the question
“How can we scale this up?” as “How can we scale down the process equipment
to closely replicate plant conditions in the lab?” The importance of this question
should never be underestimated, as it often opens the door for discussions of geomet-
ric similarity and matching of mixing conditions. Good experimental design based
on an understanding of mixing mechanisms is critical to obtaining useful data and
robust solutions. The engineer who ignores the fundamentals always does so at
their own peril. Even when geometric similarity is followed and the mixer speed is
adjusted according to some meaningfully equivalent mixing intensity, the laboratory
or pilot plant model will not exactly match all of the production scale process con-
ditions. Different mixing phenomena scale differently, which makes understanding
the fundamentals and multiple process objectives important. It is our hope, in writing
this book, that mixing fundamentals will become accessible to a much wider audi-
ence of engineers, chemists, and operators whose processes are affected by mixing
issues.

What can be done to improve existing processes? The most numerous, if not the
greatest, opportunities for process improvement through better mixing can be found
in existing processes and equipment. Much existing mixing equipment is more than
25 years old. With near certainty, the process running in older equipment is not the
same as the process for which that equipment was purchased. Even if the product is the
same, the competition, knowledge, and equipment have changed, and better mixing
technology may provide opportunities for improvement. Even when replacing an old
mixer with a new mixer does not make economic sense, equipment modifications
and process adjustments can reduce mixing problems. Improvements can come from
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a better, more up-to-date, understanding of mixing processes and equipment. Old
technology is often based on old ideas or limited information, which can be updated
through the advances provided in this volume. The greatest advantage to working
on existing processes is the certain knowledge that it is possible, so improvement is
always an opportunity.

3 SCOPE OF THE HANDBOOK AND ADVANCES VOLUME

Mixing plays a key role in a wide range of industries:

� Fine chemicals, agrichemicals, and pharmaceuticals
� Petrochemicals
� Biotechnology
� Polymer processing
� Paints and automotive finishes
� Cosmetics and consumer products
� Food
� Drinking water and wastewater treatment
� Pulp and paper
� Mineral processing

In all of these industries, the components of mixing problems can be reduced to some
fundamental concepts and tools. The key variables to identify in any mixing problem
are:

1. The time available to accomplish mixing (the time scale)

2. The required homogeneity and the required scale of homogeneity

3. In the case of a multi-phase system, the scale of segregation

In the Introduction to the Handbook, the major areas of mixing were introduced and
reviewed and the reader is referred to that section and the entertaining conversations
overheard in a chemical plant for an overview of the skill sets that a mixing expert can
leverage against process problems. In this volume, we provide instead an overview
of the sections in the Handbook and the highlights of the Advances Volume.

3.1 Fundamentals

The fundamentals section of the handbook begins with a discussion of the tech-
nical definition of mixing, which has been developed and enhanced over the last
10 years. This is followed by the origins of mixing theory, namely the residence time
distribution, and the spatial distribution of mean age, which is a recent development
on the classical residence time calculations. The mean age is appealing because it
provides local information about mixing from the mean velocity field arising from a
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CFD simulation. Following this are summaries of turbulence theory, as it applies to
mixing, and chaos theory, again, as it applies to industrial mixing processes. These
chapters are now augmented with a new chapter on the important question of fluid
rheology and complex fluids, where the process fluid does not have a single viscosity
but a range of properties that respond to both shear rate and, in some cases, shear his-
tory. The fundamentals section is rounded out with chapters on the key experimental
methods used for mixing evaluation, and two chapters on CFD—the first providing
a comprehensive review of the various tools available, and the second, much shorter,
chapter providing perspective on where CFD can—and also cases where it should
not—be applied for gaining understanding of industrial processes.

3.2 Mixing Equipment

The second section of the Handbook reviewed the design and operation of the major
types of mixing equipment: stirred tanks, pipelines with and without static mixers,
micromixers, and rotor-stators. There are new sections on vessel heads (head depth,
volume, and area calculations), flow patterns in stirred tanks, some very useful devel-
opments on mixing in pipelines, and an introduction to the relatively new area of
micro-mixers.

3.3 Core Mixing Objectives

The heart of the handbook is made up of the seven fundamentals: blending, solid–
liquid mixing, gas–liquid mixing, liquid–liquid mixing, mixing and reactions, heat
transfer, and solid–solid mixing. Of these seven chapters, three have been updated.
A substantial chapter on laminar blending has been added. Additional examples and
calculations have been provided for the heat transfer chapter and the reactions chapter.
Most importantly, the solid–liquid mixing chapter has been completely rewritten due
to very significant changes in our fundamental understanding of this area. It is strongly
recommended that readers actively involved with solid–liquid mixing designs review
this new chapter in detail.

3.4 Applications

The Handbook pressed the binding limits of a single volume and left out several
important industrial applications. Addressing this deficiency was one of the three
major goals of the advances volume, so while none of the seven original applications
chapters have been updated, there are six new chapters that fill out the rest of the
major areas of interest. Chapter 17 on fine chemicals and pharmaceuticals is now
complemented by chapters on crystallization and pharmaceutical process validation.
The chapters on mechanical design and the role of the vendor are complemented by
new chapters on safety and commissioning of equipment. Mixing operations in two
major industries, food and water treatment, are now integrated with the rest of the
handbook.
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3.5 Using the Handbook and the Advances Volume

The Handbook and this companion volume are not meant to be read from begin-
ning to end. They are designed as a reference, with extensive cross referencing and
indexing—not just between chapters, but now between books. Many examples are
included to aid the reader in understanding the fundamentals as well as some case
histories of mixing issues in industrial practice. Authorship of most of the chapters
includes both academic and industrial contributors for the purpose of providing a
broad perspective on each topic. Also included is a DVD with instructional videos to
illustrate, wherever possible, specific mixing issues and examples. The first chapter,
A Technical Definition of Mixing, will help the reader new to the field of mixing in
identifying what is meant by a mixing problem.

The text and examples include guidance in troubleshooting mixing problems based
on understanding the fundamental issues, aided by drawing on the experiences cited.
It is often assumed that mixing scale-up is accomplished by direct scaling to a larger
pot. This approach may work in some cases but is doomed to failure in others. The
key question is the determination of process requirements for which direct scale-up
will be inadequate. Another overall concern is to beware of the fact that multiple
process objectives often must be realized in a single piece of mixing equipment,
thereby requiring selection of a design basis compatible with the most critical scale-
up issue(s).

4 MIXING NOMENCLATURE AND UNIT CONVERSIONS

Table I-1 includes the common nomenclature used in mixing correlations and calcu-
lations. Many of the chapters in this book have more detailed lists of nomenclature
for specific topics. Table I-1 is intended for general reference. Where a symbol is used
for more than one purpose, the common multiple uses are given. The nomenclature
follows that outlined by Oldshue (1977), Buck (1978), and the AIChE Equipment
Testing Procedure for Mixing Equipment (2001) of symbols for use in the SI sys-
tem. There are a few exceptions that are commonly used in mixing terminology.
The European Federation of Chemical Engineering Working Party on Mixing Terms,
Symbols, and Units has also published a comprehensive list of nomenclature (Fort
et al., 2000). Conversions are given in Table I-2 and Table I-3.

5 ACKNOWLEDGMENTS

The editors would first like to acknowledge the contributions of the many authors
whose efforts in writing their respective chapters have made publication of these two
handbooks possible. The reader will appreciate the difficulty of finding time in very
full professional lives to write authoritative chapters on fundamental ideas: chapters
that required both reflection and compilation of the vast quantities of information
in the technical literature. In addition, we would like to acknowledge the reviewers
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Table I-1 Mixing Nomenclature

Common Symbol Quantity Units

A, B, R, S Reactants (—)
A, B, R, S Reactant concentrations, CA, CB, etc. mol/m3

B Baffle width m
C Impeller off-bottom clearance m
C Reaction conversion, (Ao − A)/Ao %
Cp Specific heat J/kg K
D Impeller diameter m
DAB Diffusivity m2/s
Da Damkoehler number (see Chapter 13) (−)
d32 Sauter mean diameter m
Fr Froude number, N2D/g (−)
gc Gravitational correction for British units 32.2 lbm/lbf × ft/s2

H Liquid height m
k1, k2, . . . Reaction rate constants (mol/m3)1−n/s
k Thermal conductivity W/m K
kg, kl Mass transfer coefficient m/s
L Length scal m
N Impeller rotational speed rps or rpm
Nc Impeller critical rotational speed rps or rpm
NE Just entrained speed for gas entrainment from

surface
rps or rpm

Njs Just suspended rotational speed rps or rpm
Njd Just dispersed speed for liquid–liquid mixing rps or rpm
Nmin Just suspended speed for liquid drops rps or rpm
Nu Nusselt number, hT/k (−)
Np or Po Power number, Pgc/ρN3D5 (−)
P Power, NpρN3D5/gc W
P Pressure Pa
Pr Prandtl number, Cpμ/k (−)
Q Heat transfer rate, UAΔTlm W
QL Pumping rate of impeller, NQND3 m3/s
R Gas constant J/mol K
R Impeller radius m
Re Reynolds number, ρDV/μ (−)
Re Impeller Reynolds number, ρND2/μ (−)
S Reaction selectivity (see Chapter 13) (-)
Sc Schmidt number, μ/DABρ (−)
T Tank diameter m
T Temperature K,C
t Time s
To or TQ Torque NpρN2D5 W/s
U Overall heat transfer coeff, Q/(AΔTlm) J/m2 s K
u′ Fluctuating velocity m/s
Vimp Impeller swept volume m3

(continued)
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Table I-1 (Continued)

Common Symbol Quantity Units

V Volume m3

V Velocity m/s
Wb Baffle width m
Xs Impurity selectivity, 2S/R + 2S %
Y Reaction yield, R/Ao %
Z Vessel straight side m

Greek Symbols
α Blade angle ◦

γ Shear rate s−1

δ Width of shear gap, rotor and stator m
ε Void fraction (−)
ε Local rate of dissipation of turbulent kinetic

energy per unit mass
m2/s3 or W/kg

εavg Power input per mass of fluid in the tank,
power per volume, P/ρVtan

m2/s3 or W/kg

εimp Power input per mass of fluid in the impeller
swept volume, P/ρVImpeller

m2/s3 or W/kg

η (also λK) Kolmogorov scale, (ν3/ε)1/4 m
θB, tblend Blend time s
θ Angle of impeller blade with axis of rotation ◦

λ Taylor microscale of turbulence m
λ Wavelength m
λB Bachelor length scale, (νD2

AB/ε)1/4 m
λK (also η) Kolmogorov scale, (ν3/ε)1/4 m
μ Dynamic viscosity Pa s
ν Kinematic viscosity, μ/ρ m2/s
ρ Density kg/m3

σ Interfacial tension N/m
τM Mixing time constant s
τD Diffusion time constant s
τR Reaction time constant s
τ Shear stress Pa
τ (also TQ) Torque N m
φ Volume fraction of dispersed phase (−)
φ Particle shape factor (−)

whose careful evaluations have been instrumental in helping the authors and editors
to evaluate the technical content and relevance of each chapter:

Harry van den Akker, TU Delft

Mark Allen, Zeon Chemicals LP

David Asay, PPG Industries

Inci Ayranci, Middle East Technical University
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Table I-2 Conversion from British to SI Units

Non-SI Unit Quantity To Convert to SI Unit Multiply by

Btu Heat Joule (J) 1.0551 E +03
Btu/lbm ◦F Heat capacity J/kg K 4.1868 E +3
Btu/hr Heat flux Watt (W) 2.9307 E −01
Btu/hr ft2 ◦F Heat transfer coefficient W/m2 K 5.6782 E +00
Btu/ft hr ◦F Thermal conductivity W/m K 1.7307 E +00
cal Calorie Joule (J) 4.1868 E +00
centipoise Viscosity Pa s 1.0000 E −03
centistoke Kinematic viscosity m2/s 1.0000 E −06
◦F Temperature ◦C (◦F − 32)(5/9)
dyne Force Newton (N) 1.0000 E −05
erg Energy Joule (J) 1.0000 E −07
ft Length Meter (m) 3.0480 E −01
ft2 Area m2 9.2990 E −02
ft3 Volume m3 2.8316 E −02
ft lbf Work Joule (J) 1.3558 E +00
ft lbf Torque Newton⋅meter (N⋅m) 1.3558 E +00
gallon (U.S. liquid) Volume m3 3.7854 E −03
horsepower 550 ft-lbf/sec Watt (W) 7.4570 E +02
inch Length Meter (m) 2.5400 E −02
inches Hg (60◦F) Pressure Pascal (Pa) 3.3768 E +03
inches H20 (60◦F) Pressure Pascal (Pa) 2.4884 E +02
in lbf Torque Newton⋅meter (N⋅m) 1.1298 E −01
kilocalorie Energy Joule (J) 4.1868 E +03
micrometer Length m 1.0000 E −06
mmHg (0◦C) Pressure Pascal (Pa) 1.3332 E +02
poise Absolute viscosity Pa s 1.0000 E −01
lbf Force Newton (N) 4.4482 E −00
lbm Mass Kilogram (kg) 4.5359 E −01
lbm/ft3 Density kg/m3 1.6018 E +01
lbm/ft-sec Viscosity Pa s 1.4882 E +00
psi Pressure Pascal (Pa) 6.8948 E +03
rpm Rotational speed rps (s−1) 1.6667 E −02
Stoke Kinematic viscosity m2/s 1.0000 E −04
tonne (long, 2240 lbm) Mass Kilogram (kg) 1.0160 E +03
ton (short, 2000 lbm) Mass Kilogram (kg) 9.0718 E +02
torr (mmHg, 0◦C) Pressure Pascal (Pa) 1.3332 E +02
Watt Power Watt (W) 1.0002 E +00
kW-hr Energy Kilojoule (kJ) 3.6000 E +03

Hua Bai, The Dow Chemical Company

Francois Bertrand, Polytechnique Montreal

Marco Caggioni, P&G Corporate Engineering

Jos Derksen, University of Aberdeen
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Table I-3 Conversion of SI Units

SI Unit To Convert to Multiply by

Joule (J) Btu 9 E −4
ft-lbf/sec 0.7375

Watt (W) Btu/hr 3.436
Volume (m3) ft3 35.32

Liter 1000
Gallon 264.2

Meter (m) Angstrom 1.000 E +10
Micron (μm) 1.000 E +6

Viscosity (Pa s) Centipoise 1.000 E +3
Power (W) Horsepower 0.0013
Pressure (Pa) Inch Hg 0.2953 E −3

psi 0.1451 E −3
torr (mmHg at 0 K) 7.5006 E −3

Sean Donkin, Cleveland Mixer

Steve Drury, Sharpe Mixers

Lydia Fenley, Illes Seasonings and Flavors

Bernie Gigas, Lightnin SPX

Andrew N. Hrymak, Western University, London, Ontario

Dan Hickman, The Dow Chemical Company

Celso Fernandes Joaquim Jr., CEETEPS/FATEC, Brazil

Matthew D. Jordan, Conagra Foods

John Kaiser, Mars

Richard Kehn, Lightnin SPX

Paul Larsen, The Dow Chemical Company

Marcio Machado, University of Alberta

Alan Myerson, MIT

Lennart Myhrberg, Metanova AB

Edward L. Paul, Merck, retired

Eric Powell, Wild Flavors

Timothy Ratkowski, Pressure Products Industries–Milton Roy LLC

Luis Sierra, Merck

James N. Tilton, DuPont

Peter Veenstra, Shell

Ronald Weetman, Lightnin SPX, retired

Michael Yianneskis, University College London
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The editors have drawn extensively on the considerable resources of the North
American Mixing Forum (NAMF) for the authors and reviewers. These two hand-
books would not have been possible without the unwavering support of this rather
remarkable organization. The remarkable cover image, provided by Clara Gomez and
her team at Coanda is one small example of the resources willingly brought into play
for the benefit of all. All of the royalties from the sale of these books are returned to
NAMF for the promotion of mixing research and education. The encouragement of all
of the presidents of NAMF, both past and current, is gratefully acknowledged. Mixing
is a learning process for the student and teacher alike. Our colleagues and collabora-
tors continue to provide wonderful questions and challenges for the development of
mixing technology. This work, more than anything else, has informed the contents of
the Handbook and this Advances volume. Finally, the work of our editorial assistants,
Kathy van Denderen and Jeanne Haley, was indispensable, as were the efforts of the
production team at Wiley, and the team of graduate students and researchers whose
sharp eyes reviewed the page proofs: Nitin Arora, Tianxin Bao, Akshay Bhalerao,
Hena Farooqi, Alexandra Komrakova, Marcio Machado, Francesco Maluta, Colin
Saraka, and Fatemeh Safari-Alamuti. Your eagle eyes were indispensable to all of us.

As we complete the final pages of this manuscript, the editors would like to
extend personal thanks to Eileen Etchells for understanding and support, and excel-
lent elevenses; to colleagues at the Dow Chemical Company for the challenge and
opportunity to develop an expertise in mixing, and to Linda C. Atiemo-Obeng for
empathy and encouragement; to MixTech’s consulting clients, short course students,
and trade journal readers who provide a diversity of practical challenges and oppor-
tunities for the use and development of mixing technology; to Jim Kresta and the
Princesses of the Stirred Tank for support in many forms, practical, personal, and
increasingly, technical; to Ed Paul, ex-officio editor par excellence—who sadly but
stubbornly clings to total ignorance of the Beatles and Paul Simon in favor of the
remarkable bass section in the Chautauqua Orchestra; to Jim Tilton for many thought-
ful and useful technical discussions; to friends who shared meals and laughter as we
pushed to the finish line; and to the University of Alberta Department of Chemical
and Materials Engineering.

The objective of this book is to provide mixing practitioners with the current state
of mixing knowledge: both in terms of fundamentals and from the perspective of
industrial practice and experience. Many of the chapters are absolutely definitive in
their area. We hope that readers find as much to stimulate and fascinate them in these
pages as we have found during their editing.

REFERENCES

AIChE Equipment Testing Procedure for Mixing Equipment (2001). AIChE, New York, NY.

Baldyga, J., and J.R. Bourne (1999). Turbulent Mixing and Chemical Reactions, Wiley, Chich-
ester, UK.

Buck, E. (1978). Letter symbols for chemical engineering, Chem. Eng. Prog., Oct., 73–80.
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Nagata, S. (1975). Mixing: Principles and Applications, Wiley, New York.

Oldshue, J. Y. (1977). AIChE goes metric, Chem. Eng. Prog., Aug., 135–138.
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CONTENTS OF THE DVD, INCLUDING
INSTRUCTIONAL VIDEOS

ARTHUR W. ETCHELLS, III

Rowan University

DAVID S. DICKEY

MixTech

SUZANNE M. KRESTA

University of Alberta

THOMAS MARTIN

Technische Hochschule Merseberg

HENRY ZHANG

University of Alberta

The contents of the DVD are broken down into four sections. The first two sections
provide electronic copies of all of the figures which were originally in colour, and the
troubleshooting charts. These may be used in presentations, as long as credit is given
to the originial authors. The third section includes 22 instructional videos. These
videos are compiled from highlights from the library of 130 video clips, which are
organized by topic in the fourth section of the DVD.

ELECTRONIC (PDF) VERSION OF THE HANDBOOK OF
INDUSTRIAL MIXING

A major file on the DVD is a complete electronic copy of the Handbook of Industrial
Mixing. All errata are noted directly in this searchable file. The index for the Advances
volume contains two columns of page numbers, one for the digital first edition (the
Handbook), and one for the paper pages (the Advances volume). Any chapters with
no substantial changes were not reprinted in this edition, but provided as part of this
pdf for the reader’s convenience. Many readers will already have, or may wish to buy,
a paper copy of the Handbook for ease of reference.

lvii



lviii CONTENTS OF THE DVD, INCLUDING INSTRUCTIONAL VIDEOS

COLOR FIGURES AND TROUBLESHOOTING CHARTS

These color figures that show more in color than is possible in the printed black and
white version. Some of them are not included in the color plates:

Chapter 1b- Figures 2, 3, 4, and 5.

Chapter 2b- Figures 2, 6b, 17, and 18.

Chapter 3b- Figure 21.

Chapter 7b- Figures 6, 8, 9, 11, and 16.

Chapter 9b- Figures 12, 15, 18, 21, 34, and 45.

Chapter 26- Figures 13, 18, and 19.

Color figures from the Handbook of Industrial Mixing, and the original video
library, are on the DVD included with that edition.

There are also six trouble shooting or diagnostic charts which cover some of the
most common mixing problems in industry:

Dip Pipes (for mixing sensitive, single phase reactions)

Gas-Liquid Reactions

Liquid-Liquid Dispersion with Reaction

Liquid-Liquid Extraction

Solid Reagents (suspension plus mass transfer may limit the reaction rate)

Solids Withdrawal (e.g. draining the tank while maintaining slurry suspension)

22 INSTRUCTIONAL VIDEOS

Compiled and edited by Arthur Etchells, Rowan University, David Dickey, Mix-
Tech, Suzanne Kresta, University of Alberta, Thomas Martin, Technische Hochschule
Merseberg, and Henry Zhang, University of Alberta

In the first volume of Handbook of Industrial Mixing a DVD was included with
some of the best videos and animations available at the time. This very popular section
has been greatly expanded in this volume. Twenty-two new videos are designed as
brief instructional clips, roughly 2-3 minutes long, which are built around highlight
clips from the video library. Explanations have been added in this edition.

The compilations are the result of contributions made by a number of people.
They can be used for independent study, to demonstrate points to operations staff,
or to explain phenomena in mixing classes. They can also be cut up at the readers’
pleasure and be inserted in their own presentations. Again, we ask that the original
source be noted in the presentation.

A descriptive list of the videos is provided in Table 1. The numbers in column 1
indicate the chapter content matching each video.
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Table 1 Instructional Videos on the DVD. The section in the book corresponding to
each video is given in the title.

Title Description

2.1 Jet Mixing – positively and negatively buoyant jets
6.1 Circulation Patterns – flow fields produced by different impellers

– solids suspension and off-bottom clearance
6.2 Baffles – the importance of baffles in producing top to

bottom circulation in a stirred tank
6.3 Impeller Diameter and

Circulation
– limits on D/T ratio for effective flow

6.4 Angled Mixer Shafts – an introduction to terminology and set-up of
portable mixers on angled shafts

– limitations for solids suspension
7.1 Laminar Blending in Static

Mixers
– the classic video clip of laminar mixing in an SMX
– particle tracks from a CFD simulation

7.2 Turbulent Blending in Static
Mixers

– radial vortices produced by HEV tabs
– blending in an SMV mixer

7.3 Laminar Drop Breakup in
Static Mixers

– drop break-up in an SMX mixer with varying pipe
diameter and fluid velocity

7.4 Turbulent Drop Breakup in
Static Mixers

– drop break up, gas dispersion, and heat transfer
using static mixers in turbulent flow

9.1 Turbulent Blending in
Stirred Tanks

– multiple impellers for large H/T
– effect of impeller speed on blend time
– effect of impeller geometry on blend time

9.2 Laminar Blending with a
Helical Ribbon

– a full length video of laminar mixing
– the most effective geometry is shown

9.3 Compartmentalization – limited mixing between multiple impellers in a
tank where H≫T

– configurations which minimize this effect
9.4 Cavern Formation – formation of isolated caverns in yield stress fluids

10.1 Solids Suspension below
Njs

– state of solids suspension at 40%, 60%, 80% and
100% of Njs

10.2 Cloud Height – effect of impeller speed on cloud height
– comparison of cloud height and Njs condition
– effect of solids concentration on cloud height
– effect of vessel base shape

10.3 Drawdown of Floating
Solids

– effect of baffle design on the draw down of
floating solids

– difficulties due to a stable vortex
11.1 Gas Liquid Mixing – operating regimes and the effect of impeller

pumping direction on gas-liquid dispersion
12.1 Laminar Drop Breakup – computer simulations of drop break-up at the

critical capillary number
– original H. Grace videos are included in the video

library
12.2 Turbulent Drop Breakup at

Impellers
– details of drop break-up around impeller blades

(continued)
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Table 1 (Continued)

Title Description

13.1 Mesomixing - Feed Time
with Reaction

– illustration of the effects of different feed times on
the formation of zones of high local concentration
when surface feed is used

13.2 Changing Feed Location – CFD simulation of the effect of feed point using
particle tracks

15.1 Solid Solid Mixing – comparison of tote blender, V-blender, and double
cone blender

VIDEO LIBRARY

Fluid mixing is, by its very nature, a visually beautiful field of study. It involves
complex fluid motion in complex geometries. Therefore the study of mixing often
benefits from visualization. Computational Fluid Dynamics is one popular tool for
visualization because it produces detailed pictures of flow from graphical and analyt-
ical analysis. Many experimental methods also exist, and can often give similar data
with less time and effort—or much more time and effort—invested.

The DVD includes an extensive library of 140 raw video clips. Some of the raw
clips are long high-definition runs of important process results. For those who wish to
dig deeper into the processes, or to use only a small portion of a video, an afternoon
spent browsing the library will be time well invested.

The videos are catalogued by chapter. The reader is encouraged to explore the
directories and videos since some videos will be useful for several different topics.
The behavior of non-Newtonian fluids in blending applications is shown under Chap-
ter 9, Blending but also applies to Rheology. Laminar blending is included with
Chapter 9, but also applies to Chapter 9b. The chapters and major directories in the
library are given in Table 2.

The authors wish to acknowledge and thank those who contributed video clips to
the library:

� British Hydromechanical Research Group (BHRG) and their Fluid Mixing
Processes consortium

� Chemineer
� Steve Curran, Sujit Bhattacharya, Kevin Bittorf, Bob Hayes, Oscar Khazam,

and Suzanne Kresta, University of Alberta
� Steve Boesch, Rowan University
� David Dickey, MixTech
� Lightnin Mixers
� Minye Liu, Richard Laroche and Clay Andreasson, Hypertrace
� Sulzer Chemtech
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Table 2 Directories in the Video Library

Chapter Title Directories Video Clips

2 Turbulence 1 3
6 Stirred Tanks

6.1 Circulation: Clearance and Baffles 11 24
6.2 Diameter, Power, and Torque 3 17
6.3 Angled Shafts 5 11

7 Static Mixers – blending and drop breakup 4 10
9 Blending

9.1 Turbulent Blending 2 7
9.2 Laminar Blending with a Helical Ribbon 1 1
9.3 Compartmentalization 1 5
9.4 Cavern Formation 1 7

10 Solid-Liquid Mixing
10.1 Solids Suspension Below Njs 1 11
10.2 Cloud Height 1 7
10.3 Drawdown of Floating Solids 1 6

11 Gas-Liquid Mixing 1 5
12 Liquid-Liquid Mixing – laminar and

turbulent breakup
2 11

13 Mixing and Reaction – feed time and location 2 6
15 Solids Mixing 1 3

Mixing Luminaries 1 5

� Thomas Martin, Kai Köhler-Terz, Sebastian Lebioda, Hanka Haschke and the
rest of the video production team at Technische Hochschule Merseberg

� Maher Moakher, Troy Shinbrot and Fernando Muzzio, Rutgers University

SOURCES OF ADDITIONAL VIDEOS

Other sources of mixing videos available to the reader include the various vendor
web sites on the Internet. YouTube also has some interesting videos by university
groups e.g. a great demonstration of non-Newtonian fluids and some interesting solids
suspension videos by Rowan University.

The North American Mixing Forum is establishing a repository for mixing images
and video on the NAMF website (www.mixing.net). Some of the longer clips are to
be stored there. These videos will continue to be updated even after the publication
date of the book.

Most manufacturers of industrial mixers have informative web sites often with
pictures and video clips. A partial list is provided in Table 1, with dry solids mixer
manufacturers in Table 4. For additional videos, the reader should search YouTube
using the name of the manufacturer + mixer (e.g. Flygt mixer). If a site has inad-
vertently been left out please contact the editors so it can be posted on the North
American Mixing Forum website (www.mixing.net).

http://www.mixing.net
http://www.mixing.net
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Table 3 Websites for Some Liquid Mixer Manufacturers and Other Mixing Videos

Ansys (CFD) http://ansys.com/
CHEMINEER – Robbins and Meyers (also

Chemineer Mixer on YouTube)
http://www.chemineer.com/

Colorful Fluid Mixing Gallery – Andre
Bakker

http://www.bakker.org/

EKATO (also Ekato Mixer on YouTube) http://www.ekato.com
Flygt Xylem http://www.flygtus.com/
Fusion Fluid Equipment http://www.fusionfluid.com/
IKA http://www.ikausa.com
Kadyinternational http://www.kadyinternational.com/
Lightnin-SPX (also Lightnin Mixer on

YouTube)
http://www.spx.com/en/lightnin/

Mythbusters (non-Newtonian fluid) www.youtube.com (search Mythbusters non-
Newtonian fluid)

Solids mixing and viscous liquid mixing –
F. Muzzio

http://www.muzzio.rutgers.edu/

ProQuip http://proquipinc.com/
Philadelphia Mixing Solutions http://www.philamixers.com/
Pulsair http://pulsair.com/
Statmixco http://www.stamixco-usa.com/
Silverson http://www.silverson.com
Sulzer ChemTech http://www.sulzer.com/

Table 4 Websites for Some Manufacturers of Dry Solids Mixing Equipment

Company Website Mixer

A & J Mixing International http://www.ajmixing.com Phlauer
American Process Sys-

tems, Eirich Machines
http://www.americanprocess
systems.com

Ribbon blenders & plough
blenders

B&P Process Equipment
and Systems

http://www.bpprocess.com/ Baker Perkins Machinery

Charles Ross & Son Co. http://www.mixers.com/ Ribbon, paddle, & vertical
cone blenders

Christy & Norris, Ltd. www.christy-norris.co.uk Beken
Continental Products

Corporation
http://www.continentalrollomixer
.com/

Rollo-Mixer

Design Integrated
Techology

http://www.ditusa.com/ SC Helicone Mixer

FEECO International http://www.feeco.com Pin Mixers, Paddle Mixers,
Pug Mills

GEA Niro http://www.niro.com Vertical Bowl Granulators
GEMCO http://www.okgemco.com/
Glatt http://www.glatt.com Vertical Bowl Granulators

http://ansys.com/
http://www.chemineer.com/
http://www.bakker.org/
http://www.ekato.com
http://www.flygtus.com/
http://www.fusionfluid.com/
http://www.ikausa.com
http://www.kadyinternational.com/
http://www.spx.com/en/lightnin/
http://www.youtube.com
http://www.muzzio.rutgers.edu/
http://proquipinc.com/
http://www.philamixers.com/
http://pulsair.com/
http://www.stamixco-usa.com/
http://www.silverson.com
http://www.sulzer.com/
http://www.ajmixing.com
http://www.americanprocess
http://www.bpprocess.com/
http://www.mixers.com/
http://www.christy-norris.co.uk
http://www.continentalrollomixer.com/
http://www.ditusa.com/
http://www.feeco.com
http://www.niro.com
http://www.okgemco.com/
http://www.glatt.com
http://www.continentalrollomixer.com/
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Table 4 (Continued)

Company Website Mixer

Glen Mills Inc. http://www.glenmills.com/ Turbula
Hosokawa Bepex http://www.bepex.com/ Bepex, Shugi
Jaygo Inc. http://www.jaygoinc.com/
JR Johanson, Inc, Dia-

mondback Technology
http://www.jrjohanson.com/ Diamondback

Kemutec, Inc. http://www.kemutec.com/ Gardner
Littleford Day, Inc. http://www.littleford.com/ Littleford
Lödige Process Technol-

ogy
http://www.loedige.de/

M.P.E. Group U.S.A. http://mpegroupusa.com Bolz Summix
Marion Mixers, Inc. http://www.marionmixers

.com/
MIXACO http://www.mixaco.com/
Mixer Systems, Inc. http://www.dustmaster.com/ TURBIN Mixer XL
Munson Machinery Com-

pany, Inc.
http://www.munsonmachinery
.com/

Patterson Industries
(Canada) Ltd.

http://www.pattersonindustries
.com/

Patterson Process Equip-
ment Corporation

http://www.pattersonprocess
.com/

Patterson-Kelley Co. http://buflovak.com/PKProcess twin-shell & cross-flow
blenders

Paul O. Abbé Inc. http://www.pauloabbe.com/
Peerless Dough Mixing &

Make-up
http://www.peerlessfood.com/

Readco Kurimoto, LLC. http://www.readco.com/
Semi-Bulk Systems, Inc. http://www.semi-bulk.com/
TOTE Systems Interna-

tional
http://www.totesystems.com/

Vector Corporation http://www.vectorcorporation.com Vertical Bowl Granulators

http://www.glenmills.com/
http://www.bepex.com/
http://www.jaygoinc.com/
http://www.jrjohanson.com/
http://www.kemutec.com/
http://www.littleford.com/
http://www.loedige.de/
http://mpegroupusa.com
http://www.marionmixers.com/
http://www.mixaco.com/
http://www.dustmaster.com/
http://www.munsonmachinery.com/
http://www.pattersonindustries.com/
http://www.pattersonprocess.com/
http://buflovak.com/PKProcess
http://www.pauloabbe.com/
http://www.peerlessfood.com/
http://www.readco.com/
http://www.semi-bulk.com/
http://www.totesystems.com/
http://www.vectorcorporation.com
http://www.munsonmachinery.com/
http://www.marionmixers.com/
http://www.pattersonindustries.com/
http://www.pattersonprocess.com/
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A Technical Definition of Mixing

JOËLLE AUBIN

Université de Toulouse, Laboratoire de Génie Chimique CNRS/INPT, Toulouse, France

SUZANNE M. KRESTA

University of Alberta, Edmonton, Canada

If you have picked up this book, you probably already suspect that you have a mixing
problem. While blending to homogeneity is the first mixing problem most people
recognize, the blending of low-viscosity miscible fluids is also the easiest mixing
application. The classical model of the perfectly mixed CSTR (continuous stirred
tank reactor) is most likely to be a good assumption if the tank contains low-viscosity
miscible fluids. Mixing frequently gets worse on scale-up, so if you are trying to
scale up a new process that ran well at the bench scale but is now performing
poorly in the plant, this volume is a good place to look for a solution. There is a
wealth of technical information in this book about more difficult mixing problems,
such as the dispersion of one phase into another. Multiphase mixing problems involve
many scales of mixing, frequently mass transfer, and always incompletely understood
physics. Competing rate processes, such as two competing reactions, or reaction with
mass transfer, are among the most difficult processes to design. Competing rates often
occur when a reaction happens in parallel with some other mixing objective, or when
the surface or physical properties of the system are changing as mixing progresses.

In this companion volume to the Handbook of Industrial Mixing (the Handbook),
the first chapters are dedicated to discussion of areas where the field has changed
significantly since 2004, when that book was published. One of these areas is the
development of a technical definition of mixing, which can be applied to any indus-
trial mixing process to help identify and understand the key physical and chemical
phenomena, as well as the process objectives. Early mixing researchers clearly iden-
tified many of the key elements of the definition, but the early experimental tools
did not allow direct measurement of the key variables, so much of this literature

Advances in Industrial Mixing: A Companion to the Handbook of Industrial Mixing,
First Edition. Edited by Suzanne M. Kresta, Arthur W. Etchells, III, David S. Dickey, and Victor A. Atiemo-Obeng.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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2 A TECHNICAL DEFINITION OF MIXING

fell into disuse by the 1990s. With new digital imaging and computational methods,
and continuing frustration with the limitations of simply measuring the coefficient
of variation (CoV), this early work has been revisited, integrating both some of the
literature on spatial statistics and standard content from mixing courses. The key
results are presented here to begin the discussion of mixing.

To become better acquainted with these objectives, first hold the problem that
brought you to the handbook in mind but also consider four everyday examples of
mixing: stirring cream into coffee, dissolving sugar in water, making salad dressing
by mixing oil and vinegar, and making gravy or its simpler cousin, a cream sauce. All
of these processes are either batch or semibatch, and they cover the range of mixing
process objectives: blending, multiphase dissolution (mass transfer) or dispersion
(scale reduction), and reaction with a change in viscosity. They are discussed in more
detail in the example at the end of this chapter.

RANGE OF INDUSTRIAL MIXING APPLICATIONS

The classical range of industrial mixing includes six core mixing operations, which
were covered by chapters in the Handbook:

� Blending of miscible liquids
� Solid–liquid mixing
� Gas–liquid mixing
� Immiscible liquid–liquid mixing
� Mixing and chemical reaction
� Solid–solid mixing

Heat transfer is affected by agitation but does not involve mixing of species or phases,
so it is not generally seen as a core mixing operation. These chapters can be grouped
into three major areas: blending, multiphase, and reaction. In evaluating a new mixing
application, the following process-based questions should be asked:

1. What is the key process objective?

2. What phases are present? Is there a need to suspend solids, disperse one immis-
cible liquid into another, disperse gas to achieve mass transfer, or draw down
a second phase from the liquid surface? Is there mixing between two or more
solid phases or two or more liquid phases?

3. Does the viscosity change during the process? Will the flow regime be laminar,
turbulent, or transitional?

4. Is continuous or batch processing the best choice?

These are all good questions, but none of them address a quantitative definition of
the mixing objective.
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THREE DIMENSIONS OF SEGREGATION: A TECHNICAL DEFINITION
OF MIXING

The goal of this section is to replace an intuitive sense of “good mixing” with a
technical understanding of how to define “well mixed” for the purposes of process
development, scale-up, or scale-down, equipment selection and design, and trou-
bleshooting. Good mixing has three possible objectives:

� Uniform concentration
� A specified scale of segregation, for example particle size, drop size, or striation

thickness
� A required mixing time or rate of mixing

The concentration uniformity, also known as the intensity of segregation, is mea-
sured using the concentration variance or the coefficient of variation (CoV):

CoV =

√√√√ 1
Nt

Nt∑
i=1

(
Ci − Cmean

Cmean

)2

(see Chapter 4 of the Handbook for more information). As the concentration becomes
more uniform, the CoV drops toward zero. The scale of segregation typically
decreases as mixing proceeds, but in some cases it may also increase over the course
of the process, for example, floc formation or crystal growth. A quantitative illustra-
tion of the difference between the intensity and scale of segregation is given in the
checkerboard illustration in Figure 0-1.

Figure 0-1a shows three different checkerboard patterns. To both the novice and
expert, it is clear that mixing of the gray and white species improves from left to
right. However, if the CoV is calculated, it is equal to 1 for all three cases! In fact, it
is the scale of segregation that decreases from left to right. Clearly, the CoV contains
no information on the spatial arrangement and the proximity of the different species.
Taking the inverse example in Figure 0-1b, where the scale of segregation is constant,
it is a trivial matter to generate different intensities of segregation for the identical
length scale. It is evident that the intensity of segregation and the scale of segregation
are independent variables. These points have been discussed in detail in Kukukova
et al. (2009) and were touched on in Chapter 2 of the Handbook.

The measured CoV also depends on the scale of measurement. Take solid–solid
mixing as an example: If the measurement is done at the scale of the particle size,
the CoV will remain at the initial completely segregated value for all times. If,
however, the scale of measurement gives a sample volume that includes a large
number of particles, say 500, the CoV will drop from its initial value to zero as the
mixture reaches homogeneity at this scale (Kukukova et al., 2008). If the scale of
measurement is not well matched to the desired scale of segregation, it is difficult
to know what CoV means. This issue is also discussed in detail in the solids mixing
chapter (15a).
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CoV = 1
Scale = 8,16
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CoV = 1.4142
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(b)

CoV = 1.7321
Scale = 1

Figure 0-1 Illustration of the difference between the scale of segregation and the intensity of
segregation (a) constant CoV, or intensity of segregation, and (b) constant scale of segregation.

Measurement of the scale of segregation has rarely been addressed explicitly in the
recent mixing literature; however, it was discussed in 1952 by Danckwerts (1952), as
well as in early solids mixing studies (Lacey, 1954; Lacey and Mirza, 1976; Harnby,
1967; Hersey, 1970) and polymer processing applications (Mohr et al., 1957). At
that time, it was extraordinarily labor intensive to collect the data densities needed to
calculate scales of segregation. As a result, the authors concluded that this measure
was not accessible for the solution of realistic problems and was therefore most often
abandoned. Today, however, powerful tools such as computational fluid dynamics
(CFD), tomography, particle image velocimetry (PIV), and image analysis exist,
enabling large data sets to be obtained and now making the measure of scale of
segregation possible. Due to these modern resources, some more recent work has
focused on the scale of segregation in chaotic laminar flows indirectly via stretching
functions and Lyapunov exponents (see Chapter 3 in the Handbook). In the poly-
mer processing literature (Chapter 16 in the Handbook), the scale of segregation is
addressed through the concept of dispersive mixing, which may be thought of as the
dispersion of small clumps of additive particles into single particles or the dispersion
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of large drops into smaller drops. Distributive mixing is analogous to the intensity
of segregation and refers to the distribution of any additive throughout the volume.
Experimental examples of the scale of mixing are given in Kukukova et al. (2011).

The third mixing objective is a specified rate of mixing, or mixing time, and there
are a number of mixing times to consider. The first mixing time is the blend time
(see Chapter 9 of the Handbook). This is a macromixing time: How long does it
take for the whole tank to become well mixed? The goal is to eliminate large islands
of unmixedness (distributive mixing). The second set of mixing times is an array
of mesoscale rates, usually related to reducing the scale of segregation (dispersive
mixing). One example of this is the time required to form a liquid–liquid dispersion
with a certain mean drop size. In a typical process, the blend time might be 5 s, with
80% of the drop breakup complete within 5 min, but a full 30 min required to achieve
the equilibrium drop size. These processes happen at scales smaller than the tank
diameter but much larger than the diffusional scales. At the smallest scales of mixing,
referred to as the microscale, several rates compete: mass transfer across films,
molecular diffusion through striations, and chemical reaction rates. The micromixing
time is the time needed to reduce the scale of segregation to any of the microscales
given above. If the micromixing rate is slower than the reaction or mass transfer
rate, micromixing will affect the process outcome. The mixing time is the integral
of the instantaneous rate of mixing, or the rate of change of segregation, which we
can also call exposure. Exposure depends on three factors: the strength of interaction
(typically a rate constant), the distance from the minimum segregation state (this
depends both on the physical properties of the fluid and on the equipment design) and
the opportunity the two species have to interact (the simplest example of this is the
interfacial area for mass transfer). Exposure, or the instantaneous rate of change of
segregation, is a nonlinear combination of the intensity and the scale of segregation
(Kukukova et al., 2009).

IDENTIFYING MIXING PROBLEMS: DEFINING THE CRITICAL SCALES
AND PROCESS OBJECTIVES

Before digging more deeply into some applications and examples, recall the three
major categories of mixing problems: blending, multiphase, and reaction. Most blend-
ing problems are macroscale problems, although a small number involve product
defects down to the micrometer scale. Most multiphase mixing problems occur at
the mesoscale. The first multiphase mixing objective is to eliminate large-scale seg-
regation by suspending sinking solids, drawing down liquids and floating solids, or
by dispersing gas while avoiding the flooding regime of the impeller. The second
multiphase mixing objective involves dispersion of the second phase. The final mul-
tiphase mixing objective is to create a homogeneous suspension or dispersion, where
the concentration and size distribution of the dispersion is the same throughout.
This final, most demanding mixing objective is usually not achievable in large-scale
industrial tanks but is often a requirement for the production of consumer products
such as pastes and creams. This limits the batch size for some products. The most
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Table 0-1 Multiphase Mixing Objectives Classified by the Dominant Scale of Mixing

Macroscale Mesoscale Microscale

Solid–Liquid Suspend all solids off
the tank bottom

Draw down floating
solids from the free
liquid surface

Eliminate stratified
layers, which are
visible as a solids
cloud height

Uniformly distribute
solids throughout
the tank

Blend pastes to
uniformity

Disperse clumping
solids

Flocculate fines
Aggregate primary

particles

Dissolve solids
Avoid the production

of fine particles by
solids attrition

Reduce particle size
to produce fine
particles in media
mills

Control crystal size
through the
conditions needed
for nucleation and
diffusion-limited
growth

Liquid–Liquid Eliminate stratified
layers by drawing
down liquids from
the free surface

Predict and control
phase inversion

Form liquid–liquid
dispersions with
a specified drop
size distribution

Form stable
emulsions

Coalesce
impurities

Dissolve partially
miscible drops

Gas–Liquid Select and control the
gas–liquid flow
regime

Avoid impeller
flooding

Disperse gas to
reduce bubble
size

Entrain gas from
the head space

Maximize the rate of
gas–liquid mass
transfer

Solid–Solid Eliminate large-scale
segregation and
solids demixing

Disperse clumping
solids

Blend powders to
uniformity

common multiphase mixing objectives are given in Table 0-1, where they are classi-
fied by the dominant mixing length scales. The final category of mixing problem is
reactions. Mixing-sensitive reactions are limited by the micromixing time scale and
may also be limited by mass transfer or by mesomixing and by-product formation.
In most reactor design cases, the primary mixing design objective is to minimize
the mass transfer and mesomixing limitations so that the final design is only limited
by the microscale. This is driven by two considerations: First, it eliminates mixing
limitations in the process, and, second, it provides the conditions needed for reliable
scale-up from pilot process to fully industrial-scale production. When the chemistry
is severely limiting at the small scale, selection of an alternate reaction route may be
considered (see Chapter 13 of the Handbook) or equipment that gives a very high
mixing intensity (e.g., micromixers) might be implemented.
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Mixing involves three distinct specifications: degree of homogeneity; scale of seg-
regation, and mixing time. The three major classes of process objectives that depend
on mixing are blending, multiphase mixing and dispersion, and mixing-sensitive
reactions. Each of these major classes of process objectives is associated with a scale
of mixing. Blending is associated with the macroscale, with segregation on scales as
large as the scale of the equipment, that is, the pipe diameter or the tank diameter.
Mesoscale mixing occurs when the scale of segregation is reduced from macro- to
micro-. In this case it is important to consider how the scales of mixing will interact
with the desired process scales (e.g., drop size distribution). At the micromixing scale
the scale of segregation is small enough that viscous dissipation, molecular diffusion,
and surface effects become significant. All mixing processes have associated mixing
times, or rates. In some cases, achieving uniform concentration is important, multiple
scales of mixing interact, and the rate of mixing can be critical.

When evaluating an existing process for mixing problems, begin with the initial
questions in this section, which are now modified to include information needed for
the mixing specifications:

1. What is the equipment? Is the process continuous or batch?

2. What is the continuous phase? Is the flow regime laminar, turbulent, or transi-
tional? Does the viscosity change during the process?

3. What other phases are present? Is there a need to suspend solids, disperse one
immiscible liquid into another, disperse gas to achieve mass transfer, draw down
a second phase from the liquid surface, promote agglomeration or growth, or
mix two solids together? Are there rheological effects?

4. Is a reaction present? Is it mass transfer limited? Is it mixing sensitive? Is it
limited by heat transfer?

Continue to define the mixing specifications:

5. Is a degree of homogeneity or intensity of segregation needed? Where? How
fast? How uniform? At what scale of observation?

6. Does the scale of segregation need to be reduced? What size? Does the shape
of the distribution matter? Does the rate matter? Is accurate data available for
the specification?

7. What are the competing rates in the process? What rate is critical and is it
limited by mixing?

Example: Definition of Mixing Objectives in the Kitchen Returning to the
four examples presented at the beginning of the section, consider them now in terms
of mixing problem specification:

1. Stirring cream into coffee: This is a simple macroscale blending problem. When
observing this mixing in action, try taking a knife and using it as a baffle. You
will be able to feel the additional resistance to flow (increased power draw on
the motor) and see the dramatic change in circulation pattern.
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2. Dissolving sugar into water: This is a multiphase problem, where the goal is to
lift the sugar off the bottom by mixing, and then stir long enough for the sugar
to dissolve. The mixing time depends on the particle size (try using icing sugar
or large raw sugar crystals), the water temperature, and the solubility of the
solid (try changing the solid from sugar to something less soluble—like gelatin
or laundry soap).

3. Mixing oil and vinegar: Another multiphase problem, this time with no mass
transfer but with both a macroscale segregation component (initially all of the oil
floats on the top) and a scale of segregation requirement (a small drop size gives
an even coating of oil and vinegar over the salad). Depending on the dressing,
the oil drops may be very stable (e.g., mayonnaise, which is stabilized with
egg yolk) or very unstable (a simple oil and balsamic vinaigrette). Addition of
herbs (small biwettable solids), mustard, or salt tends to stabilize the dispersion.
Note that most store-bought dressings contain surfactants and/or stabilizers to
extend their shelf life. An experiment to try: The oil tends to disperse into the
vinegar, even if there is much less vinegar than oil. Why? What is the smallest
volume fraction of vinegar that will form a continuous phase?

4. Making gravy: This is both an advanced cooking lesson and quite a difficult
mixing problem that is analogous to a number of industrial processes. There are
a number of steps in the semibatch process, which involves changing viscosity,
paste mixing, reaction, heat transfer, and mass transfer. The process objective
is to achieve a stable, uniform dispersion of meat juices, fats, and seasonings,
which has an appealing consistency and flavor. To understand the mixing steps,
it is necessary to take the process apart step by step.
� Heat transfer and fouling: Don’t burn the gravy or let it stick to the bottom

of the pan. This requires continuous agitation with good circulation close
to the heated surfaces and possibly a close clearance mixer made with heat
resistant material. A silicon spatula will do nicely.

� Mass transfer: Dissolve the juices from the bottom of the pan into the stock.
This requires patience, gentle heating, and agitation. The dissolution time
varies depending on the thickness of the solid layer and the degree of local
agitation.

� Mix flour with cold water: Nonwetting and clumping solids. You may start
this by making a paste and then diluting it or by mixing rapidly and intensely
with small-scale turbulence. If warm water is used, the solids will tend to
clump together and more mixing intensity will be required to make a smooth
dispersion. Complete dispersion of the individual particles of flour at this
stage is critical and requires high shear at the particle scale, either due to
turbulence or due to local shearing of a thick paste followed by dilution. The
mixing time is not important, as long as the solids are fully dispersed (and
your guests are not too hungry).

� Reaction: The starches in the flour react when heated and thicken the stock.
The flour is a complex solid, and breaking up the flour granules requires
vigorous mixing, again at the small scale, if the starches are to be released
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and completely react (McGee, 2004). Thus the degree of mixing changes the
flavor of the gravy (and the extent of reaction) from one cook to another. In
the case of incomplete mixing, the remaining (<1%) unreacted starches can
have a large impact on the quality of the final product. As the heating and
reaction progresses, the homogeneous mixture of flour, water, stock, and fat
changes from a waterlike consistency to a thick non-Newtonian paste with
a yield stress. The mixing intensity must be carefully controlled to quickly
disperse the non-Newtonian paste without forming lumps. Excessive mixing
will cause splashing and a safety hazard, as well as a dirty kitchen.

� Emulsifying the remaining fats: The flour also acts as an emulsifier, dis-
persing the melted fat into the stock. When the roasted meat or bird has
given off a lot of fat, the first addition of flour may not capture all of the
fat in the dispersion. In this case, the excess fat will separate on the surface,
and the mixing expert has several choices: drain the fat (perhaps a healthier
solution), stir intermittently to redisperse the second phase (a lower quality,
but cheaper product), or add more stabilizer. If more stabilizer is added, it
must be premixed and diluted to avoid lump formation, and vigorous mixing
will be required to completely disperse the organic phase into the dispersion.
The gravy is now a smooth slightly viscous liquid–liquid dispersion, and the
final additives can be incorporated to finish the product (add salt and pepper
to taste!). When cooled, the fat solidifies and the dispersion becomes a gel
with a yield stress.

Notice how the mixing requirements change for the different steps! This is a very
tricky problem. Some industrial mixers have multiple functions, such as high-shear
or rotor-stator mixers in combination with close clearance impellers to provide for
changing mixing requirements.

NOTATION

Ci Concentration in sample i
Cmean Mean concentration in the volume
CoV Coefficient of variation
Nt Total number of samples
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The material in this chapter is largely unchanged since the printing of the Handbook
of Industrial Mixing (hereafter referred to as the Handbook). The original chapter is
provided on the DVD attached to the back cover as a searchable pdf. Included below
are the table of contents and the chapter introduction.

A new chapter on mean age and local residence time distributions follows as
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1a-1 INTRODUCTION

The concept of residence time distribution (RTD) and its importance in flow processes
first developed by Danckwerts (1953) was a seminal contribution to the emergence
of chemical engineering science. An introduction to RTD theory is now included in
standard texts on chemical reaction engineering. There is also an extensive literature
on the measurement, theory, and application of residence time distributions. A liter-
ature search returns nearly 5000 references containing the concept of residence time
distribution and some 30,000 references dealing with residence time in general. This
chapter necessarily provides only a brief introduction; the references provide more
comprehensive treatments.

The residence time distribution measures features of ideal or nonideal flows asso-
ciated with the bulk flow patterns or macromixing in a reactor or other process
vessel. The term micromixing, as used in this chapter, applies to spatial mixing at the
molecular scale that is bounded but not uniquely determined by the residence time
distribution. The bounds are extreme conditions known as complete segregation and
maximum mixedness. They represent, respectively, the least and most molecular-level
mixing that is possible for a given residence time distribution.

Most of this handbook treats spatial mixing. Suppose a sample of fluid is collected
and analyzed. One may ask: Is it homogeneous? Standard measures of homogeneity
such as the striation thickness in laminar flow or the coefficient of variation in
turbulent flow can be used to answer this question quantitatively. In this chapter we
look at a different question that is important for continuous flow systems: When did
the particles, typically molecules but sometimes larger particles, enter the system, and
how long did they stay? This question involves temporal mixing, and its quantitative
answer is provided by the RTD (Danckwerts, 1953).

To distinguish between spatial and temporal mixing, suppose that a flow system
is fed from separate black and white streams. If the effluent emerges uniformly gray,
there is good spatial mixing. For the case of a pipe, the uniform grayness corresponds
to good mixing in the radial direction. Now suppose that the pipe is fed from a single
stream that varies in shade or grayness. The effluent will also vary in shade unless
there is good temporal mixing. In the context of a pipe, spatial mixing is equivalent
to radial mixing and temporal mixing is equivalent to axial mixing.

In a batch reactor, all molecules enter and leave together. If the system is isothermal,
reaction yields depend only on the elapsed time and on the initial composition. The
situation in flow systems is more complicated but not impossibly so. The counterpart
of the batch reaction time is the age of a molecule. Aging begins when a molecule
enters the reactor and ceases when it leaves. The total time spent within the boundaries
of the reactor is known as the exit age, or residence time, t. In real flow systems,
molecules leaving the system will have a variety of residence times. The distribution
of residence times provides considerable information about homogeneous, isothermal
reactions. For single, first-order reactions, knowledge of the RTD allows the yield to
be calculated exactly, even in flow systems of arbitrary complexity. For other reaction
orders, it is usually possible to calculate fairly tight limits, within which the yield
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must lie (Zwietering, 1959). If the system is nonisothermal or heterogeneous, the
RTD cannot predict reaction yield directly, but it still provides a general description
of the flow that is not easily obtained by velocity measurements.

Residence time experiments have been used to explore the hydrodynamics of
many chemical processes. Examples include fixed and fluidized bed reactors, chro-
matography columns, two-phase stirred tanks, distillation and absorption columns,
and trickle bed reactors.





CHAPTER 1b

Mean Age Theory for Quantitative
Mixing Analysis

MINYE LIU

E. I. DuPont de Nemours

1b-1 INTRODUCTION

The concept of residence time and age has been widely used in chemical reactor
engineering for mixing and flow distribution studies. The theory of residence time
distribution is based on this concept and has been an integral part of modern chemical
engineering (Levenspiel, 1999). The theory has been successfully used in many
chemical reactor designs. The strength and weaknesses of the theory have been briefly
reviewed in the Introduction and Chapter 1 of Handbook of Industrial Mixing (Paul et
al., 2004). Although the theory is very useful, it is also limited in several aspects. The
main limitation is perhaps that residence time distribution (RTD) function is based
on the probability distribution of age. In the process of obtaining this function, the
spatial distribution of tracer concentration, which is critical for characterizing mixing
and reaction process in the reactor, has been lost. Therefore, an RTD function cannot
determine the local mixing states inside the reactor, such as the locations of dead
corners, bypassing channels, and so forth.

Recently, a new theory based on the spatial distribution of tracer mean age has
emerged. In this theory, mean age is governed by a transport equation in a similar
form to the Navier–Stokes (NS) equation. This equation can thus be solved using
the same solver as for the NS equation in a computational fluid dynamics (CFD)
code. With the spatial distribution of mean age known, the mixing state in a reac-
tor can therefore be defined. This theory can be considered a major extension of
the RTD.

Advances in Industrial Mixing: A Companion to the Handbook of Industrial Mixing,
First Edition. Edited by Suzanne M. Kresta, Arthur W. Etchells, III, David S. Dickey, and Victor A. Atiemo-Obeng.
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This chapter provides a brief introduction to the mean age theory for steady incom-
pressible flows. The relationship between mean age theory and residence time theory
will be described. The application of mean age theory to quantitative characterization
of mixing processes in both continuous flow reactors and batch reactors will also be
discussed. Methods to compute the degree of mixing and tracer concentration history
and distribution in a continuous flow reactor and blend time in a batch reactor will be
presented.

1b-2 AGE AND TIME IN A FLOW SYSTEM

An RTD frequency function is obtained by mixing-cup averaging of tracer concen-
tration at the exit of a reactor. This is also a process of spatial integration of the
concentration distribution, which is a function of both space and time. After integra-
tion, the resulting function varies with time only. A different function can be obtained
if time integration is applied to the local concentration distribution function. The
result is then a function of space only. When this time integration is done for the
time-weighted concentration at every point in space in the reactor, a spatial distribu-
tion of local mean age can be obtained. This is the essence of the mean age theory to
be discussed in this chapter.

Consider a simple flow system with one inlet and one outlet as shown in Fig-
ure 1b-1. The flow through the system is assumed to be steady. At time 0, the tracer
concentration at the inlet is suddenly changed with a pulse or to a new constant. A
time-dependent tracer concentration will be obtained at any selected spatial location.
Based on the measured concentration, several different definitions of age have been
used in the literature. Before we proceed, we would like to clarify these different
definitions and unify the terminology of age used in the literature.

Usually, the term residence time is reserved for tracer molecules exiting the vessel,
as the elapsed time since they entered (Nauman and Buffham, 1983). Suppose that we
can measure the tracer concentration at every point at the exit, c(x,t). Then a frequency
function can be defined with this concentration by “mixing-cup” averaging:

f(t) =
Ce(t)

∫ ∞0 Ce(θ) dθ
= 1

Q ∫
e

ue(x, t) dA (1b-1)

Inlet

Outlet

Figure 1b-1 Steady flow reactor with one inlet and one outlet.
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where f(t) is called the residence time distribution function. It is sometimes denoted
by E(t), thus often called E-curve. Mean residence time is defined as the first moment
of this function:

τ = ∫
∞

0
tf(t) dt = V

Q
(1b-2)

Accompanying the RTD function is the accumulative residence time distribution
function F(t), which is also frequently used in the literature:

F(t) =

t

∫
0

f(θ) dθ (1b-3)

and

E(t) = dF(t)
dt

(1b-4)

The age of a fluid identity, a molecule or fluid particle, as initially defined by
Danckwerts (1953), is usually reserved to describe the elapsed time since the entrance
of the identity still in the vessel. When the identity reaches the exit, its age equals the
residence time. For this reason, Danckwerts also referred to this age as internal age.
Since age is tagged to an individual identity, it will increase at the same rate as the
time. Therefore, if we use α to denote age, we can write

dα
dt
= 1 (1b-5)

This derivative is a substantial derivative. The age distribution, whether inside the
reactor or at the exit, is referred to as a probability distribution, not spatial distribution.

Mean age, denoted by a, as we will discuss in this chapter, is the averaged age of
all molecules in a sample taken at a spatial location x. For a steady flow, mean age
is independent of time coordinate and is a function of space only. This is perhaps the
most important difference between mean age and the traditional residence time.

Internal residence time is the time when a molecule inside the flow eventually
leaves the system (Nauman and Buffham, 1983).

In some studies, local residence time is used to refer to internal age at a spatial
location inside a flow system and mean local residence time as mean age. Throughout
this chapter, we will restrict the use of the term residence time to the exit.

1b-3 GOVERNING EQUATIONS OF MEAN AGE AND
HIGHER MOMENTS

Let’s again consider the steady continuous flow system in Figure 1b-1. At time t =
0, a pulse of passive tracer is suddenly injected uniformly into the flow at the inlet.
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Due to the spatially nonuniform velocity field, the tracer material will be convected
and diffused throughout the flow and generate a nonuniform spatial distribution of
concentration. If we measure the concentration of the tracer at a spatial location x
over time, we will obtain a time history of the concentration at the location, c(x,t).
The distribution of c(x,t) is governed by the convection-diffusion equation:

∂c
∂t
+ u ⋅ ∇c = ∇ ⋅ (𝒟∇c) (1b-6)

If we integrate this equation over time from 0 to ∞, we will obtain (Spalding,
1958)

∇ ⋅ (uI) − ∇ ⋅ (𝒟∇I) = 0 (1b-7)

where

I ≡
∞

∫
0

c(x, t) dt (1b-8)

Spalding argued that I is an invariant of the steady flow, and I = q/Q with q the
total volume of tracer in the pulse and Q the volumetric flow rate of the continuous
flow. Using this invariant, a probability frequency function, called age distribution
function, can be defined as

φ = c(x, t)
I

(1b-9)

The mean age at x can then be defined as

a =

∞

∫
0

tφ(x, t) dt = 1
I

∞

∫
0

tc(x, t) dt (1b-10)

The governing equation for mean age a can be found as

∇ ⋅ (u a) = ∇ ⋅ (𝒟∇a) + 1 (1b-11)

Liu and Tilton (2010) gave the complete steps of derivation for this equation, follow-
ing the approach of Sandberg (1981) and Spalding (1958).

At the inlet, the concentration is zero for t > 0, and so the boundary condition for
mean age is

a = 0 (at inlet) (1b-12)
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On solid walls, the normal gradient of tracer concentration is zero (the tracer cannot
diffuse into the wall), therefore,

n ⋅ ∇a = ∂a
∂xn

= 0 (on solid walls) (1b-13)

At the exit, zero normal gradient ∂c∕∂xn = 0 boundary condition is generally
applied to the species conservation equation. This leads to the same boundary condi-
tion at the exit for the mean age:

n ⋅ ∇a = ∂a
∂xn

= 0 (at exit) (1b-14)

This boundary condition is consistent with the requirement for closed boundaries upon
which the tracer method is dependent. These boundary conditions have been used in
the literature before, but Liu and Tilton (2010) gave the first rigorous derivations.

By its definition, mean age is the first moment of the tracer age distribution function
φ. Higher moments of age also provide important information about the properties
of the function. For example, the second moment characterizes the spread of c(x,t),
and the third moment describes the skewness. The i-th moment of age is defined as

Mi =

∞

∫
0

tiφ(x, t) dt (1b-15)

Transport equations for moments can be derived in the same way as the mean age
transport equation,

∇ ⋅ (uMi) = ∇ ⋅ (𝒟∇Mi) + iMi−1 (1b-16)

The same boundary conditions as for mean age apply to all the moments.
For a Reynolds-averaged turbulent flow, eqs. (1b-11) and (1b-16) can still be used,

but the molecular diffusivity will be replaced by the effective turbulent diffusivity Dt,

𝒟t =
νt

Sca
+𝒟 (1b-17)

where νt is the turbulent viscosity and Sca is the turbulent Schmidt number for
mean age. Sca is the same as that for turbulent species diffusion since mean age is
determined by tracer diffusion.

Although the above equations of moments are derived for a pulse input flow
system, the same equations can be derived for other types of input (Liu, 2011a).
The key step in deriving these equations is to define the age frequency function.
For a pulse input system, the age frequency function is defined by eq. (1b-9) with
a spatial invariant I. Liu (2011a) showed that for a step input, the age frequency
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function can be defined with the time derivative of concentration. For a step-up input,
the corresponding invariant is the concentration imposed at the inlet, I = Cin. For a
step-down input, the invariant is the initial concentration in the system, I = Co. For a
steady tracer input, the age frequency function is still defined by eq. (1b-9), but the
invariant is the steady tracer concentration at the inlet, I = Cin. Thus, the transport
equations for the moments of age are independent of the type of tracer inputs. The
equations describe the flow properties, and different types of tracer addition are just
ways to measure these flow properties.

It is noted that the governing equations for mean age and higher moments are in
the same conservative form as the transport equations for momentum, energy, and
species and so can be solved with the same CFD solver. This is a great advantage for
the mean age method over the particle tracking method.

1b-4 COMPUTATION OF MEAN AGE

1b-4.1 Validations of Numerical Solutions

The mean age and higher moments computed from the transport equations can be
validated in two ways: experimental and computational. Both methods involve finding
the full distribution of local concentration distribution as a function of time. Equations
(1b-10) and (1b-15) can then be used to calculate the moments.

Baleo and Le Cloirec (2000) compared the mean age distribution from both experi-
mental measurements and the numerical solution of eq. (1b-11) for an incompressible
flow in a circular pipe with expansions and contractions. The mean age from the solu-
tion of the steady transport equation agreed well with the mean age calculated from
the measured time history of tracer concentration.

Liu and Tilton (2010) computed time-dependent tracer concentrations by solving
the transient convection-diffusion equation for tracer concentration, eq. (1b-6) for a
two-dimensional (2D) test reactor. The mean residence time of the flow system is
1.0297 s. From the solution of the steady transport equation for mean age, eq. (1b-
11), the flow-averaged mean age at the exit is identical to this mean residence time
up to five effective digits, showing the excellent accuracy of the mean age method.
The results confirm the spatial invariant defined in eq. (1b-8). The moments of age
computed from the concentration history were compared with the solution of the
steady transport equations of the moments, eq. (1b-16), at several selected spatial
locations inside the flow domain. With a concentration history of 12 s, the results
showed that the maximum difference in mean age from the two methods is less
than 2%. The difference increases for higher moments. For the second moments, the
difference is less than 3%. For third moments, the difference at some locations was
higher than 10%. Among the selected locations, larger differences are for points on
or near the inlet jet path. Moments up to the fifth were also compared at the exit of
the flow, and excellent agreement was obtained between the two methods. Even for
the fifth moment, the difference is less than 1%.
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The computed discrepancies between the two methods are mainly due to the
early truncation of the time history of concentration and the numerical errors in the
numerical integration. A numerical study revealed that for mean age, a 10% error
resulted when the time history was truncated at t = 2τ. The error is 4% for t = 4τ and
1% for t = 6τ. For the third moments, the error was 71% at t = 2τ, 25% at t = 4τ, and
5.6% at t = 6τ.

For the CPU time, 8 h was reported for a concentration history of 12 s. In contrast,
the CPU time for each of the steady transport equations for the moments of age was
only about 1 min. These results clearly show that the mean age method is a major
step forward in both numerical accuracy and efficiency. The gain in both accuracy
and efficiency is due to the fact that the time integration has been done analytically.
It should be clear from the above discussion that the mean age method does not
provide any time history of tracer variation. Therefore, the method cannot be used
to obtain the residence time function. However, in principle, such a function can be
reconstructed from the computed moments.

1b-4.2 Spatial Distribution of Mean Age in Mixing Devices

1b-4.2.1 Stirred Tanks The spatial distribution of mean age in a continuous
flow stirred tank reactor can be used to analyze spatial nonuniformity of mixing. In
the current literature, such nonuniformity is rarely discussed since there has not been
an effective method for such analysis. Mean age is a powerful tool for both visual
and quantitative characterization of such nonuniformity.

In designing a continuous flow stirred tank reactor (CFSTR), a key parameter is
the locations of the inlet and outlet. Improperly placed inlets or outlets can cause
strong bypassing. On a bypassing path, the mean age is much lower than the rest of
the reactor. Figure 1b-2a (Liu, 2012a) shows clearly that when both the inlet and the
outlet are placed on the axis of the reactor, even though the inlet flow passes through
the impeller before reaching the outlet, strong bypassing can still exist. When the
outlet is moved to the side of the reactor, the bypassing is avoided, as can be seen
from Figure 1b-2b (case J; Liu, 2012a). For this case, although the direct distance
of the inlet and the outlet is short, the flow path is the longest among all the cases
studied in the Liu’s (2012a) article.

Fresh feed into a slower mixing zone can also cause problems, and an undesired
side product or low grade product can often be the result. Figure 1b-2c shows the
mean age distribution when the inlet is placed at the center of the bottom of the
tank. The inlet jet sends the fresh material into the triangular (cone in 3D) zone
below the PBT (pitched blade turbine) impeller. It is well known that this zone is
outside of the impeller pumping stream and is a very slow mixing zone. The main
mixing mechanism of the fresh feed to the rest of the reactor is the turbulent diffusion
through the shear layer of the impeller jet. This process is much slower than the
strong turbulent jet convection.

Slower mixing zones are those with higher mean age. In many stirred tank reactors,
the last point where mixing is complete is behind the baffle if the test tracer is injected
to the main circulation loop. The main mechanism for the tracer to be transported into
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Figure 1b-2 Mean age (s) contour plot in a stirred tank reactor equipped with a standard 45◦

PBT impeller. The color shade shows mean age distribution in seconds. The mean residence
time of the reactor is 93.4 s. (a) Mean age distribution with short circuiting. (b) Mean age
distribution without short circuiting. (c) Mean age distribution with fresh feed into slower
mixing zone.



COMPUTATION OF MEAN AGE 23

Outlet

(c)

Inlet

94.0

92.6

91.2

89.8

88.4

87.0

85.6

84.2

82.8

81.4

80.0

Figure 1b-2 (Continued)

the separated region is by turbulent diffusion, a much slower process than convection
by main circulation. Figure 1b-3 shows the mean age distribution on a constant radius
surface in a reactor with a standard PBT. The contour plot clearly shows the high
mean age inside the separated region behind the baffles. The mean residence time of
this example is 1864 s, but the batch blend time of the same reactor is about 9 s. The
relation of mean age distribution and batch blend time will be discussed in Section
1b-8.2.

1b-4.2.2 Kenics Static Mixers Another example of using mean age to show
spatial nonuniformity of mixing is the Kenics static mixer (Liu, 2012b). Liu studied
age mixing in a laminar flow in a microscaled Kenics mixer. It is well known that
numerical diffusion overwhelms molecular diffusion in a CFD solution of tracer
concentration for a laminar flow in industrial scales. The small size of the mixer in
this example helps to minimize the effect of numerical diffusion in the solution. Six
elements are considered in the mixer plus an entrance region and exit region. The
flow in the mixer is dominated by convection.

Figure 1b-4 shows the mean age distribution on the center plane across the full
length of the mixer. This picture clearly shows the striations of different mean age
as the material flows down the mixer. These spatial structures in mean age reveal
the nonuniform mixing in the mixer. Such information cannot be seen from velocity
solutions. In general, material age increases as it flows along the mixer. However, older
aged material appears even in the first element. This is due to the slow motion near
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Figure 1b-3 Mean age contour plot showing the slow mixing zone behind baffles with higher
mean age in red. The mean residence time of the reactor is 1864 s.

the mixer pipe and element walls. In polymer processing or biomaterial processing,
such older aged material could be the cause of low-quality product or mixer fouling.
The spatial structure of mean age distribution can also be seen on a cross section of
the mixer as shown in Figure 1b-5. This is on a cross section in the middle of the
fourth element. The striations of higher mean age are due to the mixing mechanism
of the element. This picture clearly shows the location of older material. At the end
of each element, some of the older material sheds off from the element and enters the
main flow to form new striations.

0.00 11.16 22.31 33.47 44.62 55.78 66.93 78.09 89.24 100.40 111.56 123.95

Figure 1b-4 Mean age (s) contour plot in a micro-Kenics static mixer with six elements.
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Figure 1b-5 Mean age (s) contour plot on a cross section in the middle of the fourth element
of the micro-Kenics static mixer.

1b-5 RELATIONS OF MEAN AGE AND RESIDENCE TIME
DISTRIBUTION

Although both mean age and residence time describe age distributions, they differ in
several ways. First, the RTD function is defined at the exit of a flow system while the
mean age function is defined at a point in space inside the system. Second, RTD is
a function of time only, while both mean age and mean age function are dependent
on spatial locations. Therefore, the local mean age describes the spatial distribution
of age, and the RTD describes the probability distribution of age. Third, the mean
age is a scalar, a dependent variable governed by a convection-diffusion equation,
while residence time is tagged to time, an independent variable. While mean age is a
function of space, mean residence time is an integrated quantity at the exit. Referring
to eq. (1b-1), the RTD function is also defined by the tracer concentration function.
Therefore, the two variables are also related.

With the RTD function, the moments of the residence time distribution can also
be defined:

ti = ∫
∞

0
tif(t) dt (1b-18)
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Liu and Tilton (2010) have shown that the moments of residence time distribution
are equal to the mass-averaged moments of age at the exit.

ti = Mi,e (1b-19)

where

Mi,e =

∫
Se

uMi dA

∫
Se

u dA
= 1

Q ∫
Se

uMi dA (1b-20)

This relationship allows us to compute the moments of the residence time distribution
using the mean age method.

The relationship between the moments of age in the interior of the flow and the
moments of residence time at the exit can also be established. If we integrate eq.
(1b-16) over the flow domain and use Stokes theorem, we will have

∫
S

uMi dS = ∫
S

𝒟∇Mi dS + i∫
V

Mi−1 dV (1b-21)

Since the first term on the right-hand side vanishes on all boundaries, we have

QMi,e = ViMi−1,V (1b-22)

With eq. (1b-19), and recall that the mean residence time τ = V/Q, we then have

Mi,V =
ti+1

(i + 1)τ
(1b-23)

This equation can also be obtained by integrating the relation of internal age frequency
function and the accumulative residence time function over the flow domain, as shown
in Liu (2012a).

Liu (2011a) has also shown that the volume-averaged moment of age is equal to
the moment of internal age as defined by Zwietering (1959):

αi =

∞

∫
0

αiϕ(α) dα = 1
V ∫

V

Mi(x)dx = Mi,V (1b-24)

where the internal age distribution function ϕ(α) is (Danckwerts, 1953)

ϕ(α) = 1 − F(α) (1b-25)
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This relation will allow us to extend the discussions of Danckwerts and Zwietering
on internal age distribution to the mean age theory.

1b-6 VARIANCES AND THE DEGREE OF MIXING

The current mean age theory offers several measures to quantify the state of mixing
in a flow system.

1b-6.1 Variance of Residence Time Distribution

Traditionally, nonideal mixing in a continuous flow reactor is analyzed using RTD
theory (Levenspiel, 1999; Nauman and Buffham, 1983). One measure for flow dis-
tribution is the variance of the RTD:

σ̄2
e =

1
τ2

∞

∫
0

(t − τ)2f(t) dt = t2 − τ2

τ2
(1b-26)

The RTD function f(t) is obtained from the time history of tracer concentration at
the exit of a reactor by either experimental measurements or numerical computation.
In many industrial reactors, RTD function f(t) has a long tail. As discussed earlier
in Section 1b-4.1, early truncation of f(t) often causes large errors in the resulting
variance. On the other hand, computing f(t) for a long time often causes large com-
puting cost. Using the mean age method, the variance can be computed without
tracking f(t).

From eq. (1b-19) for i = 1, τ = M1,e ≡ āe, and for i = 2, t2 = M2,e. The variance
then becomes

σ̄2
e =

M2,e − τ2

τ2
(1b-27)

Using eq. (1b-23), the computing process of this variance can be further simplified,
requiring the solution of mean age only:

σ̄2
e =

2āV − τ
τ

(1b-28)

Thus, the volume-averaged mean age can be used as a measure for a mixing system.
Since only the first moment of age is needed, the computing cost of this method is often
orders of magnitude lower than tracking the long time history of tracer concentration
computationally. It should be mentioned that the volume-averaged mean age āV is an
important quantity in the mean age theory. Later we will see that it is also the time
constant for tracer concentration decay rate in a continuous flow reactor.
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1b-6.2 Variances of Age

The distribution of age inside a reactor can also be measured with a variance. A
variance for the internal molecular age distribution inside the flow can be defined:

(α − ᾱ)2 =

∞

∫
0

(α − ᾱ)2ϕ(α) dα (1b-29)

This variance is called the variance of internal age, or the variance of age. Danckwerts
(1958a) and Zwietering (1959) discussed this variance in defining a relative measure
for the degree of segregation, or the degree of mixing. Liu (2012a) has shown that
this variance can be computed as

(α − ᾱ)2 = M2,V − ā2
V (1b-30)

This variance measures the probability distribution of internal age distribution, or
molecular age distribution. However, it offers little information about the spatial
distribution of age and mixing state.

In order to quantify spatial distribution of age, the variance of mean age can be
used (Liu, 2012a):

(a − ᾱ)2 = a2
V − ā2

V (1b-31)

A coefficient of variance (CoV) can be defined for each of the variances in eqs.
(1b-30) and (1b-31). The CoV for molecular age is

σ̄α ≡
√

(α − ᾱ)2

ᾱ
=

√
M2,V − ā2

V

āV
(1b-32)

And the CoV for mean age is

σ̄a ≡
√

(a − ᾱ)2

ᾱ
=

√
a2

V − ā2
V

āV
(1b-33)

1b-6.3 Degree of Mixing

Danckwerts (1958a) proposed the concept of degree of segregation as the ratio of two
different variances of age in the flow system. Zwietering (1959) further defined the
two variances as the variance of age (α − ᾱ)2 and the variance of mean age (a − ᾱ)2

and called the ratio the degree of mixing:

JZ =
(a − ᾱ)2

(α − ᾱ)2
(1b-34)
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The degree of mixing is a relative measure of the state of mixing between a plug flow
and a perfect mixer. For a plug flow, there is no diffusion and the system is completely
segregated. Thus the mean age a is the same as the molecular age α and, therefore,
JZ = 1. For an ideal mixer the mean age is the same everywhere in the system as ᾱ and
(a − ᾱ)2 = 0. Thus JZ = 0. According to Zwietering’s maximum mixedness theory
(Zwietering, 1959), for any practical mixing device with a given RTD, a minimum
value of JZ > 0 exists for the best mixing state.

From eqs. (1b-30) and (1b-31), the Danckwerts–Zwietering degree of mixing can
be computed as

JZ =
a2

V − ā2
V

M2,V − ā2
V

(1b-35)

The Danckwerts–Zwietering degree of mixing is defined with variances about the
average age inside the system. This average age varies with the mixing condition of
the system. When this measure is used to compare different systems, the comparison
may not be on the same basis. In studying mixing efficiency in continuous flow
stirred tank reactors, Liu (2012a) found that this measure failed to characterize the
differences in mixing states of different designs of inlet and outlet. To compare mixing
efficiency with an invariant reference, another set of variances were defined about an
invariant reference, the mean residence time of the corresponding ideal mixer. The
new variances of age are then

(α − τ)2 = M2,V − 2τāV + τ2 (1b-36)

(a − τ)2 = a2
V − 2τāV + τ2 (1b-37)

With these two variances, two new CoVs can be defined as

σ̄α−τ =
1
τ

√
(α − τ)2 = 1

τ

√
M2,V − 2τāV + τ2 (1b-38)

σ̄a−τ =
1
τ

√
(a − τ)2 = 1

τ

√
a2

V − 2τāV + τ2 (1b-39)

With these two variances, a new degree of mixing can be defined as

Jτ =
(a − τ)2

(α − τ)2
=

a2
V − 2τāV + τ2

M2,V − 2τāV + τ2
(1b-40)

where Jτ has the same value as JZ for the plug flow and the ideal mixer but different
values for a nonideal flow. We will see later in this chapter that this new degree of
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mixing more accurately measures the relative mixing efficiency with the effects of
short circuiting and plug flow.

1b-6.4 Spatial Nonuniformity in CFSTRs

The spatial nonuniformity in mixing in a CFSTR can be characterized with the
above-discussed variances and degree of mixing. Liu (2012a) studied five different
configurations of inlet and outlet for a CFSTR. The variances and the degrees of
mixing were computed to measure the performance of mixing. Figure 1b-6 shows
the standard deviation of residence time σ̄e as a function of η, the ratio of mean
residence time to the batch blend time of the same tank. Also shown in the figure
by the thin solid line is the standard deviation for the ideal mixer, σ̄e = 1. It can be
seen that all the standard deviations approach to one as the time ratio η increases. At
shorter residence time, which corresponds to higher continuous flow rate, the curve
with highest value of σ̄e is the one with short circuiting shown in Figure 1b-2a. Some
curves approach 1 from above and others from below the solid line. This is due to the
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Figure 1b-6 CoV of residence time at the exit of stirred tank reactors with different layouts of
inlet and outlet. Solid line (black): with short circuiting, as shown in Figure 1b-2a; dash-double
dots (tan): without short circuiting, as shown in Figure 1b-2b; dotted line (green): fresh feed
to slower mixing zone, as shown in Figure 1b-2c. Thin dashed line (dark gray): ideal mixer.
See Liu (2012a) for dashed line (red) and dash-dot (blue) cases.
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Figure 1b-7 Degree of mixing of stirred tank reactors with different layouts of inlet and
outlet. Same cases as in Figure 1b-6.

different feature of the flow, short circuiting, or plug flow. Detailed discussion can be
found in Liu (2012a).

Figure 1b-7 shows the new degree of mixing for different inlet and outlet con-
figurations. Again, the value for the case with strong short circuiting is the highest,
showing the most deviation from an ideal mixer. As η increases, all curves approach
to 0, but the level of deviation from the ideal mixer can be measured by the different
values of Jτ. Liu (2012a) showed that the degree of mixing calculated from eq. (1b-35)
for this case did not separate this curve from others, indicating that the method was
unable to detect the difference in mixing performance among the cases. Thus, the new
definition of degree of mixing, eq. (1b-40), is recommended for mixing evaluation
among different design cases.

1b-7 MEAN AGE AND CONCENTRATION IN A CFSTR

1b-7.1 Time History of Tracer Concentration

In a stirred tank reactor, the ultimate mixing measure comes from tracer concentration.
Therefore, it is important to relate mean age distribution to tracer concentration. By
tracking the time history of tracer concentration in nonideal CFSTRs, Liu (2011b)
found that concentration history at each location has two stages. The first stage is
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the initial response of concentration at the measured location to the input pulse.
This response is very much location dependent. The time span of this stage is very
short, in the same order of magnitude as the batch blend time. In the second stage,
concentration at all locations decays exponentially from its peak value. Liu called
this stage as the stationary stage and found that the decay rate at every point is the
same as the reciprocal of the volume averaged mean age, āV:

c(x, t) = c̃(x)e−t∕āV (1b-41)

where c̃(x) is a function of spatial location only. The exponential decay of concentra-
tion in a mixing device with back mixing has been observed for a long time by many
researchers. Nauman and Buffham (1983) believed that it is due to diffusion between
slower and faster moving fluids. Now we can quantify this exponential decay rate
with the average mean age for a stirred tank.

One of the results of exponential decay with the same rate in the flow is that if the
concentration is scaled with the volume-averaged concentration, it is a function of
spatial position only:

ĉ = c(x, t)
c̄V(t)

= ĉ(x) (1b-42)

where c̄V(t) is the volume-averaged tracer concentration defined as

c̄V(t) = 1
V ∫

V

c(x, t) dV (1b-43)

It can easily be found that

c̄V(t) = C̄Ve−t∕āV (1b-44)

with

C̄V =
1
V ∫

V

c̃(x) dV (1b-45)

Thus, ĉ can be used to study the spatial nonuniformity of tracer concentration.
By comparing the scaled concentration with the scaled mean age, Liu (2011a)

found that the two scaled fields are nearly identical,

ĉ(x) = c(x, t)
c̄V(t)

≈ a(x)
āV

= â(x) (1b-46)

For the continuous flow reactors studied in Liu (2011a), the difference between ĉ and
â is less than 1%, and the difference is caused by the nonuniform response of the input
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pulse in the initial stage. With eq. (1b-46), the scaled tracer concentration field can
be approximated by the mean age solution. Since mean age can be computed from
eq. (1b-11), a steady transport equation, this relation provides a significant advantage
in computing efficiency.

Mean age solution can also be used to determine the complete history of concentra-
tion at any point in space in the stationary stage without tracking the time-dependent
solution of concentration. From eqs. (1b-41) and (1b-46), Liu found that

c(x, t) = Ia(x)

ÃāV

e−t∕āV t > ti (1b-47)

where I is the invariant defined in Section 1b-3 and ti is the beginning of the stationary
stage, that is, the time when the concentration decay becomes exponential. The only
constant in this equation, Ã, can be determined from measured or computed solution
of concentration at any time and location after the concentration history becomes
exponential. Thus, tracking the complete concentration history is not necessary.

When Ã is determined using the residence time distribution at the exit, Liu found
that Ã = τãe∕āV and

c(x, t) = Ia(x)
τãe

e−t∕āV t > ti (1b-48)

where ãe can be determined numerically at any instant t > ti from

ãe =
1

ce(t)
e−t∕āV (1b-49)

with ce(t) the time history of flow-averaged concentration at the exit of the flow.

1b-7.2 Mixing Time in CFSTRs

To measure mixing performance of a CFSTR, Roussinova and Kresta (2008) defined
a blend time for a system with a stepup input as the time when the tracer concentration
at a measuring point reaches 95% of the inlet concentration. For an ideal mixer, the
concentration in the system is

c(t) = Cin(1 − e−t∕τ) (1b-50)

The time for the concentration in the system to reach 0.95Cin can easily be found as

θc = −τ ln 0.05 = 3τ (1b-51)

For most practical stirred tank reactors, its mean residence time is much larger than the
batch blend time. Therefore, θc should not be a time measuring mixing performance
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in the reactor but rather a time for purging performance. Nevertheless, it is a time to
measure the system response to the inlet condition change.

For a pulse system, the same response time can be defined as the time when the
tracer concentration at a measuring point reaches within 5% of the initial average
concentration in the system immediately after the pulse is released. For the ideal
mixer, the response of the concentration in the system is

c(t) = C0e−t∕τ (1b-52)

where C0 is the initial mean concentration in the reactor after the pulse is released:

C0 =
IQ
V
= I
τ

(1b-53)

Then, the response time is the same as eq. (1b-51). For a nonideal reactor, since the
concentration in the stationary stage can be found from eq. (1b-48), the 95% blend
time θc can easily be found as

θc(x) = −āV ln

[
0.05

ãe

a(x)

]
(1b-54)

Liu (2011b) studied effects of different inlet–outlet layouts and continuous flow rates
on this blend time. Notice that the blend time θc is location dependent. The largest
value of θc at all locations should be chosen as the blend time of the reactor.

1b-8 PROBABILITY DISTRIBUTION FUNCTION OF MEAN AGE

1b-8.1 Definition

The probability distribution function is often a powerful tool to characterize a
complex system. Like residence time distribution, the mean age distribution can also
be quantitatively characterized with a PDF. Consider a differential volume dv(a) in
the flow domain with mean age in the range of a and a+da. The fraction of the volume
with mean age in this range out of the total volume of the flow domain is a function
of a. We can then define a probability density function (PDF) g(a) for mean age as

g(a) da = dv(a)
V

(1b-55)

or

g(a) = 1
V

dv(a)
da

(1b-56)

It is trivial to show that g(a) satisfies the two conditions of a PDF: g(a) > 0 and
∫ ∞0 g(a) da = 1. Liu (2011c) has found the mean age PDF for a plug flow and an
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Figure 1b-8 Probability density functions of mean age in the plug flow (dashed line) and
ideal mixer (solid line).

ideal mixer. For a plug flow with a length of L and velocity of U, the PDF is

g(a) = 1
V

dv
da
= U

L
= 1
τ

a ∈ [0, τ]

g(a) = 0 a > τ (1b-57)

Thus the mean age PDF for a plug flow is a constant, 1/τ.
For an ideal mixer, molecular age α everywhere inside the reactor is the same as

that at the exit and is an exponential function:

ϕ(α) = 1
τ

e−α∕τ (1b-58)

The mean age is, therefore, a constant throughout the device and equal to the
mean residence time at the exit, a = τ. Thus, the mean age PDF is a delta function
at a = τ:

g(a) = δ(a − τ) (1b-59)

The PDFs of mean age for the plug flow and the ideal mixer are shown in Figure 1b-8.

1b-8.2 Scaling and Blend Time Estimation

Liu (2011c) computed mean age PDFs for a stirred tank reactor with small flow rate.
He showed that as the continuous flow rate reduces, its effect on the flow field and
mean age distribution becomes negligible. Thus, the computed mean age reflects the
impeller performance on mixing in a batch reactor. The PDF of mean age can then
be used to study the effects of impeller speed and diameter on mixing efficiency.
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Figure 1b-9 Probability density functions of mean age in the stirred tank reactor at different
impeller speeds. Solid line (black): rpm = 600; dashed line (red): rpm = 450; dotted line
(green): rpm = 300; dash-dot (blue): rpm = 150; dash-double dots (tan): rpm = 100.

Figure 1b-9 shows the PDF for different impeller speeds. The width of the curves
clearly shows the strong effect of impeller speed on mixing rate. The curves are
more spread out at low rpm than at higher rpm. As revolutions per minute (rpm)
increases, the curve approaches the delta function for the ideal mixer. A similar effect
of impeller diameter was also found.

Although the PDF curves are affected by both the impeller speed and diameter,
Liu (2011c) has found that the curves are scalable. He defined a new and scaled mean
age as

ã = Nβ
(D

T

)γ
(a − āV) (1b-60)

With the new scaled mean age, a new PDF can be found as

g̃(ã) = 1
V

dv
dã
= N−β

(D
T

)−γ
g(a) (1b-61)

For the stirred tank with a 45◦ PBT impeller with the bottom clearance at T/3, he
found that β = 1 and γ = 2 give the best scaling of all the curves. Figure 1b-10 shows
the curves of Figure 1b-9 and three other curves for 300 rpm and D/T = 1

4
, 1

3
, and 1

2
.
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Figure 1b-10 Scaled probability frequency functions of mean age in the stirred tank reactors
at different impeller speeds.

By comparing eq. (1b-60) with the blend time correlation in Chapter 9 of the
Handbook (Grenville and Nienow, 2004),

Nθ95

(D
T

)2
= 5.2Po−1∕3 (1b-62)

Liu (2011c) postulated that the mean age PDF curves can be used to estimate blend
time of a batch mode mixing device. He defined this blend time as θa = amax – a0
with amax – a0 as the width of the curve at the base. As shown in Figure 1b-9, the
width of the mean age PDF is a function of the impeller speed. Similarly, it is found
to be a function of impeller diameter. This suggests that the width may be used as a
measure for blend time. Liu (2011c) defined the width of a PDF curve as amax – a0 =
5σ or amax – a0 = 6σ and compared with the blend time calculated from eq. (1b-62)
and another correlation by Fasano and Penney (1991). For a normal distribution, 5σ
covers the 98.76% of the area and 6σ covers 99.74% of the area under the PDF curve.
Figure 1b-11 shows the comparison of θa with θ95 from correlations. It can be seen
that the blend times calculated from the width of the mean age curves agree well with
both correlations.

Another method to calculate the width of a mean age PDF curve for blend time
is to integrate the area under the curve. From the definition of mean age PDF in eq.
(1b-56), it can be found that this area is in fact the volume of the stirred tank. A blend


